2017-2018学年度八年级上数学期中考试试题
- 格式:docx
- 大小:158.13 KB
- 文档页数:18
2017-2018学年度第一学期教学质量自查期中考试八年级数学一、选择题(每小题2分,共20分)1、过一个多边形的顶点可作5条对角线,则这个多边形是( ) A 、六边形 B 、七边形C 、八边形D 、九边形2、一个三角形的两边长分别是3和7,则第三边长可能是( ) A 、2 B 、3 C 、9 D 、103、一个多边形的内角和是720°,这个多边形的边数是( ) A 、4 B 、5C 、6D 、74、如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( ) A 、SSS B 、SAS C 、AAS D 、ASA5、下列计算正确的是( ). A 、()236aa = B 、22a a a ∙= C 、326a a a += D 、()3339a a =6、已知3=ma ,4=na ,则nm a+的值为( )A 、7B 、12C 、43 D 、34 7、如图,在△ABC 中,∠B=40°,∠C=30°,延长BA 到D ,则∠CAB 的度数为( ) A 、110° B 、80° C 、70° D 、60°8、如图,△ABC ≌△DEF ,∠A=50°,∠B=100°,则∠F 的度数是( ) A 、30° B 、50° C 、60° D 、100° 9、如图,AC=BD ,AB=CD ,图中全等的三角形的对数是( ) A 、2 B 、3 C 、4、 D 、510、如图,已知△ABC 中,75A ∠=︒,则12∠+∠=( ).A 、335°B 、255°C 、155°D 、150°B9题图A8题图D7题图4题图10题图二、填空题(每小题3分,共15分)11、因式分解=+-121232a a ; 12、23()4a a -∙= ;13、已知一个多边形的内角和等于1620°,则这个多边形的边数是 ; 14、如图4,AC 、BD 交于O ,且AB=CD ,请添加一个条件: ,使得△ABO ≌△CDO ;15、已知等腰三角形的一个内角为50°,那么该等腰三角形的另外两个角的度数分别为 .三、解答题(每小题5分,共25分)16、先化简,再求值:()()122142--+x x x ,其中21-=x .17、如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E ,∠A=35°,∠D=42°,求∠ACD 的度数.18、 如图,CA=CD ,∠BCE=∠ACD ,BC=EC ,求证:∠A=∠D .B14题图17题图DCBA 18题图CB19、如图,AD ,AE 分别是△ABC 的中线和高,若AE=5,BC=8,求△ACD 的面积.20、如图,点B 、E 、C 、F 在同一直线上,∠A=∠D ,∠B=∠DEF ,AB=DE ,求证:BE=CF.四、解答题(每小题8分,共40分)21、如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,AD=5cm ,DE=3cm ,求BE 的长.22、如图,已知四边形ABCD 中,∠D=∠B=90°. (1)填空:∠DAB+∠BCD= °;(2)若AE 平分∠DAB ,CE 平分∠BCD ,求证:AE ∥CF.AB19题图B20题图21题图CBAB 22题图23、如图,△ACB 和△ECD 都是等边三角形,点A 、D 、E 在同一直线上,连接BE. (1)求证:△ACD ≌△BCE ; (2)若CE=16,BE=21,求AE 的长.24、如图,AD 为△ABC 的中线,BE 为△ABD 的中线. (1)∠ABE=15°,∠BAD=26°,求∠BED 的度数;(2)若△ABC 的面积为40,BD=5,则△BDE 中BD 边上的高为多少.25、从边长为a 的正方形中剪掉一个边长为b 的正方形(如图11),然后将剩余部分拼成一个长方形(如图12).图11 图12 (1)上述操作能验证的等式是 ;(请选择正确的一个)A 、()2222b a b ab a -=+- B 、()()b a b a b a -+=-22 C 、()b a a ab a +=+2(2)应用你从(1)选出的等式,完成下列各题:①已知12422=-y x ,42=+y x ,求y x 2-的值.②计算:⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2222220111911...411311211.b23题图24题图。
2017-2018学年上学期初中八年级期中考试数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分,不需要写出解答过程,请把答案直接写在答题卡...相应位置上)1.已知△ABC中,AB=AC,∠B=70°,则∠C=.2.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.3.已知直角三角形斜边长为10cm,则它的斜边上的中线的长度等于.4.若直角三角形的两条直角边长分别为6和8,则斜边长为.5.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=40°,则∠C的度数为.Array6.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识在作业本上画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是.7.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=100°,那么∠BCD 的度数等于.8.如图,已知AB ∥CF ,E 为DF 的中点,若AB =8,CF =5,则BD =.9.如图,在Rt △ABC 中,∠C =90°,AB =8,AD 平分∠BAC ,交BC 边于点D ,若CD =2,则△ABD 的面积为.10.如图,△ABC 为等边三角形,BD ⊥AB ,BD =AB ,则∠DCB = °.11. 等腰三角形腰长10cm ,底边16cm ,则腰上的高是.12. 如图,在钝角△ABC 中,已知∠A 为钝角,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,若BD 2+CE 2=DE 2,则∠A 的度数为°.二、选择题(本大题共有6小题,每小题3分,共计18分,在每小题所有选项中,恰有一项是符合题目要求的,请将正确选项的字母写在答题卡...相应位置上) 13.在以下四个标志中,是轴对称图形的是( )DA .B .C .D .14.如图,在下列各组条件中,不能说明△ABC ≌△DEF 的是( )A .AB =DE ,∠B =∠E , ∠C =∠F B .AC =DF , BC =EF , ∠A =∠D C .AB =DE ,∠A =∠D , ∠B =∠E D .AB =DE , BC =EF , AC =DF 15. 如果等腰三角形两边长是9和4,那么它的周长是( ) A .13 B .17 C .22 D .17或2216.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别27和54,则正方形③的边长为( )A .81B .7C .9 D.1217.如图,在△ABC 中,AD ⊥BC ,垂足为D ,若AD =4,∠B =45°,△ABC 的面积为14,则AC 边的长是( )A .5B .5.5C .6D .6.518.已知:如图在△ABC ,△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C 、D 、E 三点在同一条直线上,连接BD 、BE .以下四个结论: ①BD =CE ; ②BD ⊥CE ; ③∠ACE +∠DBC =45°; ④BE 2=2(AD 2+AB 2), 其中结论正确的个数是( )A .1B .2C .3D .4三、解答题(本大题共9题,共计78分,请在答题卡...指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题7分)如图,点B 、E 、C 、F 在同一条直线上,∠A =∠D ,∠B =∠DEF ,BE =CF . 求证:AC =DF .20.(本题8分)已知,如图,,,垂足分别为、、,且.求证:EC AC ⊥AB CD ⊥ED CD ⊥C BD EC AC =AB DE BD =+21.(本题8分)已知:如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.22.(本题8分)如图所示的一块地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块地的面积.23. (本题8分)如图,已知△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于点D,交AB于点E,若BD=20cm.求AC的长.24. (本题8分)如图,已知△ABC的三个顶点在格点上.(1)画出△A1B1C1,使它与△ABC关于直线a对称;(2)求出△A1B1C1的面积.(3)在直线a上画出点P,使PA+PC最小.25. (本题9分)已知,如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.(1)作出边AC的垂直平分线DE;(2)当AE=BC时,求∠A的度数.26. (本题10分)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.(1)说明DC=DG;(2)若DG=13,EC=5,求DE的长.27.(本题12分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A-C-B-A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.参考答案一、填空题(每题2分)1.70°; 2.100°; 3.5cm ; 4.10 ; 5.50°; 6.ASA ;7.100°; 8.3 ; 9. 8 ; 10.15°; 11. 9.6 ; 12.135;二、选择:(每题3分)13.A 14.B 15.C 16.C 17.A 18.C三、解答题19.证明:∵BE=CF, ∴BE+EC=CF+EC,即:BC=EF.(2分)在△ABC 与△DEF 中,∠A=∠D,∠B=∠DEF,BC=EF, ∴△ABC ≌△DEF(AAS),(6分) ∴AC=DF.(7分)20.证明:由AB ⊥CD,ED ⊥CD 可得∠ABC=∠D=90°,(1分)∴∠BCA+∠A=90°①; 又∵EC ⊥AC, ∴∠BCA+∠ECD=90°②;由①②可得,∠A=∠ECD.(3分)在△ABC 与△CDE 中,∠ABC=∠D ,∠A=∠ECD ,AC=EC ,∴△ABC ≌△CDE (AAS )(6分)∴AB=DC ,BC=ED.(7分)又∵DC=CB+BD ,∴AB= ED+BD.(8分)21.证明:(方法一)∵AB=AC ,∴∠B=∠C ,(1分)又∵DE ⊥AB ,DF ⊥AC ,∴∠DEB=∠DFC=90°.(3分)在△BDE 与△CDF 中,∠B=∠C ,∠DEB=∠DFC ,BD=CD ,∴△BDE ≌△CDF (AAS )(7分)∴DE=DF.(8分)(方法二)连接AD. (1分)∵AB=AC ,BD=CD ,∴∠BAD=∠CAD (三线合一).(4分)又∵DE ⊥AB ,DF ⊥AC ,(6分)∴DE=DF.(8分) 22.解:连接AC (1分)∵∠ADC=90°,AD=4,CD=3,∴AC=5.(3分)由AB=13,BC=12可得AC 2+BC 2=AB 2,∴△ABC 是直角三角形,(5分)∴S △ABC =30,(6分)S △ACD =6, (7分)30-6=24.所以这块土地的面积为24m 2.(8分)23. 解:连接AD (1分) ∵DE 是AB 的垂直平分线, ∴BD=AD=20cm ,(3分) ∠B=∠BAD=15°,∴∠ADC=30°(5分)又由∠C=90°可知,AC=AD (7分),∴AC=10cm (8分) 24.解:(1)如图,分别作点A 、B 、C 关于直线a 的对称点A 1、B 1、C 1;顺次连接A 1、B 1、C 1所得的三角形即为所求.(3分)(2)S △A 1B 1C 1=.(6分) (3)如图,连接C 1A (或A 1C )与直线a 交于点P.(8分)25. 解:(1)如图,分别以点A 、C 为圆心,大于AC 长为半径画弧,两条弧相交于两点;作过这两点的直线,与AC 、AB 分别相交于点D 、E ,则直线DE 即为所求.(2分)(2)连接CE (3分)由(1)可得AE=CE ,(5分)∵AE=BC ,∴CE=BC ,(6分)∠CEB=∠B=2∠A.又∵∠C=120°,∴∠A+∠B=60°,(8分)3∠A=60°,∠A=20°.(9分)12321226. 解:(1)∵AD ∥BC ,DE ⊥BC ,∴∠ADE=90°,∠DAF=∠ACB ①,即△ADF 为直角三角形;(2分)又∵G 为AF 的中点,∴DG=AG ,(4分)∠DGF=2∠DAF ②.由①②可得,∠DGF=2∠ACB.又∵∠ACD=2∠ACB ,∴∠DGF=∠ACD ,(6分)∴DG=DC.(7分)(2)由(1)可知DG=DC ,∴在Rt △DEC 中,=144,(9分)∴DE=12.(10分)27.解:(1)点P 在AC 上,∵∠ACB=90°,BC=6,AB=10,∴AC=8,(1分)AP=4t ,CP=8-4t ,(2分)又∵PA=PB ,∴,(3分)t=.(4分)(2)点P 在∠BAC 的角平分线上,作PH ⊥AB ,∴PC=PH=4t-8,PB=14-4t.(5分)可证△ACP ≌△AHP. ∴AH=BC=8,∴BH=2.(6分)在Rt △BPH 中,,即,(7分)t=.(8分)(3)当①;(9分)222DE DC EC =-()()2224684t t =+-2516222BH PH BP +=()()222248144t t +-=-8312t =②;(10分) ③;(11分) ④(12分)5310t =194t =5t=。
2017-2018学年新人教版八年级上期中数学试卷及答案2017-2018学年新人教版八年级(上)期中数学试卷时间:120分钟分值:100分一、选择题:本大题共10小题,每小题3分,共30分。
将答案填在表格内。
1.在下列各电视台的台标图案中,是轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.3cm,3cm,6cmC.5cm,8cm,2cmD.4cm,5cm,6cm3.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm4.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°5.如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()A.30B.35C.40°D.50°6.一个三角形三个内角之比为1:3:5,则最小的角的度数为()A.20°B.30°C.40°D.60°7.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形8.正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.109.AC=A′C′,在△ABC与△A′B′C′中,已知∠A=∠A′,下列说法错误的是()A.若添加条件AB=A′B′,则△ABC与△A′B′C′全等B.若添加条件∠C=∠C′,则△ABC与△A′B′C′全等C.若添加条件∠B=∠B′,则△ABC与△A′B′C′全等D.若添加条件BC=B′C′,则△ABC与△A′B′C′全等10.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°二、填空题:本大题共8小题,每小题2分,共16分。
2017-2018学年无为尚文学校八年级(上)期中数学试卷一、选择题(每小题3分,共42分)1.下列图形中,不是轴对称图形的是()A.B. C.D.2.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去3.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠A B.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点4.下列图形中,不是轴对称图形的是()A.B.C.D.5.和点P(﹣3,2)关于y轴对称的点是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.97.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形8.一个等腰三角形的两边长分别为2和5,则它的周长为()A.7 B.9 C.12 D.9或129.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B.C.D.10.如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80° D.70°11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B等于()A.60° B.70° C.80° D.90°12.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4 C.D.513.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°14.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP二、填空题(每小题4分,共16分)15.海南省农村公路通畅工程建设,截止2009年9月30日,累计完成投资约 4 620 000 000元,数据 4 620 000 000用科学记数法表示应为.16.△ABC中,如果AB=8cm,BC=5cm,那么AC的取值范围是.17.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是.18.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.三、解答题(本大题共62分)19.计算:(1)(2)解方程组.20.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA的度数.22.如图所示的正方形网格中,△ABC的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A、B两点的坐标;(2)作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1两点的坐标;(3)请求出△A1B1C1的面积.23.如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)△ABC与△DEF全等吗?(2)两个滑梯的倾斜角∠ABC与∠DFE的大小有什么关系.24.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.2017-2018学年无为尚文学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.下列图形中,不是轴对称图形的是()A.B. C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【考点】KE:全等三角形的应用.【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.3.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠A B.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点【考点】KJ:等腰三角形的判定与性质;K7:三角形内角和定理.【分析】根据∠A=36°,AB=AC,BD平分∠ABC,可得△ABD与△BCD都是等腰三角形,据此判断各选项是否正确即可.【解答】解:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∴∠C=2∠A,故(A)正确;∵BD平分∠ABC,∴∠ABD=36°,∴∠BDC=36°+36°=72°,∴∠BDC=∠C,∴BD=BC,故(B)正确;∵∠A=∠ABD=36°,∴△ABD是等腰三角形,故(C)正确;∵BD<CD,∴AD>CD,∴D不是AC的中点,故(D)错误.故选:D4.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.和点P(﹣3,2)关于y轴对称的点是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【解答】解:和点P(﹣3,2)关于y轴对称的点是(3,2),故选A.【点评】本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.7.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.【解答】解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选B.【点评】三角形按边分类:不等边三角形和等腰三角形(等边三角形);三角形按角分类:锐角三角形,钝角三角形,直角三角形.8.一个等腰三角形的两边长分别为2和5,则它的周长为()A.7 B.9 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为5时,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;根据三角形三边关系可知:等腰三角形的腰长只能为5,这个三角形的周长是12.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.10.如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80° D.70°【考点】直角三角形的性质;平行线的性质.【专题】计算题.【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B等于()A.60° B.70° C.80° D.90°【考点】三角形的外角性质.【分析】直接利用三角形外角的性质得出∠A+∠B=∠ACD,进而得出答案.【解答】解:∵∠A=80°,∠ACD=150°,∠A+∠B=∠ACD,∴∠B=∠ACD﹣∠A=150°﹣80°=70°.故选:B.【点评】此题主要考查了三角形外角的性质,正确把握外角的定义是解题关键.12.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4 C.D.5【考点】全等三角形的判定与性质.【分析】由∠ABC=45°,AD是高,得出BD=AD后,证△ADC≌△BDH后求解.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C,∴△ADC≌△BDH,∴BH=AC=4.故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.由∠ABC=45°,AD是高,得出BD=AD是正确解答本题的关键.13.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】全等三角形的判定.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP【考点】角平分线的性质.【分析】本题要从已知条件OP平分∠AOB入手,利用角平分线的性质,对各选项逐个验证,选项D是错误的,虽然垂直,但不一定平分OP.【解答】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于 E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选D.【点评】本题主要考查平分线的性质,由已知能够注意到△OPA≌△OPB,进而求得△AOE≌△BOE是解决的关键.二、填空题(每小题4分,共16分)15.海南省农村公路通畅工程建设,截止2009年9月30日,累计完成投资约 4 620 000 000元,数据 4 620 000 000用科学记数法表示应为4.62×109.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.题中 4 620 000 000有10位整数,所以n=10﹣1=9.【解答】解:数据 4 620 000 000用科学记数法表示应为 4.62×109.故答案为 4.62×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.16.△ABC中,如果AB=8cm,BC=5cm,那么AC的取值范围是3cm<AC<13cm .【考点】三角形三边关系.【分析】根据三角形两边之和大于第三边.三角形的两边差小于第三边.可得8cm﹣5cm<AC<8cm+5cm.【解答】解:根据三角形的三边关系可得:8cm﹣5cm<AC<8cm+5cm,即:3cm<AC<13cm,故答案为:3cm<AC<13cm.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.17.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO .【考点】全等三角形的判定.【专题】开放型.【分析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.18.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为8 cm.【考点】线段垂直平分线的性质.【专题】计算题.【分析】由于DE为AB的垂直平分线,根据线段垂直平分线的性质得到CD=BD,由此推出△ACD的周长=AC+CD+AD=AC+AD+BD=AC+AB,即可求得△ACD的周长.【解答】解:∵DE为BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+CD+AD=AC+AD+BD=AC+AB,而AC=3cm,AB=5cm,∴△ACD的周长为3+5=8cm.故答案为:8.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.三、解答题(本大题共62分)19.计算:(1)(2)解方程组.【考点】实数的运算;解二元一次方程组.【专题】计算题;实数.【分析】(1)原式利用绝对值的代数意义,算术平方根定义,以及乘法法则计算即可得到结果;(2)方程组利用加减消元法求出解即可.【解答】解:(1)原式=+3+=1+3=4;(2),①+②得:2x=16,即x=8,把x=8代入①得:y=2,则方程组的解为.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.【考点】多边形内角与外角.【分析】设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)?180°与外角和定理列出方程,求解即可.【解答】解:设这个多边形的边数为n,根据题意,得(n﹣2)×180°=3×360°﹣180°,解得n=7.所以这个多边形的内角和为:(7﹣2)?180°=900°.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA的度数.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】根据三角形的内角和定理,高线、角平分线的定义进行解答即可.【解答】解:∵在△ABC中,AD是高,∴∠ADC=90°,∵在△ACD中,∠C=50°,∴∠DAC=90°﹣50°=40°,∵在△ABC中,∠C=50°,∠BAC=60°,∴∠ABC=70°,∵在△ABC中,AE,BF是角平分线,∴∠EAC=∠BAC=30°,∠FBC=∠ABC=35°,∴∠BOA=∠BEA+∠FBC=∠C+∠EAC+∠FBC=50°+30°+35°=115°.【点评】本题考查了三角形的内角和定理,高线、角平分线的定义,熟记定义并准确识图,理清图中各角度之间的关系是解题的关键.22.如图所示的正方形网格中,△ABC的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A、B两点的坐标;(2)作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1两点的坐标;(3)请求出△A1B1C1的面积.【考点】作图-轴对称变换.【分析】(1)根据图中坐标系写出点A、B两点的坐标即可;(2)首先确定A、B、C三点关于y轴对称的点,再连接即可;(3)把△A1B1C1放在一个矩形内,再利用矩形的面积减去周围多余三角形的面积即可.【解答】解:(1)A(﹣1,0)、B(﹣2,﹣2);(2)如图所示,A1(1,0)、B1(2,﹣2);(3)△A1B1C1的面积为3×2﹣2××1×2﹣×1×3=2.5.【点评】此题主要考查了作图﹣﹣轴对称变换,关键是正确确定A、B、C三点对称点的位置.23.如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)△ABC与△DEF全等吗?(2)两个滑梯的倾斜角∠ABC与∠DFE的大小有什么关系.【考点】全等三角形的应用.【分析】(1)由图可得,△ABC与△DEF均是直角三角形,由已知可根据HL判定两三角形全等;(2)利用(1)中全等三角形的对应角相等,不难求解.【解答】解:(1)△ABC与△DEF全等.理由如下:在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL);(2)∠ABC+∠DFE=90°,理由如下:由(1)知,Rt△ABC≌Rt△DEF,则∠ABC=∠DEF,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.【点评】此题考查了学生对全等三角形的判定及性质的运用.做题时要注意找已知条件,根据已知选择方法.24.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【考点】线段垂直平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.。
2017——2018学年度第一学期期中质量调研八年级数学试卷(考试时间:120分钟满分:120分)一、选择题(共10小题,每小题3分,共30分.每小题所给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入下面的表格内)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是().A. B. C. D.2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是().A.带①去B.带②去 C.带③去D.带①和②去第2题第6题第7题3.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为().A. 5或7B. 7或9C. 7D. 94.等腰三角形的一个角是80°,则它的底角是().A. 50°B. 80°C. 50°或80°D. 20°或80°5.点M(3,2)关于y轴对称的点的坐标为().A.(-3,2)B.(-3,-2)C. (3,-2)D. (2,-3)6.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是().A. SSSB. SASC. ASAD. AAS7.如图,在ΔABC中,已知∠ABC=66°,∠ACB=54°BE是AC上的高,CF是AB上的高,H是BE和CF的交点,∠EHF的度数是().A. 50°B. 40°C. 130°D.120°8.已知1405=a,2103=b,2802=c,则a、b、c的大小关系是(). A.a<b<c B.b<a<c C.c<a<b D.c<b<a9.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积为()班级:____________姓名:______________学号:____________——————————————————————装订线内不得答题————————————————————————A .2cm ²B .4cm ²C .6cm ²D .8cm 2 10.如图,已知ΔABC 和ΔDCE 均是等边三角形,点B ,C ,E 在同一条直线上,AE 与CD 交于点G ,AC 与BD 交于点F ,连接FG ,则下列结论:①AE=BD ;②AG=BF ;③FG ∥BE ;④CF=CG.其中正确的结论的个数是( ).A .4个B .3个C .2个D .1个第9题 第10题 二.填空题.(每小题3分,共24分)11.已知,如图:∠ABC=∠DEF ,AB=DE ,要说明ΔABC ≌ΔDEF 还要添加的条件为_____________。
2017-2018学年⼋年级上学期期中考试数学试题(@)2017-2018学年度⼋年级第⼀学期期中复习数学试题⼀.选择题(本⼤题10⼩题,每题3分,共30分)1.下列图形中,是轴对称图形的是()A B C D2.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.13.内⾓和为540°的多边形是()A.三⾓形B.四边形C.五边形D.六边形4.如图,⽤尺规作已知⾓平分线,其根据是构造两个三⾓形全等,它所⽤到的判别⽅法是()A.SAS B.ASAC.AAS D.SSS5.如图,CE是△ABC的外⾓∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95°C.85° D.75°6.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9C.10 D.117.如图,△ABC≌△D EF,若BC=6cm,BF=8cm,则下列判断错误的是()A.AB=DE B.BE=CFC.AC∥DF D.EC=2cm8.若从⼀个多边形的⼀个顶点出发,最多可以引10条对⾓线,则它是()A.⼗三边形B.⼗⼆边形C.⼗⼀边形D.⼗边形9.如图,在△ABC中,点D为BC边上⼀点,连接AD,取AD的中点P,连接BP,CP.若△ABC的⾯积为4cm2,则△BPC的⾯积为()[来源:学科A.4cm2B.3cm2C.2cm2D.1cm210.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC 的外⾓平分线于M,交AB,AC于F,E.以下结论:①MB⊥BD,②FD=EC,③EC=EF+DG,④BF=MD.其中⼀定正确的有()A.1个B.2个C.3个D.4个⼆.填空题(本⼤题6⼩题,每⼩题4分,共24分)11.已知点A与点B(1,-3)关于y轴对称,则点A的坐标为.12.已知等腰三⾓形的两边长分别为x和y,且x和y满⾜2-+-=,则这个5(2)0x y 等腰三⾓形的周长为.13.如图,△ABC中,D是AB边上的中点,将△ABC沿过点D的直线折叠,使点A落在BC上的点F处,若∠B=50°,则∠BDF= °.14.如图,△ABC中,∠ABC=90°,AB=12,BC=5,AC=13,BD⊥AC于D,则BD= .15.如图,OP平分∠AOB,PD⊥OB于D,∠OPD=60°,PO=4,则点P到边OA 的距离是.16.如图,在边长为2的等边△ABC中,AD⊥BC于点D,且AD=,E为AC中点,P为AD上⼀点,则△PEC周长的最⼩值是.第13题图第14题图第15题图第16题图三、解答题(⼀)(本⼤题3⼩题,每⼩题6分,共18分)17.如图B、F、C、E在⼀条直线上,AB=DE,BF=CE,AC=DF.求证:AC//DF.18.如图,上午9时,⼀条船从A处出发,以20海⾥/时的速度向正北航⾏,12时到达B处,测得∠NAC=36°,∠ABC=108°,求从B处到灯塔C的距离.[来源:学科19.如图,已知△ABC,∠C=90°,AC(1)⽤直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=33°,则∠CAD= °.四.解答题(⼆)(本⼤题3⼩题,每⼩题7分,共21分)20.如图,在△ABC中,∠BAC=90°,∠B=50°,AE,CF是⾓平分线,它们相交于为O,AD是⾼,求∠BAD和∠AOC的度数.21.如图,AB=3,BC=8,AB⊥BC,l⊥BC于点C,点E从B向C运动,过点E作ED⊥AE,交l于D.(1)求证:∠A=∠DEC;(2)当BE长度为多少时,△ABE≌△ECD?请说明理由.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF,求证:AD垂直平分EF.五.解答题(三)(本⼤题3⼩题,每⼩题9分,共27分)23.如图,在△ABC中,AB=AC,点E在线段AC上,D在AB的延长线上,连接DE交BC于F,过E作EG⊥BC于G.(1)下列两个关系式:①DB=EC,②DF=EF,请你选择⼀个做为条件,另⼀个做为结论构成⼀个正确的命题,并给予证明.你选择的条件是,结论是.(只需填序号)(2)在(1)的条件下,求证:FG=BC.[来源:Z#xx#/doc/1ed468c29a89680203d8ce2f0066f5335a816723.html ]24.如图,在△ABC中,∠BAC=120°,AB=AC=4,AD⊥BC,BD=2,延长AD 到E,使AE=2AD,连接BE.(1)求证:△ABE为等边三⾓形;(2)将⼀块含60°⾓的直⾓三⾓板PMN如图放置,其中点P与点E重合,且∠NEM=60°,边NE与AB交于点G,边ME与AC交于点F.求证:BG=AF;(3)在(2)的条件下,求四边形A GEF的⾯积.[来源:学|科|⽹]25.如图,△ACD和△BCE都是等腰直⾓三⾓形,∠ACD=∠BCE=90°。
八年级(上)期中数学试卷一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6 B.6 C.﹣8 D.82.单项式﹣4πr2的系数是()A.4 B.﹣4 C.4πD.﹣4π3.下列运算正确的是()A.a4•a5=a20B.x8÷x2=x4C.(a3)2=a9D.(3a2)2=9a44.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x35.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.二、仔细填一填(每小题2分,共20分)6.两个单项式a5b2m与﹣a n b4是同类项,则m=,n=.7.2a+3(b﹣c)=,a3•a4÷a5=.8.﹣(2x2y3)2=;4x2﹣(﹣2xy)=.9.因式分解:a2﹣3a=.10.计算﹣6x(x﹣3y)=;(x﹣1)(x+1)﹣x2=.11.函数的自变量x的取值范围是.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m (kg)的函数关系式为.当载重2kg时,弹簧长度为cm.13.如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为.14.如图,直线y=5x+10与x轴、y轴交于点A,B,则△AOB的面积为.15.观察下列各式1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来.三、耐心算一算.16.计算下列各题(1)2(x﹣3x2+1)﹣3(2x2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2•a4(3)(x+3)2﹣(x+2)(x﹣1)(4)(﹣8x3y2+12x2y﹣4x2)÷(﹣2x)2(5)用简便方法计算:2008×2006﹣20072.17.分解因式(1)25m2﹣n2(2)ax2﹣2axy+ay2(3)x3﹣9x.18.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5(x﹣1),再选取一个你喜欢的数代入求值.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了分钟(2)乌龟在这次赛跑中的平均速度为米/分.(3)比先达到终点,你有何感想.20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)x+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与x轴相交于(2,0)(3)图象经过一、三、四象限?六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.(1)写出一次加满油后所行路程S与时间t的函数关系式.(2)求出自变量的取值范围.(3)画出这个函数的图象.七、(1小题4分,2小题7分,共11分)24.已知直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),则点P(﹣2,4)是否在直线y=kx﹣6上?25.一次函数的图象经过点A(﹣6,4)B(3,0)(1)求这个函数的解析式.(2)画出这个函数的图象.(3)若该直线经过点(9,m),求m的值.(4)求△AOB的面积.八、阅读下面材料再填空.26.x2+(p+q)x+pq型式子的因式分解∵x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)(加法结合律)=x(x+p)+q(x+p)=(x+p)(x+q)∴我们得到x2+(p+q)x+pq=(x+p)(x+q)①利用①式可以将某些二次项系数为1的二次三项式分解因式.例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.∴解:x2+3x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式:①x2+7x+10=;②x2﹣2y﹣8=.八年级(上)期中数学试卷参考答案与试题解析一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6 B.6 C.﹣8 D.8【考点】有理数的乘方.【分析】根据有理数乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.【解答】解:(﹣2)3=﹣8,故选C.2.单项式﹣4πr2的系数是()A.4 B.﹣4 C.4πD.﹣4π【考点】单项式.【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.【解答】解:由单项式系数的定义,单项式﹣4πr2的系数是﹣4π.故选D.3.下列运算正确的是()A.a4•a5=a20B.x8÷x2=x4C.(a3)2=a9D.(3a2)2=9a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除法运算法则以及结合积的乘方运算法则计算得出答案.【解答】解:A、a4•a5=a9,故此选项计算错误,不合题意;B、x8÷x2=x6,故此选项计算错误,不合题意;C、(a3)2=a6,故此选项计算错误,不合题意;D、(3a2)2=9a4,正确,符合题意.故选:D.4.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x3【考点】合并同类项.【分析】直接利用合并同类项法则分别判断得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、﹣4xy+2xy=﹣2xy,正确;C 、3y 2﹣2y 2=y 2,故此选项错误;D 、3x 2+2x ,无法合并,故此选项错误;故选:B .5.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的长度为y (cm )与燃烧时间x (小时)的函数关系用图象表示为下图中的( )A .B .C .D .【考点】一次函数的应用;一次函数的图象.【分析】根据实际情况即可解答.【解答】解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D ,更不可能是A 、C .故选B .二、仔细填一填(每小题2分,共20分)6.两个单项式a 5b 2m 与﹣a n b 4是同类项,则m= 2 ,n= 5 .【考点】同类项.【分析】根据同类项的定义直接可得到m、n的值.【解答】解:∵单项式a5b2m与﹣a n b4是同类项,∴2m=4,n=5.即m=2,n=5.故答案为:2;5.7.2a+3(b﹣c)=2a+3b﹣3c,a3•a4÷a5=a7.【考点】同底数幂的除法;同底数幂的乘法.【分析】直接利用同底数幂的乘除法运算法则以及结合去括号法则计算得出答案.【解答】解:2a+3(b﹣c)=2a+3b﹣3c,a3•a4÷a5=a12÷a5=a7.故答案为:2a+3b﹣3c,a7.8.﹣(2x2y3)2=﹣4x4y6;4x2﹣(﹣2xy)=4x2+2xy.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则求出答案.【解答】解:﹣(2x2y3)2=﹣4x4y6;4x2﹣(﹣2xy)=4x2+2xy.故答案为:﹣4x4y6;4x2+2xy.9.因式分解:a2﹣3a=a(a﹣3).【考点】因式分解﹣提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).10.计算﹣6x(x﹣3y)=﹣6x2+18xy;(x﹣1)(x+1)﹣x2=﹣1.【考点】平方差公式;单项式乘多项式.【分析】根据单项式乘以多项式法则求出即可;根据平方差公式展开,再合并同类项即可.【解答】解:﹣6x(x﹣3y)=﹣6x2+18xy,(x﹣1)(x+1)﹣x2=x2﹣1﹣x2=﹣1,故答案为:﹣6x2+18xy,﹣1.11.函数的自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m (kg)的函数关系式为L=3+0.5m.当载重2kg时,弹簧长度为4cm.【考点】函数关系式.【分析】根据题意列出函数关系式,然后将m=2代入函数关系式即可求出弹簧长度.【解答】解:由题意可知:L=3+0.5m当m=2时,L=4,故答案为:L=3+0.5m;413.如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为y=2x.【考点】待定系数法求正比例函数解析式.【分析】运用待定系数法求解析式.【解答】解:设此直线的解析式是y=kx,把(1,2)代入得:k=2,即直线的解析式是:y=2x.14.如图,直线y=5x+10与x轴、y轴交于点A,B,则△AOB的面积为10.【考点】一次函数图象上点的坐标特征.【分析】根据直线y=x+3的解析式可求出A、B两点的坐标,从而求得OA、OB 的长,然后根据三角形面积公式即可求得△AOB的面积.【解答】解:∵直线y=5x+10交x轴于点A,交y轴于点B,∴令y=0,则x=﹣2;令x=0,则y=10;∴A(﹣2,0),B(0,10),∴OA=2,OB=10,∴△AOB的面积=×2×10=10.故答案为10.15.观察下列各式1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).【考点】规律型:数字的变化类.【分析】根据给出的格式可得出:两个相邻的奇数相乘等于这两个奇数中间的偶数的平方减去1,根据此列出等式表示即可.【解答】解:∵1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…,∴规律为:(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).故答案为:(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).三、耐心算一算.16.计算下列各题(1)2(x﹣3x2+1)﹣3(2x2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2•a4(3)(x+3)2﹣(x+2)(x﹣1)(4)(﹣8x3y2+12x2y﹣4x2)÷(﹣2x)2(5)用简便方法计算:2008×2006﹣20072.【考点】整式的混合运算.【分析】(1)原式去括号合并即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用积的乘方运算法则变形,再利用多项式除以单项式法则计算即可得到结果;(5)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=2x﹣6x2+2﹣6x2+6=﹣12x2+2x+8;(2)原式=﹣a6+a6﹣a6=﹣a6;(3)原式=x2+6x+9﹣x2﹣x+2=5x+11;(4)原式=(﹣8x3y2+12x2y﹣4x2)÷4x2=﹣2xy2+3y﹣1;(5)原式=×﹣20072=20072﹣1﹣20072=﹣1.17.分解因式(1)25m2﹣n2(2)ax2﹣2axy+ay2(3)x3﹣9x.【考点】提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=(5m+n)(5m﹣n);(2)原式=a(x2﹣2xy+y2)=a(x﹣y)2;(3)原式=x(x2﹣9)=x(x+3)(x﹣3).18.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5(x﹣1),再选取一个你喜欢的数代入求值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式计算,去括号合并得到最简结果,把x=0代入计算即可求出值.【解答】解:原式=4x2﹣4x+1﹣9x2+1+5x﹣5=﹣5x2+x﹣3,当x=0时,原式=﹣3.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了40分钟(2)乌龟在这次赛跑中的平均速度为10米/分.(3)乌龟比免子先达到终点,你有何感想做事不能骄傲.【考点】函数的图象.【分析】(1)时间在增多,路程没有变化时,说明兔子在睡觉,时间为50﹣10;(2)平均速度=总路程÷总时间;(3)根据图象即可得到结论.【解答】解:(1)50﹣10=40分钟;故答案为:40;(2)500÷50=10米/分钟.故答案为:10.(3)乌龟比免子先达到终点,你有何感想:做事不能骄傲.故答案为:乌龟,免子,做事不能骄傲.20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?【考点】函数的图象.【分析】(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的横坐标,可得体育场与文具店的距离;(3)观察函数图象的横坐标,可得在文具店停留的时间;【解答】解:(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店3.5﹣2.5=1(千米);(3)由横坐标看出小刚在文具店停留55﹣35=20(分);(4)小强从文具店回家的平均速度是3.5÷=(千米/分).五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.【考点】正比例函数的定义.【分析】直接利用正比例函数的定义分析得出即可.【解答】解:根据题意,得:,由①,得:m=2或m=﹣2,由②,得:m≠﹣2,∴m=2,即当m=2时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)x+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与x轴相交于(2,0)(3)图象经过一、三、四象限?【考点】一次函数图象与系数的关系.【分析】(1)把(0,3)代入直线解析式,求出m的值即可;(2)(2,0)代入直线解析式,求出m的值即可;(3)根据函数的图象的位置列出关于m的不等式,求出m的取值范围即可.【解答】解:(1)∵直线与y轴相交于点(0,3),∴m﹣1=3,解得m=4;(2)∵直线x轴相交于点(2,0),∴2(3m﹣1)+m﹣1=0,解得m=;(3)∵直线y=(3m﹣1)x+m﹣1图象经过一、三、四象限,∴,解得:<m<1.六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.(1)写出一次加满油后所行路程S与时间t的函数关系式.(2)求出自变量的取值范围.(3)画出这个函数的图象.【考点】一次函数的应用.【分析】(1)根据题意可以得到一次加满油后所行路程S与时间t的函数关系式;(2)根据一次加满油可加40升,每小时耗油5升,可以得到t的取值范围;(3)根据(1)中的函数解析式和(2)中自变量的取值范围,可以画出相应的函数图象.【解答】解:(1)由题意可得,路程S与时间t的函数关系式为:S=60t;(2)∵一次加满油可加40升,每小时耗油5升,∴5t≤40,得t≤8,∴自变量的取值范围是:0≤t≤8;(3)当t=0时,S=0;当t=1时,S=60,故这个函数的图象如右图所示.七、(1小题4分,2小题7分,共11分)24.已知直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),则点P(﹣2,4)是否在直线y=kx﹣6上?【考点】两条直线相交或平行问题.【分析】直接利用图象上点的坐标性质得出m的值,进而得出k的值,进而判断点P(﹣2,4)是否在直线y=kx﹣6上.【解答】解:∵直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),∴﹣4=﹣2m,解得:m=2,故﹣4=2k﹣6,解得:k=1,故y=x﹣6,当x=﹣2时,y=﹣2﹣6=﹣8,故点P(﹣2,4)不在直线y=kx﹣6上.25.一次函数的图象经过点A(﹣6,4)B(3,0)(1)求这个函数的解析式.(2)画出这个函数的图象.(3)若该直线经过点(9,m),求m的值.(4)求△AOB的面积.【考点】待定系数法求一次函数解析式;一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)利用待定系数法把点A(﹣6,4)B(3,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式;(2)根据题意作出图象即可;(3)把(9,m)代入y=2x﹣2,即可求得m的值;(4)根据三角形的面积公式即可得到结论.【解答】解:(1)设一次函数为:y=kx+b,∵一次函数的图象经过点A(﹣6,4)B(3,0),∴,解得:∴这个一次函数的表达式为y=﹣x+;(2)图象如图所示,(3)把(9,m)代入y=﹣x+,得m=﹣;=×3×4=6.(4)S△AOB八、阅读下面材料再填空.26.x2+(p+q)x+pq型式子的因式分解∵x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)(加法结合律)=x(x+p)+q(x+p)=(x+p)(x+q)∴我们得到x2+(p+q)x+pq=(x+p)(x+q)①利用①式可以将某些二次项系数为1的二次三项式分解因式.例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.∴解:x2+3x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式:①x2+7x+10=(x+2)(x+5);②x2﹣2y﹣8=(y﹣4)(y+2).【考点】因式分解﹣十字相乘法等.【分析】根据x2+(p+q)x+pq=(x+p)(x+q)容易得出答案.【解答】解:①x2+7x+10=(x+2)(x+5);故答案为:(x+2)(x+5);②x2﹣2y﹣8=(y﹣4)(y+2);故答案为:(y﹣4)(y+2).2017年5月13日。
2017-2018学年上学期期中原创卷A卷八年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版第11~13章。
第Ⅰ卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C .四边形的内角和与外角和相等D .角是轴对称图形6.如图,ABC BAD △≌△,点A 和点B ,点C 和点D 是对应点.如果AB =6厘米,BD =5厘米,AD =4厘米,那么BC 的长是 A .6 cmB .5 cmC .4 cmD .不能确定7.如图,ABC △中,AB AC =,点D 在AC 边上,且BD BC AD ==,则A ∠的度数为 A .36°B .45°C .54°D .72°8.如图,在ABC △中,∠BAC =56°,∠ABC =74°,BP 、CP 分别平分∠ABC 和∠ACB ,则∠BPC =A .102°B .112°C .115°D .118°9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',,11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36 cm,BC =24 cm, 2120cm ABC S =△,DE 长是A .4 cmB . 4.8 cmC . 5 cmD .无法确定12.使两个直角三角形全等的条件是A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 13.如图,已知40AOB ∠=︒,在AOB ∠的两边OA OB 、上分别存在点Q 、点P ,过点Q 作直线QR OB ∥,当OP QP =时,∠PQR 的度数是 A .60°B .80°C .100°D .120°14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 215.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.17.一个四边形,截一刀后得到的新多边形的内角和为__________. 18.若等腰三角形的一个角为80︒,则顶角为__________.19.已知点A (2a +3b ,−2)和A '(−1,3a +b )关于y 轴对称,则a +b 的值为__________.20.如图,ABC △中,90C ∠=︒,60BAC ∠=︒,AD 是角平分线,若8BD =,则CD 等于__________.21.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是ABC △的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.23.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.24.(本题满分8分)已知:如图,在ABC △中, D 为BC 上的一点, AD 平分EDC ∠,且E B ∠=∠, DE DC =.求证: AB AC =.25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△; (2)线段CC ′被直线l ; (3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.27.(本小题满分9分)如图,在Rt ABC △中,∠A =90°,AB=AC=4 cm ,若O 是BC 的中点,动点M 在AB 上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.△边AB上一动点(不与A,B重合)分别过点A,B向直线CD作垂28.(本小题满分9分)已知点D是ABC线,垂足分别为E,F,O为边AB的中点.(1)如图1,当点D与点O重合时,AE与BF的位置关系是____________,OE与OF的数量关系是__________;(2)如图2,当点D在线段AB上不与点O重合时,试判断OE与OF的数量关系,并给予证明;(3)如图3,当点D在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.(备注:直角三角形中,斜边上的中线等于斜边的一半)2017-2018学年上学期期中原创卷A卷八年级数学答案一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知三角形的两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为三角形的第三边的是A.13 cm B.6 cm C.5 cm D.4 cm【答案】B2.中国汽车工业经过100 多年的发展,已成为世界上规模大和重要的产业之一,下面是我国部分汽车标志图形,其中不是轴对称图形是A B C D【答案】C△的高的是3.下面四个图形中,线段BE是ABCA.B.C.D.【答案】D4.如果正多边形的一个内角是140°,则这个多边形是A.正十边形B.正九边形C.正八边形D.正七边形【答案】B5.下列说法不正确的是A.三角形的一个外角等于两个内角的和B.三角形具有稳定性C.四边形的内角和与外角和相等D.角是轴对称图形【答案】A△≌△,点A和点B,点C和点D是对应点.如果AB=6厘米,BD=5厘米,AD=4厘米,6.如图,ABC BAD那么BC的长是A.6 cm B.5 cm C.4 cm D.不能确定【答案】B解:∵△ABC≌△BAD,对应为点A对点B,点C对点D,∴AC=BD∵BD=5cm(已知)∴AC=5cm故选B.7.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A为A.36° B.45° C.54° D.72°【答案】A∵BD=BC=AD,AC=AB,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°∵∠A+∠C+∠ABC=180°∴x+2x+2x= 180,∴x=36,∴∠A=36° .故选B .△中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC= 8.如图,在ABCA.102°B.112°C.115°D.118°【答案】D∵∠BAC=56°,∠A+∠ABC+∠ACB= 180°,∴∠ABC+∠ACB2=62°∵BP 、CP 分别平分∠ABC 和∠ACB , ∴∠BPC +∠ABC+∠ACB2= 180°∴∠BPC=118° .9.如图,在ABC △中, AB AC =, 36A ∠=︒, BD 、CE 分别是ABC ∠、BCD ∠的角平分线,则图中的等腰三角形有 A .5个B .4个C .3个D .2个【答案】A10.在ABC △和A B C '''△中,下面能得到ABC A B C '''△≌△的条件是A .AB A B AC AC B B =''=''∠=∠',, B . AB A B BC B C A A =''=''∠=∠',, C .AC AC BC B C C C =''=''∠=∠',,D .AC AC BC B C B B =''=''∠=∠',, 【答案】C11.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,AB =36cm ,BC =24cm ,2120cm ABC S =△,DE 长是( )A .4 cmB . 4.8 cmC . 5 cmD .无法确定【答案】A12.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .斜边及一条直角边对应相等 【答案】D13.如图,已知∠AOB=40°,在∠AOB 的两边OA 、OB 上分别存在点Q 、点P ,过点Q 作直线QR ∥OB ,当OP=QP 时,∠PQR ∠的度数是( ) A .60°B .80°C .100°D .120°【答案】C14.如图,ABC △的面积为10 cm 2,AP 垂直∠B 的平分线BP 于点P ,则PBC △的面积为A .4 cm 2B .5 cm 2C .6 cm 2D .7 cm 2【答案】B15.如图,已知点B 、C 、D 在同一条直线上,ABC △和CDE △都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是A .AD =BEB .BE ⊥AC C . CFG △为等边三角形D . FG ∥BC【答案】B第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)16.如图,ABC △中,∠B =45°,∠C =72°,则∠1的度数为__________.【答案】117°解:∵∠1是OABC 的外角,且∠B=45°,∠C=72° ∴∠1=∠A+∠B=45°+72°=117° . 故答案为: 117°17.一个四边形,截一刀后得到的新多边形的内角和为__________.【答案】180°或360°或540°解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°故答案为:180°或360°或540°18.若等腰三角形的一个角为80 ,则顶角为__________.【答案】80°或20°解:(1 )当80°的角是顶角时,顶角是80°;(2 )当80°的角是底角时,顶角的度数是:180°-80°- 80°= 100°- 80°=20°综上,可得等腰三角形的顶角是20°或80°故选:C.19.已知点A(2a+3b,−2)和A'(−1,3a+b)关于y轴对称,则a+b的值为__________.【答案】0解:∵点A( 2a+3b,−2 )和点A′ (−1 ,3a+b )关于y轴对称∴2a+3b=1,3a+b=−2∴2 ( 2a+3b ) +3a+b=1×2+ (−2 ) =0∴a+b=020.如图,△ABC中,∠C =90°,∠BAC=60°,AD是角平分线,若BD=8,则CD等于__________.【答案】4解:∵∠C=90°,∠BAC=60°∴∠B=30°∵AD是角平分线∴∠DAB=∠CAD=∠B=30°∴AD=BD=8∴CD=12AB=4 故答案为:421.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.【答案】4解:根据垂线段最短,当DP ⊥BC 的时候, DP 的长度最小,∵BD ⊥CD ,即∠BDC=90°,又∠A=90°∴∠A=∠BDC ,又∠ADB=∠C∴∠ABD=∠CBD ,又DA ⊥BA , DP ⊥BC∴AD=DP ,又AD=4∴DP=4故答案为: 4三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)如果a 、b 、c 是△ABC 的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求ABC △的周长.【答案】解: ∵ (b −3)2≥0,|c −4|≥0且(b −3)2 +|c −4|=0 ,∴(b −3)2=0,|c −4|=0,∴b =3 , c =4∵4−3<a <4+3且a 为奇数,∴a =3或5当a =3时,△ABC 的周长是3+4+3=10当a =5时,△ABC 的周长是3+4+5=1223.(本小题满分7分)如图,,100,75AB CD A C ∠=︒∠=︒∥,∠1∶∠2=5∶7,求∠B 的度数.【答案】解:设∠1=5x °,∠2=7x °,在△ABE 中,∠B =180°−∠A −∠2=180°−100°−7x °=80°−7x °在△CDE 中,∠CDE =180°−∠C −∠1−∠2=180°−75°−5x °−7x °=105°− 12x °, ∵AB//CD ,∴∠B=∠CDE ,∴80°−7x°=105°− 12x°解得:x =5,∴∠B =80°−7x °=45°24.(本题满分8分)已知:如图,在△ABC 中, D 为BC 上的一点, AD 平分∠EDC ,且E B ∠=∠, DE DC =.求证: AB AC =.【答案】证明:∵AD 平分∠EDC∴∠ADE=∠ADC ,在△AED 和△ACD 中{DE =DC∠ADE =∠ADC AD =AD∴△AED ≌△ACD ( SAS )∴∠C=∠E又∵∠E=∠B∴∠C=∠B∴AB=AC25.(本小题满分8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与直线l 成轴对称的A B C '''△;(2)线段CC ′被直线l ;(3)ABC △的面积为 ;(4)在直线l 上找一点P ,使PB+PC 的长最短.【答案】( 1 )无(2)垂直平分(3) 3(4)无26.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.【答案】解: ∵∠BCE=∠ACD=90°∴∠3+∠4=∠4+∠5∴∠3=∠5在△ABC 和△DEC 中,{∠l =∠D∠3=∠5BC =CE∴△ABC ≌△DEC ( AAS ),∴AC=CD ;(2 ) ∵∠ACD=90°,AC=CD ,∴∠2=∠D=45°∵AE=AC∴∠4=∠6=67.5°∴∠DEC=180°-∠6=112.5°.27.(本小题满分9分)如图,在Rt ABC△中,∠A=90°,AB=AC=4 cm,若O是BC的中点,动点M在AB上移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)在点M,N运动的过程中,四边形AMON的面积是否发生变化,若发生变化,请说明理由;若不变,请你求出四边形AMON的面积.【答案】解:(1)连接OA∵∠A=90°,AB=AC又∵O是BC的中点∴OA=OB=OC,(直角三角形中,斜边上的中线是斜边的一半)∴∠CAO=∠BAO=45°在△ONA和△OMB中{OA=OB∠CAO=∠BAO AN=BM∴△ONA≌△OMB ( SAS)∴OM=ON ( 全等三角形的对应边相等)(2)不变,理由如下:由上知△ONA≌△OMB∴S△ONA=S△OMB∴S四边形ANOM=S△ONA+S△OMA=S△OMB+S△OMA=S△OAB∴S四边形ANOM=S△OAB=12S△ABC=4(cm2)28.(本小题满分9分)已知点D 是ABC △边AB 上一动点(不与A ,B 重合)分别过点A ,B 向直线CD 作垂线,垂足分别为E ,F ,O 为边AB 的中点.(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是____________,OE 与OF 的数量关系是__________;(2)如图2,当点D 在线段AB 上不与点O 重合时,试判断OE 与OF 的数量关系,并给予证明;(3)如图3,当点D 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路. (备注:直角三角形中,斜边上的中线等于斜边的一半)【答案】解:(1)如图1,当点D 与点O 重合时,AE 与BF 的位置关系是AE//BF , OE 与OF 的数量关系是OE=OF ,理由是:∵O 为AB 的中点∴AQ=BO∵AE ⊥CO, BF ⊥CO∴AE//BF ,∠AEO=∠BFO=90°在△AEO 和△BFO 中{∠AOE =∠BOF∠AEO =∠BFO AO =BO∴△AEO ≌△BFO ,∴OE=OF ,故答案:AE//BF ;OE=OF(2)OE=OF证明:延长EO 交BF 于M∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO 和△BMO 中{∠AOE =∠BOM∠AEO =∠BMO AO =BO∴△AEO ≌△BMO∴EO=MO∵∠BFE=90°∴OE=OF(3)当点D在线段BA(或AB)的延长线上时,此时(2)中的结论成立,证明:延长EO交FB于M,∵由(1)知:AE//BF∴∠AEO=∠BMO在△AEO和△BMO中{∠AOE=∠BOM∠AEO=∠BMOAO=BO∴△AEO≌△BMO∴EO=DO∵∠BFE=90°∴OE=OF。
2017—2018学年度八 年 级 数 学上学期期中试卷考试时间:120分钟 满分:150分一、选择题。
(每小题4分,共40分。
)1、有四条线段,长分别是3厘米,5厘米,7厘米,9厘米,如果用这些线段组成三角形,可以组成不同的三角形的个数为( ) A .5 B .4 C .3 D .22、如图,小林从P 点向西直走12m 后,向左转,转动的角度为α,再走12m ,如此重复,小林共走了108m 回到点P ,则α=( )A .40 oB .50 oC .80 oD .不存在3.判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为50°和20°的三角形一定是钝角三角形,④直角三角形中两锐角的和为90°,其中判断正确的有( ).A.1个B.2个C.3个D.4个 4、若一个多边形的内角和为1080°,则这个多边形的边数是( ) A . 6 B .7 C .8 D .95、如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A .带①去B .带②去C .带③去D .带①②去6ABC 的三边长,则下面与△ABC )B .C .D .A. 7、如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是( ).2题图5题图6题图A.∠M=∠N B.AM∥CN C.AB=CD D.AM=CN8、如图,已知C、D分别在OA、OB上,并且OA=OB,OC=OD,AD E ,则图中全等三角形的对数是( ).A.3B.4 C.5 D.69、如图12.1-10,△ABC≌△FED,则下列结论错误的是()A. EC=BDB. EF∥ABC. DF=BDD. AC∥FD10、如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE 的面积等于( )A. 10B. 7C. 5D. 4二、填空题。
2017~2018学年度上学期期中考试八年级数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.点P(2,-3)关于y轴对称的点的坐标为()A.(-2,3) B.(-2,-3) C.(3,-2) D.(-3,2)3.以下长度的三条线段,不能组成三角形的是()A.9、15、7 B.4、9、6 C.15、20、6 D.3、8、44.已知三角形△ABC的三个内角满足∠B+∠C=3∠A,则此三角形()A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三甲性5.一个多边形的内角和与外角和相等,则这个多边形的边数为()A.3 B.4 C.5 D.66.如图,点O是△ABC内一点,∠A=80°,BO、CO分别是∠ABC和∠ACB的角平分线,则∠BOC 等于()A.140°B.120°C.130°D.无法确定第6题图第7题图第8题图7.如图所示,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E,其中能使△ABC≌△DEF 的条件共有()A.1组B.2组C.3组D.4组8.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.169.下列命题中,真命题的个数是()①如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等②如果两个三角形有两条边和其中一边上的高对应相等,那么这两个三角形全等③如果两个直角三角形有一条边和这条边所对的角对应相等,那么这两个三角形全等④如果两个直角三角形有两个角对应相等,那么这两个三角形全等A.1个B.2个C.3个D.4个10.等腰直角三角形中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,过C作CD⊥BE于D,过A作AT⊥BE于T点,有下列结论:①∠ADC=135°;②BC=AB+AE;③BE=2AT+TE;④BD-CD=2AT,其中正确的是()A.①②③B.①②④C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分)11.已知一个三角形有两条边长度分别是4、9,则第三边x的范围是__________12.一个正多边形的每个外角都等于30°,则这个多边形的边数是__________13.在直角坐标系中,已知A(-a,2)、B(-3,b)关于y轴对称,求a+b=__________ 14.如图,五边形ABCDE中,AE∥CD,∠A=147°,∠B=121°,则∠C=__________15.如图,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点.若AB=12 cm,BC=10 cm,∠A=49°,则△BCE的周长=__________,∠EBC=__________第14题图第15题图第16题图16.在平面直角坐标系中,点A(4,0)、B(0,8),以AB为斜边作等腰直角△ABC,则点C坐标为__________三、解答题(共8题,共72分)17.(本题8分)△ABC中,∠B=∠C+10°,∠A=∠B+10°,求△ABC的各个内角的度数18.(本题8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF19.(本题8分)如图,利用关于坐标轴对称的点的坐标特点(1) 作出△ABC关于x轴对称的图象(2) 写出A、B、C的对应点A′、B′、C′的坐标(3) 直接写出△ABC的面积__________20.(本题8分)如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4求证:(1) △ABC≌△ADC;(2) BO=DO21.(本题8分)如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H点,交AE于G,求证:BD=CG22.(本题满分10分)如图,上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处。
八年级数学 共2页 第1页2017-2018学年度第一学期期中检测试卷八年级数学 (满分:130分)命题学校:转渠口中学 命题教师:冉昇一、选择题(每小题3分,共30分)1、在实数0.3,0,7,π2,0.123 456…中,无理数的个数是( ) A 、2 B 、3 C 、4 D 、52、等腰三角形的腰长为10,底长为12,则其底边上的高为 ( )A 、13B 、8C 、25D 、643、面积为7的正方形,其边长为a ,则a 满足 ( ) A. 4<a <5 B. 3<a <4 C. 2<a<3 D. 1<a<24、在平面直角坐标系中,下列各点在第二象限的是 ( )A 、(2,1)B 、(2,﹣1)C 、(﹣2,1)D 、(﹣2,﹣1)5、点P (﹣2,3)关于y 轴对称点的坐标是 ( )A 、(﹣2,3)B 、(2,﹣3)C 、(2,3)D 、(﹣2,﹣3) 6、点P (m+3,m ﹣1)在x 轴上,则点P 的坐标为( )A 、(0,﹣2)B 、(2,0)C 、(-4,0)D 、(4,0) 7、如图所示的象棋盘上,若”帅”位于点(1,﹣3)上,“相”位于点(3,﹣3)上,则”炮”位于点( )A . (﹣1,1)B . (﹣l ,2)C . (﹣2,0)D . (﹣2,2)8、如图,下列各数中,数轴上点A 表示的可能是( )A 、4的算术平方根B 、4的立方根C 、8的算术平方根D 、8的立方根9、下列最简二次根式是( )A 、31B 、20C 、7D 、12110、油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是( )A 、Q =0.2tB 、Q =20-0.2tC 、t =0.2QD 、t =20-0.2Q 二、填空题(每小题3分,共 30 分)11、﹣5的相反数是________;2的相反数是_______,绝对值是_______。
桥市中学2017—2018学年八年级上学期期中考试数 学 试 题温馨提示: 总分 本卷满分为120分,共三个大题,24个小题,考试时间为120分钟.祝同学们考试顺利! 一 选择题(每小题3分,共30分) 1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A .B .C .D .2.如图,给出下列四个条件,AB=DE ,BC=EF ,∠B=∠E ,∠C=∠F ,从中任选三个条件能使△ABC ≌△DEF 的共有( ) A .1组 B .2组 C .3组 D .4组3.如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A .∠M=∠NB . AM ∥CNC .AB = CD D . AM=CN4.已知等腰三角形的两边长分别为4cm 、8cm ,则该等腰三角形的周长是( ) A .12cm B .16cm C .16cm 或20cm D .20cm5.已知:如图,AC=AE ,∠1=∠2,AB=AD ,若∠D=25°,则∠B 的度数为 ( ) A.25° B.30° C.15° D.30°或15°6.如图,已知∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上, △A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 4B 4A 5的边长为( )A. 6B. 8C. 10D. 24 7.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( ) A .1:1:1 B .1:2:3 C .2:3:4 D .3:4:58.在△ABC 内一点P 满足PA=PB=PC ,则点P 一定是△ABC ( ) A.三条角平分线的交点 B.三边垂直平分线的交点 C.三条高的交点 D.三条中线的交点 9.一个多边形的内角和是外角和的2倍,则这个多边形的边数是( )A.4B.5C.6D.710.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC ,CD 上分别找一点M ,N 使△AMN 周长最小,则∠AMN+∠ANM 的度数为( )A .60°B .120°C .90°D .45°二 填空题:(本题共8个小题,每小题3分,共24分)11.一个木工师傅现有两根木条,它们的长分别为50cm,70cm.,他要选择第三根木条,将它们订成一个三角形木架,设第三根木条长为x cm, 则x 的取值范围是 .12如图,在Rt △ABC 中,∠C =90°,AC =12 cm ,BC =6 cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP = .13.一个多边形除去一个内角外,其余各内角之和为1680°,那么除去的这个内角的度数为 . 14.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是 .15.如图所示,顶角A 为120°的等腰△ABC 中,DE 垂直平分AB 于D ,若DE =2,则EC = . 16.已知点P 到x 轴、y 轴的距离分别是2和3,且点P 关于y 轴对称的点在第四象限,则点P 的坐标是 .17. 如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上的点,将△ABC 沿着DE 折叠压平,A 与A ′重合,若∠A =70°,则∠1+∠2= .18.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A ,B 两个格点,请在图中再寻找另一个格点C ,使△ABC 成为等腰三角形,则满足条件的点C 有 个. 三 解答题(本题共7个小题,共66分)19(6分)如图是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形..A B D C M N第15题第5题 第2题第7题 ※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※姓 名 班 级考 号※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※第3题 第10题第18题第14题第12题第17题第6题20.(8分) 如图,在△ABC 中,∠B=∠C ,D 、E 、F 分别在AB 、BC 、AC 上,且BD=CE ,∠DEF=∠B ,问:DE 和EF 是否相等?并说明理由.21.(10分)如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D .问:射线OE 与CD 有什么关系?并加以证明.22. (10分)如图,△ABC 中,AB=AC ,点D 在AB 上,点E 在AC 的延长线上,且BD=CE ,DE 交BC 于F ,求证:DF=EF .\23.(10分)如图,两个大小不同的等腰直角三角形三角板如图1所示放置.图2是由它抽象出的几何图形,B 、C 、E 在同一条直线上,连接DC.问:线段DC 与BE 有何位置关系?并加以证明。
2017-2018学年八年级(上)期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点(﹣1,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列语句中,不是命题的是()A.直角都等于90°B.对顶角相等C.互补的两个角不相等D.作线段AB3.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:14.在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)5.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<06.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣28.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B.C.D.9.如图,∠MAN=100°,点B、C是射线AM、AN上的动点,∠ACB的平分线和∠MBC 的平分线所在直线相交于点D,则∠BDC的大小()A.40°B.50°C.80°D.随点B、C的移动而变化10.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C. D.16二.填空题(本大题共8小题,每小题3分,共24分)11.点M(3,﹣1)到x轴距离是,到y轴距离是.12.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=.13.已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b=.14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1y2.(填“>”、“=”或“<”)15.如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x的方程kx+3=﹣x+b的解是.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.。
ABCDA B D C M N2017-2018学年度上期期中教学质量检测 八年级数学试题(本试卷120分 考试时间100分钟)一、选择题(每小题3分,满分24分)下列各小题均有四个答案,其中只有一个是正确的1.下列平面图形中,不是轴对称图形的是 ( )2.以下列各组线段为边,能组成三角形的是( )A. 2 cm ,3 cm ,5 cmB. 3 cm ,3 cm ,6 cmC. 5 cm ,8 cm ,2 cmD. 4 cm ,5 cm ,6 cm 3.已知等腰三角形的两边长分别为3和6,则它的周长等于( ) A. 12 B. 12或15 C. 15 D. 15或184.如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A.∠M=∠NB.AM=CNC.AB=CDD.AM ∥CN 5.一个多边形的内角和等于1080°,这个多边形的边数是( ) A .9 B .8 C .7 D .6 6.下列说法中,错误的是 ( )A.一个三角形的三个内角中,至少有一个角不大于600B.有一个外角是锐角的三角形是钝角三角形C.锐角三角形中,两个角的和小于直角D.直角三角形中有一个外角等于和它相邻的内角7. AD 是△ABC 的角平分线,过点D 作DE ⊥AB 于E ,DF ⊥AC 于F•,则下列结论不一定正确的是( )A .DE=DFB .BD=CDC .AE=AFD .∠ADE=∠ADF8.如图,把长方形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么, 有下列说法: ①△EBD 是等腰三角形,EB=ED ②折叠后∠ABE 和∠CBD 一定座号:________A B CD相等 ③折叠后得到的图形是轴对称图形 ④△EBA 和△EDC 一定是全等三角形 其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)9.在△ABC 中,∠A ∶∠B ∶∠C =2∶3∶4,则∠A =________,∠C =________ 10.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______. 11. 在△ABC 中,∠C=90°,BC=16cm ,∠BAC 的平分线交BC 于D ,且BD ︰DC=5︰3,则D 到AB 的距离为_____________.12. 如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有_____ 个。
2017-2018学年无为尚文学校八年级(上)期中数学试卷一、选择题(每小题3分,共42分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去3.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠A B.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点4.下列图形中,不是轴对称图形的是()A.B.C.D.5.和点P(﹣3,2)关于y轴对称的点是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.97.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形8.一个等腰三角形的两边长分别为2和5,则它的周长为()A.7 B.9 C.12 D.9或129.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.10.如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B等于()A.60°B.70°C.80°D.90°12.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4 C. D.513.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°14.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP二、填空题(每小题4分,共16分)15.海南省农村公路通畅工程建设,截止2009年9月30日,累计完成投资约4 620 000 000元,数据4 620 000 000用科学记数法表示应为.16.△ABC中,如果AB=8cm,BC=5cm,那么AC的取值范围是.17.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是.18.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD 的周长为cm.三、解答题(本大题共62分)19.计算:(1)(2)解方程组.20.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度数.22.如图所示的正方形网格中,△ABC的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A、B两点的坐标;(2)作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1两点的坐标;(3)请求出△A1B1C1的面积.23.如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF 相等.(1)△ABC与△DEF全等吗?(2)两个滑梯的倾斜角∠ABC与∠DFE的大小有什么关系.24.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.2017-2018学年无为尚文学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【考点】KE:全等三角形的应用.【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.3.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠A B.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点【考点】KJ:等腰三角形的判定与性质;K7:三角形内角和定理.【分析】根据∠A=36°,AB=AC,BD平分∠ABC,可得△ABD与△BCD都是等腰三角形,据此判断各选项是否正确即可.【解答】解:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∴∠C=2∠A,故(A)正确;∵BD平分∠ABC,∴∠ABD=36°,∴∠BDC=36°+36°=72°,∴∠BDC=∠C,∴BD=BC,故(B)正确;∵∠A=∠ABD=36°,∴△ABD是等腰三角形,故(C)正确;∵BD<CD,∴AD>CD,∴D不是AC的中点,故(D)错误.故选:D4.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.和点P(﹣3,2)关于y轴对称的点是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【解答】解:和点P(﹣3,2)关于y轴对称的点是(3,2),故选A.【点评】本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n ﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.7.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.【解答】解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选B.【点评】三角形按边分类:不等边三角形和等腰三角形(等边三角形);三角形按角分类:锐角三角形,钝角三角形,直角三角形.8.一个等腰三角形的两边长分别为2和5,则它的周长为()A.7 B.9 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为5时,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;根据三角形三边关系可知:等腰三角形的腰长只能为5,这个三角形的周长是12.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.10.如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【考点】直角三角形的性质;平行线的性质.【专题】计算题.【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B等于()A.60°B.70°C.80°D.90°【考点】三角形的外角性质.【分析】直接利用三角形外角的性质得出∠A+∠B=∠ACD,进而得出答案.【解答】解:∵∠A=80°,∠ACD=150°,∠A+∠B=∠ACD,∴∠B=∠ACD﹣∠A=150°﹣80°=70°.故选:B.【点评】此题主要考查了三角形外角的性质,正确把握外角的定义是解题关键.12.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4 C. D.5【考点】全等三角形的判定与性质.【分析】由∠ABC=45°,AD是高,得出BD=AD后,证△ADC≌△BDH后求解.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C,∴△ADC≌△BDH,∴BH=AC=4.故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.由∠ABC=45°,AD是高,得出BD=AD是正确解答本题的关键.13.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】全等三角形的判定.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP【考点】角平分线的性质.【分析】本题要从已知条件OP平分∠AOB入手,利用角平分线的性质,对各选项逐个验证,选项D是错误的,虽然垂直,但不一定平分OP.【解答】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选D.【点评】本题主要考查平分线的性质,由已知能够注意到△OPA≌△OPB,进而求得△AOE≌△BOE 是解决的关键.二、填空题(每小题4分,共16分)15.海南省农村公路通畅工程建设,截止2009年9月30日,累计完成投资约4 620 000 000元,数据4 620 000 000用科学记数法表示应为4.62×109.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.题中4 620 000 000有10位整数,所以n=10﹣1=9.【解答】解:数据4 620 000 000用科学记数法表示应为4.62×109.故答案为4.62×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.△ABC中,如果AB=8cm,BC=5cm,那么AC的取值范围是3cm<AC<13cm.【考点】三角形三边关系.【分析】根据三角形两边之和大于第三边.三角形的两边差小于第三边.可得8cm﹣5cm<AC<8cm+5cm.【解答】解:根据三角形的三边关系可得:8cm﹣5cm<AC<8cm+5cm,即:3cm<AC<13cm,故答案为:3cm<AC<13cm.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.17.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【考点】全等三角形的判定.【专题】开放型.【分析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.18.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD 的周长为8cm.【考点】线段垂直平分线的性质.【专题】计算题.【分析】由于DE为AB的垂直平分线,根据线段垂直平分线的性质得到CD=BD,由此推出△ACD 的周长=AC+CD+AD=AC+AD+BD=AC+AB,即可求得△ACD的周长.【解答】解:∵DE为BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+CD+AD=AC+AD+BD=AC+AB,而AC=3cm,AB=5cm,∴△ACD的周长为3+5=8cm.故答案为:8.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.三、解答题(本大题共62分)19.计算:(1)(2)解方程组.【考点】实数的运算;解二元一次方程组.【专题】计算题;实数.【分析】(1)原式利用绝对值的代数意义,算术平方根定义,以及乘法法则计算即可得到结果;(2)方程组利用加减消元法求出解即可.【解答】解:(1)原式=+3+=1+3=4;(2),①+②得:2x=16,即x=8,把x=8代入①得:y=2,则方程组的解为.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.【考点】多边形内角与外角.【分析】设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,求解即可.【解答】解:设这个多边形的边数为n,根据题意,得(n﹣2)×180°=3×360°﹣180°,解得n=7.所以这个多边形的内角和为:(7﹣2)•180°=900°.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.21.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度数.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】根据三角形的内角和定理,高线、角平分线的定义进行解答即可.【解答】解:∵在△ABC中,AD是高,∴∠ADC=90°,∵在△ACD中,∠C=50°,∴∠DAC=90°﹣50°=40°,∵在△ABC中,∠C=50°,∠BAC=60°,∴∠ABC=70°,∵在△ABC中,AE,BF是角平分线,∴∠EAC=∠BAC=30°,∠FBC=∠ABC=35°,∴∠BOA=∠BEA+∠FBC=∠C+∠EAC+∠FBC=50°+30°+35°=115°.【点评】本题考查了三角形的内角和定理,高线、角平分线的定义,熟记定义并准确识图,理清图中各角度之间的关系是解题的关键.22.如图所示的正方形网格中,△ABC的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A、B两点的坐标;(2)作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1两点的坐标;(3)请求出△A1B1C1的面积.【考点】作图-轴对称变换.【分析】(1)根据图中坐标系写出点A、B两点的坐标即可;(2)首先确定A、B、C三点关于y轴对称的点,再连接即可;(3)把△A1B1C1放在一个矩形内,再利用矩形的面积减去周围多余三角形的面积即可.【解答】解:(1)A(﹣1,0)、B(﹣2,﹣2);(2)如图所示,A1(1,0)、B1(2,﹣2);(3)△A1B1C1的面积为3×2﹣2××1×2﹣×1×3=2.5.【点评】此题主要考查了作图﹣﹣轴对称变换,关键是正确确定A、B、C三点对称点的位置.23.如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF 相等.(1)△ABC与△DEF全等吗?(2)两个滑梯的倾斜角∠ABC与∠DFE的大小有什么关系.【考点】全等三角形的应用.【分析】(1)由图可得,△ABC与△DEF均是直角三角形,由已知可根据HL判定两三角形全等;(2)利用(1)中全等三角形的对应角相等,不难求解.【解答】解:(1)△ABC与△DEF全等.理由如下:在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL);(2)∠ABC+∠DFE=90°,理由如下:由(1)知,Rt△ABC≌Rt△DEF,则∠ABC=∠DEF,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.【点评】此题考查了学生对全等三角形的判定及性质的运用.做题时要注意找已知条件,根据已知选择方法.24.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【考点】线段垂直平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.。
2017-2018学年八年级(上)期中数学试卷一、单项选择题(每小题3分,共24分)1.下列计算正确的是()A.(﹣2ab2)3=﹣2a3b6B.b3•b3=b6C.a3÷a=2a D.(a5)2=a72.下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.3.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°4.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.54°B.60°C.66°D.76°5.如图(1),△ABC是等腰直角三角形,∠C=90°,AD为BC边上的中线,沿中线AD 把△ABC折叠,如图(2),则下列判断正确的是()A.S△BDG>S△ACG B.S△BDG=S△ACG C.S△BDG<S△ACG D.无法确定6.在平面直角坐标系内有两点A(﹣a,2),B(6,b),它们关于x轴对称,则a+b 的值()A.4 B.﹣4 C.8 D.﹣87.对任意正整数n,按下列程序计算,应输出答案为()A.n2﹣n+1 B.n2﹣1 C.3﹣n D.18.如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2 B.3 C.4 D.5二、填空题(每小题3分,共27分)9.计算:(﹣)2015×(﹣)2016=.10.三角形三边长分别为3,a,8,则a的取值范围是.11.要使四边形木架(用4根木条钉成)不变形,至少要再钉上根木条.12.如图是用七巧板拼成的一艘帆船,其中全等的三角形共有对.13.如图,OP是∠AOB的平分线,PC⊥OA于C,且PC=3cm,则点P到OB的距离等于.14.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB 的依据是(填SSS,SAS,AAS,ASA中的一种).15.等腰三角形腰上的高等于腰长的一半,则这个等腰三角形的顶角为度.16.如图,在△ABC中,AD垂直平分BC,AC=EC,点B、C、D、E在同一直线上,则AB+BD DE(用“<”,“>”,“=”填空).17.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.三、解答题18.计算(1)ab2•(﹣6abc)÷9ab2c.(2)(﹣5x3)(﹣2x2)•x4﹣2x4•(﹣0.25x5)19.先化简,再求值:x2(2﹣x)+(x2+1)(x﹣3),其中x=.20.如图所示,在平面直角坐标系中A(﹣3,1),B(﹣2,4),C(2,1).(1)△ABC中的面积是.(2)在图中作出△ABC关于y轴的对称图形△A′B′C′,并写出A′、B′、C′的坐标.(3)△ABC与△A′B′C′重叠部分的图形是三角形.21.如图,已知BE⊥AD,CF⊥AD,且BE=CF.请你判断AD是△ABC的中线还是角平分线?请说明你判断的理由.22.如图,在△ABC中,∠C=36°,∠ABC=110°,且DE⊥AB于E,DF⊥AC 于F,DE=DF.求∠ADB的度数.23.如图(1)尺规作图:画线段AB的垂直平分线DE交AC于点D.(2)若AB=AC,AD=BD=BC,求△ABC各角的度数.24.如图,在Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.求证:(1)DE=DF;(2)△DEF为等腰直角三角形.25.如图,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD.AB=4(1)在AB边上求作点P,使PC+PD最小.(2)求出(1)中PC+PD的最小值.26.在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AE DB(填“>”“<”或“=”)(2)当点E为AB上任意一点时,如图②,AE DB(填“>”“<”或“=”),并说明理由.(提示:过E作EF∥BC,交AC于点F)。
2017-2018学年度八年级期中考试试题一、选择题(每小题 3分,计30分)1,如图,在 CD 上求一点P ,使它到OA , OB 的距离相等,则 P 点是( )A.线段CD 的中点B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与/ AOB 的平分线的交点2. 如图所示,△ ABD ◎△ CDB ,下面四个结论中,不正确的是( )A. △ ABD 和厶CDB 的面积相等 C.Z A+ / ABD = Z C+ / CBDB. △ ABD 和厶CDB 的周长相等 D.AD // BC ,且 AD = BC 3. 如图,已知 AB = DC , AD = BC , E, F 在 DB 上两点且 BF = DE ,若/ AEB = 120 ° Z ADB=30° 则Z BCF =(A.150 ° B.40 °4•如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与 书上完全一样的三角形,那么这两个三角形完全一样的依据是( )5.如图,AB 丄 BC , BE 丄AC ,Z 1 = Z 2, AD = AB ,则( )A. Z 1 = Z EFDB.BE = ECC.BF = DF = CDD.FD // BC6.如图所示,BE 丄 AC 于点 D ,且 AD = CD , BD = ED ,若Z ABC = 54 ° 则Z E =( )O(1)D BA. SSSB. SASC. AASD. ASAA.25 °B.27C.30D.45(4)12(5)(6)C.80B(3) C7. 小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是()A. 10:51B.10:21C.15:01D.12:01 [l S: D8•在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是(A 80 °B 20 °C 80 。
或 20°D 不能确定10.点p(3,- 5)关于x 轴对称的点的坐标为( )A (- 3,- 5)B • (5,3)C • (- 3,5)D •(3,5)二、填空题(每小题3分,计30分)11、如图,根据“三线合一”性质填空,在△ ABC 中16.已知点P(一 2, 3)关于」「一 *「-则a+b 的值为——•17•已知等腰三角形的周长为24, 一边长为10,则另外两边的长是 _______________18.A ABC 中,/ C=90° , AD 平分/ BAC 交BC 于点D ,且CD=4cm ,则点D 到AB?的距 离是 ________(1)v AB=AC , AD 丄 BC , (2)v AB=AC , AD 是中线, (3)v AB=AC , AD 是角平分线,12、若等腰三角形的一个角为 70° ,则其余两角为 _________________13、 已知等腰三角形的两条边是4和9,则其周长为14.如图 5,在4 AOC 与厶 BOC 中,若 AO=OB ,/ 1 = / 2, AOCBOC 。
加上条件,则有△BD=BC , O 为AB 上一点,那么, 图中共有 对全等三角形.9•已知等腰三角形的一个外角等于100°,则它的顶角是( ).D15.已知,如图,AD=AC , O19.如图4,已知AB=AC, Z A=40° AB的垂直平分线MN交AC于点D,则/DBC=20、如图:在三角形ABC中, AB=AC,且BD=BC=AD贝9厶ABC各内角中,/ A=/ ABC=三/解答题,(每题10分,计40分)21、2.(本题5分)如图5,在平面直角坐标系中,A(1,2),B(3, 1), C(-2, -1).(2)写出点A, B1?G的坐标(直接写答案)A iB1C122.(本题7分)如图6,Z仁Z2,Z C=Z D,求证:i y3 i ::!:3I ・11 : 1;:!:12..... r * sA 1I!T TP T U T Mh1/>S%J B !/<<[i|-3尹1 i2 =3 i-1 1 T i1 : I: !:r! h1 1-2 1 . I l : I iJ- !i 1 ; i吐―…A ___ 」___ii a ■I i j图5x24.(本题8 分)如图8,在ABC 中,ACB 90°, AC BC,BE CE 于E , AD CE于D, AD 5cm, DE 3cm,你知道BE的长吗?23、如图,已知PC=PD,且AB// CD 求证:PA=PBC图82017-2018学年度八年级期中数学试卷一、选择题(每小题3分,共42分)1 .下列图形中,不是轴对称图形的是()A. B . C . D .2 .如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A .带①去B .带②去C .带③去D .带①②去3 .如图,△ ABC中,/ A=36°, AB=AC , BD平分/ ABC,下列结论错误的是()A. / C=2 / A B . BD=BCC . △ ABD是等腰三角形D .点D为线段AC的中点4 .下列图形中,不是轴对称图形的是()A. B . C . D .5. 和点P (- 3, 2)关于y轴对称的点是()A. (3, 2)B. (- 3, 2)C . (3, -2)D. (- 3, - 2)6. 若一个多边形的内角和为1080° ,则这个多边形的边数为()A. 6 B . 7 C . 8 D . 97 .若一个三角形三个内角度数的比为 2 : 3 : 4,那么这个三角形是()A .直角三角形B .锐角三角形C .钝角三角形D .等边三角形&一个等腰三角形的两边长分别为2和5,则它的周长为()A. 7 B . 9 C . 12 D . 9 或129.如图,a、b、c分别表示△ ABC的三边长,则下面与△ ABC 一定全等的三角形是()A .B .C .D .12 .如图,已知△ ABC中,/ ABC=45 , AC=4 , H是高AD和BE的交点,则线段BH的长度为()A. B . 4 C . D . 513 .如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ ABC ◎△ ADC的是()A. CB=CD B . / BAC= / DAC C . / BCA= / DCA D . / B= / D=90°14 .如图,OP平分/AOB , PA丄OA , PB丄OB,垂足分别为A , B .下列结论中不一定成立的是()A. PA=PB B . PO 平分/ APB C . OA=OB D . AB 垂直平分OP二、填空题(每小题4分,共16分)15 .海南省农村公路通畅工程建设,截止2009年9月30 日,累计完成投资约4 620 000 000 元,数据4 620 000 000用科学记数法表示应为16 . △ ABC中,如果AB=8cm , BC=5cm,那么AC的取值范围是17 .如图,AB、CD相交于点O, AD=CB,请你补充一个条件,使得△ AOD ◎△ COB,你补充的条件是18 .如图,在△ ABC中,AB=5cm , AC=3cm , BC的垂直平分线分别交AB、BC于D、E ,则厶ACD的周长为cm .三、解答题(本大题共62分)19 .计算:(1)(2 )解方程组.20 . 一个多边形的内角和比它的外角和的3倍少180°求这个多边形的边数和内角和.21 .如图,△ ABC中,AD是高,AE、BF是角平分线,它们相交于点O, / BAC=60/ C=50 °求/ DAC及/ BOA的度数.22 .如图所示的正方形网格中,△ ABC的顶点均在格点上,在所给直角坐标系中解答下列问题:(1) 分别写出点A、B两点的坐标;(2) 作出△ ABC关于y轴对称的△ A1B1C1 ,并分别写出点A1、B1两点的坐标;(3) 请求出△ A1B1C1的面积.23 .如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)△ ABC与厶DEF全等吗?(2)两个滑梯的倾斜角 / ABC与/DFE的大小有什么关系.24 .如图,在四边形ABCD中,AD // BC , E为CD的中点,连接AE、BE , BE丄AE,延长AE 交BC的延长线于点F .求证:(1)FC=AD ;(2)AB=BC+AD .2017-2018学年无为尚文学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1 .下列图形中,不是轴对称图形的是( )A、 B . C . D .【考点】P3 :轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2 .如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )A .带①去B .带②去C .带③去D .带①②去【考点】KE:全等三角形的应用.【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.3 .如图,△ ABC中,/ A=36°, AB=AC , BD平分/ ABC,下列结论错误的是()A. / C=2 / A B . BD=BCC . △ ABD是等腰三角形D .点D为线段AC的中点【考点】KJ :等腰三角形的判定与性质;K7 :三角形内角和定理.【分析】根据/ A=36°, AB=AC , BD平分/ ABC,可得△ ABD与厶BCD都是等腰三角形, 据此判断各选项是否正确即可.【解答】解:•/ / A=36°, AB=AC ,••• / ABC= / C=72 °••• / C=2 / A,故(A)正确;•/ BD 平分 / ABC ,•/ ABD=36 °•/ BDC=36 °36 °72 °•/ BDC= / C ,• BD=BC,故(B)正确;•/ / A= / ABD=36 °•△ ABD是等腰三角形,故(C)正确;•/ BD v CD ,• AD > CD ,• D不是AC的中点,故(D)错误.故选:D4 .下列图形中,不是轴对称图形的是()A、 B . C . D .【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念. 轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.和点P (- 3, 2)关于y轴对称的点是()A. (3, 2)B. (- 3, 2)C . (3, -2)D. (- 3, - 2)【考点】关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】平面直角坐标系中任意一点P (X, y),关于y轴的对称点的坐标是(- X, y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【解答】解:和点P (- 3, 2)关于y轴对称的点是(3, 2),故选A.【点评】本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系•是需要识记的内容.6•若一个多边形的内角和为1080° ,则这个多边形的边数为()A. 6 B . 7 C . 8 D . 9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180。