高一数学圆的方程经典例题

  • 格式:doc
  • 大小:1.45 MB
  • 文档页数:25

下载文档原格式

  / 25
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型例题一

例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?

分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答.

解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r .

设圆心1O 到直线01143=-+y x 的距离为d ,则

324

311

34332

2

<=+-⨯+⨯=

d .

如图,在圆心1O 同侧,及直线01143=-+y x 平行且距离为1的直线1

l 及圆有两个交点,这两个交点符合题意.

又123=-=-d r .

∴及直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意.

∴符合题意的点共有3个.

解法二:符合题意的点是平行于直线01143=-+y x ,且及之距离为1的直线和圆的交点.

设所求直线为043=++m y x ,则14

3112

2

=++=

m d ,

∴511±=+m ,即6-=m ,或16-=m ,也即

06431=-+y x l :,或016432=-+y x l :.

设圆9)3()3(221=-+-y x O :

的圆心到直线1l 、2l 的距离为1d 、2d ,则 34

36

34332

2

1=+-⨯+⨯=

d ,14

316

34332

2

2=+-⨯+⨯=

d .

∴1l 及1O 相切,及圆1O 有一个公共点;2l 及圆1O 相交,及圆1O 有两个公共点.即符合题意的点共3个.

说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则

324

311

34332

2

<=+-⨯+⨯=

d .

∴圆1O 到01143=-+y x 距离为1的点有两个.

显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线及圆有两个交点,而不能说明圆上有两点到此直线的距离为1.

到一条直线的距离等于定值的点,在及此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线及圆的公共点.求直线及圆的公共点个数,一般根据圆及直线的位置关系来判断,即根据圆心及直线的距离和半径的大小比较来判断.

典型例题三

例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 及圆的关系.

分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而

要判断点P 及圆的位置关系,只须看点P 及圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.

解法一:(待定系数法)

设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.

∴⎪⎩⎪⎨⎧=+-=+-2

22

24)3(16)1(r

a r a

解之得:1-=a ,202=r .

所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)

因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13

12

4-=--=

AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .

又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为

r PC d >=++==254)12(22.

∴点P 在圆外.

说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和

半径这两个关键的量,然后根据圆心及定点之间的距离和半径的大小关系来判定点及圆的位置关系,若将点换成直线又该如何来判定直线及圆的位置关系呢?

典型例题四

例4 圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).

(A )1个 (B )2个 (C )3个 (D )4个

分析:把034222=-+++y x y x 化为()()82122=+++y x ,圆心为()21--,

,半径为22=r ,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于2,所以选C .

典型例题五

例5 过点()43--,

P 作直线l ,当斜率为何值时,直线l 及圆()()4212

2

=++-y x C :

有公共点,如图所示. 分析:观察动画演示,分析思路. 解:设直线l 的方程为

()34+=+x k y

043=-+-k y kx

根据r d ≤有

214

322

≤+-++k

k k

整理得

0432=-k k

解得

3

40≤

≤k .

典型例题六

例6 已知圆422=+y x O :,求过点()42,P 及圆O 相切的切线. 解:∵点()42,

P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =

21422

=++-k k

解得 4

3=

k 所以 ()424

3+-=x y 即 01043=+-y x

因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .

说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.

本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标