第三章总体均数的估计
- 格式:pptx
- 大小:240.77 KB
- 文档页数:29
根本统计方法第一章 概论1. 总体〔Population 〕:根据研究目确实定的同质对象的全体〔集合〕;样本〔Sample 〕:从总体中随机抽取的局部具有代表性的研究对象。
2. 参数〔Parameter 〕:反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量〔Statistic 〕:反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。
3. 统计资料分类:定量〔计量〕资料、定性〔计数〕资料、等级资料。
第二章 计量资料统计描述1. 集中趋势:均数〔算术、几何〕、中位数、众数2. 离散趋势:极差、四分位间距〔QR =P 75-P 25〕、标准差〔或方差〕、变异系数〔CV 〕3. 正态分布特征:①X 轴上方关于X =μ对称的钟形曲线;②X =μ时,f(X)取得最大值;③有两个参数,位置参数μ和形态参数σ;④曲线下面积为1,区间μ±σ的面积为68.27%,区间μ±1.96σ的面积为95.00%,区间μ±2.58σ的面积为99.00%。
4. 医学参考值范围的制定方法:正态近似法:/2X u S α±;百分位数法:P 2.5-P 97.5。
第三章 总体均数估计和假设检验1. 抽样误差〔Sampling Error 〕:由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。
抽样误差不可防止,产生的根本原因是生物个体的变异性。
2. 均数的标准误〔Standard error of Mean, SEM 〕:样本均数的标准差,计算公式:/X σσ=3. 降低抽样误差的途径有:①通过增加样本含量n ;②通过设计减少S 。
4. t 分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度ν,ν越小,t 值越分散,t 分布的峰部越矮而尾部翘得越高;③当ν逼近∞,X S 逼近X σ, t 分布逼近u 分布,故标准正态分布是t 分布的特例。
第一章 绪论总体:根据研究目的确定的同质的所有观察单位某种变量值的集合。
总体包括有限总体和无限总体。
样本:从总体中随机抽取的部分观察单位,其实测值的集合。
获取样本仅仅是手段,通过样本信息来推断总体特性才是研究的目的。
资料的类型计量资料、计数资料和等级资料。
误差包括随机误差、系统误差和非系统误差。
抽样误差:由抽样造成的样本统计量和总体参数之间的差异或者是各个样本统计量之间的差异称为抽样误差。
概率:是描述随机事件发生可能性大小的一个度量。
取值范围0≤P ≤1。
小概率事件:表示在一次实验或观察中该事件发生的可能性很小,可以认为很可能不发生。
P ≤0.05或P ≤0.01。
医学统计学的步骤:设计、收集资料、整理资料和分析资料。
统计分析包括:统计描述和统计推断。
统计推断包括:参数估计和假设检验。
第二章计量资料的统计描述频数表和频数分布图的用途:(1)描述频数分布的类型,以便选择相应的统计指标和分析方法。
对称分布:集中位置在中间,左右两侧頻数基本对称。
偏态分布:正、负偏态分布正偏态集中位置偏向值小一侧,负偏态反之。
(2)描述頻数分布的特征;(3)便于发现资料中的可疑值;(4)便于进一步计算统计指标和进行统计分析。
计量资料集中趋势包括算术均数、几何均数和中位数。
算术均数:直接法(样本小):n x x ∑=;頻数表法(样本大)x =nfx ∑ 几何均数:直接法:)lg (lg 1n x G ∑-=;頻数表法)lg (lg )lg (lg 11n x f fx f G ∑∑∑--==(常用于等比资料或对数正态分布资料)中位数:直接法:n 为奇数2/)1(+=n x M ,n 为偶数2/)(12/2/++=n n x x M ;頻数表法:∑-⨯+=)%50(L M M f n f iL M 。
中位数的应用注意事项:可用于各种分布资料,不受极端值的影响,主要用于(1)偏态分布资料(2)端点无确切值的资料(3)分布不明确的资料。
基本统计方法第一章概论1. 总体(Population):根据研究目的确定的同质对象的全体(集合);样本(Sample):从总体中随机抽取的部分具有代表性的研究对象。
2. 参数(Parameter):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。
3. 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。
第二章计量资料统计描述1. 集中趋势:均数(算术、几何)、中位数、众数2. 离散趋势:极差、四分位间距(QR=P75-P25)、标准差(或方差)、变异系数(CV)3. 正态分布特征:①X轴上方关于X=μ对称的钟形曲线;②X=μ时,f(X)取得最大值;③有两个参数,位置参数μ和形态参数σ;④曲线下面积为1,区间μ±σ的面积为68.27%,区间μ±1.96σ的面积为95.00%,区间μ±2.58σ的面积为99.00%。
4. 医学参考值范围的制定方法:正态近似法:;百分位数法:P2.5-P97.5。
第三章总体均数估计和假设检验1. 抽样误差(Sampling Error):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。
抽样误差不可避免,产生的根本原因是生物个体的变异性。
2. 均数的标准误(Standard error of Mean, SEM):样本均数的标准差,计算公式:。
反映样本均数间的离散程度,说明抽样误差的大小。
3. 降低抽样误差的途径有:①通过增加样本含量n;②通过设计减少S。
4. t分布特征:①单峰分布,以0为中心,左右对称;②形态取决于自由度ν,ν越小,t值越分散,t分布的峰部越矮而尾部翘得越高;③当ν逼近∞,逼近, t分布逼近u分布,故标准正态分布是t分布的特例。
5. 置信区间(Confidence Interval, CI):按预先给定的概率(1-α)确定的包含总体参数的一个范围,计算公式:或。
统计学与研究方法试题答案第一章绪论1单选题1、总体是指()A.全部研究对象B.全部研究对象中抽取的一份C.全部样本D.全部研究指标E.全部同质研究对象的某个变量的值2、统计学中所说的样本是指()A.随意抽取的总体中任意部分B.有意识的选择总体中的典型部分C.依照研究者要求选取总体中有意义的一部分D.依照随机原则抽取总体中有代表性的一部分E.有目的的选择总体中的典型部分3、下列资料属等级资料的是()A.白细胞计数B.住院天数C.门急诊就诊人数D.病人的病情分类E.ABO血型分类4、为了估计某年华北地区家庭医疗费用的平均支出,从华北地区的5个城市随机抽样调查了1500户家庭,他们的平均年医疗费用支出是997元,标准差是391元。
该研究中研究者感兴趣的总体是()A.华北地区1500户家庭B.华北地区的5个城市C.华北地区1500户家庭的年医疗费用D.华北地区所有家庭的年医疗费用E.全国所有家庭的年医疗费用5、欲了解研究人群中原发性高血压病(EH)的患病情况,某研究者调查了1043人,获得了文化程度、高血压家族史、月人均收入、吸烟、饮酒、打鼾、脉压差、心率等指标信息。
则构成计数资料的指标有()A.文化程度、高血压家族史吸烟、饮酒、打鼾B.月人均收入、脉压差、心率C.文化程度、高血压家族史、、打鼾D.吸烟、饮酒E.高血压家族史、饮酒、打鼾第二章计量资料统计描述及计数资料统计描述1、描述一组偏态分布资料的变异度,以()指标较好。
A.全距B.标准差C.变异系数D.四分位数间距E.方差2、用均数和标准差可以全面描述()资料的特征。
A.正偏态分布B.负偏态分布C.正态分布D.对称分布E.对数正态分布3、各观察值均加(或减)同一数后()。
A.均数不变B.几何均数不变C.中位数不变D.标准差不变E.变异系数不变4、比较某地1~2岁和5~5.5岁儿童身高的变异程度。
宜用()。
A.极差B.四分位数间距C.方差D.变异系数E.标准差5、偏态分布宜用()描述其分布的集中趋势。