含参数的不等式的解法
- 格式:docx
- 大小:37.04 KB
- 文档页数:3
含参数的绝对值不等式的解法含参数的绝对值不等式是高中数学中常见的一类问题,解决这类问题需要运用一些特定的方法和技巧。
本文将简要介绍含参数的绝对值不等式的解法,并通过例题进行说明,帮助读者更好地理解和掌握这类问题的解题方法。
一、绝对值不等式的基本概念在开始介绍含参数的绝对值不等式的解法之前,我们先来回顾一下绝对值不等式的基本概念。
对于任意实数x,绝对值|x|的定义如下:当x≥0时,|x|=x;当x<0时,|x|=-x。
绝对值的定义告诉我们,无论x是正数还是负数,绝对值都是非负的。
绝对值不等式则是对绝对值进行不等式的运算,即|x|<a或|x|>a,其中a为正实数。
含参数的绝对值不等式的解法与普通的绝对值不等式有一些区别,需要根据参数的取值范围来进行分类讨论。
1. 当参数的取值范围为正数时,我们可以直接根据绝对值的定义进行求解。
例如,对于不等式|x-2|<a,其中a>0,我们可以得到以下解法步骤:(1)当x-2≥0时,|x-2|=x-2,不等式变为x-2<a,解为x<a+2;(2)当x-2<0时,|x-2|=-(x-2),不等式变为-(x-2)<a,解为x>2-a。
综合以上两种情况,得到不等式的解集为2-a<x<a+2。
2. 当参数的取值范围为负数时,同样可以根据绝对值的定义进行求解。
例如,对于不等式|x+3|<b,其中b<0,我们可以得到以下解法步骤:(1)当x+3≥0时,|x+3|=x+3,不等式变为x+3<b,解为x<b-3;(2)当x+3<0时,|x+3|=-(x+3),不等式变为-(x+3)<b,解为x>-3-b。
综合以上两种情况,得到不等式的解集为b-3<x<-3-b。
3. 当参数的取值范围为正负混合时,我们需要分情况讨论。
例如,对于不等式|x-1|<c,其中c可以为正数也可以为负数,我们可以得到以下解法步骤:(1)当x-1≥0时,|x-1|=x-1,不等式变为x-1<c,解为x<c+1;(2)当x-1<0时,|x-1|=-(x-1),不等式变为-(x-1)<c,解为x>1-c。
含参不等式的解法教案一、教学目标1. 让学生掌握含参数的不等式的解法,提高解题能力。
2. 培养学生分析问题、解决问题的能力,提高学生的数学思维水平。
3. 通过教学,使学生能够运用含参数的不等式解法解决实际问题。
二、教学内容1. 含参数不等式的概念及特点。
2. 含参数不等式的解法:图像法、代数法、不等式组法等。
3. 典型例题解析及练习。
三、教学重点与难点1. 教学重点:含参数不等式的解法及应用。
2. 教学难点:含参数不等式解法在实际问题中的应用。
四、教学方法1. 采用讲授法、示范法、练习法、讨论法等相结合的教学方法。
2. 利用多媒体辅助教学,直观展示含参数不等式的解法过程。
3. 组织学生进行小组合作学习,培养学生的团队协作能力。
五、教学过程1. 导入新课:复习相关知识点,如不等式的概念、性质等,引出含参数不等式。
2. 讲解含参数不等式的解法:a) 图像法:通过绘制不等式的图像,找出解集。
b) 代数法:运用不等式的性质,求解含参数的不等式。
c) 不等式组法:将多个含参数的不等式组合起来,求解公共解集。
3. 典型例题解析:分析例题,引导学生运用所学解法解决问题。
4. 课堂练习:布置练习题,让学生巩固所学知识。
5. 总结与反思:对本节课的内容进行总结,提醒学生注意解题中可能出现的问题。
6. 课后作业:布置课后作业,巩固所学知识。
六、教学评价1. 评价目标:检查学生对含参数不等式解法的掌握程度以及解决实际问题的能力。
2. 评价方法:课堂练习、课后作业、小组讨论、个人总结等。
3. 评价内容:a) 学生能理解含参数不等式的概念及特点。
b) 学生能运用图像法、代数法、不等式组法等解法解决含参数不等式问题。
c) 学生能将所学知识应用于实际问题,提高问题解决能力。
七、教学反思1. 教师应在课后对教学效果进行反思,分析学生的反馈意见,调整教学方法及内容。
2. 关注学生在解题过程中的困难,针对性地进行辅导,提高学生的解题技巧。
初高中数学衔接知识选讲含参数的不等式的解法一、复习引入:1.函数、方程、不等式的关系2.一元一次、一元二次、高次、分式不等式得解法及注意事项二、讲解新课:例1解关于x 的不等式022≤-+k kx x说明 一元二次方程、一元二次不等式、一元二次函数有着密切的联系,要注意数形结合研究问题.小结:讨论∆,即讨论方程根的情况例2.解关于x 的不等式:(x-2x +12)(x+a)<0.小结:讨论方程根之间的大小情况 若不等式13642222<++++x x k kx x 对于x 取任何实数均成立,求k 的取值范围.例4若不等式ax 2+bx+1>0的解集为{x ︱-3<x<5},求a 、b 的值.小结:逆向思维题目,告诉解集反求参数范围,即确定原不等式,待定系数法的一部分 例5 已知关于x 的二次不等式:a 2x +(a-1)x+a-1<0的解集为R ,求a 的取值范围.说明:本题若无“二次不等式”的条件,还应考虑a=0的情况,但对本题讲a=0时式子不恒成立.(想想为什么?)练习:已知(2a -1) 2x -(a-1)x-1<0的解集为R ,求实数a 的取值范围.三、布置作业1.如果不等式x 2-2ax +1≥21(x -1)2对一切实数x 都成立,a 的取值范围是2.如果对于任何实数x ,不等式kx 2-kx +1>0 (k>0)都成立,那么k 的取值范围是3.对于任意实数x ,代数式 (5-4a -2a )2x -2(a -1)x -3的值恒为负值,求a 的取值范围 4.设α、β是关于方程 2x -2(k -1)x +k +1=0的两个实根,求 y=2α +2β关于k 的解析式,并求y 的取值范围。
含参数不等式的解法典题探究例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。
例3:在∆ABC 中,已知2|)(|,2cos )24(sin sin 4)(2<-++=m B f B BB B f 且π恒成立,求实数m 的范围。
例4:(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。
如果把上题稍微改一点,那么答案又如何呢?请看下题: (2)求使不等式)2,0(4,cos sin ππ∈-->x x x a 恒成立的实数a 的范围。
演练方阵A 档(巩固专练)1.设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤+)1(11)11(22)1()1(2x xx x x x ,已知f (a )>1,则a 的取值范围是( )A.(-∞,-2)∪(-21,+∞) B.(-21,21) C.(-∞,-2)∪(-21,1)D.(-2,-21)∪(1,+∞)2.已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b),则f (x )·g (x )>0的解集是__________.3.已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________.4. 解不等式)0( 01)1(2≠<++-a x aa x 5. 解不等式06522>+-a ax x ,0≠a6.已知函数f (x )=x 2+px +q ,对于任意θ∈R ,有f (sin θ)≤0,且f (sin θ+2)≥2. (1)求p 、q 之间的关系式;(2)求p 的取值范围;(3)如果f (sin θ+2)的最大值是14,求p 的值.并求此时f (sin θ)的最小值.7.解不等式log a (1-x1)>18.设函数f (x )=a x 满足条件:当x ∈(-∞,0)时,f (x )>1;当x ∈(0,1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围.9.设124()lg,3x xa f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。
含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按$x$项的系数$a$的符号分类,即$a>0$,$a=0$,$a<0$。
例1:解不等式$ax+(a+2)x+1>2$分析:本题二次项系数含有参数,$\Delta=(a+2)^2-4a=a+4>0$,故只需对二次项系数进行分类讨论。
解:当$a>0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2+\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2-\sqrt{a+4}}{2a}$,因为$a>0$,所以$x_1x_2$或$x<x_1$,即$x\in\left(-\infty,\frac{a+2-\sqrt{a+4}}{2a}\right)\cup\left(\frac{a+2+\sqrt{a+4}}{2a},+\infty\right)$。
当$a=0$时,不等式为$2x+1>2$,解得$x>\frac{1}{2}$,即解集为$x>\frac{1}{2}$。
当$a<0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2-\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2+\sqrt{a+4}}{2a}$,因为$a<0$,所以$x_1<x_2$。
所以解集为$x_1<x<x_2$,即$x\in\left(\frac{a+2-\sqrt{a+4}}{2a},\frac{a+2+\sqrt{a+4}}{2a}\right)$。
例2:解不等式$ax-5ax+6a>(a\neq0)^2$分析:因为$a\neq0$,$\Delta>0$,所以我们只需讨论二次项系数的正负。
解:当$a>0$时,解得方程$ax-5ax+6a=0$的两根$x_1=2$,$x_2=3$,因为$a>0$,所以$x_13$,即$x\in\left(-\infty,2\right)\cup\left(3,+\infty\right)$。
含参数不等式的解法含参数的不等式是指在不等式中存在一个或多个参数,通过改变参数的取值,使不等式成立或不成立。
解这类不等式通常需要用到代数方法。
一、一元不等式的参数解法对于只含有一个未知数的一元不等式,可以使用参数解法。
首先,我们假设未知数为一个参数,然后求解这个参数的取值范围,使得不等式成立。
举例说明:解不等式,x+2,<1,其中x是实数。
我们将未知数x设为参数t,即x=t。
则原不等式可以改写为,t+2,<1、要使不等式成立,必须有-1<t+2<1,即-3<t<-1所以,参数t的取值范围为-3<t<-1二、含有二元或多元不等式的参数解法对于含有二元或多元的不等式,也可以采用参数解法来求解。
举例说明:解不等式(ax+b)/(cx+d)>0,其中a,b,c,d为实数,且ac≠0。
可以将未知数x设为参数t,即x=t。
则原不等式可以改写为(at+b)/(ct+d)>0。
我们设函数f(t)=(at+b)/(ct+d),其中t为参数。
要使不等式(at+b)/(ct+d)>0成立,需要满足两个条件:1.f(t)不等于0;2.f(t)为正数。
将f(t)=(at+b)/(ct+d)令为0,得到(at+b)/(ct+d)=0,解得t=-b/a。
由于ac≠0,所以c≠0。
将f(t)=(at+b)/(ct+d)分成两种情况讨论:情况1:若c>0,则当t<-d/c或t>-b/a时,f(t)同号,即f(t)>0或f(t)<0。
情况2:若c<0,则当t>-d/c且t<-b/a时,f(t)同号,即f(t)>0或f(t)<0。
综合情况1和情况2,可以得到解不等式(ax+b)/(cx+d)>0的参数t的取值范围。
三、举一反三除了以上例子,还有许多不等式可以采用参数解法来求解。
例如解不等式(sin x-1)/(sin x+1)<0,其中x为实数。
一元一次含参不等式的解法一元一次含参不等式是指不等式中含有一个未知数和一个或多个常数参数的不等式。
其解法主要分为如下几种:1. 移项法移项法是一种常见的解一元一次含参不等式的方法。
其基本思想是将含有未知数的项移到一边,将常数项移到另一边,最终得到未知数的取值范围。
例如,对于不等式 $ax+b>c$,我们可以将常数项 $c$ 移到左侧,得到$ax+b-c>0$,然后将$ax$ 移到右侧,得到$x>\frac{c-b}{a}$。
因此,该不等式的解为 $x>\frac{c-b}{a}$。
2. 分段讨论法分段讨论法是一种常用的解一元一次含参不等式的方法。
其基本思想是根据参数的取值范围,将不等式分成若干个子区间,然后在每个子区间内求解不等式。
例如,对于不等式$ax^2+bx+c>0$,我们可以分别讨论$a>0$ 和$a<0$ 两种情况。
当$a>0$ 时,该不等式的解为$x<\frac{-b-\sqrt{b^2-4ac}}{2a}$ 或$x>\frac{-b+\sqrt{b^2-4ac}}{2a}$;当 $a<0$ 时,该不等式的解为 $\frac{-b-\sqrt{b^2-4ac}}{2a}<x<\frac{-b+\sqrt{b^2-4ac}}{2a}$。
因此,该不等式的解为$a>0$ 时$x<\frac{-b-\sqrt{b^2-4ac}}{2a}$ 或$x>\frac{-b+\sqrt{b^2-4ac}}{2a}$,$a<0$ 时$\frac{-b-\sqrt{b^2-4ac}}{2a}<x<\frac{-b+\sqrt{b^2-4ac}}{2a}$。
3. 辅助函数法辅助函数法是一种常用的解一元一次含参不等式的方法。
其基本思想是构造一个辅助函数,使得该函数的取值范围与未知数的取值范围相同,然后根据函数的性质求解不等式。
不等式(3)----含参不等式的解法当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。
我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。
解参数不等式一直是高考所考查的重点内容。
(一)几类常见的含参数不等式一、含参数的一元二次不等式的解法:例1:解关于的x 不等式2(1)410()m x x m R +-+≤∈分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1≠1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。
⑵当-1<m<3时,⊿=4(3-m )>0, 图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。
⑶当m=3时,⊿=4(3-m )=0,图象开口向上,与x 轴只有一个公共点,不等式的解为方程24410x x -+=的根。
⑷当m>3时,⊿=4(3-m )<0,图象开口向上全部在x 轴的上方,不等式的解集为∅。
解:11,|;4m x x ⎧⎫=-≥⎨⎬⎩⎭当时原不等式的解集为 ⎭⎬⎫⎩⎨⎧+-+≤≤+--<<-⎭⎬⎫⎩⎨⎧+-+≤+--≥-<∆=+-+-≠132132|,31132132|1);34014)1(12m m x m m x m m m x m m x x m m x x m m 原不等式的解集为时当或时,原不等式的解集为则当-(=的判别式时,当 当m=3时,原不等式的解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当m>3时, 原不等式的解集为∅。
含参数不等式的解法举例教学目标:1.进一步掌握常见不等式的解法;2.能根据参数的“位置”正确进行分类讨论,解不等式.教学重、难点:通过分类讨论解含参数的不等式.教学过程:例1.解不等式 3222(22)x x x x --<-.解:原不等式可化为4223220x x -⋅+<,即:22(21)(22)0x x --<, ∴2122x <<,∵2x y =是增函数,∴021x <<,∴102x <<, ∴原不等式的解集为10,2⎛⎫ ⎪⎝⎭.【变题】解关于x 的不等式 )22(223x x x x m --<-. 解:原不等式可化为422(1)20x x m m -+⋅+<,即:0)2)(12(22<--m x x ①(1)当1m >时,由①得:m x <<221,∵2x y =是增函数,∴m x 2log 210<<; (2)当1m =时,由①得:0)12(22<-x ,∴x φ∈;(3)当01m <<时,由①得:122<<x m , ∴0log 212<<x m ; (4)当0m ≤时,由①得:221x <,∴0x <.综上所述:当1m >时,原不等式的解集为21(0,log )2m ; 当1m =时,原不等式的解集为φ;当01m <<时,原不等式的解集为21(log ,0)2m ;当0m ≤时,原不等式的解集为(,0)-∞.例2.解不等式 222log 2log (36)x x x ≤--.解:∵2log y x =是增函数,∴原不等式等价于2220360236x x x x x x >⎧⎪-->⎨⎪≤--⎩20560x x x >⎧⇔⎨--≥⎩ 061x x x >⎧⇔⎨≥≤-⎩或,∴6x ≥,即原不等式的解集为[)6,+∞.例3.解关于x 的不等式 a x x a log log<(0,1)a a >≠. 解:原不等式等价于 1log log a a x x<, 即:0log )1)(log 1(log <-+x x x a a a , ∴1log 01log <<-<x x a a 或,(1)当1a >时, a x a x <<<<110或; (2)当01a <<时,11<<>x a ax 或. 综上所述:当1a >时,原不等式的解集为1(0,)(1,)a a U ;当01a <<时,原不等式的解集为1(,1)(,)a a +∞U .说明:去掉对数符号时,必须限制真数大于零.例4.设{}|12A x x =≤≤,{}2|(1)0B x x a x a =-++≤.(1)若A B ≠⊂,求a 的取值范围; (2)若A B ⊇,求a 的取值范围;(3)若A B I 为仅含一个元素的集合,求a 的取值范围.解:()(){}10B x x x a =--≤,∴当1a ≤时,{}1B x a x =≤≤;当1a >时,{}1B x x a =≤≤,又{}|12A x x =≤≤,(1)若A B ≠⊂,则a 的取值范围是()2,+∞; (2)若A B ⊇,则a 的取值范围是[]1,2;(3)若A B I 为仅含一个元素的集合,则a 的取值范围是(],1-∞.小结:1.解指数、对数不等式的基本方法是:依据指数函数、对数函数的单调性进行等价转化,去掉对数符号时,必须限制真数大于零;2.在解含有参数的不等式时,要根据参数的“位置”正确进行分类讨论.作业:1.解不等式:(1))1(332)21(22---<x x x ;(2) )102(log )43(log 31231+>--x x x . 2. 解关于x 的不等式:(1)211221log ()log 10x a x a-++<;(2)34422+>+-m m mx x ;(3)0)(log log >x a a (10<<a );(4))1,0(,011log ≠>>-+a a xx a. 3.若方程:22221(log 4)log 104x a x a --+-=有两个不同的负根,求a 的范围.。
含参数的一元绝对值不等式的解法一元绝对值不等式是初中数学中的基础之一,但在一些考试中也可能会有一些含参数的不等式,需要我们灵活运用绝对值的性质来解决。
下面是解决含参数的一元绝对值不等式的基本思路:步骤1. 将不等式中的绝对值拆分成正负两种情况。
对于 $|x-a| \leq b$ 这种不等式,我们可以将其拆成 $x-a \leqb$ 和 $x-a\geq-b$ 两种不等式,即:$$\begin{cases}x-a\leq b \\x-a\geq -b\end{cases}$$对于 $|f(x)-g(x)| \leq k$ 这种不等式,同样可以根据 $f(x)-g(x)$ 的正负拆成两个不等式来解决。
不过需要注意的是,$f(x)-g(x)$ 的值域往往并不那么好求。
在遇到这种问题时,我们可以换一种思路,把 $f(x)$ 和 $g(x)$ 拆成不等式,得到:$$\begin{aligned}f(x)-g(x)\leq k \\g(x)-f(x)\leq k\end{aligned}$$2. 求解不等式。
对于 $x-a\leq b$ 和 $x-a\geq-b$ 这种一元一次不等式,我们可以直接通过移项得到 $x$ 的解。
对于 $f(x)-g(x)\leq k$ 和 $g(x)-f(x)\leq k$ 这种带有绝对值函数的不等式,我们需要分类讨论。
- 当 $f(x)\geq g(x)$ 时,$|f(x)-g(x)|=f(x)-g(x)$,此时原不等式可化为 $f(x)-g(x) \leq k$,解得 $x\geq f^{-1}(k+g(x))$。
- 当 $f(x)<g(x)$ 时,$|f(x)-g(x)|=g(x)-f(x)$,此时原不等式可化为 $g(x)-f(x) \leq k$,解得 $x\leq g^{-1}(k+f(x))$。
3. 检验答案。
在求解不等式时,我们需要注意到绝对值函数的值域,确保得到的解符合原来的不等式。
含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按X 2项的系数a 的符号分类,即a 〉0,a=0,a<0; 例1解不等式: ax 2a 2x 1 0分析:本题二次项系数含有参数, A=(a +2f_ 4a = a 2+4》0,故只需对二次项系数进行分类讨论。
解:•, A = (a +2 2 —4a = a 2+4》0 解得方程 ax 2 +(a +2 X +1=0 两根为=—'—2;;京*4, X2 = -'-2*带 八心 臣”兀 —a -2 +而2 +4 y _a -2 - da 2 +4 .•当 a 》0时,解集为』x | x > ----------------------- 或x < ---------------------2a 2a当a =0时,不等式为2x+1》0,解集为』x|x 〉;?— a —2+y a 2+4_a_2_Ja 2+4当a<0时,解集为Jx|一 <x <一 .2例2解不等式ax —5ax + 6a 》0(a 孝0 )分析 因为a #0 , A >0,所以我们只要讨论二次项系数的正负。
解a(x 2 -5x 6) = a x - 2 x -3 )〉0,二当a a 0时,解集为<x | x < 2或x a 3"当a < 0时,解集为 k | 2 <x < 3}2、(1 — ax )2<1.【解】 由(1 - ax)2<1 得 a 2x 2 - 2ax+ 1<1.即 ax(ax —2)<0. (1)当a=0时,不等式转化为0<0,故原不 等式无解.(2)当a<0时,不等式转化为 x(ax 一2)>0,2即 x(x — )<0.a2<0 , 不等式的解集为 {x|2aa<x<0}.变式:解关于x 的不等式1、(x —2)(ax —2) A0 ; ⑴当a :::0时,{x|2:::x<2} a(2) 当 a =0 时,{x|x =:: 2)2 (3) 当0 <a C 1 时,{ x| x <2,或xA —)a (4) 当a =1 时,{x | x =2) 2工(5) 当a A 1 时,{x | x 〈一,或x A2)a(3)当a>0时,不等式转化为 x(ax — 2)<0 ,一 2 又>0, a2...不等式的解集为{x|0<x<a }.综上所述:当a= 0时,不等式解集为 空集;2 当a<0时,不等式解集为{x|2<x<0}; a2当a>0时,不等式解集为{x|0<x< }.a二、按判别式 △的符号分类,即 A A 0,A=0,A<0; 例3解不等式x 2 +ax +4>0分析 本题中由于x 2的系数大于0,故只需考虑△与根的情况。
含参数的不等式(分类讨论)一、解不等式问题(分类讨论)1.解关于x 的不等式 34422+>+-m m mx x 解:原不等式等价于 3|2|+>-m m x当03>+m 即3->m 时, )3(232+-<-+>-m m x m m x 或 ∴333-<+>m x m x 或当03=+m 即3-=m 时, 0|6|>+x ∴x ≠-6 当03<+m 即3-<m 时, x ∈R 2.设a R ∈,函数22()2.f x x ax a =--若()0f x >的解集为A ,{}|13,B x x A B φ=<<≠I ,求实数a 的取值范围。
点评:二次函数与二次不等式和集合知识有很多联系,不等式的解集、函数的值域成为集合运算的载体,对于含参数问题要确定好分类的标准,做到不重不漏。
3. 已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[]11-,上有零点,求a 的取值范围.解析:由函数()f x 的解析式的形式,对其在定区间上零点问题的解决需要考虑它是一次函数,还是二次函数,因而需就0a =和0a ≠两类情况进行讨论。
答案:函数()y f x =在区间[-1,1]上有零点,即方程2()223f x ax x a =+--=0在[-1,1]上有解,a=0时,不符合题意,所以a ≠0,方程f(x)=0在[-1,1]上有解<=>(1)(1)0f f -⋅≤或(1)0(1)048(3)01[ 1.1]af af a a a-≥⎧⎪≥⎪⎪∆=++≥⎨⎪⎪-∈-⎪⎩15a ⇔≤≤或a ≤或5a ≥⇔a ≤或a ≥1. 所以实数a的取值范围是a 或a ≥1. 点评:本题主要考察二次函数及其性质、一元二次方程、函数应用、解不等式等基础知识,考察了数形结合、分类讨论的思想方法,以及抽象概括能力、运算求解能力。
含参数的不等式的解法
解含参数的不等式的一般步骤如下:
步骤1:确定参数的取值范围
对于含参数的不等式,首先要确定参数可以取哪些值。
常见的含参数
的不等式有以下几种类型:
1.参数出现在不等式的左右两侧:例如,a,x,<b,x,其中a和b
是参数。
如果参数a和b都是非负数,则取值范围为[0,+∞),如果参数
a为负数而b为非负数,则取值范围为(-∞,+∞)。
2. 参数出现在不等式的系数中:例如,ax + b > 0,其中a和b是
参数。
对于一次不等式,如果参数a为正数,则取值范围为(-∞, -b/a);如果参数a为负数,则取值范围为(-b/a, +∞)。
对于二次不等式,需要
讨论a的正负和零的情况,进而确定取值范围。
3.参数出现在不等式的指数中:例如,x^a>b,其中a和b是参数。
对于参数b,需要讨论它的正负和零的情况,进而确定取值范围。
对于参
数a,如果它为正数,则不等式的解集为(0,+∞);如果它为负数,则不
等式的解集为(-∞,0)。
步骤2:解参数的不等式
在确定参数的取值范围之后,可以根据具体的参数取值情况来解不等式。
根据参数的不同取值情况,采用不同的解法。
1.解参数出现在不等式的左右两侧的不等式:
-如果参数都是非负数,则可以直接从不等式中消去绝对值符号,并
分析绝对值的取值范围,最后得到一个简单的数学不等式。
-如果参数一个是负数一个是非负数,则需要分情况讨论,考虑不等式两侧的符号。
2.解参数出现在不等式的系数中的不等式:
-如果参数是一个正数或负数,则根据参数的正负讨论不等式两侧的符号,并得到一个简单的数学不等式。
-如果参数是一个未知数,可以根据参数的取值范围来讨论参数与未知数的关系,然后解不等式。
3.解参数出现在不等式的指数中的不等式:
-如果参数b是负数,则需要讨论不等式两侧的符号并得到一个简单的数学不等式。
步骤3:解不等式
在解决了参数的不等式之后,可以根据参数的取值范围来解不等式,得到不等式的解集。
需要注意的是,含参数的不等式解的结果一般是符号表示,需要综合参数的取值范围来给出不等式的解集。
总结:
这些就是解含参数的不等式的一般步骤,通过对参数的取值范围和参数与未知数的关系进行分析,可以解决各类含参数的不等式。
实际上,除了上述提到的类型,还有其他一些含参数的不等式,具体的解法也是根据问题的具体情况来确定的。
因此,在解含参数的不等式时,需要灵活运用数学知识和解题技巧。
希望以上内容对您有所帮助,祝您学业进步!。