高频开关电源电路组成及稳压原理
- 格式:doc
- 大小:16.00 KB
- 文档页数:3
高频开关的工作原理
高频开关是一种能够快速开关的电子元件,其工作原理是基于高频电流的特性。
当一个高频电压施加到开关上时,它会在导通状态和截止状态之间迅速切换。
高频开关通常由三个主要部件组成:驱动电路、开关管和保护电路。
驱动电路负责控制开关的工作状态,根据输入信号的变化来改变开关的导通和截止状态。
开关管是负责实际开关操作的元件,它可以快速地切换电流通路。
保护电路用于保护开关和其他电路元件不受过电流、过压和过温等异常情况的影响。
在工作过程中,高频开关根据输入信号的变化来进行快速的导通和截止操作。
当输入信号为高电平时,开关导通,电流通过。
而当输入信号为低电平时,开关截止,电流断开。
由于高频开关具有快速响应的特点,它可以在非常短的时间内完成导通和截止状态的转换,达到快速开关的目的。
高频开关在众多电子设备中得到了广泛应用,例如电源逆变器、无线通信设备和医疗设备等。
它的快速开关特性使其能够高效地控制电流流动,同时还能够减小功率损耗和提高系统的效率。
因此,研究和应用高频开关技术对于提升电子设备性能具有重要意义。
高频开关整流器的工作原理1、设备环境高频开关整流器的工作原理开关电源是连接市电电网与通信设备之间的电源转换设备,基本电路包括两部分。
一是主电路,二是掌握电路,主电路高频开关整流器中的核心部分是高频功率变换电路,开关电源是利用高频脉冲信号掌握电子开关开通时间长短来实现稳压的电源。
整流模块实现沟通电输入到直流输出原理图:主电路的功能:完成沟通电输入到直流输出的全过程,是高频开关整流器的主要部分1)沟通输入滤波:包括低通滤波器、浪涌抑制等电路,其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂音反馈到公共电网;2)整流与滤波:将电网沟通电源直接整流为较平滑的直流电;3)逆变:将直流电变为高频沟通电,这是高频开关的核心部分;4)输出整流与滤波:由高频整流滤波及抗电磁干扰电路组成,供应稳定牢靠的直流电源。
掌握电路的功能:一方面从输出端取样,经与设定标准进行比较,然后去掌握逆变器,转变其频率或脉宽,达到输出稳定,另一方面,依据测试电路供应的数据,经爱护电路鉴别,供应掌握电路对整机进行各种爱护措施。
2、设备环境整流模块功能的设定①均充功能设定:通常均充周期1个月、均充持续时间10小时。
②整流模块输出限流值设定:如设为110%整流模块输出额定电流,表示当整流模块输出电流到达该值后,将不再增加电流(进入稳流状态),起到爱护整流模块的作用。
③蓄电池组充电限流值设定:比如设为额定容量/10(A),表示当对电池的充电电流到达该值后,电流将不再上升,起到爱护蓄电池组的作用。
④市电中断均充参数设定:当发生沟通输入中断后,由蓄电池组向负载供电,监控单元同时开头累计蓄电池放电容量,以打算沟通复电后是否向蓄电池实行较高电压的均充。
⑤浮充、均充电压设定:-48V系统设定浮充电压:53.5V;设定均充电压:56.0V。
开关电源高频变压器工作原理开关电源是一种常见的电源类型,它通过高频变压器来实现电能的转换和稳定输出。
本文将介绍开关电源高频变压器的工作原理。
开关电源的基本组成包括输入滤波电路、整流电路、功率变换电路和输出滤波电路。
其中,高频变压器是功率变换电路中的重要组成部分。
高频变压器由铁芯和绕组构成。
铁芯是由软磁材料制成的,能够有效地传导和集中磁场。
绕组则由导线绕制而成,通常分为输入绕组和输出绕组。
在工作时,开关电源的输入电压经过输入滤波电路进行滤波处理,然后进入整流电路。
整流电路将交流电转换为直流电,并通过功率变换电路进行变压和变换。
功率变换电路包括一个或多个功率开关器件,如晶体管或MOSFET。
当功率开关器件导通时,输入电压施加在输入绕组上,产生磁场。
磁场的变化会引起输出绕组中的电压变化,从而实现变压和变换。
当功率开关器件关断时,输入电压消失,磁场也消失。
这样,输出绕组中的电压也会发生变化。
高频变压器的工作原理主要依赖于电磁感应现象。
当输入绕组中的电流变化时,会产生变化的磁场。
根据法拉第电磁感应定律,变化的磁场会诱导出输出绕组中的电动势。
根据电磁感应定律,电动势的大小与磁场变化的速率成正比。
在开关电源中,频率较高的开关操作使得输入电流的变化速率很大,从而增大了磁场变化的速率。
这样,输出绕组中诱导出的电动势也会增大。
通过合理设计高频变压器的铁芯和绕组参数,可以实现电压的升降和输出功率的稳定。
高频变压器的设计需要考虑多个因素,如输入电压、输出电压、输出功率、工作频率等。
合理的设计可以提高开关电源的效率和稳定性。
高频变压器是开关电源中的关键组成部分,它利用电磁感应现象实现电能的转换和稳定输出。
通过合理设计和优化,可以提高开关电源的性能和可靠性,满足不同应用领域的需求。
开关电源入门必读开关电源工作原理超详细解析开关电源是一种将直流电源转换为可变直流电压输出的电源装置。
它通过开关管的通断控制,以高频脉冲方式调节输出电压,能够实现高效、稳定、可靠的电源转换。
本文将详细解析开关电源的工作原理。
开关电源由以下几个基本组成部分组成:输入滤波电路、整流电路、能量存储元件、控制电路和输出电路。
输入滤波电路的作用是滤除输入电源中的高频噪声和干扰,确保输入电压稳定。
它一般由电容、电感和绕组构成。
输入电压经过滤波电路后,接入整流电路。
整流电路的作用是将交流电转换为脉冲直流电。
常用的整流电路有单相桥式整流电路和三相桥式整流电路。
整流电路通过整流管将输入的交流电转换为直流电,并通过电容滤波电路将脉冲形式的直流电转换为平滑的直流电压。
能量存储元件一般是电感和电容。
电感能存储电能,电容能存储电荷。
在开关电源中,电感和电容组成的电容滤波电路起到储存能量的作用。
它们能够在负载电流突然增加时,释放存储的能量,从而保持输出电压的稳定性。
控制电路是开关电源的核心部分,其中包括开关管的控制电路和反馈电路。
开关管的控制电路负责控制开关管的通断,从而改变输出电压的大小。
反馈电路用于检测输出电压的实际值与设定值之间的差异,并向控制电路提供反馈信号,用于调整开关管的通断状态。
开关电源的输出电压由开关管通断的频率和占空比决定。
开关管的通断由控制电路控制,控制信号通常由脉冲宽度调制(PWM)产生。
PWM信号通过改变脉冲的宽度和间隔,调整开关管的通断时间,从而改变输出电压的大小。
开关电源的优点是高效率、稳定性好和体积小。
相比传统的线性电源,开关电源的转换效率更高,可以达到90%以上。
此外,开关电源的输出电压稳定性好,能够在负载变化较大的情况下保持输出电压的稳定。
由于使用高频脉冲调节输出电压,在相同输出功率的情况下,开关电源体积更小。
总之,开关电源是一种高效、稳定、可靠的电源装置。
它通过开关管的通断控制,以高频脉冲方式调节输出电压,实现电源转换。
开关电源工作原理详细解析开关电源是一种将输入电源进行高频开关,通过变压和整流来获得所需输出电压的电源装置。
其具有体积小、效果高、效率高以及可靠性好等特点,被广泛应用于电子设备中。
开关电源的工作原理主要包括三个基本环节:输入变压、高频开关和输出整流。
下面将详细解析开关电源的工作原理。
1.输入变压首先,将交流输入电源通过变压器进行变压。
变压器是由磁性材料制成的,通过电磁感应原理将输入电压转换为所需的输出电压。
变压器包括一个输入绕组和一个输出绕组,通过绕组的匝数比实现电压的变化。
输入变压结束后,得到所需的直流电压。
2.高频开关在输入变压后,输入电压变成了所需的直流电压。
接下来,将直流电压输入到高频开关电路中,这里的高频指的是开关管的开关频率达到了几十KHz~几十MHz。
高频开关电路由开关管、驱动电路、电感和电容等组成。
开关管是整个开关电源中重要的元件,其作用是开关输入电源的通断。
通常使用的开关管有MOSFET和IGBT两种。
驱动电路用于控制开关管的开关动作,以确保输出符合要求。
电感起到滤波的作用,它能够抵抗电流的变化,并将电流平滑地输出。
电容则起到稳压的作用,将波动电压平滑地转换为稳定的直流电压。
高频开关的原理是通过不断开关开关管,使输入电源以高频脉冲的形式提供给输出端。
开关时间很短,因此开关过程中电流的变化很小,这减小了能量损失。
3.输出整流高频开关电路的输出是以脉冲的形式存在的,需要进行整流处理,将脉冲电流转换为稳定的直流电流。
输出整流主要由输出电感、输出滤波电容和负载电阻组成。
输出电感和滤波电容起到平滑输出脉冲电流的作用,将脉冲电流转换为稳定的直流电流。
负载电阻则接收电源输出电流,并提供给负载使用。
除了上述三个基本环节外,开关电源还包括过压保护、电流限制和短路保护等功能。
这些功能是通过控制电压和电流的大小来实现的,避免电源过载。
总结起来,开关电源是通过变压和整流来获得所需输出电压的电源装置。
其工作原理包括输入变压、高频开关和输出整流。
开关稳压电路1开关稳压电路的工作原理开关稳压电源由输入部分、功率转换部分、输出部分、控制部分组成。
功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。
它主要由开关三极管和高频变压器组成,电路如图1(a)所示,波形如图1(b)所示。
Ui是用电网交流220V直接整流滤波得到的直流高压(这样可省去工频变压器)。
高频变压器的原绕组为N1,N2为变压器副绕组,供输出用。
N3为基极正反馈绕组,R1是启动电阻,R2是限流电阻。
加上电源时,电流通过R1流向开关管T的基极,使T导通。
此时变压器副边的二极管反向偏置,于是T集电极电流和变压器绕组N1中电流相等。
由于是从零起动,基极电流不大,就能使T导通。
原绕组N1通过电流,产生上正下负的感应电压,经磁芯耦合,反馈绕组N3也产生感应电压UL3,并向T的基极注入iB,使T进一步导通,即UL3增加,iB增大,使iC进一步增大,这是一个正反馈雪崩过程。
在T导通期间,副边因二极管反偏没有电流。
当T进入高饱和区后,iC的变化率减小,原边N1绕组感应电压下降,同时反馈绕组N3电压下降,造成iB下降,iC下降,这再次形成一个正反馈雪崩过程,使开关管迅速截止。
T的导通时间TON取决于iC达到饱和的时间。
T导通期间,副边电路截止,原边线圈储能。
T截止时,N1的感应电压上负下正,相应地N3的电压上负下正,保证T截止,同时副边N2电压上正下负,D导通。
由N2通过D向负载传送能量,副边绕组中电流iD线性下降,直到iD=0,电路恢复起始状态,开始一个新的周期,T再次导通。
TOFF取决于副边绕组放电到零的时间。
输出电压与开关管的导通时间成正比。
2开关稳压电源的构成及稳压过程开关电源电路如图2所示。
下面对这个电路的各个主要组成部分的作用及原理作分析。
2.1输入部分RT1、C1为输入滤波器(RC低通滤波器),L1、C2、C3为共模滤波器,可以衰减、削弱共模干扰,V1为全桥电路,桥式整流可防止输入电源极性接反烧坏电源电路,C4为滤波电容,R2、C5、V2构成主绕组吸收网络,其作用在后面保护部分详细叙述。
开关电源工作原理超详细解析开关电源是一种常见的电源供应器件,它通过将输入电源的直流电转换为高频脉冲电流,再经过整流、滤波和稳压等环节,输出稳定的直流电。
本文将详细解析开关电源的工作原理,包括开关电源的基本组成部分、工作原理的流程、常见的开关电源拓扑结构以及其优点和应用。
一、开关电源的基本组成部分开关电源通常由以下几个基本组成部分构成:1. 输入电路:用于接收外部交流电源,并将其转换为适合开关电源工作的直流电压。
2. 整流电路:将输入电压转换为脉冲电流,通常采用整流桥或者整流电路来实现。
3. 滤波电路:用于平滑整流后的脉冲电流,以减小输出电压的波动。
4. 开关器件:通常采用晶体管或者功率MOSFET等开关器件,用于控制电流的开关状态。
5. 控制电路:用于控制开关器件的开关频率和占空比,以控制输出电压的稳定性。
6. 输出电路:将经过整流、滤波和稳压处理后的直流电压输出给负载。
二、开关电源的工作原理流程开关电源的工作原理可以分为以下几个流程:1. 输入电路接收交流电源:开关电源的输入电路通常采用变压器来降低输入电压,然后通过整流电路将交流电转换为直流电。
2. 整流电路将交流电转换为脉冲电流:整流电路通常采用整流桥或者整流电路来将交流电转换为脉冲电流,这样可以减小能量损耗。
3. 滤波电路平滑脉冲电流:滤波电路通常采用电容器和电感器来平滑脉冲电流,以减小输出电压的波动。
4. 控制电路控制开关器件的开关频率和占空比:控制电路通过对开关器件的控制,可以控制开关频率和占空比,从而控制输出电压的稳定性。
5. 输出电路将处理后的直流电压输出给负载:经过整流、滤波和稳压处理后的直流电压将被输出给负载,供其正常工作。
三、常见的开关电源拓扑结构开关电源有多种拓扑结构,常见的有以下几种:1. 单端开关电源:输入电源和输出电源共用一个地线,适用于低功率应用。
2. 双端开关电源:输入电源和输出电源分别有独立的地线,适用于高功率应用。
第一节高频开关电源电路原理高频开关电源由以下几个部分组成:一、主电路从交流电网输入、直流输出的全过程,包括:1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。
2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。
3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。
4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。
二、控制电路一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对整机进行各种保护措施。
三、检测电路除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表数据。
四、辅助电源提供所有单一电路的不同要求电源。
第二节开关控制稳压原理开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。
可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。
图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。
电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。
在AB间的电压平均值EAB可用下式表示:EAB=TON/T*E式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。
由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。
高频开关电源原理
高频开关电源是一种常用的电源设计方案,采用高频开关器件(如MOSFET或IGBT)作为开关元件,在高频范围内进行开关操作。
其工作原理如下:
1. 输入电源:高频开关电源的输入通常为交流电源,如220V
的市电。
首先,接入整流电路将交流电转换为直流电。
整流电路通常使用二极管桥整流器,将交流电的负半周整流为正半周的直流电。
2. 输入滤波:为了消除输入电源的干扰和波动,需要进行输入滤波。
输入滤波电路通常采用电容和电感的组合,能够削弱输入信号的高频成分和脉冲噪声。
3. 控制电路:高频开关电源需要一套精确的控制电路来实现高频开关器件的开关操作。
此控制电路通常包括PWM(脉宽调制)控制器,用于产生高频开关信号,以及反馈电路,用于监测输出电压并调节控制信号。
4. 高频开关器件:在高频开关电源中,常使用MOSFET或IGBT等器件作为开关元件。
这些器件具有较低的开关损耗和
较高的开关速度,能够在高频范围内进行有效的开关操作。
5. 输出变换:高频开关电源的输出通常需要进行变换,以适应不同电路的需求。
输出变换电路包括变压器及滤波电路,能够将输入电压变换为合适的输出电压,并滤除输出中的高频噪声。
6. 输出调节:高频开关电源需要对输出电压进行精确的调节。
通过反馈电路监测输出电压,并通过PWM控制器调节开关器件的开关频率和占空比,实现输出电压的稳定性。
总结起来,高频开关电源通过高频开关器件的开关操作,在输入电源经过整流、滤波、变换和调节等处理后,得到稳定的输出电压。
它具有高效率、小体积、轻重量等优点,广泛应用于电子设备、通信设备等领域。
开关电源稳压电路原理开关电源稳压电路原理是指利用开关器件(如MOSFET、BJT等)和电感、电容等元件来实现对电源输出电压的稳定控制的一种电路设计方案。
开关电源的基本结构包括输入端、开关器件、控制电路、变压器、滤波电路和输出端。
其中,输入端是电源的输入端,通过电源线连接到电源插座,将电源的交流电转换成直流电。
开关器件是实现开关电源稳压的关键元件,通过开关控制器对开关器件进行控制,可以实现开关器件的开关和关断。
控制电路是开关电源的控制核心,其任务是控制开关器件的导通和关断的时机,以实现对输出电压的稳定调节。
变压器是负责将输入端的电源电压按照需求转换成相应的输出电压,变压器的特性参数选择会对开关电源的效率和稳定性产生重要影响。
滤波电路的作用是对从变压器输出的脉冲波形进行平滑处理,提供稳定的直流电源输出。
输出端则是将输出电压提供给负载使用,可以是电子设备、电路板等。
开关电源稳压电路的工作原理是通过控制器对开关器件进行控制来实现对输出电压的稳定调节。
在一个工作周期内,开关器件被控制器按照一定的时序进行频繁的开关和关断操作。
当开关器件导通时,电源电压就被输出给负载,此时输出电压上升。
当开关器件关断时,输出电容开始放电,输出电压下降。
通过调整开关器件的导通和关断时间比例,可以控制输出电压的平均值,从而达到稳定调节的目的。
开关电源稳压电路的设计考虑到了多个因素,如输出电压范围、输出电流容量、效率、线性度、纹波等。
其中,控制器是整个稳压电路的核心部分,其主要功能是监测输出电压,当输出电压超出设定值时,通过改变开关器件的导通和关断时间比例,以调整输出电压的大小,并保持在设定范围内。
控制器通常采用反馈控制的方式,即通过反馈电路将输出电压的实际值与设定值进行比较,从而控制开关器件的导通和关断。
为了提高稳定性,通常还会加入电流保护、过压保护、过载保护等保护电路,以保护电源和负载的安全。
总之,开关电源稳压电路原理是通过对开关器件进行控制,调整开关器件的导通和关断时间比例,实现对输出电压的稳定调节。
开关电源原理详解
开关电源是由开关管、变压器、滤波电感、电容和稳压电路等器件组成的电源,其工作原理是将交流电转换为直流电。
下面我们来详细了解开关电源的工作原理:
1.输入变压器:开关电源的输入变压器工作于高频状态下,将低电压高电流的输入变换成高电压低电流的输出,促使开关电源的高频开关能够实现小尺寸和高效率的要求。
2.整流电路:开关电源的整流电路负责将输入电压的交流部分转换成直流电。
整流电路通常包括一个桥式整流器,它可以同时整流正、负电压的交流信号。
3.滤波电路:由于开关电源的输出具有高频脉冲特性,需要通过滤波电路将其转换成平稳的直流电。
滤波电路主要由电感和电容组成,可以过滤高频杂波,从而保持输出电压的稳定性。
4.变换电路:开关电源的变换电路主要由开关管和变压器构成。
变换电路负责将滤波后的直流电转换成需要的电压和电流,并将其输出。
5.稳压电路:开关电源的稳压电路主要由电容和稳压芯片构成,负责保持输出电压的稳定性。
稳压电路可以根据输入电压和输出电流自动调整输出电压,以确保输出电压不会因外部负载的变化而波动。
综合以上几部分,开关电源的工作原理就是将输入电压通过整流、滤波、变换和稳压等过程,最终将输出电压转换成需要的电压和电流,以满足各种电器设备的需要。
DSP系列高频开关电源工作原理■DSP系列工作原理电源主要由整流滤波电路,全桥变换电路,PWM控制电路,稳压、限压电路,稳流、限流电路,保护电路,以及辅助电源电路等组成。
三相电网(或单相)电压经电源开关后,进行整流滤波,得到的520VDC(单相为300VDC)的平滑直流电压供给逆变电路。
三相电压取一路380VAC(或单相220VAC)经变压器降压整流后,再通过三端稳压器稳压得到±15V电压供给各部分控制电路。
逆变电路主要由大功率IGBT模块(或场效应MOSFET模块)组成全桥变换电路。
当PWM输出控制信号通过隔离驱动器分别驱动功率模块,两组对角管分别交替导通,在高频变压器初级产生高频脉冲电压,次级电压由高频变压器变压后整流向负载提供能量。
输出端分别接有稳压、限流和稳流、限压等的反馈环路,当面板开关置于稳压状态时,稳压和限流电路起作用,当输出电压升高或下降时,取样电压通过稳压电路内部电压比较器跟基准电压比较,其误差信号电压加到PWM控制电路,使PWM输出脉宽作相应变化,从而稳定输出电压,如负载电流过高时,限流电路工作,使输出电流限制在限流设定值内。
同样,在稳流状态下,稳流电路作用,使输出电流稳定在设定值内,而当过压时,限压电路使输出电压钳压在限压值。
当有异常情况(如输入过压或欠压,过流或过热等)产生保护信号加到保护控制电路时,保护电路输出一个电压加到PWM电路,使PWM电路停止输出,从而达到保护目的。
■DSP系列工作原理框图三、简易故障维修故障现象检查排除1.开机电源指示灯不亮,风机不转电源是否接好,闸刀是否闭合,如果是三相电源是否有缺相.接好电源,闭合闸刀2.电源指示灯正常、风机正常,工作指示灯不亮启动开关是否在启动的位置如果启动开关在启动位置,整机不工作,则再拨动一次启动开关至启动位置3.工作指示灯正常,电流电压调不动检查稳压限流及稳流限压旋钮是否调至最小的位置把电压调节,电流调节旋钮按要求旋至合适位置4.工作当中,突然没有电流输出,工作指示灯正常检查从电源输出端至负载的连线是否断开更换或重新连接好连接线5.工作当中,突然没有电流输出,工作指示灯闪烁1.检查工作环境温度是否过高,风机是否正常工作。
高频开关电源工作原理高频开关电源是一种高效、稳定、可靠的电源,正在被广泛应用于各种电子设备中。
它的工作原理是将交流电压转换为高频脉冲信号后,在经过滤波、调整和反馈等电路处理之后,输出直流电压,从而为各种电子设备提供稳定的电力支持。
一、高频开关电源的基本构造高频开关电源的基本构造包括变压器、开关管、滤波电容、调整电路和反馈电路等五个部分。
1.变压器:变压器是高频开关电源的核心部件,它能够将输入的交流电压转换为高频脉冲信号,输出到开关管上。
因此,变压器的质量和性能是影响高频开关电源输出效果的关键因素之一。
2.开关管:高频开关电源采用晶体管或MOS管作为开关管,通过控制其导通和截止时间来实现电流的开断和转换。
由于开关管的开关频率很高,达到几十千赫,因此它的响应速度、频响特性和损耗情况对高频开关电源的性能有很大的影响。
3.滤波电容:滤波电容用于过滤高频干扰和跨越电压,将输出脉冲信号转换为直流电压。
它的作用是保证高频开关电源的输出稳定性和纹波电压小,也就是电源的纹波系数小。
4.调整电路:调整电路用于调整输出电压或电流,使高频开关电源能够满足不同的电子设备工作要求。
调整电路采用稳压器进行调整,可以通过电压分压器、电流限制器等方式实现输出电压或电流的稳定控制。
5.反馈电路:反馈电路也是高频开关电源关键部分之一,它通过检测输出电压或电流大小并输出反馈信号,控制开关管的工作状态,从而实现高频开关电源的自动稳压、限流和保护等功能。
二、高频开关电源的工作原理高频开关电源的工作原理可以分为三个步骤:输入、转换和输出。
1.输入阶段:高频开关电源的输入电源是交流电源,经过整流电路转换为直流电压,输入到变压器端口。
2.转换阶段:通过变压器将输入的电压转换为高频脉冲信号,输出到开关管上。
当开关管闭合时,电流会通过变压器和地线形成电磁场,从而将变压器中的能量存储在磁场中;当开关管断开时,电磁场就会将这些能量释放出来,形成一个脉冲信号输出到滤波电容上。
一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC输入整流滤波电路原理:12①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净3的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。
因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。
从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。
这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2、单端反激式开关电源单端反激式开关电源的典型电路如图三所示。
电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。
所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。
当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。
单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。
唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
开关电源高频变压器工作原理开关电源是由开关管和变压器组成的一种高效能的电源。
其工作原理是通过开关器件控制期间,将直流电源的电压转换成高频交流电压,再经过变压器变换成所需要的电压,最后再通过电路进行整流、滤波等处理,得到所需的直流电压。
开关电源的工作可以分为两个主要部分:开关电路和变压器。
1.开关电路:开关电路是通过开关管(通常是晶体管或者MOSFET)进行开关控制的。
开关管在导通状态下,可以导通高频信号源提供的高频电流,使得变压器中的磁感应强度发生变化;在关断状态下,开关管中的电流几乎为零,不会产生能量损耗。
通过不断地开关和关断操作,可以实现对输入电源电压的快速变换,从而实现对输出电压的稳定控制。
2.变压器:变压器是开关电源中的核心部件,其作用是将开关电路中高频变化的电流转换成所需的电压。
变压器一般由E形或者U形的铁心、一对绕组和耦合绕组等组成。
变压器的工作原理是通过自感效应和互感效应来实现的。
在开关管导通时,电流通过主绕组,由于主绕组的自感效应,会使得主绕组中的磁场发生变化。
同时,由于变压器的耦合绕组存在互感效应,变化的磁场也会影响到耦合绕组,从而在耦合绕组中产生感应电动势,进而得到需要的电压输出。
在开关管关断时,磁场停止变化,耦合绕组中的感应电动势也随之消失。
另外,由于变压器的绕组匝数比例是可以调整的,因此可以根据需要来调整输出的电压。
通过根据输入电压的高低,用PWM方式来控制开关管的开关频率,可以实现对输出电压的精确调节。
总结起来,开关电源高频变压器的工作原理主要是通过开关管的开关操作来控制输入电源电压的变化,然后通过变压器将变化的电流转换成所需的输出电压。
这种工作方式具有高效率、宽输入电压范围、稳定输出等优势,被广泛应用于电子设备中。
基于48V直流高频开关电源简单原理图解 什幺是48v开关电源 48V开关电源就是用通过电路控制开关管进行高速的导通与截止。
将直流电转化为高频率的交流电提供给变压器进行变压。
从而产生所需要的一组或多组电压,转化为高频交流电的原因是高频交流在变压器变压电路中的效率要比50HZ高很多,所以开关变压器可以做的很小,而且工作时不是很热。
成本很低.如果不将50HZ变为高频那开关电源就没有意义,什幺是48v开关电源,48V开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有。
48v直流开关电源电路图 48V直流电源是什幺 48V直流电源是什幺,能使电路中形成恒定电流的装置,如干电池、蓄电池、直流发电机等,称为直流电源。
而在48V电压范围内又叫48V直流电源。
直流电源有正负两个电极,正极的电势高,负极的电势低;当两个电极与电路连通后,直流电源能维持两个电极之间的恒定电势差,从而在外电路中形成由正极到负极的恒定电流。
要使直流电源两极间的电势差保持恒定必须使在外电路中由正极流到负极的正电荷,在电源内部逆着电场力的方向,由负极返回到正极去。
这个过程不能靠静电力,只能靠某种与静电力方向相反的“非静电力”来实现。
因此,电源就是一种提供非静电力的装置,通过非静电力做功,把非电能转化为正负电极之间的电势能。
48v开关电源原理介绍 48v开关电源是把交流电转换成直流的,具有特殊的信号能很好的控制开关管,这样就可以把直流能加到变压器最基本的一级之上,变压器感应到以后就会经过处理然后供给负载,然后一部分会反馈给控制电路,这样能保证输出的比较稳定。
48v开关电源在交流电经过的时候会经过一些特殊的东西来过滤一些对电网有干扰的额东西,这样能保证电网能不受干扰,正常运行。
48v开关电源在功率一样大的时候,如果开关频率高,则变压器的体积是比较小的,但是开关管的要求是高的。
高频开关电源电路组成及稳压原理
高频开关电源由以下几个部分组成:
一、主电路
从交流电网输入、直流输出的全过程,包括:
1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。
2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。
3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。
4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。
二、控制电路
一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。
三、检测电路
除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。
四、辅助电源
提供所有单一电路的不同要求电源。
第二节开关控制稳压原理
开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。
可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。
图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。
电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。
在AB间的电压平均值EAB可用下式表示
EAB=TON/T*E
式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。
由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。
改变接通时间TON和工作周期比例亦即改变脉冲的占空比,
这种方法称为“时间比率控制”(Time Ratio Control,缩写为TRC)。
按TRC控制原理,有三种方式:
一、脉冲宽度调制(Pulse Width Modulation,缩写为PWM)开关周期恒定,通过改变脉冲宽度来改变占空比的方式。
二、脉冲频率调制(Pulse Frequency Modulation,缩写为PFM)导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。
三、混合调制
导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。