二次根式乘除法练习题63617
- 格式:doc
- 大小:213.50 KB
- 文档页数:3
【最新整理,下载后即可编辑】12.6二次根式的乘除法知识回顾::1、(1)94⨯= = ;94⨯= = ; (2)169⨯= = ;169⨯= = ; (3)b a ⋅ ab (a ≥0,b ≥0).2、(1)=949=_________;(2)=814=_________;(3)=b a (a ≥0,b >0).目标解读::1.理解并掌握二次根式乘法和除法法则,并会进行简单的二次根式的乘除法运算.2.理解最简二次根式的意义及条件,把所给的二次根式化为最简二次根式.3.理解分母有理化的意义,并会进行分母有理化. 基础训练: 一、选择题1. 下列二次根式中是最简二次根式的是( )2.时,====以下判断正确的是( )A.甲的解法正确,乙的解法不正确 B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确 D.甲、乙的解法都不正确 3. 已知a b ==的值为( )A.5B.6C.3 D.44.= )A.1x <且0x ≠ B.0x >且1x ≠ C.01x <≤ D.01x <<5.=x y ,满足的条件为( )A.00x y ⎧⎨<⎩≥ B.00x y ⎧⎨>⎩≤ C.00x y ⎧⎨<⎩≤D.0x y ⎧⎨>⎩≥6.)A.B.C.D.7. 给出下列四道算式: (1)4=- (2)114= (3)= (4))a b =>其中正确的算式是( ) A.(1)(3) B.(2)(4) C.(1)(4) D.(2)(3)8.)A.-B.C.± D.309. 下列各组二次根式中,同类二次根式是( )B.10. 下列各式中不成立的是( )2x =32==54199=-=-D.4=11. 下列各式中化简正确的是( )ab ==2132x y ⎫=⎪⎭b =12. 给出四个算式:(1)=(2)55x y =3)36yy x= (4)=-其中正确的算式有( )A.3个 B.2个 C.1个 D.0个13. 下列计算正确的是( )A.=B.5xy y =1335÷=149=-14. 下列根式中化简正确的是( )6aa a == =a b =+15. 6a ab 等于( )A.B.212a b C.aD.2 二、填空题16. 直接填写计算结果:(1=_________; (2)=___________;(3=_________; (4=__________. 17. 计算:=_______;_________.18. 当00x y >>,=_________.19. 化简:=__________.20.把根号外的因式移到根号内:(a -=__________. 21.若最简二次根式与b 是同类二次根式,则a =______,b =______. 22. 直接填写化简结果:(1)152105⨯-=________;(2)22221251015+⨯-=________. 23.00)x y ≥,≥= ;00)a b ≥,≥= .24.=_________;=________.25.=_______. 三、计算: 26. (1)⎛ ⎝; (2);(3).246246-⨯+.27.(1)18322423⨯;(2)⎪⎪⎭⎫⎝⎛-⨯y x 219491231.28.(1⎛ ⎝; (229. (1; (2; (3;(4.30.22--×.能力拓展:31. 若最简二次根式a 求ab ,的值.32. 已知5a b +=,6ab =。
二次根式加减乘除运算100题摘要:I.二次根式的基本概念A.二次根式的定义B.二次根式的性质II.二次根式的加减运算A.合并同类二次根式B.二次根式的加减法则III.二次根式的乘除运算A.乘法法则1.相同根式相乘2.不同根式相乘B.除法法则1.变为一2.分母有理化IV.二次根式的应用A.实际问题中的应用B.数学问题中的应用V.二次根式加减乘除运算100题A.加减运算题目B.乘除运算题目正文:二次根式加减乘除运算100题二次根式是数学中的一个重要概念,它在解决实际问题和数学问题中都扮演着重要的角色。
掌握二次根式的加减乘除运算,对于解决二次根式相关的问题至关重要。
下面,我们一起来学习二次根式的加减乘除运算,并通过100道题目来巩固我们的学习成果。
一、二次根式的基本概念二次根式是指形如√a的式子,其中a是一个正实数。
它表示a的平方根,即a的二次方根。
二次根式具有以下性质:1.√a × √a = a2.√a ÷ √a = 13.√a + √a = 2√a (当a > 0时)4.√a - √a = 0二、二次根式的加减运算二次根式的加减运算需要先将根式化为最简二次根式,然后合并同类二次根式。
1.合并同类二次根式如果两个二次根式的被开方数相同,那么它们就是同类二次根式,可以合并。
例如:√9 + √36 = √(9 + 36) = √45 = √9 × √5 = 3√52.二次根式的加减法则二次根式的加减法则是:同类二次根式相加减,被开方数相加减,根指数不变。
三、二次根式的乘除运算二次根式的乘除运算需要掌握以下法则:1.乘法法则1.相同根式相乘:如果两个二次根式的被开方数相同,那么它们相乘的结果就是被开方数的平方。
例如:√9 × √9 = √(9 × 9) = √81 = 92.不同根式相乘:如果两个二次根式的被开方数不同,那么它们相乘的结果就是它们的乘积的平方根。
第十六章 二次根式16.2 二次根式的乘除1.下列二次根式中,最简二次根式是 A 23aB 13C 153D 1432.如果mn >0,n <0,下列等式中成立的有。 mn m n =1n m m n =m m n n=1m m n mn =-.A .均不成立B .1个C .2个D .3个3.下列各组二次根式化成最简二次根式后,被开方数完全相同的是 A ab 2abB mn 11m n+ C 22m n +22m n - D 3289a b 3489a b 4.下列等式不成立的是 A .2×36B 8÷2=4C 1333D 8×2=453x x-3x x -,则x 的取值范围是A .x <3B .x ≤3C .0≤x <3D .x ≥06结果为A .B .C .D .7=x 的取值范围是__________.8.计算:=__________.9=__________.10.下列二次根式:. 其中是最简二次根式的是__________.(只填序号)11.计算:-=__________.12.200020012)2)+⋅-=__________. 13.计算:(1;(2)- 14.计算:(123)4).15.计算(1)1223452533÷⨯;(2)21123(15)3825⨯-÷; (3)282(0)aa b ab a b÷⨯>;(4)27506⨯÷.16.当x <03x y -等于A .xyB .xC .-xy -D .-xy 179520的结果是 A .32B 32C 532D .5218.计算8(223)÷-⨯的结果是A .26B .33C .32D .6219.下列运算正确的是A 222253535315⨯==⨯=B 22224343431-=-=-=C.2510 5=D.(4)(16)416(2)(4)8-⨯-=-+-=-⨯-=20.若22m n+-和3223m n-+都是最简二次根式,则m=__________,n=__________.21.一个圆锥的底面积是26cm2,高是43cm,那么这个圆锥的体积是__________.22.计算:263⨯+(3-2)2-2(2-6).23.方老师想设计一个长方形纸片,已知长方形的长是140πcm,宽是35πcm,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.24.(2018·甘肃兰州)下列二次根式中,是最简二次根式的是A.18B.13C.27D.1225.(2018·湖南益阳)123=⨯__________.26.(2018·江苏镇江)计算:182⨯=__________.1.【答案】D【解析】A a |,可化简;B ==C ==,可化简;因此只有D : =,不能开方,符合最简二次根式的条件.故选D .2.【答案】C【解析】根据题意,可知mn >0,n <0,所以可得m <0,根据二次根式的乘法的性质,可知m ≥0,n ≥0,=1,故②正确;根据二次根式除法的性质,可知m ≥0,n >0=-m ,故④正确.故选C . 3.【答案】D【解析】选项A 的被开方数不相同;选项B 的被开方数不相同;选项C ,不能够化简,被开方数不相同;选项D ,=23,23ab D .4.【答案】B【解析】选项A 、C 、D 正确;选项B 2=,选项B 错误,故选B . 5.【答案】C【解析】根据题意得:030x x ≥⎧⎨->⎩,解得:03x ≤<.故选C .6.【答案】B【解析】原式==,故选B .9.【答案】7120.091960.091960.31470.361440.361440.61212⨯==⨯=⨯.故答案为:712.10.【答案】①⑥【解析】最简二次根式是满足下列条件的二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开的尽方的因式或因数.由此可得①⑥是二次根式,故答案为:①⑥. 11.【答案】-5【解析】原式48332731639495=÷-÷==-=-.故答案为:5-.123+2【解析】原式200020002000(32)(32)(32)[(332)]=-++⋅=⋅2000(1)32)=-⋅+⋅32)+32=32+.13.【解析】(1)25144⨯25144=512=⨯ 60=.(2)13xyz xy⋅- 13xyz xy=-⋅=-14.【解析】(1==(2==(3)====-.(4)====15.【解析】(1)原式233=⨯23=45==(2)(13()8=⨯-⨯354=-⨯ 154=-.(3)原式===(4)原式15==. 16.【答案】C【解析】∵x <0=|x -C . 17.【答案】A【解析】原式32,故选A . 18.【答案】BB . 19.【答案】A5315==⨯=,故正确;,故不正确;248==⨯=,故不正确.故选A . 20.【答案】1、2【解析】由题意,知213221m n m n +-=⎧⎨-+=⎩,解得12m n =⎧⎨=⎩,因此m 的值为1,n 的值为2.故答案为:1,2.21【解析】根据圆锥的体积公式可得,这个圆锥的体积是13⨯==故答案为24.【答案】B【解析】A1832=B13是最简二次根式,正确;C2733=不是最简二次根式,错误;D1223=B.25.【答案】6【解析】原式3×3=6.故答案为:6.26.【答案】218 2182⨯,故答案为:2.。
二次根式乘除计算练习一.选择题(共7小题)1.下列二次根式中属于最简二次根式的是( )A.B.C.D.2.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是( )A.①②B.②③C.①③D.①②③3.下列等式不一定成立的是( )A.=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a64.使式子成立的条件是( )A.a≥5B.a>5C.0≤a≤5D.0≤a<55.若,且x+y=5,则x的取值范围是( )A.x>B.≤x<5C.<x<7D.<x≤76.下列计算正确的是( )A.×=B.x8÷x2=x4C.(2a)3=6a3D.3a5•2a3=6a67.化简的结果是( )A.B.C.D.二.填空题(共1小题)8.若和都是最简二次根式,则m= ,n= .三.解答题(共32小题)9..10.(1)÷3×5;(2)﹙﹣﹚÷().11..12.2×÷5.13.计算:.14.(1)(2)(3).15.(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.16.计算:2×.17.计算:(2+4)×18..19.计算:2÷•.20.计算:4÷(﹣)×.21.(1)计算:•(÷);(2)已知实数x、y满足:+(y﹣)2=0,求的值.22..23.计算:()2﹣(2016)0+()﹣1.24.已知x、y为正数,且(+)=3(+5),求的值.25.计算:.26.自习课上,张玉看见同桌刘敏在练习本上写的题目是“求二次根式中实数a的取值范围”,她告诉刘敏说:你把题目抄错了,不是“”,而是“”,刘敏说:哎呀,真抄错了,好在不影响结果,反正a和a﹣3都在根号内.试问:刘敏说得对吗?就是说,按照解题和按照解题的结果一样吗?27.计算:.28.计算:.29.(x>0,y>0)30.化简:3a•(﹣)(a≥0,b≥0)31.计算:(1)(2).32.计算:2×÷10.33.计算:×()÷.34.计算:.35.计算:()﹣||36.化简与计算:(1)÷;(2)3a•(﹣)(b≥0).37.计算:(1)9×3﹣2+20160﹣×(2)(a+2)(a﹣2)﹣(a﹣1)2.38.化简:4x2.39.计算:(a≥0,b≥0).40.计算:×(﹣2)÷.二次根式乘除计算练习参考答案与试题解析一.选择题(共7小题)1.(2015•锦州)下列二次根式中属于最简二次根式的是( )A.B.C.D.【分析】A、B选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:A、不是最简二次根式,故本选项错误;B、不是最简二次根式,故本选项错误;C、不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选D.【点评】本题考查了对最简二次根式定义的应用,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2014•济宁)如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是( )A.①②B.②③C.①③D.①②③【分析】由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.【解答】解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0,a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.【点评】本题是考查二次根式的乘除法,解答本题的关键是明确a<0,b<0. 3.(2015•烟台)下列等式不一定成立的是( )A.=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a6【分析】分别利用二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则化简求出即可.【解答】解:A、=(a≥0,b>0),故此选项错误,符合题意;B、a3•a﹣5=(a≠0),正确,不合题意;C、a2﹣4b2=(a+2b)(a﹣2b),正确,不合题意;D、(﹣2a3)2=4a6,正确,不合题意.故选:A.【点评】此题主要考查了二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则等知识,正确掌握运算法则是解题关键.4.(2010•黄山校级一模)使式子成立的条件是( )A.a≥5B.a>5C.0≤a≤5D.0≤a<5【分析】根据分式有意义分母不为0及二次根式的被开方数为非负数可得出答案.【解答】解:由题意得:,解得:a>5.故选B.【点评】本题考查二次根式及分式有意义的条件,难度不大,注意掌握分式有意义分母不为0及二次根式的被开方数为非负数.5.(2016•萧山区模拟)若,且x+y=5,则x的取值范围是( )A.x>B.≤x<5C.<x<7D.<x≤7【分析】直接利用二次根式有意义的条件,得出y的取值范围,进而得出答案.【解答】解:∵,∴y+2≥0,2x﹣1>0,解得:y≥﹣2,x>,∵x+y=5,∴<x≤7.故选:D.【点评】此题主要考查了二次根式有意义的条件,得出y的取值范围是解题关键.6.(2016•长沙)下列计算正确的是( )A.×=B.x8÷x2=x4C.(2a)3=6a3D.3a5•2a3=6a6【分析】直接利用二次根式乘法运算法则以及结合同底数幂的乘除运算法则分别化简求出答案.【解答】解:A、×=,正确;B、x8÷x2=x6,故此选项错误;C、(2a)3=8a3,故此选项错误;D、3a5•2a3=6a8,故此选项错误;故选:A.【点评】此题主要考查了二次根式乘法运算以及结合同底数幂的乘除运算、积的乘方运算等知识,正确掌握相关性质是解题关键.7.(2014•新泰市模拟)化简的结果是( )A.B.C.D.【分析】先判断出a的符号,再把二次根式进行化简即可.【解答】解:由可知,a<0,原式=﹣=﹣.故选C.【点评】将根号外的a移到根号内,要注意自身的符号,把符号留在根号外,同时注意根号内被开方数的符号.二.填空题(共1小题)8.(2013春•阳谷县期末)若和都是最简二次根式,则m= 1 ,n= 2 .【分析】由于两二次根式都是最简二次根式,因此被开方数的幂指数均为1,由此可得出关于m、n的方程组,可求出m、n的值.【解答】解:由题意,知:,解得:;因此m的值为1,n的值为2.故答案为:1,2.【点评】本题考查的最简二次根式的定义.当已知一个二次根式是最简二次根式时,那么被开方数(或因式)的幂指数必为1.三.解答题(共32小题)9.(2015春•宁城县期末).【分析】首先把乘除法混合运算转化成乘法运算,然后进行乘法运算即可.【解答】解:原式=3×(﹣)×2=﹣3××2×=﹣=﹣×10=﹣.【点评】本题考查了分式的乘除混合运算,正确转换成乘法运算是关键.10.(2013秋•云梦县校级期末)(1)÷3×5;(2)﹙﹣﹚÷().【分析】(1)利用二次根式的乘除运算法则将除法变为乘法,根号内的和根号内部相乘除,根号外的与根号外部相乘除,进而化简得出即可;(2)利用二次根式的乘除运算法则将除法变为乘法,根号内的和根号内部相乘除,根号外的与根号外部相乘除,进而化简得出即可.【解答】解:(1)÷3×5=×5=;(2)﹙﹣﹚÷()=﹣××3=﹣=﹣9x2y.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.11.(2014春•苏州期末).【分析】因为两个因式的第一项完全相同,第二、三项互为相反数,符合平方差公式的特点,按平方差公式计算即可.【解答】解:原式==2﹣9+2=.【点评】本题主要考查了二次根式的乘法运算以及平方差公式的应用.运用平方差公式(a+b)(a﹣b)=a2﹣b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.12.(2016春•乌拉特前旗期末)2×÷5.【分析】本题需先根据二次根式的乘除法的法则分别进行计算,即可求出答案.【解答】解:2×÷5=4×==.【点评】本题主要考查了二次根式的乘除法,在解题时要根据二次根式的乘除法的法则进行计算是本题的关键.13.(2015春•湖北校级期中)计算:.【分析】首先化简二次根式,进而利用二次根式的乘除运算法则求出即可.【解答】解:原式=3×5×=15.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.14.(2014春•赵县期末)(1)(2)(3).【分析】(1)先将各二次根式化为最简,再运用乘法分配律进行运算,然后再进行二次根式的加减.(2)运用平方差公式进行计算即可.(3)直接进行开方运算即可得出答案.【解答】解:(1)原式=6×(3﹣5﹣2)=18﹣60﹣12,=6﹣60,(2)原式=﹣,=18﹣75,=﹣57;(3)==.【点评】本题考查二次根式的乘除运算,难度不大,注意在运算时公式的运用,更要细心.15.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.【分析】(1)根据二次根式的定义和已知求出x、y都是负数,先化成最简根式,再根据二次根式的乘除法法则进行计算即可.(2)把代数式化成(x+1)2+x﹣2,代入后根据二次根式的混合运算法则进行计算即可.【解答】(1)解:原式=﹣•()÷,=(••),=﹣8x2y.(2)解:x=﹣1,∴x2+3x﹣1,=x2+2x+1+x﹣2,=(x+1)2+x﹣2,=+﹣1﹣2,=2+﹣3,【点评】本题考查了二次根式的性质和定义,代数式求值,二次根式的乘除法法则等知识点的应用,解此题的关键是把根式化成最简根式,注意:从题中得出x、y都是负数,=﹣x,=﹣y,题型较好,但是一道比较容易出错的题目.16.(2014春•曲阜市期末)计算:2×.【分析】根据二次根式的乘除法法则,系数相乘除,被开方数相乘除,根指数不变,如:2×÷3,÷,计算后求出即可.【解答】解:原式=(2××),=.【点评】本题考查了二次根式的乘除法的应用,关键是能熟练地运用法则进行计算,题目比较典型,难度适中,此题是一道容易出错的题目.17.(2014春•沅陵县校级期末)计算:(2+4)×【分析】用和分别去乘括号里的每一项,然后再进行加法运算,即可得出结果.【解答】解:原式==.【点评】解答本题关键是要掌握二次根式的混合运算的运算法则.18.(2016春•吉林期末).【分析】运用(a≥0,b>0)直接进行计算.也可以先分子做减法运算,再分子、分母做除法运算.【解答】解:原式===3﹣2=1.【点评】对于二次根式的乘除法,应结合给出的算式的特点灵活进行计算. 19.(2015秋•闸北区期中)计算:2÷•.【分析】直接利用二次根式的乘除运算法则化简求出答案.【解答】解:原式=2×6=12=8.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.20.(2014秋•门头沟区期末)计算:4÷(﹣)×.【分析】根据二次根式的乘法法则和除法法则求解.【解答】解:原式=﹣2÷×=﹣×=﹣.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘法法则和除法法则.21.(2014春•孝义市期末)(1)计算:•(÷);(2)已知实数x、y满足:+(y﹣)2=0,求的值.【分析】(1)利用二次根式的乘除法法则求解;(2)利用算术平方根和一个数的平方等于0求出x,y,再求的值.【解答】解:(1)•(÷)=•===;(2)由+(y﹣)2=0,可知,=0且(y﹣)2=0,即,解得.所以==.【点评】本题主要考查了二次根式的乘除法,非负数的性质及算术平方根,解题的关键是利用算术平方根和一个数的平方等于0求解.22.(2013秋•岳麓区校级期末).【分析】先化简,再根据二次根式的乘法进行计算即可.【解答】解:原式=÷×3=××3=9.【点评】本题考查了二次根式的乘除法,化简二次根式是解此题的关键.23.(2016•福建模拟)计算:()2﹣(2016)0+()﹣1.【分析】直接利用二次根式的性质以及零指数幂的性质和负整数指数幂的性质化简求出答案.【解答】解:原式=5﹣1+3=7.【点评】此题主要考查了二次根式的乘法运算以及零指数幂的性质和负整数指数幂的性质,正确有关掌握运算法则是解题关键.24.(2016春•宿城区校级期末)已知x、y为正数,且(+)=3(+5),求的值.【分析】要求代数式的值,要首先将分子分母的字母统一成一种,因此要整理已知条件,设法将其中一种字母用另一种表示,然后代入代数式中,约分即可.【解答】解:由已知条件得x﹣2﹣15y=0,∴(+3)(﹣5)=0,∵+3>0,∴﹣5=0,∴,x=25y,∴==2.【点评】能够对所给条件适当的变形是解题的关键,对条件的变形没有规律可循,要根据题目需要,运用所学知识适当变形.25.(2016•厦门校级模拟)计算:.【分析】根据有理数的乘方、去括号法则、二次根式的乘法法则分别计算,再合并即可.【解答】解:原式=﹣1﹣2+5+4=6.【点评】本题考查了二次根式的乘法法则,有理数的乘方,去括号法则的应用,能求出各个部分的值是解此题的关键.26.(2015春•赵县期中)自习课上,张玉看见同桌刘敏在练习本上写的题目是“求二次根式中实数a的取值范围”,她告诉刘敏说:你把题目抄错了,不是“”,而是“”,刘敏说:哎呀,真抄错了,好在不影响结果,反正a和a﹣3都在根号内.试问:刘敏说得对吗?就是说,按照解题和按照解题的结果一样吗?【分析】本题需注意的是,被开方数为非负数,按计算,则a和a﹣3可为同号的两个数,即同为正,或同为负;而按计算,只有同为正的情况.【解答】解:刘敏说得不对,结果不一样.按计算,则a≥0,a﹣3>0或a≤0,a﹣3<0解之得,a>3或a≤0;而按计算,则只有a≥0,a﹣3>0解之得,a>3.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.27.(2014春•博湖县校级月考)计算:.【分析】先将带分数化为分数,然后然后根据×=进行二次根式的乘法运算即可.【解答】解:原式=××==×4=3.【点评】本题考查了二次根式的乘除法运算,难度不大,将带分数化简为分数是很关键的一步.28.(2016春•夏津县校级月考)计算:.【分析】直接利用二次根式乘除运算法则直接求出即可.【解答】解:=3×(﹣)×2=﹣×5=﹣.【点评】此题主要考查了二次根式的乘除运算,熟练应用运算法则是解题关键.29.(2014春•淮阴区校级月考)(x>0,y>0)【分析】根据二次根式的乘除法把根号外的相乘除,根号里的相乘除再化简即可.【解答】解:原式=﹣=﹣,∵x>0,y>0,∴原式=﹣=﹣3xy.【点评】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.30.(2013秋•玄武区期末)化简:3a•(﹣)(a≥0,b≥0)【分析】根据二次根式的乘法运算法则直接得出即可.【解答】解:原式=﹣2a,=﹣12ab.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.31.(2016春•咸丰县校级月考)计算:(1)(2).【分析】(1)根据二次根式的乘法,可得答案;(2)根据二次根式的乘除法,可得答案.【解答】解:(1)原式=﹣12=﹣12×9=﹣108;(2)原式=÷×==1.【点评】本题考查了二次根式的乘除法,•=,÷=.32.(2016春•端州区期末)计算:2×÷10.【分析】先化简二次根式,再用乘法和除法运算即可.【解答】解:2×÷10=2×2××=【点评】此题是二次根式的乘除法,主要考查了二次根式的化简,分母有理化,解本题的关键是分母有理化的运用.33.(2012秋•上海期中)计算:×()÷.【分析】根据二次根式乘除法及分母有理化的知识解答即可.【解答】解:原式=b2×(﹣a)÷3=2b×(﹣a)×=﹣a2b.【点评】此题考查了二次根式的乘除法,熟悉二次根式乘除法的法则是解题的关键.34.(2014春•张家港市校级期中)计算:.【分析】首先利用二次根式除法以及乘法法则转化成一个二次根式,然后对二次根式进行化简即可.【解答】解:原式===×2a=.【点评】本题考查了二次根式的乘除运算,正确理解法则,正确化简二次根式是关键.35.(2016春•罗定市期中)计算:()﹣||【分析】直接利用二次根式乘法运算法则化简进而利用绝对值的性质化简,再合并求出答案.【解答】解:原式=3﹣﹣(2﹣)=3﹣﹣2+,=1.【点评】此题主要考查了二次根式的乘法以及绝对值的性质,正确掌握运算法则是解题关键.36.(2014春•吴中区期末)化简与计算:(1)÷;(2)3a•(﹣)(b≥0).【分析】(1)利用二次根式除法运算法则求出即可;(2)利用二次根式乘法运算法则求出即可.【解答】解:(1)÷=×=;(2)3a•(﹣)(b≥0)=3a×(﹣)=﹣2a=﹣12ab.【点评】此题主要考查了二次根式的乘除运算,熟练掌握二次根式乘除运算法则是解题关键.37.(2016•海南模拟)计算:(1)9×3﹣2+20160﹣×(2)(a+2)(a﹣2)﹣(a﹣1)2.【分析】(1)先根据负整数指数幂的意义、零指数幂的意义化简乘方,再算乘法,然后计算加减;(2)利用平方差公式与完全平方公式计算乘法与乘方,再去括号合并同类项即可.【解答】解:(1)9×3﹣2+20160﹣×=9×+1﹣4=1+1﹣4=﹣2;(2)(a+2)(a﹣2)﹣(a﹣1)2=(a2﹣4)﹣(a2﹣2a+1)=a2﹣4﹣a2+2a﹣1=2a﹣5.【点评】本题考查了整式的混合运算,实数的混合运算,负整数指数幂、零指数幂的意义,二次根式的乘除法,掌握运算顺序与运算法则是解题的关键.38.(2016春•潮南区月考)化简:4x2.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:4x2=4x2÷12×3=x2=xy.【点评】此题主要考查了二次根式的乘除运算法则,正确化简二次根式是解题关键.实用文档文案大全 39.(2013秋•南京期末)计算:(a≥0,b≥0).【分析】根据二次根式的乘法法则求解.【解答】解:原式=2=2=6a .【点评】本题考查了二次根式的乘法,解答本题的关键是掌握二次根式的乘法法则=.40.(2014秋•闵行区校级期中)计算:×(﹣2)÷.【分析】直接利用二次根式的乘除运算法则化简求出即可.【解答】解:×(﹣2)÷=×(﹣2)×=﹣=﹣=﹣.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.。
二次根式乘除运算例4 已知:a+b=﹣5,ab=1,求:的值.例5 设x、y为有理数,且x、y满足等式,求x+y的值.30、先观察下列等式,再回答问题。
①;②;③;(1)请你根据上面三个等式提供的信息,猜想的结果,并进行验证;(2)请按照上面各式反映的规律,试写出用含n的式子表示的等式(n为正整数)。
课堂同步练习一、选择题:1、下列各等式成立的是()A.4×2=8 B.5×4=20 C.4×3=7 D.5×4=202、若,则()A.x≥6 B.x≥0 C.0≤x≤6 D.x为一切实数3、计算(﹣)(+)的结果是()A.﹣3 B.3 C.7 D.44、下列根式中为最简二次根式的是()A. B. C. D.5、把根号外的因式移到根号内,得()A、 B、 C、 D、6、使二次根式有意义的实数x的值有()A.3个 B.2个 C.1个 D.0个7、计算的结果估计在( )A.6至7之间 B.7至8之间 C.8至9之间 D.9至10之间8、k、m、n为三个整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,哪个正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n 9、计算(+2)2013(﹣2)2014的结果是()A.2+ B.﹣2 C.2﹣ D.10、已知a为实数,则代数式的最小值为()A.0B.3C.D.911、设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1 B.-+1 C.﹣﹣1 D.++1二、填空题:13、在,,,中与是同类二次根式的是.14、计算:(+1)(﹣1)= .15、计算 = .16、已知a2﹣b2=,a﹣b=,则a+b= .17、已知,则= .18、计算:= .19、若x=2﹣,则x2﹣4x+8= .20、当时,代数式的值为.三、计算题:21、.23、 24、25、计算: 26、四、简答题:27、已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.例1 求当时,代数式a2+b2-4a+2017的值.例3 已知x=,y=,求的值.29、阅读下面问题:;;,…….试求:(1)的值;(2)(n为正整数)的值。
二次根式的乘除法练习题一、选择题1.下列各式属于最简二次根式的是( )A .8B .12+xC .3yD .212====一定成立的是( ) A .①②③④ B .①② C .3y ③④ D .①②③3.下列各式中不成立的是( )2x =32==54199=-=- D.4= 4. 当x ≤2时,下列等式成立的是( )A .2)2(2-=-x x .B .3)3(2-=-x x .C .x x x x -⋅-=--32)3)(2(.D .xx x x --=--2323. 5 .有一个长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(粗细、形变忽略不计),要求木条不能露出木箱,算一算,能放入的细木条的最大长度是( )A 、cm 41B 、cm 34C 、cm 25D 、cm 35 二、填空题6. 2.449== (精确到0.01).7.若|a -21|+(b +1)2=0,则a 3×b -2÷ab -的值是 .8= ,计算:= .9=x y ,满足的条件为 . 10.把根号外的因式移到根号内:当b >0时,x x b = ;a a --11)1(= . 三、解答题11.计算:(1 (212.计算:(1 (2)42623x x x ⋅⋅13 .若x ,y 为实数,且134124312+-++-+=x x x x y ,求2x xy x y ++的值.四、中考链接14 .(2008 湖北省鄂州市) a=,则a 的取值范围是( ) A .0a ≤ B .0a < C .01a <≤ D .0a >15 . (2008 广东省广州市) 实数a 、b 在数轴上的位置如图所示.1 1。
12. 6 二次根式的乘除法知识回首 ::1、(1)4 9 = =; 4 9 = = ;( 2) 9 16 ==;9 16 ==;( 3)abab( a ≥0, b ≥0).2、(1)49=_________;( 2)4 a981=_________;(3)b(a ≥0, b >0).目标解读 ::1.理解并掌握二次根式乘法和除法法例,并会进行简单的二次根式的乘除法运算 .2.理解最简二次根式的意义及条件,把所给的二次根式化为最简二次根式 .3.理解分母有理化的意义,并会进行分母有理化.基础训练 :一、选择题1. 以下二次根式中是最简二次根式的是( )A. 8B.1 C.6D.3a 222. 化简3 时,甲的解法是:33(5 2)52 ,乙的解2 52 ( 52)( 552)法是:3( 52)( 52)52 ,以下判断正确的选项是()2525A.甲的解法正确,乙的解法不正确 B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确3. 已知 a1 2 , b 1 2,则 a 2 b 2 7 的值为()55A. 5B. 6C. 3 D. 41 x1 x 建立的条件是()4. 式子xxA. x 1且 x 0 B. x 0 且 x 1C. 0 x ≤ 1D. 0 x 15. 式子2x2x 成立刻, x , y 知足的条件为()3 y3yx ≥ 0 x ≤ 0 x ≤ 0 x ≥ 0A.B.C.D.yyy 0y 06. 计算183 4;结果为()43A. 32B. 4 2 C. 5 2 D. 6 27. 给出以下四道算式:( 4)2 ab32 42 1 1( 3 )28x 4 x ( 4 )( 1 )4ab4( 2 )3247 x52(b a)2 a b(a b)a b此中正确的算式是( )A.( 1)( 3) B.( 2)( 4) C.( 1)( 4)D.( 2)( 3)8. 化简二次根式 ( 5)23 得()A.5 3B. 5 3 C. 5 3D. 309. 以下各组二次根式中,同类二次根式是( )A.16 , 3 2B. 3 5 , 15C. 112 ,1 D . 8 ,3232 310. 以下各式中不建立的是( )A.( 4)( x 2 ) 2 xB.402 24264 163225 1C.5 14 D. ( 62)( 62) 499911. 以下各式中化简正确的选项是( )A.ab2abB.14x1 x24C.9 1 gx 2 y 3 1x yD.5ab 4 b 4b 2 5a14 212. 给出四个算式:(1) 3 2 4 212 2 ( 2) 5 x g5 y 5 xy (3) 2x 3 y 6 (4)gxy( 7) 2 67 6此中正确的算式有( )A. 3 个B. 2 个C. 1 个D. 0 个13. 以下计算正确的选项是()A.1 91 7 B. 5xyy 3 y 2 y40225x 2C. 15g1 3 3D. 1( 6) 2 xy 7 6xy1574914. 以下根式中化简正确的选项是( )A. 36a g a 6aB.7a 2 a 7a C.5a 2b 3 ab 5D. a 2b 2 a b15.2a g 6ab 等于()A. a 12abB. 12a 2bC. a 2 12bD. 2a 3b二、填空题16. 直接填写计算结果:(1)80 =_________ ; ( 2) 35 90 710___________;5(3) 132 2 11 _________;( 4)48x 7 y 6 __________ .73 10 33x 2 y 317. 计算 :24 812 _______ ;402 242 = _________.18. 当 x0, y 0 时,化简y 3 y 5_________ .x4 x 619. 化简: a1 __________.a20. 把根号外的因式移到根号内:( a1) 1 __________.a 121. 若最简二次根式7a b 与 b36a b 是同类二次根式,则a,______.______ b22. 直接填写化简结果:(1)5 10 2 15 = ________;( 2) 152 10 2 52 122 = ________.23. 化简: 64x 2 y 3(x ≥ 0, y ≥ 0) =;a 2b 4 a 4b 2 (a ≥ 0,b ≥ 0) =.24. 分母有理化:564xy_________;________.2 142xy25. 若 1 x 2 与 x 21 都是二次根式;则 1 x 2x 2 1 = _______.三、计算:26.( 1)5 453 22;( 2 )2( 28) ;23(3). 64 26 4 2 .27.( 1) 324 2 18 ;( 2) 1 2 14 x 2 y .233 91928.( 1) 23 2 15 ; ( 2)36 36 a 2b 2.52 3829. ( 1)2 40 2100 x 5 y (3)2 3 13;( 4)41; ( 2);32420.5 x 2 y45 2 5ab 1 .bab30. 22 × 8 3 2(3 2 2)1 .12能力拓展 :31. 若最简二次根式 a b a2b 与 a b 3 是同类二次根式,求a, b 的值.b a32. 已知a b 5, ab 6 ,求的值.a b。
一.常识聚焦:1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积.2.二次根式的乘法轨则:两个因式的算术平方根的积,等于这两个因式积的算术平方根.3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方铲除以除式的算术平方根4.二次根式的除法轨则:两个数的算术平方根的商,等于这两个数的商的算术平方根.5.最简二次根式:相符以下两个前提:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.6.分母有理化:把分母的根号去失落的进程称作“分母有理化”二.经典例题:例1.化简(1)(2) (3) (4)(0,0≥≥y x )例2.盘算(2)31525⋅32⨯例3.断定下列各式是否准确,不准确的请予以纠正:=4 例4.化简:(1)(2))0,0(≥>b a (3))0,0(>≥y x)0,0(>≥y x例5.盘算:(4例6.下列各式中哪些是最简二次根式,哪些不是?为什么? (1)b a 23 (2)23ab (3)22y x +(4))(b a b a >- (5)5 (6)xy 8例7. 把下列各式化为最简二次根式: (1)12(2)b a 245 (3)xy x 2 例8. 把下列各式分母有理化 (1)4237 (2)2a a b 例9. 比较3223和两个实数的大小答案:例例2.(1(2)303 (3)(4)6例3. (1)不准确.×3=6(2)= 例4.(1)83 (2)a b 38 (3)y x 83 (4)yx 135 例5.(1)2 (2)23 (3)2 (4)22例6.(3),(4),(5)是,其它不是例7.(1)23, (2)b a 53, (3)xy x例8. (1)21144- (2)b a ba a ++2例9. 3223>三.基本练习训练:1.×2.化简3.把下列各式化为最简二次根式: (1)3)(8y x +(2)2114 (3)mn 38233 4. 把下列各式分母有理化(1)403(2)xy y 422(x >0,y >0) (1)76与67 (2)23与32答案:1.①=82②=1215③=y a 2.25;32;62;32ab 3.(1))(2)(2y x y x ++ (2)62 (3)m mnn 6 4.(1)2030 (2)xxy y 5.解:(1)76<67 (2)23>32四.才能晋升:1.若直角三角形两条直角边的边长分离为那么此直角三角形斜边长是( ).A .cm B .cm C .9cm D .27cm2.下列各等式成立的是( ).A ..C ..3 ).A .27.27C D .7 4.二次根式:①29x -;②))((b a b a -+;③122+-a a ;④x 1;⑤75.0中最简二次根式是( ) A.①② B.③④⑤ C.②③ D.只有④ 56.分母有理化答案:1. B 2. D 3. A 4. A5.6136.=62= 63=22 五.共性寰宇:(LJJ00002)(1=_________;(2)=___________;=_________;(2=__________. (SHY00002)已知x=3,y=4,z=5,_______. 答案:(LJJ00002)(1)4;(2)15; (ZZY00002)57;(2)24x (SHY00002)315。
二次根式乘除法练习
题63617
二次根式的乘除法练习题
一、选择题
1.下列各式属于最简二次根式的是( )
A .8
B .12+x
C .3y
D .2
1
2==== ) A .①②③④ B .①② C .3y ③④ D .①②③
3.下列各式中不成立的是( )
2x =
32=
54199=-=- D.4=
4. 当x ≤2时,下列等式成立的是( )
A .2)2(2-=-x x .
B .3)3(2-=-x x .
C .x x x x -⋅-=--32)3)(2(.
D .x
x x x --=--2323. 5 .有一个长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(粗细、形变忽略不计),要求木条不能露出木箱,算一算,能放入的细木条的最大长度是( )
A 、cm 41
B 、cm 34
C 、cm 25
D 、cm 35
二、填空题
6. 2.449== (精确到0.01).
7.若|a -21|+(b +1)2=0,则a 3×b -2÷ab -的值是 .
8= ,计算:= .
9=x y ,满足的条件为 .
10.把根号外的因式移到根号内:当b >0时,x x b = ;a a --11)1(= . 三、解答题
11.计算:(1)12506⨯÷ (2)641449169⨯
12.计算:(1)
11904032÷ (2)42623x x x ⋅⋅
13 .若x ,y 为实数,且134124312+-++-+=
x x x x y ,求2x xy x y ++的值.
四、中考链接
14 .(2008 湖北省鄂州市) 已知
211a a a a --=,则a 的取值范围是( ) A .0a ≤
B .0a <
C .01a <≤
D .0a >
15 . (2008 广东省广州市) 实数
a 、
b 在数轴上的位置如图所示. 化简222()a b a b -+-.
1 1。