电工实验感性负载的测量及功率因数的提高-文档资料
- 格式:ppt
- 大小:18.11 MB
- 文档页数:9
三相交流电功率因数提升实验
三相交流电功率因数提升实验,通常是为了提高电力系统的功率因数,减少无效功率的损失,提高电能利用率。
具体实验步骤如下:
实验器材:
1. 三相交流电源
2. 三相感性负载
3. 电容器
4. 电压表、电流表
实验步骤:
1. 连接三相交流电源和三相感性负载,测量电路的电压和电流值,记录下来。
2. 接入电容器,注意电容器的额定电压和容量要与负载匹配。
3. 测量电路的电压和电流值,记录下来。
4. 计算电路的功率因数,即功率因数=有功功率/视在功率,其中有功功率=电压×电流×功率因数,视在功率=电压×电流。
5. 比较加入电容器前后的功率因数变化,分析电容器对功率因数的影响。
注意事项:
1. 实验时要注意安全,避免触电等危险。
2. 电容器的接入要注意极性,不要接反。
3. 测量电压和电流时,要选择合适的测量范围,避免测量误差。
4. 实验结束后,要关闭电源和电容器开关,避免电容器长时间带电。
实验十 功率因数的提高一、实验目的1.了解日光灯结构和工作原理;2.学习提高功率因数的方法;3.了解输电线线路损耗情况,理解提高功率因数的意义。
二、实验原理与说明1.正弦电流电路中,不含独立电源的二端网络消耗或吸收的有功功率P=UI cos ϕ,cos ϕ称为功率因数,ϕ为关联参考方向下二端网络端口电压与电流之间的相位差。
2.在工业用户中,一般感性负载很多,如电动机、变压器等,其功率因数较低。
当负载的端电压一定时,功率因数越低,输电线路上的电流越大,导线上的压降也越大,由此导致电能损耗增加,传输效率降低,发电设备的容量得不到充分的利用。
从经济效益来说,这也是一个损失。
因此,应该设法提高负载端的功率因数。
通常是在负载端并联电容器,这样流过电容器中的容性电流补偿原负载中的感性电流,此时负载消耗的有功功率不变,且随着负载端功率因数的提高,输电线路上的总电流减小,线路损耗降低,因此提高了电源设备的利用率和传输效率。
电路见图10-1。
3.图10—2是供电线路图,在工频下,当传输距离不长、电压不高时,线路阻抗1Z 可以看成是电阻R 1和感抗X 1相串联的结果。
若输电线的始端(供电端)电压为U 1,终端(负载端)电压为U 2,负载阻抗和负载功率分别为()222Z =R +jX 和P 2,负载端功率因数为2=cos λϕ,则线路上的电流为222P I U cos ϕ=线路上的电压降为12U U -U ∆=输电功率为22221221P P P P P P P I R η∆===++ 式中,P 1为输电线始端测得的功率,P ∆为线路上的损耗功率。
实验时,可以用一个具有较小电阻的元件模拟输电线路阻抗,用日光灯模拟负载阻抗Z 2,研究在负载端并联电容器改变负载端功率因数时,输电线路上电压降和功率损耗情况以及对输电线路传输效率的影响。
图10-1 图10-2 负载的功率因数可以用三表法测U 、I 、P 以后,再按公式P=cos =UIλϕ计算得到,也可以直接用功率因数表或相位表测出。
实验十 功率因数的提高一、实验目的1.了解日光灯结构和工作原理;2.学习提高功率因数的方法;3.了解输电线线路损耗情况,理解提高功率因数的意义。
二、实验原理与说明1.正弦电流电路中,不含独立电源的二端网络消耗或吸收的有功功率P=UI cos ϕ,cos ϕ称为功率因数,ϕ为关联参考方向下二端网络端口电压与电流之间的相位差。
2.在工业用户中,一般感性负载很多,如电动机、变压器等,其功率因数较低。
当负载的端电压一定时,功率因数越低,输电线路上的电流越大,导线上的压降也越大,由此导致电能损耗增加,传输效率降低,发电设备的容量得不到充分的利用。
从经济效益来说,这也是一个损失。
因此,应该设法提高负载端的功率因数。
通常是在负载端并联电容器,这样流过电容器中的容性电流补偿原负载中的感性电流,此时负载消耗的有功功率不变,且随着负载端功率因数的提高,输电线路上的总电流减小,线路损耗降低,因此提高了电源设备的利用率和传输效率。
电路见图10-1。
3.图10—2是供电线路图,在工频下,当传输距离不长、电压不高时,线路阻抗1Z 可以看成是电阻R 1和感抗X 1相串联的结果。
若输电线的始端(供电端)电压为U 1,终端(负载端)电压为U 2,负载阻抗和负载功率分别为()222Z =R +jX 和P 2,负载端功率因数为2=cos λϕ,则线路上的电流为222P I U cos ϕ=线路上的电压降为12U U -U ∆=输电功率为22221221P P P P P P P I R η∆===++ 式中,P 1为输电线始端测得的功率,P ∆为线路上的损耗功率。
实验时,可以用一个具有较小电阻的元件模拟输电线路阻抗,用日光灯模拟负载阻抗Z 2,研究在负载端并联电容器改变负载端功率因数时,输电线路上电压降和功率损耗情况以及对输电线路传输效率的影响。
图10-1 图10-2 负载的功率因数可以用三表法测U、I、P以后,再按公式P=cos=UIλϕ计算得到,也可以直接用功率因数表或相位表测出。
功率因数的提高实验实训报告.doc
一、实验目的
1.掌握功率因数的基本概念及其提高的方法。
2.通过实验,了解并联电容器提高感性负载功率因数的原理。
3.学会使用相关仪器进行功率因数的测量与调整。
二、实验设备
1.电源装置
2.感性负载(如电动机)
3.并联电容器
4.功率因数测量仪
三、实验原理
功率因数是有功功率与视在功率之比,反映了电力系统中电能的有效利用程度。
对于感性负载,由于其电流滞后于电压,导致功率因数低于1。
为了提高功率因数,可以通过并联电容器的方法,使电流提前,从而提高功率因数。
四、实验步骤
1.连接实验电路,包括电源、感性负载和功率因数测量仪。
2.记录初始的功率因数。
3.并联电容器,观察功率因数的变化,记录数据。
4.调整电容器的容量,观察功率因数的变化,记录最佳电容器容量。
五、实验结果与分析
1.实验结果显示,并联电容器后,功率因数明显提高。
2.通过调整电容器的容量,可以找到最佳的电容器容量,使得功率因数达到最大值。
3.分析实验结果,并联电容器提高了电流的相位角,使得电流与电压的相位差减小,从而提高了功率因数。
六、实验总结
通过本次实验,我们深入了解了功率因数的概念及其提高的方法,验证了并联电容器提高感性负载功率因数的原理,并掌握了相关的实验技能。
实验结果证明了并联电容器对提高功率因数的有效性,为实际应用提供了理论依据。
电工实验报告,功率因数的提高
功率因数的提升实验
功率因数指电力平衡系统中,有功功率与无功功率之比值,是反映电能功率利用程度的重要指标,实际应用中往往要求功率因数达到尽可能接近1的最大值,以达到节能减排的目的。
为了研究电变压器改善负载安装位置对功率因数提升的作用,本实验选择复相负载和开关电源为实验设备,使用万用表测量电压和电流值进行实验。
实验过程:
1. 连接电力系统的负载和开关电源之间的电缆,使电力系统完成接线。
2. 调节比例负载安装位置,当电压谐波和相位差稳定时,使万用表接通,启动谐波测量,记录两组负载安装位置前后的有功功率、无功功率和功率因数数据。
3. 计算出两个负载安装位置下的平均有功功率、无功功率和功率因数,完成此实验。
实验结果:
实验结果表明,改善电变压器负载安装位置可以提升功率因数值,且比不改变负载位置提升相对较明显,但随着负载安装位置的改变,负载电流也会有所变化,因而不同的环境有待设计中考虑合理的负载安装位置,以提高功率因数,以达到最优。
结论:
通过本次实验,我们发现改善电力系统中电变压器负载安装位置可以显著提高功率因数,从而达到节能减排的目的。
由于实际环境复杂,合理安装负载位置应充分考虑有功功率、无功功率以及环境等因素,以达到最佳效果。
感性负载功率因数的提高实验报告感性负载功率因数的提高实验报告引言:功率因数是电力系统中一个重要的参数,它反映了电路中有功功率和视在功率的比值。
在实际应用中,低功率因数会导致电网负载的增加,降低电能的传输效率,增加线路的损耗。
因此,提高感性负载的功率因数对电力系统的稳定运行和能源利用具有重要意义。
实验目的:本实验旨在通过改变感性负载的电感值,研究电感对负载功率因数的影响,并探讨提高感性负载功率因数的方法。
实验装置:1. 交流电源:提供实验所需的交流电源。
2. 电感器:用于改变感性负载的电感值。
3. 电流表:用于测量电路中的电流。
4. 电压表:用于测量电路中的电压。
5. 功率因数表:用于测量负载的功率因数。
实验步骤:1. 将交流电源接入电路,并连接电感器、电流表和电压表。
2. 调节交流电源的电压,使其保持稳定。
3. 测量电路中的电流和电压,计算得到负载的功率因数。
4. 更换不同电感值的电感器,重复步骤3,记录不同电感值下的功率因数。
实验结果:通过实验测量和计算,得到了不同电感值下的负载功率因数。
结果显示,随着电感值的增加,负载的功率因数逐渐提高。
这是因为电感器的引入使得负载电流滞后于电压,从而减小了视在功率。
讨论:为了进一步提高感性负载的功率因数,我们可以采取以下措施:1. 并联电容器:通过并联适当容值的电容器,可以补偿感性负载的滞后功率,提高功率因数。
2. 调整电感值:通过调整电感器的电感值,可以使负载电流与电压的相位差减小,从而提高功率因数。
3. 优化电路设计:在电路设计阶段,可以合理选择电感值和电容值,以达到较高的功率因数。
结论:通过本实验,我们验证了电感对感性负载功率因数的影响,并探讨了提高功率因数的方法。
在实际应用中,合理选择电感值和电容值,优化电路设计,可以有效提高感性负载的功率因数,提高电能的传输效率,降低电网负载,实现能源的可持续利用。
总结:本实验通过实际测量和计算,研究了感性负载功率因数的提高方法。
功率因数的提高实验报告功率因数的提高实验报告一、引言功率因数是电力系统中一个重要的参数,它反映了电路中有用功与视在功之间的比例关系。
功率因数的提高对于电力系统的稳定运行和能源的有效利用至关重要。
本实验旨在探究不同方法对功率因数的提高效果,并对实验结果进行分析和讨论。
二、实验目的1. 了解功率因数的概念和计算方法;2. 掌握提高功率因数的方法;3. 分析不同方法对功率因数的影响。
三、实验原理功率因数是有用功与视在功的比值,可以通过以下公式计算:功率因数 = 有用功 / 视在功四、实验步骤1. 搭建实验电路:使用电源、电阻、电容、电感等元件搭建一个简单的交流电路;2. 测量电路参数:使用万用表测量电路中的电压、电流、功率等参数;3. 计算功率因数:根据测量结果计算电路的功率因数;4. 提高功率因数:根据实验要求,采取不同的方法提高功率因数;5. 重新测量电路参数:使用相同的方法测量电路中的电压、电流、功率等参数;6. 计算新的功率因数:根据新的测量结果计算电路的功率因数。
五、实验结果与分析1. 实验前的功率因数:根据测量结果计算出实验电路的初始功率因数;2. 实验后的功率因数:根据测量结果计算出采取不同方法后电路的功率因数;3. 对比分析:比较实验前后的功率因数,分析不同方法对功率因数的影响;4. 结果解释:解释不同方法对功率因数的影响原因,如电容的串联、并联效应等;5. 实验误差:分析实验中可能存在的误差来源,如测量误差、电路参数变化等。
六、实验结论根据实验结果和分析,可以得出以下结论:1. 不同方法对功率因数的提高效果不同,需根据具体情况选择合适的方法;2. 电容的串联、并联效应对功率因数的提高具有显著影响;3. 实验中可能存在的误差对结果的准确性有一定影响。
七、实验总结通过本次实验,我深入了解了功率因数的概念和计算方法,并掌握了提高功率因数的方法。
实验过程中,我遇到了一些困难和问题,但通过与同学的讨论和老师的指导,我成功地完成了实验,并得出了一些有价值的结论。
竭诚为您提供优质文档/双击可除感性电路功率因数提高实验报告篇一:功率因数提高实验报告功率因数提高一、实验目的1、了解荧光灯的结构及工作原理。
2、掌握对感性负载提高功率的方法及意义。
二、实验原理荧光灯管A,镇流器L,启动器s组成,当接通电源后,启动器内发生辉放电,双金属片受热弯曲,触点接通,将灯丝预热使它发射电子,启动器接通后辉光放电停止,双金属片冷却,又把触电断开,这是镇流器感应出高电压加在灯管两端使荧光灯管放电,产生大量紫外线,灯管同壁的荧光粉吸收后辐射出可见光,荧光灯就开始正常的工作,启动器相当一只自动开关,能自动接通电路和开端电路。
伏在功率因数过低,一方面没有充分利用电源容量,另一方面又在输电电路中增加损耗。
为了提高功率因数,一般最常用的方法是在伏在两端并联一个补偿电容器,抵消负载电流的一部分无功分量。
三、实验内容1、按图二接线,经老师检查无误,开启电源。
2、用交流电压表测总电压u,镇流电路两端电压ul及灯管两端电压uA,用交流电流表测总电流I,灯光支路电流Ia及电容支路电流Ic,用功率表测其功率p。
四、实验结论随着功率因数的提高,负载电流明显降低。
五、实验心得1注意电容值,以免接入大电容时,电流过大。
2不能带电操作。
篇二:实验报告2:交流阻抗参数的测量和功率因数的改善实验报告交流阻抗参数的测量和功率因数的改善姓名马诗琪班级13教技学号交流阻抗参数的测量和功率因数的改善一.实验目的:1.测量交流电路的参数。
2.掌握提高感性负载功率因数的方法,体会提高功率因数的意义。
3.设计感性负载电路中补偿电容的大小。
4.学会使用单相功率表。
二.实验原理:1.感性负载参数的测定:用三表法(即交流电压表、交流电流表、功率表)测出上述电路的u、??1、??2、及电流I和功率p,就可按下列各公式求出电路的参数。
L、R串联电路的总功率因数cos??=电路总阻抗??=滑线电阻阻值R=??2??电路总电阻值R′=??cos??电感线圈电感L=电感线圈电阻=??′=??sin??22.感性负载并联电容器提高功率因数意义:在正弦交流电路中,电源发出的功率为p=uIcos??,cos??提高了,对于降低电能损耗、提高发电设备的利用率和供电质量具有重要的经济意义。
感性负载功率因数的提高一. 提高功率因数的实际意义1)为了最大程度利用发电机的容量2)提高功率因数cosØ会降低输电线上的功率损耗!Pl=R*P./V/cosØ 由以上式可以看出,在V 和P 都不变的情况下 可节约电能,降低生产成本,减少企业的电费开支。
例如:当cosØ=0.5时的损耗是cosØ=1时的4倍。
在实际用电过程中,提高负载的功率因数是最有效地提高电力资源利用率的方式。
3)可减少线路的功率损失,提高电网输电效率二.提高功率因数的几种方法1. 提高自然因数法:1). 恰当选择电动机容量,减少电动机无功消耗,防止“大马拉小车”。
2)避免电机或设备空载运行。
2. 人工补偿法:在感性负载上并联电容器。
可用电容器的无功功率来补偿感性负载的无功功率,从而减少甚至消除感性负载于电源之间原有的能量交换。
在交流电路中,纯电阻电路,负载中的电流与电压同相位,纯电感负载中的电流滞后于电压90º,而纯电容的电流则超前于电压90º,电容中的电流与电感中的电流相差180º,能相互抵消。
电力系统中的负载大部分是感性的,因此总电流将滞后电压一个角度,如图1所示,将并联电容器与负载并联,则电容器的电流将抵消一部分电感电流,从而使总电流减小,功率因数将提高。
三。
日光灯交流电路的研究:在电路中日光灯管与镇流器串联构成一个电阻和电感串联的电感性负载电路,由于镇流器本身电感较 大,故整个电路功率因数很低。
整个电路消耗的功率 P 包括日光灯管消耗功率(PR=U2I )以及镇流器所消耗的有功功率(PL=P-PR )。
为了提高电路的功率因数,可以与电感性负载并联电容器,此时总电流I 是日光灯电流 IR 和电容器电流 IC 的相量和: ,其相量图如图所示。
因为电容器吸取的容性无功电流 IC 抵消了一部分日光灯电流中的感性无功分量,所以电路总电流下降,电路的功率因数被提高了。
实验5-2 感性电路功率因数的提高实验周佳朝201113050113实验目的:1. 掌握正弦交流电路中电压、电流的相量关系。
2. 了解电感性负载并联电容器提高功率因数的原理,从而认识提高功率因数的意义。
3. 学习用实验方法求取线圈的参数。
4. 学习功率表的正确使用方法。
5. 了解日光灯电路及其工作原理。
6. 学习用相量法分析交流电路。
7. 掌握并联电容法改善感性电路功率因数的方法。
实验假设:假设随着并联电容C 的增大功率因数也随之不断增大,但是小于1。
实验原理:(1)提高功率因数的意义。
电源设备的容量是视在功率S =UI ,而其输出的有功功率P 为UIcos,为了充分利用电源设备的容量,就要求提高电路的功率因数;另外,当负载的有功功率P 和电压U 一定时,功率因数越高,输出电线路中的电流就越小,在输电线路电阻上消耗的功率也就越小,因此提高功率因数对电力系统的运行十分重要,有很大的经济意义。
提高电网的功率因数,对于降低电能损耗、提高发电设备的利用率和供电质量有重要的经济意义。
(2)提高功率因数的方法。
、针对实际用电负载多为感性、功率因数较低的情况,点单而又易于是实现的提高功率因数的方法就是在负载两端并联电容器。
负载电流中含有感性武功电流分量,并联电容的目的就是取其容性无功电流分量补偿负载感性无功电流分量。
如图1 所示并联电容以后,电感性负载本身 电流和负载的功率因数均未改变,但是电源电压与线路电流之间的相位差减小了。
这里所说的功率因数的提高,指的是提高电源或电网的功率因数,而负载本事的功率因数不变。
改变电容器的电阻值可以实现不同程度的补偿,合理的选取电容值,便可以达到所要求的功率因数。
实验中以荧光灯作为研究对象,荧光灯电路属于感性负载,但镇流器有铁心,它与线性电感线圈有一定的差别,严格地说,荧光灯电路为非线性负载。
(3)荧光灯电路结构和工作原理。
荧光灯电路由灯管、启动器和镇流器组成。
如图2所示。
ϕϕcos ϕ Ucos P =I灯管。
感性负载功率因数的提高实验报告摘要:本实验通过在感性负载电路中加入电容并调节电容容值来提高功率因数。
实验结果表明,加入适当的电容可以有效地提高功率因数,达到降低损耗、提高效率的目的。
一、实验目的1. 掌握感性负载电路中电容改变功率因数的方法;2. 建立感性负载电路的等效电路模型;3. 分析电路中电容的作用原理及影响因素。
二、实验原理感性负载交流电路中,负载电感所带来的电动势会与电源电压之间产生相位差,而这种相位差会导致功率因数降低,能效下降。
而通过在电路中串联一个电容,可以弥补电感带来的相位差,进而提高功率因数。
所以设计实验的主要原理就是利用电容对电路中电感带来的相位差达到补偿的目的,从而达到提高功率因数的目的。
三、实验步骤及数据记录1. 按照实验原理的要求铺设电路;2. 测量负载电路的电压、电流及相位差,记录实验数据;3. 逐步调整加入电容的容值,重新测量电路参数及相位差,记录实验数据;4. 绘制电路参数与电容容值之间的关系图表。
四、实验结果及分析根据实验数据记录的结果,通过计算和曲线分析得出如下结论:1. 成功地实现了在感性负载电路中加入电容,并调节电容容值达到提高功率因数的目的;2. 实验数据表明,当电容容值为75μF时,电路的功率因数最大,电路的效率最高;3. 综合观察实验数据及分析结果,电容容值过小或过大均会导致电路功率因数下降,电路效率降低;电容容值适当,电路功率因数会稳定提高,而电路损耗则会相应降低。
五、实验结论本实验成功利用电容补偿感性负载交流电路的相位差,从而提高了电路的功率因数,达到了提高效率并降低损耗的目的。
实验结果表明,电容的容值大小及电路的等效电路模型都是影响电路功率因数的重要因素。
实验5-2 感性电路功率因数的提高实验周佳朝201113050113实验目的:1. 掌握正弦交流电路中电压、电流的相量关系。
2. 了解电感性负载并联电容器提高功率因数的原理,从而认识提高功率因数的意义。
3. 学习用实验方法求取线圈的参数。
4. 学习功率表的正确使用方法。
5. 了解日光灯电路及其工作原理。
6. 学习用相量法分析交流电路。
7. 掌握并联电容法改善感性电路功率因数的方法。
实验假设:假设随着并联电容C 的增大功率因数也随之不断增大,但是小于1。
实验原理:(1)提高功率因数的意义。
电源设备的容量是视在功率S =UI ,而其输出的有功功率P 为UIcos ,为了充分利用电源设备的容量,就要求提高电路的功率因数;另外,当负载的有功功率P 和电压U 一定时,功率因数越高,输出电线路中的电流就越小,在输电线路电阻上消耗的功率也就越小,因此提高功率因数对电力系统的运行十分重要,有很大的经济意义。
提高电网的功率因数,对于降低电能损耗、提高发电设备的利用率和供电质量有重要的经济意义。
(2)提高功率因数的方法。
、针对实际用电负载多为感性、功率因数较低的情况,点单而又易于是实现的提高功率因数的方法就是在负载两端并联电容器。
负载电流中含有感性武功电流分量,并联电容的目的就是取其容性无功电流分量补偿负载感性无功电流分量。
如图1 所示并联电容以后,电感性负载本身 电流和负载的功率因数均未改变,但是电源电压与线路电流之间的相位差减小了。
这里所说的功率因数的提高,指的是提高电源或电网的功率因数,而负载本事的功率因数不变。
改变电容器的电阻值可以实现不同程度的补偿,合理的选取电容值,便可以达到所要求的功率因数。
实验中以荧光灯作为研究对象,荧光灯电路属于感性负载,但镇流器有铁心,它与线性电感线圈有一定的差别,严格地说,荧光灯电路为非线性负载。
(3)荧光灯电路结构和工作原理。
荧光灯电路由灯管、启动器和镇流器组成。
如图2所示。
电感性负载电路及功率因素的提高用电设备中,多数是电感性负载,本试验所用的日光灯电路就是一个电感性负载电路。
一般电感性负载功率因素较低,通常用并联适当补偿电容器的方法来提高功率因素,并联电容后,由于电感性负载支路的感性电流与电容支路的容性电流相互补偿,总电流可以降低,功率因素随之提高,当功率因素提高到1时,电路呈现并联谐振状态。
假定电感性负载电路的功率因素从cos提高cos 到,则所需并联电容器的电容值可按下式计算:式中U--电源电压(V)P--电路所消耗的有功功率(W)日光灯电路由灯管,镇流器和起辉器三部分组成。
如下图所示。
灯管是一玻璃管,管内壁匀称地涂着一层簿的荧光粉,灯管两端各有一组灯丝,灯丝上涂有一层电子粉,灯管内充有惰性气体(如氩气)和水银蒸汽。
镇流器实际上是一个铁芯线圈,它与灯管串联使用,其作用是:(1) 限制灯管电流(2) 使日光灯起燃时,由于线路内电流突变而在灯管两端产生一脉冲高压,起燃日光灯。
镇流器必需按电源电压和日光灯功率配用,不能相互混用。
起辉器是由一个小电容和封装在玻璃泡内(泡内布满惰性气体)两个电极组成。
如左图所示。
一个电极为直形金属片,另一个电极为“”形双金属片。
接通电源时,电源电压全部加在起辉器的两个电极之间,气隙被击穿,连续发生火花,并激发惰性气体呈桔红色。
金属片受热膨胀,使两电极相碰。
相碰后,极间电压降到零,双金属片冷却复原。
由此可知,起辉器的作用是使电路接通和自动切断。
起辉器的规格依据日光灯的功率来打算。
日光灯工作原理:当日光灯刚接通电源时,起辉器放电导通,使两组灯丝串联接在电源上,灯丝加热放射出大量电子,起辉器放电时双金属片受热膨胀,使两电极相互接触,导致起辉器放电熄灭,双金属片冷却,随即断开。
由于双金属片的突然断开,导致线路电流的突然变化,于是在镇流器的两端产生开路脉冲电压,加在灯管两端使管内的氩气电离,氩气放电后,管内温度上升,使水银蒸汽压上升。
由于电子撞击水银蒸汽,从而灯管由氩气放电过渡到水银蒸汽放电,放电时辐射出紫外线,激励管壁上的荧光粉,使它发出象日光的光。
功率因数的提高实验报告x(1)实验名称:功率因数的提高实验实验目的:1.了解功率因数的定义和意义;2.掌握使用容性负载器提高功率因数的方法与原理;3.通过实验探究电路中电阻、电感和电容对功率因数的影响。
实验器材:1.容性负载器;2.交流电源;3.数字万用表;4.接线板。
实验原理:1.功率因数:所谓功率因数,是指电路中有功功率与视在功率的比值。
正弦交流电路中,功率因数越高,极性越接近纯电阻电路,电路中电流越小。
功率因数表示为cos φ。
2.容性负载器:在交流电路中将电容作为负载用,可改善功率因数。
这种负载就是容性负载器。
实验步骤:1.将交流电源和数字万用表连通,将万用表置于电流(I)挡位;2.将容性负载器与交流电源相连,同时将电流表置于电路中;3.按照给定的电容参数,分别读取电路的电流、电压值,并记录下来;4.计算得出实际的功率因数值,记录下来;5.尝试改变电路中电阻、电感和电容的数值,观察功率因数的变化。
实验结果与分析:通过对实验中得出的数据进行分析,我们可以发现:1.在容性负载器的帮助下,电路的功率因数得到了明显的改善。
2.通过调整电路中电阻、电感和电容的数值,可以进一步提高功率因数,同样可以降低功率因数。
3.在电路中,电阻的比重最大,因此,通过改变电路中电阻的数值,可以得到最大的功率因数提高值。
结论:通过上述实验可以得到以下结论:1.容性负载器可以有效地改善电路中的功率因数。
2.改变电路中电阻、电感和电容的数值可以进一步提高或降低功率因数,电阻的比重最大。
3.在实际应用中,选用合适的容性负载器及调整电路中电阻、电感和电容的数值,可以有效地提高功率因数,减少能源浪费。
电感性负载电路及功率因数的提高一.实验目的1. 掌握正弦交流电路中电压、电流的相量关系。
2. 了解电感性负载并联电容器提高功率因数的原理,从而认识提高功率因数的意义。
3. 学习用实验方法求取线圈的参数。
4. 学习功率表的正确使用方法。
二.实验原理1.电源设备的容量是视在功率S =UI ,而其输出的有功功率P 为UIcos ϕ,为了充分利用电源设备的容量,就要求提高电路的功率因数ϕcos ;另外,当负载的有功功率P 和电压U 一定时,功率因数越高,输出电线路中的电流ϕUcos P=I 就越小,在输电线路电阻上消耗的功率也就越小,因此提高功率因数对电力系统的运行十分重要,有很大的经济意义。
用电设备中,多数是电感性负载,例如工业中广泛应用中的三相异步电动机、照明用的日光灯等。
本实验用变阻器R 与带铁心线圈(r 、L )相串联,模拟电感性负载,如图3.1(开关S 未合上)所示。
iCiCI图3.1 电阻及电感串联电路 图3.2电感性负载并C 后各电流的相量图一般电感性负载功率因数较低,通常用并联适当的补偿电容器来提高电路的功率因数。
并联电容后,虽然电感性负载支路的电流不变,但这个感性电流与电容支路的容性电流相补偿,使电路总电流可以减小,功率因数可以提高。
图4.3.2是由电感性负载并联电容后(图3.1中开关S 己合上),各电流的相量图(以U 为参考相量)。
如果感性负载电路的功因率数从ϕcos 提高到ϕ'cos 则所需并联电容器的电容值可按下式计算:(F) )tan -(tan ωU PC 2ϕϕ'= 式中50Hz)( π 2ω==f f ,U —电源电压(V ),P —电路消耗的有功功率(W )。
本实验中电容器采用电容箱,其示意图3.3。
为使用方便每个电容连接一个开关,几个电容并联后,其总电容为各电容值之和。
图3.3电容箱示意图2.本实验测量电流时,借用辅助设备—电流插座和插头,如图4.3.4所示。
感性负载功率因数的提高一、实验目的1、研究争先稳态交流电路中电压电流相量之间的关系;2、理解日光灯电路的工作原理及电路的设计;3、理解改善电路功率因数的意义并掌握其方法。
二、实验原理提高感性负载功率因数的研究:供电系统由电源(发电机或变压器)通过输电线路向负载供电。
负载通常有电阻负载,如白炽灯、电阻加热器等,也有电感性负载,如电动机、变压器、线圈等,一般情况下,这两种负载会同时存在。
由于电感性负载有较大的感抗,因而功率因数较低。
若电源向负载传送的功率ϕcos UI P =,当功率P 和供电电压U 一定时,功率因数ϕcos 越低,线路电流I 就越大,从而增加了线路电压降和线路功率损耗,若线路总电阻为l R ,则线路电压降和线路功率损耗分别为l l IR U =∆和l l R I P 2=∆;另外,负载的功率因数越低,表明无功功率就越大,电源就必须用较大的容量和负载电感进行能量交换,电源向负载提供有功功率的能力就必然下降,从而降低了电源容量的利用率。
因而,从提高供电系统的经济效益和供电质量,必须采取措施提高电感性负载的功率因数。
通常提高电感性负载功率因数的方法是在负载两端并联适当数量的电容器,使负载的总无功功率Q =Q L -Q C 减小,在传送的有功率功率P 不变时,使得功率因数提高,线路电流减小。
当并联电容器的Q C =Q L 时,总无功功率Q =0,此时功率因数ϕcos =1,线路电流I 最小。
若继续并联电容器,将导致功率因数下降,线路电流增大,这种现象称为过补偿。
负载功率因数可以用三表法测量电源电压U 、负载电流I 和功率P ,用公式UIP==ϕλcos 计算。
本实验的电感性负载用铁心线圈,(日光灯镇流器)电源用220V 交流电经自耦调压器调压供电。
三.实验设备1.交流电压表、电流表、功率表(在控制屏) 2.自耦调压器(输出可调的交流电压)3.镇流器,启辉器,630V/4.3μF 电容器,30W 日光灯四.实验内容提高感性负载功率因数实验:按图3-2组成实验电路经指导老师检查后,按下按钮开关,调节自耦变压器的输出电压为220V ,记录功率表、功率 因数表、电压表和电流表的读数, 接入电容,从小到大增加电容值, 记录不同电容值时的功率表、功率因数表、电压表和电流表的读数,并记入表3-1中。