多维随机变量函数的分布
- 格式:ppt
- 大小:517.00 KB
- 文档页数:3
第三章多维随机变量及其分布随机向量的定义:随机试验的样本空间为S={w},若随机变量X1(w),X2(w),…,X n(w)定义在S上,则称(X1(w),X2(w),…,X n(w))为n维随机变量(向量)。
简记为(X1,X2,…,X n)。
二维随机向量(X,Y),它可看作平面上的随机点。
对(X,Y)研究的问题:1.(X,Y)视为平面上的随机点。
研究其概率分布——联合分布率、联合分布函数、联合概率密度;Joint2.分别研究各个分量X,Y的概率分布——边缘(际)分布律、边缘分布函数、边缘概率密度;marginal3.X与Y的相互关系;4.(X,Y)函数的分布。
§二维随机变量的分布一.离散型随机变量1.联合分布律定义若二维随机变量(X,Y)可能取的值(向量)是有限多个或可列无穷多个,则称(X,Y) 为二维离散型随机变量。
设二维离散型随机变量(X,Y)可能取的值(x i,y j), i,j=1,2…,取这些值的概率为p ij=P{(X,Y)=(x i,y i)}=p{X=x i,Y=y i}i ,j=1,2,…——称式为(X,Y)的联合分布律。
(X,Y)的联合分布律可以用表格的形式表示如下:性质:(1) p ij 3 0,i, j=1,2,… (2) ji ij p ,=12.边缘分布律设二维离散型随机变量(X,Y) 的联合分布律为p ij = P{X=x i ,Y=y i } i, j=1,2,…分量X 和Y 的分布律分别为 p i.=P{X=x i } i=1,2,… 满足①p i.30②S p i.=1= p{Y=y i }j=1,2, (30)S =1我们称p i.和分别为(X,Y)关于X 和Y 的边缘分布律,简称为(X,Y)的边缘分布律。
二维离散型随机变量(X,Y) 的联合分布律与边缘分布率有如下关系: p i.=P{X=x i }=P{X=x i , S}=P{X=x i ,j∑(Y=y j )}=j∑P{X=x i ,Y=y j }=j∑p ij 同理可得=i∑p ij例1:一整数X 随机地在1,2,3三个整数中任取一值,另一个整数Y 随机地在1到X中取一值。
第三章多维随机变量及其分布第三章多维随机变量及其分布在许多随机试验中,需要考虑的指标不⽌⼀个。
例如,考查某地区学龄前⼉童发育情况,对这⼀地区的⼉童进⾏抽样检查,需要同时观察他们的⾝⾼和体重,这样,⼉童的发育就要⽤定义在同⼀个样本空间上的两个随机变量来加以描述。
⼜如,考察礼花升空后的爆炸点,此时要⽤三个定义在同⼀个样本空间上的随机变量来描述该爆炸点。
在这⼀章中,我们将引⼊多维随机变量的概念,并讨论多维随机变量的统计规律性。
1.⼆维随机变量及其分布在这⼀节中.我们主要讨论⼆维随机变量及其概率分布,并把它们推⼴到n维随机变量。
1.⼆维随机变量及其分布函数1.⼆维随机变量定义3.1 设Ω ={ω }为样本空间,X=X(ω )和Y=Y(ω )是定义在Ω上的随机变量,则由它们构成的⼀个⼆维向量(X,Y)称为⼆维随机变量或⼆维随机向量.⼆维向量(X,Y)的性质不仅与X及Y有关,⽽且还依赖于这两个随机变量的相互关系。
因此,逐个讨论X和Y的性质是不够的,需把(X,Y)作为⼀个整体来讨论。
随机变量X常称为⼀维随机变量。
2. ⼆维随机变量的联合分布函数与⼀维的随机变量类似,我们也⽤分布函数来讨论⼆维随机变量的概率分布。
定义3.2 设(X,Y)是⼆维随机变量,x,y为任意实数,事件(X≤x)和(Y≤y)的交事件的概率称为⼆维随机变量(X,Y)的联合分布或分布函数,记作F(x,y),即若把⼆维随机变量(X,Y)看成平⾯上随机点的坐标,则分布函数F (X,Y)在(x,y)处的函数值就是随机点(X,Y)落⼊以(x,y)为定点且位于该点左下⽅的⽆穷矩形区域内的概率(见图3-1)。
⽽随机点(X,Y) 落在矩形区域内的概率可⽤分布函数表⽰(见图3-2)分布函数F (x,y)具有以下的基本性质。
(1) 0≤F (x,y)≤1.对于任意固定的x和y,有(2) F (x,y)是变量x或y的单调不减函数,即对任意固定的y,当x2 ≥x1时,;对任意固定的x,当y2 ≥y1时,。
多维随机变量分布公式了解多维随机变量分布的数学公式多维随机变量分布公式在概率论和数理统计中,多维随机变量是指由两个或更多随机变量组成的向量。
多维随机变量的分布可以用数学公式来描述,这些公式包括联合概率密度函数、边际概率密度函数和条件概率密度函数。
通过了解和掌握这些公式,我们可以更好地理解和分析多维随机变量的行为和性质。
1. 联合概率密度函数(Joint Probability Density Function)联合概率密度函数是用来描述多维随机变量的联合概率分布的函数。
对于二维随机变量(X,Y),其联合概率密度函数可以表示为f(x,y),其中x和y分别为X和Y的取值。
联合概率密度函数满足以下性质:- 非负性:对于所有的x和y,有f(x,y) ≥ 0。
- 归一性:联合概率密度函数在整个样本空间上的积分等于1,即∬f(x,y)dxdy = 1。
- 边缘分布:通过联合概率密度函数可以计算出各个分量的边缘概率密度函数。
对于X和Y来说,其边缘概率密度函数分别为f_X(x)和f_Y(y),可以通过联合概率密度函数进行积分计算得到。
2. 边际概率密度函数(Marginal Probability Density Function)边际概率密度函数是指从联合概率密度函数中得到单个随机变量的概率密度函数。
对于二维随机变量(X,Y),其边际概率密度函数可以表示为f_X(x)和f_Y(y),分别表示X和Y的概率密度函数。
边际概率密度函数的计算可以通过对联合概率密度函数进行积分得到。
3. 条件概率密度函数(Conditional Probability Density Function)条件概率密度函数是在给定某个条件下,另一个随机变量的概率密度函数。
对于二维随机变量(X,Y),其条件概率密度函数可以表示为f_Y|X(y|x),表示在已知X=x的条件下,Y=y的概率密度函数。
条件概率密度函数可以通过联合概率密度函数和边际概率密度函数的比值来计算得到。