转轴的力臂。
z
or
d
F
P
Mz的方向平行于转轴,由右手螺旋定则确定。
2、F不在转轴平面内 把F分解为三个分量 Fz, Fr, Ft, Fr的力矩为零, Fz的力矩不为零, 但不影响刚体的定轴转动, Ft的力矩沿轴向, 它对角动量有贡献。
z
Fz
F
r
o
P Fr
Ft
3、多个力作用于刚体 各外力作用点各不相同,外力对转轴
1、转动定律适用条件:刚体定轴转动。 2、M 一定:作用不同刚体上,J 大时,β 小, 转速不宜
改变,转动惯性大。反之,J 小,转动惯性小。 — 转动惯量是物体转动惯性大小的量度。
M J 类比 F ma
3、刚体转动定律是解决刚体转动问题的重要定律。 应用时应注意以下问题: ① 力矩和转动惯量必须对同一转轴而言。
M
r
m1
对重物应用牛顿第二定律,得
T f m 2 g si n m 2 a
N
T
对滑轮应用转动定律,得
f
• o
T
MTrJ
m2g
关联方程为: a r
J
1 2
m1r 2
TT fN m 2gco s
联立得:
Mm2grsinm2gcos
1 2m1r2m2r2
由于 为常量,故滑轮作匀变速转动.则
2 2
an
l2
9gcos
4
例题5-10 一恒力矩M作用于斜面顶点的滑轮上,滑轮的半径为r,
质量为m1,质量为m2的重物通过一不可伸长的轻绳固定在轮的边
缘,重物沿倾角为α的斜面上升.重物与斜面间的摩擦系数为μ。
求:轮子由静止开始转过角 后获得多大的角速度?