中考数学试题分类汇编——函数
- 格式:doc
- 大小:287.57 KB
- 文档页数:10
2021全国中考真题分类汇编(函数)----函数的实际应用一、选择题1. (2021·安徽省)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( ) A. 23cmB. 24cmC. 25cmD. 26cm2. (2021•江苏省连云港)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征. 甲:函数图像经过点;乙:函数图像经过第四象限;丙:当0x >时,y 随x 的增大而增大. 则这个函数表达式可能是( ) A. y x =-B. 1y x=C. 2yx D. 1y x=-3. (2021•四川省自贡市)已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A. 函数解析式为13I R=B. 蓄电池的电压是18VC. 当10A I ≤时, 3.6R ≥ΩD. 当6R =Ω时,4A I =4. (2021•江苏省苏州市)如图,线段AB =10,点C 、D 在AB 上,以每秒1个单位长度的速度沿着AB 向点D 移动,到达点D 后停止移动.在点P 移动过程中作如下操作:先以点P 为圆心,再将两个扇形分别围成两个圆锥的侧面,设点P 的移动时间为t (秒),则S 关于t 的函数图象大致是( )A.B.C.D.5.(2021•江西省)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A. B.C.D.6.(2021•山东省聊城市)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=a b cx++的图象在同一坐标系中大致为()A. B. C. D.7.(2021•山东省聊城市)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为__________.8.(2021•上海市)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.9.(2021•湖北省恩施州)某物体在力F的作用下,沿力的方向移动的距离为s,力对物体所做的功W与s的对应关系如图所示,则下列结论正确的是()A .W =sB .W =20sC .W =8sD .s =10. (2021•浙江省杭州)已知y 1和y 2均是以x 为自变量的函数,当x =m 时,函数值分别是M 1和M 2,若存在实数m ,使得M 1+M 2=0,则称函数y 1和y 2具有性质P .以下函数y 1和y 2具有性质P 的是( ) A .y 1=x 2+2x 和y 2=﹣x ﹣1 B .y 1=x 2+2x 和y 2=﹣x +1C .y 1=﹣和y 2=﹣x ﹣1D .y 1=﹣和y 2=﹣x +111. (2021•浙江省丽水市)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F F F F 丁乙甲丙、、、,将相同重量的水桶吊起同样的高度,若 F F F F <<<甲丁丙乙,则这四位同学对杆的压力的作用点到支点的距离最远的是( )A. 甲同学B. 乙同学C. 丙同学D. 丁同学12. (2021•湖南省张家界市)若二次函数)0(2≠++=a c bx ax y 的图象如图所示,则一次函数b ax y +=与反比例函数xcy -=在同一个坐标系内的大致图象为( )13. (2021•北京市)如图,用绳子围成周长为10m 的矩形,记矩形的一边长为xm ,它的邻边长为ym ,矩形的面积为Sm 2.当x 在一定范围内变化时,y 和S 都随x 的变化而变化,则y 与x ,S 与x 满足的函数关系分别是( )O yxO y xAO y Bx O yCxO yDxA .一次函数关系,二次函数关系B .反比例函数关系,二次函数关系C .一次函数关系,反比例函数关系D .反比例函数关系,一次函数关系14. (2021•内蒙古包头市) 已知二次函数2(0)y ax bx c a =-+≠的图象经过第一象限的点(1,)b -,则一次函数y bx ac =-的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限15. (2021•深圳)二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )ABCD16. (2021•湖南省娄底市)用数形结合等思想方法确定二次函数22y x =+的图象与反比例函数2y x=的图象的交点的横坐标0x 所在的范围是( ) A. 0104x <≤ B.01142x <≤ C.01324x <≤ D.0314x <≤ 二、填空题1. (2021•江苏省连云港)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.2. (2021•江苏省无锡市)请写出一个函数表达式,使其图象在第二、四象限且关于原点对称: .3.(2021•襄阳市)从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y (单位:m )与它距离喷头的水平距离x (单位:m )之间满足函数关系式2-241y x x =++,喷出水珠的最大高度是______m .三、解答题1. (2021•湖北省黄冈市)红星公司销售一种成本为40元/件产品,若月销售单价不高于50元/件,一个月可售出5万件,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件). (1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元2. (2021•湖北省武汉市)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品.A 原料的单价是B 原料单价的1.5倍,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.3.(2021•怀化市)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如表:进货批次A型水杯(个)B型水杯(个)总费用(元)一1002008000二20030013000(1)求A、B两种型号的水杯进价各是多少元?(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?4.(2021•江苏省扬州)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;a>给慈善机构,如果捐款后甲公(3)甲公司热心公益事业,每租出1辆汽车捐出a元()0司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.5.(2021•山东省临沂市)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t (单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s时,它行驶的路程是多少?(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?6.(2021•河北省)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C(10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]7.(2021•河北省)如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴距离OK=10.从点A处向右上方沿抛物线L:y=﹣x2+4x+12发出一个带光的点P.(1)求点A的横坐标,且在图中补画出y轴,并直接指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的解析式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?[注:(2)中不必写x的取值范围]8. (2021•湖北省随州市)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?9. (2021•四川省达州市)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,每天可销售500千克,为增大市场占有率,工厂采取降价措施,批发价每千克降低1元(1)写出工厂每天的利润W 元与降价x 元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?10. (2021•四川省乐山市)通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段;当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.11. (2021•天津市)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系.请根据相关信息,解答下列问题: (Ⅰ)填表 离开学校的时间/h 0.1 0.5 0.8 1 3离学校的距离/km 212(Ⅱ)填空:①书店到陈列馆的距离为________km ; ②李华在陈列馆参观学的时间为_______h ;③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ; ④当李华离学校的距离为4km 时,他离开学校的时间为_______h . (Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.12.(2021•浙江省丽水市)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?13.(2021•浙江省宁波市)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用(元)20 56 266每月免费使用流量(兆)1024 m 无限超出后每兆收费(元)n nA,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?14.(2021•浙江省台州)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1,R1与踏板上人的质量m之间的函数关系式为R1=km+b(其中k,b为常数,0≤m≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U0 ,该读数可以换算为人的质量m,温馨提示:①导体两端的电压U,导体的电阻R,通过导体的电流I,满足关系式I=U R;②串联电路中电流处处相等,各电阻两端电压之和等于总电压.(1)求k,b的值;(2)求R1关于U0的函数解析式;(3)用含U0的代数式表示m;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.15.(2021•湖北省荆门市)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.x407090y1809030W360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.16.(2021•贵州省铜仁市)某品牌汽车销售店销售某种品牌汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降x )满足价销售.通过市场调查得到了每辆降价的费用1y(万元)与月销售量x(辆)(4某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y与x的关系式1y=________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y=(每辆原售价-1y-进价)x,x x≥为多少时,销售利润最大?最大利润是多少?请你根据上述条件,求出月销售量()417.(2021•浙江省衢州卷)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD 均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.18.(2021•贵州省贵阳市)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:产品展板宣传册横幅1制作一件产品所需时间(小时)制作一件产品所获利润20310(元)(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;(2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.19.(2021•贵州省贵阳市)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).(3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m >0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.20.(2021•绥化市)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息,已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行.第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)m=_______,n=______;(2)求CD和EF所在直线的解析式;(3)直接写出t为何值时,两人相距30米.21.(2021•浙江省金华市)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.22.(2021•浙江省绍兴市)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,且点A,B 关于y轴对称,杯高DO=8,杯底MN在x轴上.(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围);(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯口直径A′B′∥AB,杯脚高CO不变,求A′B′的长.。
有关函数的应用题1.(2022年东营)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?2.(2020济南)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?3.(2021)20.(8分)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?4.(2022)19. 某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B 两地,两种货车载重量及到A,B两地的运输成本如下表:(1)求甲、乙两种货车各用了多少辆;(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A地的甲种货车为t辆.①写出w与t之间的函数解析式;②当t为何值时,w最小?最小值是多少?5.(2017年莱芜)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种6.(2018年莱芜)口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?7.(2019年莱芜)某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?8.(2017临沂)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?。
2021年四川省中考数学试题分类汇编——专题5二次函数一.选择题(共8小题)1.(2021•达州)如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=12,有下列结论:①abc>0;②a+b>0;③4a+2b+3c<0;④无论a,b,c取何值,抛物线一定经过(c2a,0);⑤4am2+4bm﹣b≥0.其中正确结论有()A.1个B.2个C.3个D.4个2.(2021•广元)将二次函数y=﹣x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时,b的值为()A.−214或﹣3B.−134或﹣3C.214或﹣3D.134或﹣33.(2021•广安)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0,②4a﹣2b+c<0,③a﹣b≥x(ax+b),④3a+c<0,正确的有()A.1个B.2个C.3个D.4个4.(2021•眉山)在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为()A.y=﹣x2﹣4x+5B.y=x2+4x+5C.y=﹣x2+4x﹣5D.y=﹣x2﹣4x﹣5 5.(2021•资阳)已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为()A.﹣4≤a<−32B.﹣4≤a≤−32C.−32≤a<0D.−32<a<06.(2021•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的是()A.abc>0B.函数的最大值为a﹣b+cC.当﹣3≤x≤1时,y≥0D.4a﹣2b+c<07.(2021•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b2<4ac;③2c<3b;④a+b>m(am+b)(m≠1);⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2.其中正确的结论有()A.2个B.3个C.4个D.5个8.(2021•泸州)直线l过点(0,4)且与y轴垂直,若二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a(其中x是自变量)的图象与直线l有两个不同的交点,且其对称轴在y轴右侧,则a的取值范围是()A.a>4B.a>0C.0<a≤4D.0<a<4二.填空题(共2小题)9.(2021•南充)关于抛物线y=ax2﹣2x+1(a≠0),给出下列结论:①当a<0时,抛物线与直线y=2x+2没有交点;②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),则a≥1.其中正确结论的序号是.10.(2021•成都)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.三.解答题(共16小题)11.(2021•广元)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.12.(2021•达州)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W元与降价x元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?13.(2021•达州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴于点A和C(1,0),交y轴于点B(0,3),抛物线的对称轴交x轴于点E,交抛物线于点F.(1)求抛物线的解析式;(2)将线段OE绕着点O沿顺时针方向旋转得到线段OE',旋转角为α(0°<α<90°),连接AE′,BE′,求BE′+13AE′的最小值;(3)M为平面直角坐标系中一点,在抛物线上是否存在一点N,使得以A,B,M,N 为顶点的四边形为矩形?若存在,请直接写出点N的横坐标;若不存在,请说明理由.14.(2021•广安)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c的图象与坐标轴相交于A、B、C三点,其中A点坐标为(3,0),B点坐标为(﹣1,0),连接AC、BC.动点P从点A出发,在线段AC上以每秒√2个单位长度向点C做匀速运动;同时,动点Q 从点B出发,在线段BA上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ,设运动时间为t秒.(1)求b、c的值.(2)在P、Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?(3)在线段AC上方的抛物线上是否存在点M,使△MPQ是以点P为直角顶点的等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.15.(2021•资阳)抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且B(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于直线AC 上方的一点,BP 与AC 相交于点E ,当PE :BE =1:2时,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿CD 方向平移,使点D 落在点D '处,且DD '=2CD ,点M 是平移后所得抛物线上位于D '左侧的一点,MN ∥y 轴交直线OD '于点N ,连结CN .当√55D 'N +CN 的值最小时,求MN 的长. 16.(2021•南充)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价;(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y (元)与购进数量x (千克)之间的函数关系式;(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价z (元/千克)与一天销售数量x (千克)的关系为z =−1100x +12.在(2)的条件下,要使超市销售苹果利润w (元)最大,求一天购进苹果数量.(利润=销售收入﹣购进支出)17.(2021•眉山)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +4(a ≠0)经过点A (﹣2,0)和点B (4,0).(1)求这条抛物线所对应的函数表达式;(2)点P 为该抛物线上一点(不与点C 重合),直线CP 将△ABC 的面积分成2:1两部分,求点P 的坐标;(3)点M 从点C 出发,以每秒1个单位的速度沿y 轴移动,运动时间为t 秒,当∠OCA=∠OCB﹣∠OMA时,求t的值.18.(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=5 2.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F 的坐标;若不存在,请说明理由.19.(2021•乐山)已知关于x的一元二次方程x2+x﹣m=0.(1)若方程有两个不相等的实数根,求m的取值范围;(2)二次函数y=x2+x﹣m的部分图象如图所示,求一元二次方程x2+x﹣m=0的解.20.(2021•乐山)已知二次函数y =ax 2+bx +c 的图象开口向上,且经过点A (0,32),B (2,−12).(1)求b 的值(用含a 的代数式表示);(2)若二次函数y =ax 2+bx +c 在1≤x ≤3时,y 的最大值为1,求a 的值;(3)将线段AB 向右平移2个单位得到线段A ′B ′.若线段A ′B ′与抛物线y =ax 2+bx +c +4a ﹣1仅有一个交点,求a 的取值范围.21.(2021•成都)如图,在平面直角坐标系xOy 中,抛物线y =a (x ﹣h )2+k 与x 轴相交于O ,A 两点,顶点P 的坐标为(2,﹣1).点B 为抛物线上一动点,连接AP ,AB ,过点B 的直线与抛物线交于另一点C .(1)求抛物线的函数表达式;(2)若点B 的横坐标与纵坐标相等,∠ABC =∠OAP ,且点C 位于x 轴上方,求点C 的坐标;(3)若点B 的横坐标为t ,∠ABC =90°,请用含t 的代数式表示点C 的横坐标,并求出当t <0时,点C 的横坐标的取值范围.22.(2021•凉山州)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于C点,AC=√10,OB=OC=3OA.(1)求抛物线的解析式;(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大,求出点P的坐标;(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q,使点P、B、M、Q为顶点的四边形是平行四边形,若存在,请直接写出Q点的坐标;若不存在,请说明理由.23.(2021•遂宁)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?24.(2021•遂宁)如图,已知二次函数的图象与x轴交于A和B(﹣3,0)两点,与y轴交于C(0,﹣3),对称轴为直线x=﹣1,直线y=﹣2x+m经过点A,且与y轴交于点D,与抛物线交于点E,与对称轴交于点F.(1)求抛物线的解析式和m的值;(2)在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△AOD相似,若存在,求出点P的坐标;若不存在,试说明理由;(3)直线y=1上有M、N两点(M在N的左侧),且MN=2,若将线段MN在直线y =1上平移,当它移动到某一位置时,四边形MEFN的周长会达到最小,请求出周长的最小值(结果保留根号).25.(2021•泸州)如图,在平面直角坐标系xOy中,抛物线y=−14x2+32x+4与两坐标轴分别相交于A,B,C三点.(1)求证:∠ACB=90°;(2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F.①求DE+BF的最大值;②点G是AC的中点,若以点C,D,E为顶点的三角形与△AOG相似,求点D的坐标.26.(2021•自贡)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.(1)直接写出∠OCA的度数和线段AB的长(用a表示);(2)若点D为△ABC的外心,且△BCD与△ACO的周长之比为√10:4,求此抛物线的解析式;(3)在(2)的前提下,试探究抛物线y=(x+1)(x﹣a)上是否存在一点P,使得∠CAP=∠DBA?若存在,求出点P的坐标;若不存在,请说明理由.2021年四川省中考数学试题分类汇编——专题5二次函数参考答案与试题解析一.选择题(共8小题)1.【解答】解:①∵抛物线的对称轴为直线x =12,即对称轴在y 轴的右侧, ∴ab <0,∵抛物线与y 轴交在负半轴上,∴c <0,∴abc >0,故①正确;②∵抛物线的对称轴为直线x =12,∴−b 2a =12,∴﹣2b =2a ,∴a +b =0,故②不正确;③∵抛物线y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)经过点(2,0),∴4a +2b +c =0,∵c <0,∴4a +2b +3c <0,故③正确;④由对称得:抛物线与x 轴另一交点为(﹣1,0),∵{a +b =04a +2b +c =0, ∴c =﹣2a ,∴c 2a =−1,∴当a ≠0,无论b ,c 取何值,抛物线一定经过(c 2a ,0),故④正确;⑤∵b =﹣a , ∴4am 2+4bm ﹣b =4am 2﹣4am +a =a (4m 2﹣4m +1)=a (2m ﹣1)2,∵a>0,∴a(2m﹣1)2≥0,即4am2+4bm﹣b≥0,故⑤正确;本题正确的有:①③④⑤,共4个.故选:D.2.【解答】解:二次函数解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则抛物线y=﹣x2+2x+3与x轴的交点为A(﹣1,0),B(3,0),把抛物线y=﹣x2+2x+3图象x轴S4方的部分沿x轴翻折到x轴下方,则翻折部分的抛物线解析式为y=(x﹣1)2﹣4(﹣1≤x≤3),顶点坐标M(1,﹣4),如图,当直线y=x+b过点B时,直线y=x+b与该新图象恰好有三个公共点,∴3+b=0,解得b=﹣3;当直线y=x+b与抛物线y=(x﹣1)2﹣4(﹣3≤x≤1)相切时,直线y=x+b与该新图象恰好有三个公共点,即(x﹣1)2﹣4=x+b有相等的实数解,整理得x2﹣3x﹣b﹣3=0,△=32﹣4(﹣b﹣3)=0,解得b=−21 4,所以b的值为﹣3或−21 4,故选:A.3.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣1,即−b2a=−1,∴b=2a,则b<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;∵抛物线对称轴为直线x=﹣1,与x轴的一个交点横坐标在0和1之间,则与x轴的另一个交点在﹣2和﹣3之间,∴当x=﹣2时,y=4a﹣2b+c>0,故②错误;∵x=﹣1时,y=ax2+bx+c的最大值是a﹣b+c,∴a﹣b+c≥ax2+bx+c,∴a﹣b≥ax2+bx,即a﹣b≥x(ax+b),故③正确;∵当x=1时,y=a+b+c<0,b=2a,∴a+2a+c=3a+c<0,故④正确;故选:C.4.【解答】解:由抛物线y=x2﹣4x+5=(x﹣2)²+1知,抛物线顶点坐标是(2,1).由抛物线y=x2﹣4x+5知,C(0,5).∴抛物线y=x2﹣4x+5的顶点坐标是(﹣2,9).∴该抛物线关于点C成中心对称的抛物线的表达式为:y=﹣(x+2)²+9=﹣x²﹣4x+5.故选:A.5.【解答】解:如图,由题意,抛物线的开口向下,a<0.当抛物线y=a(x﹣1)2+2经过点A(3,﹣4)时,﹣4=4a+2,∴a=−3 2,观察图象可知,当抛物线与线段AB没有交点或经过点A时,满足条件,∴−32≤a<0.故选:C.6.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc>0,所以A不符合题意;当x=﹣1时,函数的最大值为:a•(﹣1)2+b•(﹣1)+c=a﹣b+c,故B不符合题意;由图可知,抛物线与x轴的另一交点为(﹣3,0),所以﹣3≤x≤1时,y≥0,故C不符合题意;当x=﹣2时,y>0,所以,a•(﹣2)2+b•(﹣2)+c>0,即4a﹣2b+c>0,故D符合题意,故选:D.7.【解答】解:①二次函数图象性质知,开口向下,则a<0.再结合对称轴−b2a>0,得b>0.据二次函数图象与y轴正半轴相交得c>0.∴abc<0.①错.②二次函数图象与x轴交于不同两点,则b2﹣4ac>0.∴b2>4ac.②错.③∵−b2a=1,∴b=﹣2a.又当x=﹣1时,y<0.即a﹣b+c<0.∴2a﹣2b+2c<0.∴﹣3b+2c<0.2c<3b.∴③正确.④要使a+b>m(am+b)(m≠1)成立,只须a+b+c>m(am+b)+c成立.即当x=1时的y值大于当x=m时的y值成立.由于x=1时函数有最大值,所以上述式子成立.∴④正确.⑤将x轴下方二次函数图象翻折到x轴上方,则与直线y=1有四个交点即可.由二次函数图像的轴对称性知:关于对称轴对称的两个根的和为2,四个根的和为4.故⑤错.综上:③④正确,故选:A.8.【解答】解:∵直线l过点(0,4)且与y轴垂直,∴直线l为:y=4,∵二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a的图象与直线l有两个不同的交点,∴(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a=4,整理得:3x2﹣12ax+12a2+a﹣4=0,△=(﹣12a)2﹣4×3(12a2+a﹣4)=144a2﹣144a2﹣12a+48=﹣12a+48>0,∴a<4,又∵二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a=3x2﹣12ax+12a2+a对称轴在y轴右侧,∴−−12a2×3=2a>0,∴a>0,∴0<a<4,故选:D.二.填空题(共2小题)9.【解答】解:由{y =2x +2y =ax 2−2x +1,消去y 得到,ax 2﹣4x ﹣1=0, ∵△=16+4a ,a <0,∴△的值可能大于0,∴抛物线与直线y =2x +2可能有交点,故①错误.∵抛物线与x 轴有两个交点,∴△=4﹣4a >0,∴a <1,∵抛物线经过(0,1),且x =1时,y =a ﹣1<0,∴抛物线与x 轴的交点一定在(0,0)与(1,0)之间.故②正确,∵抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界), ∴−−22a>0, ∴a >0,∴1>4a−44a≥0, 解得,a ≥1,故③正确,故答案为:②③.10.【解答】解:由题意得:△=b 2﹣4ac =4﹣4k =0,解得k =1,故答案为1.三.解答题(共16小题)11.【解答】解:(1)根据表格可得出A (﹣1,0),B (3,0),C (0,3), 设抛物线解析式为y =a (x +1)(x ﹣3),将C (0,3)代入,得:3=a (0+1)(0﹣3),解得:a =﹣1,∴y =﹣(x +1)(x ﹣3)=﹣x 2+2x +3=﹣(x ﹣1)2+4,∴该抛物线解析式为y =﹣x 2+2x +3,顶点坐标为M (1,4);(2)如图1,将点沿y 轴向下平移1个单位得C ′(0,2),连接BC ′交抛物线对称轴x =1于点Q ′,过点C 作CP ′∥BC ′,交对称轴于点P ′,连接AQ ′,∵A、B关于直线x=1对称,∴AQ′=BQ′,∵CP′∥BC′,P′Q′∥CC′,∴四边形CC′Q′P′是平行四边形,∴CP′=C′Q′,Q′P′=CC′=1,在Rt△BOC′中,BC′=√OC′2+OB2=√22+32=√13,∴AQ′+Q′P′+P′C=BQ′+C′Q′+Q′P′=BC′+Q′P′=√13+1,此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,∴AQ+QP+PC的最小值为√13+1;(4)线段EF的长为定值1.如图2,连接BE,设D(t,﹣t2+2t+3),且t>3,∵EF⊥x轴,∴DF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,∵F(t,0),∴BF=OF﹣OB=t﹣3,AF=t﹣(﹣1)=t+1,∵四边形ABED是圆内接四边形,∴∠DAF+∠BED=180°,∵∠BEF+∠BED=180°,∴∠DAF=∠BEF,∵∠AFD=∠EFB=90°,∴△AFD∽△EFB,∴EFBF =AFDF,∴EFt−3=t+1t2−2t−3,∴EF=(t+1)(t−3)t2−2t−3=t2−2t−3t2−2t−3=1,∴线段EF的长为定值1.12.【解答】解:(1)由题意得:W=(48﹣30﹣x)(500+50x)=﹣50x2+400x+9000,x=2时,W=(48﹣30﹣2)(500+50×2)=9600(元),答:工厂每天的利润W元与降价x元之间的函数关系为W=﹣50x2+400x+9000,当降价2元时,工厂每天的利润为9600元;(2)由(1)得:W=﹣50x2+400x+9000=﹣50(x﹣4)2+9800,∵﹣50<0,∴x=4时,W最大为9800,即当降价4元时,工厂每天的利润最大,最大为9800元;(3)﹣50x2+400x+9000=9750,解得:x 1=3,x 2=5,∵让利于民,∴x 1=3不合题意,舍去,∴定价应为48﹣5=43(元),答:定价应为43元.13.【解答】解:(1)把C (1,0),B (0,3)代入y =﹣x 2+bx +c 中,得:{−1+b +c =0c =3, ∴b =﹣2,c =3,∴y =﹣x 2﹣2x +3,(2)在OE 上取一点D ,使得OD =13OE ,连接DE ',BD ,∵OD =13OE =13OE′,对称轴x =﹣1,∴E (﹣1,0),OE =1,∴OE '=OE =1,OA =3,∴OE′OA =OD OE′=13, 又∵∠DOE '=∠E 'OA ,△DOE '∽△E 'OA ,∴DE ′=13AE′,∴BE ′+13AE′=BE′+DE′,当B ,E ',D 三点共线时,BE ′+DE ′最小为BD ,BD =√OD 2+OB 2=√32+(13)2=√823,∴BE ′+13AE′的最小值为√823; (3)∵A (﹣3,0),B (0,3),设N (n ,﹣n 2﹣2n +3),M (x ,y ),则AB 2=18,AN 2=(n 2+2n ﹣3)2+(n +3)2,BN 2=n 2+(n 2+2n )2,∵ABMN 构成的四边形是矩形,∴△ABN 是直角三角形,若AB 是斜边,则AB 2=AN 2+BN 2,即18=(n 2+2n ﹣3)2+(n +3)2+n 2+(n 2+2n )2,解得:n 1=−1−√52,n 2=−1+√52, ∴N 的横坐标为−1−√52或−1+√52, 若AN 是斜边,则AN 2=AB 2+BN 2,即(n 2+2n ﹣3)2+(n +3)2=18+n 2+(n 2+2n )2,解得n =﹣1,∴N 的横坐标是﹣1,若BN 是斜边,则BN 2=AB 2+AN 2,即n 2+(n 2+2n )2=18+(n 2+2n ﹣3)2+(n +3)2,解得n =2,∴N 的横坐标为2,综上N 的横坐标为−1−√52,−1+√52,﹣1,2.14.【解答】解:(1)∵抛物线y =﹣x 2+bx +c 经过点A (3,0),B (﹣1,0),则 {0=−9+3b +c 0=−1−b +c, 解得:{b =2c =3; (2)由(1)得:抛物线表达式为y =﹣x 2+2x +3,C (0,3),A (3,0),∴△OAC 是等腰直角三角形,由点P 的运动可知:AP =√2t ,过点P 作PE ⊥x 轴,垂足为E ,∴AE =PE =√2t√2=t ,即E (3﹣t ,0),又Q (﹣1+t ,0),∴S 四边形BCPQ =S △ABC ﹣S △APQ=12×4×3−12×[3−(−1+t)]t =12t 2−2t +6,∵当其中一点到达终点时,另一点随之停止运动,AC =√32+32=3√2,AB =4,∴0≤t ≤3,∴当t =2时,四边形BCPQ 的面积最小,即为12×22−2×2+6=4;(3)∵点M 是线段AC 上方的抛物线上的点,如图,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F ,∵△PMQ 是等腰直角三角形,PM =PQ ,∠MPQ =90°,∴∠MPF +∠QPE =90°,又∠MPF +∠PMF =90°,∴∠PMF =∠QPE ,在△PFM 和△QEP 中,{∠F =∠QEP∠PMF =∠QPE PM =PQ,∴△PFM ≌△QEP (AAS ),∴MF =PE =t ,PF =QE =4﹣2t ,∴EF =4﹣2t +t =4﹣t ,又OE =3﹣t ,∴点M 的坐标为(3﹣2t ,4﹣t ),∵点M 在抛物线y =﹣x 2+2x +3上,∴4﹣t =﹣(3﹣2t )2+2(3﹣2t )+3,解得:t =9−√178或9+√178(舍), ∴M 点的坐标为(3+√174,23+√178).15.【解答】解:(1)∵y =﹣x 2+bx +c 经过B (﹣1,0),C (0,3),∴{c =3−1−b +c =0, 解得{b =2c =3, ∴抛物线的解析式为y =﹣x 2+2x +3.(2)如图1中,过点B 作BT ∥y 轴交AC 于T ,过点P 作PQ ∥OC 交AC 于Q .设P (m ,﹣m 2+2m +3),对于抛物线y =﹣x 2+2x +3,令y =0,可得x =3或﹣1,∴A (3,0),∵C (0,3),∴直线AC 的解析式为y =﹣x +3,∵B (﹣1,0),∴T (﹣1,4),∴BT =4,∵PQ ∥OC ,∴Q (m ,﹣m +3),∴PQ =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,∵PQ ∥BT ,∴PQ BT =PE BE =12, ∴﹣m 2+3m =2,解得m =1或2,∴P (1,4)或(2,3).(3)如图2中,连接AD ,过点N 作NJ ⊥AD 于J ,过点C 作CT ⊥AD 于T .∵抛物线y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D (1,4),∵C (0,3),∴直线CD 的解析式为y =x +3,CD =√2,∵DD ′=2CD ,∵DD ′=2√2,CD ′=3√2,∴D ′(3,6),∵A (3,0),∴AD ′⊥x 轴,∴OD ′=√OA 2+D′A 2=√32+62=3√5,∴sin ∠OD ′A =OA OD′=√55,∵CT ⊥AD ′,∴CT =3,∵NJ ⊥AD ′,∴NJ =ND ′•sin ∠OD ′A =√55D ′N ,∴√55D 'N +CN =CN +NJ , ∵CN +NJ ≥CT ,∴√55D 'N +CN ≥3, ∴√55D 'N +CN 的最小值为3, 此时N (1.5,3)N (1.5,3.75),∴MN =0.75.16.【解答】(1)解:设苹果的进价为x 元/千克,根据题意得:300x+2=200x−2,解得:x =10,经检验x =10是原方程的根,且符合题意,答:苹果的进价为10元/千克.(2)解:当0≤x ≤100时,y =10x ;当x >100时,y =10×100+(x ﹣100)(10﹣2)=8x +200;∴y ={10x(0≤x ≤100)8x +200(x >100). (3)解:当0≤x ≤100时,w =(z ﹣10)x=(−1100x +12−10)x =−1100(x −100)2+100,∴当x =100时,w 有最大值为100;当100<x ≤300时,w =(z ﹣10)×100+(z ﹣8)(x ﹣100)=(−1100x +12−10)×100+(−1100x +12−8)(x ﹣100)=−1100x 2+4x −200 =−1100(x −200)2+200, ∴当x =200时,w 有最大值为200;∵200>100,∴一天购进苹果数量为200千克时,超市销售苹果利润最大为200元.答:一天购进苹果数量为200千克时,超市销售苹果利润最大.17.【解答】解:(1)设抛物线的表达式为y =a (x ﹣x 1)(x ﹣x 2),则y =a (x +2)(x ﹣4)=ax 2﹣2ax ﹣8a ,即﹣8a =4,解得a =−12,故抛物线的表达式为y =−12x 2+x +4①;(2)由点A 、B 的坐标知,OB =2OA ,故CO 将△ABC 的面积分成2:1两部分,此时,点P 不在抛物线上;如图1,当BH =13AB =2时,CH 将△ABC 将△ABC 的面积分成2:1两部分,即点H 的坐标为(2,0),则CH 和抛物线的交点即为点P ,由点C 、H 的坐标得,直线CH 的表达式为y =﹣2x +4②,联立①②并解得{x =6y =−8(不合题意的值已舍去), 故点P 的坐标为(6,﹣8);(3)在点OB 上取点E (2,0),则∠ACO =∠OCE ,∵∠OCA =∠OCB ﹣∠OMA ,故∠AMO =∠ECB ,过点E 作EH ⊥BC 于点H ,在△BCE 中,由OB =OC 知,∠OBC =45°,则EH =√22EB =√22(4﹣2)=√2=BH ,由点B 、C 的坐标知,BC =4√2,则CH =BC =BH =4√2−√2=3√2,则tan ∠ECB =EH CH =√23√2=13=tan ∠AMO , 则tan ∠AMO =AO OM =2OM =13,则OM =6,故CM =OM ±OC =6±4=2或10,则t =2或10.18.【解答】解:(1)由题意得:{a +b +4=0−b 2a =52,解得{a =1b =−5, 故抛物线的表达式为y =x 2﹣5x +4①;(2)对于y =x 2﹣5x +4,令y =x 2﹣5x +4=0,解得x =1或4,令x =0,则y =4, 故点B 的坐标为(4,0),点C (0,4),设直线BC 的表达式为y =kx +t ,则{t =44k +t =0,解得{k =−1t =4, 故直线BC 的表达式为y =﹣x +4,设点P 的坐标为(x ,﹣x +4),则点Q 的坐标为(x ,x 2﹣5x +4),则PQ =(﹣x +4)﹣(x 2﹣5x +4)=﹣x 2+4x ,∵﹣1<0,故PQ 有最大值,当x =2时,PQ 的最大值为4=CO ,此时点Q 的坐标为(2,﹣2);∵PQ =CO ,PQ ∥OC ,故四边形OCPQ 为平行四边形;(3)∵D 是OC 的中点,则点D (0,2),由点D 、Q 的坐标,同理可得,直线DQ 的表达式为y =﹣2x ﹣2,过点Q 作QH ⊥x 轴于点H ,则QH ∥CO ,故∠AQH =∠ODA ,而∠DQE =2∠ODQ .∴∠HQA =∠HQE ,则直线AQ 和直线QE 关于直线QH 对称,故设直线QE 的表达式为y =2x +r ,将点Q 的坐标代入上式并解得r =﹣6,故直线QE 的表达式为y =2x ﹣6②,联立①②并解得{x =5y =4(不合题意的值已舍去), 故点E 的坐标为(5,4),设点F 的坐标为(0,m ),由点B 、E 的坐标得:BE 2=(5﹣4)2+(4﹣0)2=17,同理可得,当BE =BF 时,即16+m 2=17,解得m =±1;当BE =EF 时,即25+(m ﹣4)2=17,方程无解;当BF =EF 时,即16+m 2=25+(m ﹣4)2,解得m =258; 故点F 的坐标为(0,1)或(0,﹣1)或(0,258).19.【解答】解:(1)∵一元二次方程x 2+x ﹣m =0有两个不相等的实数根,∴△>0,即1+4m >0,∴m >−14;(2)二次函数y =x 2+x ﹣m 图象的对称轴为直线x =−12,∴抛物线与x 轴两个交点关于直线x =−12对称,由图可知抛物线与x 轴一个交点为(1,0),∴另一个交点为(﹣2,0),∴一元二次方程x 2+x ﹣m =0的解为x 1=1,x 2=﹣2.20.【解答】解:(1)∵二次函数y =ax 2+bx +c 的图象开口向上,经过点A (0,32),B (2,−12),∴{ a >0c =324a +2b +c =−12, ∴b =﹣2a ﹣1(a >0).(2)∵二次函数y =ax 2﹣(2a +1)x +32,a >0,在1≤x ≤3时,y 的最大值为1, ∴x =1时,y =1或x =3时,y =1,∴1=a ﹣(2a +1)+32或1=9a ﹣3(2a +1)+32,解得a =−12(舍弃)或a =56.∴a =56.(3)∵线段AB 向右平移2个单位得到线段A ′B ′,∴A ′(2,32),B ′(4,−12). ∵线段A ′B ′与抛物线y =ax 2﹣(2a +1)x +12+4a 仅有一个交点,∴{4a −2(2a +1)+12+4a ≤3216a −4(2a +1)+12+4a ≥−12, 解得,14≤a ≤34. 或{4a −2(2a +1)+12+4a ≥3216a −4(2a +1)+12+4a ≤−12不等式组无解, ∴14≤a ≤34. 21.【解答】解:(1)∵抛物线y =a (x ﹣h )2+k ,顶点P 的坐标为(2,﹣1), ∴h =2,k =﹣1,即抛物线y =a (x ﹣h )2+k 为y =a (x ﹣2)2﹣1,∵抛物线y =a (x ﹣h )2+k 经过O ,即y =a (x ﹣2)2﹣1的图象过(0,0), ∴0=a (0﹣2)2﹣1,解得a =14,∴抛物线表达为y =14(x ﹣2)2﹣1=14x 2﹣x ;(2)在y =14x 2﹣x 中,令y =x 得x =14x 2﹣x ,解得x =0或x =8,∴B (0,0)或B (8,8),①当B (0,0)时,过B 作BC ∥AP 交抛物线于C ,此时∠ABC =∠OAP ,如图:在y =14x 2﹣x 中,令y =0,得14x 2﹣x =0, 解得x =0或x =4,∴A (4,0),设直线AP 解析式为y =kx +b ,将A (4,0)、P (2,﹣1)代入得:{0=4k+b−1=2k+b,解得{k=12 b=−2,∴直线AP解析式为y=12x﹣2,∵BC∥AP,∴设直线BC解析式为y=12x+b',将B(0,0)代入得b'=0,∴直线BC解析式为y=1 2x,由{y=12xy=14x2−x 得{x=0y=0(此时为点O,舍去)或{x=6y=3,∴C(6,3);②当B(8,8)时,过P作PQ⊥x轴于Q,过B作BH⊥x轴于H,作H关于AB的对称点M,作直线BM交抛物线于C,连接AM,如图:∵P(2,﹣1),A(4,0),∴PQ=1,AQ=2,Rt△APQ中,tan∠OAP=PQAQ=12,∵B(8,8),A(4,0),∴AH=4,BH=8,Rt△ABH中,tan∠ABH=AHBH=12,∴∠OAP=∠ABH,∵H关于AB的对称点M,∴∠ABH=∠ABM,∴∠ABM=∠OAP,即C是满足条件的点,设M (x ,y ),∵H 关于AB 的对称点M , ∴AM =AH =4,BM =BH =8, ∴{(x −4)2+(y −0)2=42(x −8)2+(y −8)2=82, 两式相减变形可得x =8﹣2y ,代入即可解得{x =8y =0(此时为H ,舍去)或{x =85y =165, ∴M (85,165),设直线BM 解析式为y =cx +d ,将M (85,165),B (8,8)代入得;{8=8c +d165=85c +d ,解得{c =34d =2,∴直线BM 解析式为y =34x +2,解{y =34x +2y =14x 2−x 得{x =−1y =54或{x =8y =8(此时为B ,舍去), ∴C (﹣1,54),综上所述,C 坐标为(6,3)或(﹣1,54);(3)设BC 交y 轴于M ,过B 作BH ⊥x 轴于H ,过M 作MN ⊥BH 于N ,如图:∵点B 的横坐标为t , ∴B (t ,14t 2﹣t ),又A (4,0),∴AH =|t ﹣4|,BH =|14t 2﹣t |,OH =|t |=MN ,∵∠ABC =90°,∴∠MBN =90°﹣∠ABH =∠BAH , 且∠N =∠AHB =90°, ∴△ABH ∽△BMN ,∴AH BN=BH MN,即|t−4|BN=|14t 2−t||t|∴BN =|t 2−4t||14t 2−t|=4,∴NH =14t 2﹣t +4, ∴M (0,14t 2﹣t +4),设直线BM 解析式为y =ex +14t 2﹣t +4, 将B (t ,14t 2﹣t )代入得14t 2﹣t =et +14t 2﹣t +4,∴e =−4t ,∴直线BC 解析式为y =−4tx +14t 2﹣t +4,由{y =14x 2−x y =−4t x +14t 2−t +4得14x 2−x =−4t x +14t 2−t +4, 解得x 1=t (B 的横坐标),x 2=−t 2−4t+16t =−t −16t+4,∴点C 的横坐标为﹣t −16t +4; 当t <0时, x C =﹣t −16t +4 =(√−t )2+(√−t )2+4 =(√−t 4√−t 2+12,∴√−t =√−t时,x C 最小值是12,此时t =﹣4, ∴当t <0时,点C 的横坐标的取值范围是x C ≥12. 22.【解答】解:(1)∵OC =3OA ,AC =√10,∠AOC =90°, ∴OA 2+OC 2=AC 2,即OA 2+(3OA )2=(√10)2, 解得:OA =1,∴OC =3,∴A (1,0),C (0,3), ∵OB =OC =3, ∴B (﹣3,0),设抛物线解析式为y =a (x +3)(x ﹣1),将C (0,3)代入, 得:﹣3a =3, 解得:a =﹣1,∴y =﹣(x +3)(x ﹣1)=﹣x 2﹣2x +3, ∴该抛物线的解析式为y =﹣x 2﹣2x +3; (2)如图1,过点P 作PK ∥y 轴交BC 于点K ,设直线BC 解析式为y =kx +n ,将B (﹣3,0),C (0,3)代入, 得:{−3k +n =0n =3,解得:{k =1n =3,∴直线BC 解析式为y =x +3,设P (t ,﹣t 2﹣2t +3),则K (t ,t +3), ∴PK =﹣t 2﹣2t +3﹣(t +3)=﹣t 2﹣3t ,∴S △PBC =S △PBK +S △PCK =12PK •(t +3)+12PK •(0﹣t )=32PK =32(﹣t 2﹣3t ), S △ABC =12AB •OC =12×4×3=6,∴S 四边形PBAC =S △PBC +S △ABC =32(﹣t 2﹣3t )+6=−32(t +32)2+758, ∵−32<0,∴当t =−32时,四边形PBAC 的面积最大,此时点P 的坐标为(−32,154);(3)存在.如图2,分两种情况:点Q 在x 轴上方或点Q 在x 轴下方. ①当点Q 在x 轴上方时,P 与Q 纵坐标相等, ∴﹣x 2﹣2x +3=154,解得:x 1=−12,x 2=−32(舍去), ∴Q 1(−12,154),②当点Q在x轴下方时,P与Q纵坐标互为相反数,∴﹣x2﹣2x+3=−15 4,解得:x1=−√31+22,x2=√31−22,∴Q2(−√31+22,−154),Q3(√31−22,−154),综上所述,Q点的坐标为Q1(−12,154),Q2(−√31+22,−154),Q3(√31−22,−154).23.【解答】解:(1)设T恤的销售单价提高x元,由题意列方程得:(x+40﹣30)(300﹣10x)=3360,解得:x1=2或x2=18,∵要尽可能减少库存,∴x2=18不合题意,应舍去.∴T恤的销售单价应提高2元,答:T恤的销售单价应提高2元;(2)设利润为M元,由题意可得:M=(x+40﹣30)(300﹣10x),=﹣10x 2+200x +3000, =﹣10(x ﹣10)2+4000, ∴当x =10时,M 最大值 =4000元, ∴销售单价:40+10=50(元),答:当服装店将销售单价定为50元时,得到最大利润是4000元.24.【解答】解:(1)∵抛物线的对称轴x =﹣1,与x 轴的交点为A ,B (﹣3,0), ∴A (1,0),∴可以假设抛物线的解析式为y =a (x +3)(x ﹣1), 把C (0,﹣3)代入得到,a =1, ∴抛物线的解析式为y =x 2+2x ﹣3. ∵直线y =﹣2x +m 经过点A (1,0), ∴0=﹣2+m , ∴m =2.(2)如图1中,∵直线AF 的解析式为y =﹣2x +2交y 轴于D ,与抛物线交于点E , ∴D (0,2),由{y =−2x +2y =x 2+2x −3,解得{x =1y =0即点A ,或{x =−5y =12, ∴E (﹣5,12), 过点E 作EP ⊥y 轴于P .∵∠EPD =∠AOD =90°,∠EDP =∠ODA ,∴△EDP∽△ADO,∴P(0,12).过点E作EP′⊥DE交y轴于P′,同法可证,△P′DE∽△ADO,∴∠P′=∠DAO,∴tan∠P′=tan∠DAO,∴EPPP′=ODOA,∴5PP′=21,∴PP′=2.5,∴P′(0,14.5),综上所述,满足条件的点P的坐标为(0,12)或(0,14.5).(3)∵E,F为定点,∴线段EF的长为定值,∴当EM+FN的和最小时,四边形MEFN的周长最小,如图2中,画出直线y=1,将点F向左平移2个单位得到F′,作点E关于直线y=1的对称点E′,连接E′F′与直线y=1交于点M,过点F作FN ∥E′F′交直线y=1于点N,由作图可知,EM=E′M,FN=F′M,∵E′,M,F′三点共线,∴EM +FN =E ′M +F ′M =E ′F ′,此时EM +FN 的值最小, ∵点F 为直线y =﹣2x +2与x =﹣1的交点, ∴F (﹣1,4), ∴F ′(﹣3,4), ∵E (﹣5,12), ∴E ′(﹣5,﹣10),如图,延长FF ′交线段EE ′于W , ∵FF ′∥直线y =1, ∴FW ⊥EE ′,在Rt △WEF 中,EF =√EW 2+FW 2=√(12−4)2+(−1+5)2=4√5,在Rt △E ′F ′W 中,E ′F ′=√E′W 2+F′W 2=√(4+10)2+(−3+5)2=10√2, ∴四边形MEFN 的周长的最小值=ME +FN +EF +MN =E ′F ′+EF +MN =10√2+4√5+2. 25.【解答】解:(1)y =−14x 2+32x +4中,令x =0得y =4,令y =0得x 1=﹣2,x 2=8, ∴A (﹣2,0),B (8,0),C (0,4), ∴OA =2,OB =8,OC =4,AB =10, ∴AC 2=OA 2+OC 2=20,BC 2=OB 2+OC 2=80, ∴AC 2+BC 2=100, 而AB 2=102=100, ∴AC 2+BC 2=AB 2, ∴∠ACB =90°;(2)①设直线BC 解析式为y =kx +b ,将B (8,0),C (0,4)代入可得:{0=8k +b 4=b ,解得{k =−12b =4,∴直线BC 解析式为y =−12x +4,设第一象限D (m ,−14m 2+32m +4),则E (m ,−12m +4), ∴DE =(−14m 2+32m +4)﹣(−12m +4)=−14m 2+2m ,BF =8﹣m , ∴DE +BF =(−14m 2+2m )+(8﹣m ) =−14m 2+m +8=−14(m ﹣2)2+9,∴当m =2时,DE +BF 的最大值是9; ②由(1)知∠ACB =90°, ∴∠CAB +∠CBA =90°, ∵DF ⊥x 轴于F , ∴∠FEB +∠CBA =90°, ∴∠CAB =∠FEB =∠DEC , (一)当A 与E 对应时,以点C ,D ,E 为顶点的三角形与△AOG 相似,只需OADE=AG CE或OA CE=AG DE,而G 为AC 中点,A (﹣2,0),C (0,4), ∴G (﹣1,2),OA =2,AG =√5,由①知:DE =−14m 2+2m ,E (m ,−12m +4), ∴CE =√(0−m)2+[4−(−12m +4)]2=√52m , 当OA DE=AG CE时,2−14m 2+2m=√5√52m ,解得m =4或m =0(此时D 与C 重合,舍去)∴D (4,6), 当OA CE=AG DE时,√52m =√5−14m 2+2m,解得m =3或m =0(舍去),∴D (3,254),∵Rt △AOC ,G 是AC 中点, ∴OG =AG ,∴∠GAO =∠GOA ,即∠CAB =∠GOA , ∴∠DEC =∠GOA , (二)当O 与E 对应时,以点C ,D ,E 为顶点的三角形与△AOG 相似,只需OA DE=OG CE或OA CE=OG DE,∵OG =AG , ∴OA DE=OG CE与OADE=AG CE答案相同,同理OA CE=OG DE与或OA CE=AG DE答案相同,综上所述,以点C ,D ,E 为顶点的三角形与△AOG 相似,则D 的坐标为(4,6)或(3,254).26.【解答】解:(1)定义抛物线y =(x +1)(x ﹣a ),令y =0,可得x =﹣1或a , ∴B (﹣1,0),A (a ,0), 令x =0,得到y =﹣a , ∴C (0,﹣a ), ∴OA =OC =a ,OB =1, ∴AB =1+a . ∵∠AOC =90°, ∴∠OCA =45°.(2)∵△AOC 是等腰直角三角形, ∴∠OAC =45°, ∵点D 是△ABC 的外心,∴∠BDC =2∠CAB =90°,DB =DC , ∴△BDC 也是等腰直角三角形, ∴△DBC ∽△OAC , ∴BC AC=√104, ∴√1+a 2√2a=√104, 解得a =2或﹣2(舍弃),∴抛物线的解析式为y =(x +1)(x ﹣2)=x 2﹣x ﹣2.(3)作点C 关于抛物线的对称轴x =12的对称点C ′,连接AC ′.∵C(0,﹣2),C′(1,﹣2),∴PC∥AB,∵BC,AC′关于直线x=12对称,∴CB=AC′,∴四边形ABCP是等腰梯形,∴∠CBA=∠C′AB,∵∠DBC=∠OAC=45°,∴∠ABD=∠CAC′,∴当点P与点C′重合时满足条件,∴P(1,﹣2).作点P关于直线AC的对称点E(0,﹣1),则∠EAC=∠P AC=∠ABD,作直线AE交抛物线于P′,点P′满足条件,∵A(2,0),E(0,﹣1),∴直线AE的解析式为y=12x﹣1,由{y=12x−1y=x2−x−2,解得{x=2y=0或{x=−12y=−54,∴P′(−12,−54),综上所述,满足条件的点P的坐标为(1,﹣2)或(−12,−54).第41 页共41 页。
2017-2021年河南中考数学真题分类汇编之二次函数一.选择题(共2小题)1.(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.4 2.(2017•河南)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1二.填空题(共1小题)3.(2018•河南)已知二次函数y=x2+bx+4顶点在x轴上,则b=.三.解答题(共8小题)4.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.5.(2017•河南)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.6.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.7.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x ﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.9.(2019•河南)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y =﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b 的解析式.(k,b可用含m的式子表示)10.(2018•河南)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),对称轴交x轴于点H,直线y=x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c的值.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=x+1的对称点恰好落在x轴上时,请直接写出此时点P的坐标.11.(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017-2021年河南中考数学真题分类汇编之二次函数参考答案与试题解析一.选择题(共2小题)1.(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.4【考点】二次函数图象上点的坐标特征.【专题】二次函数图象及其性质.【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.2.(2017•河南)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【专题】数形结合;二次函数图象及其性质.【分析】根据抛物线的对称性得到抛物线与x轴的另一交点坐标,然后结合函数图象可以直接得到答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x =﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.故选:D.【点评】本题考查了抛物线的对称性,抛物线与x轴的交点,二次函数图象上点的坐标特征.解题时,利用了“数形结合”的数学思想.二.填空题(共1小题)3.(2018•河南)已知二次函数y=x2+bx+4顶点在x轴上,则b=±4.【考点】二次函数的性质.【分析】根据二次函数顶点在x轴上得出Δ=b2﹣4ac=m2﹣4×2×2=0,即可得出答案.【解答】解:∵二次函数y=x2+bx+4的顶点在x轴上,∴Δ=b2﹣4ac=b2﹣4×1×4=0,∴b2=16,∴b=±4.故答案为:±4.【点评】本题考查了二次函数的性质以及二次函数顶点在x轴上的特点,根据题意得出Δ=b2﹣4ac=0是解决问题的关键.三.解答题(共8小题)4.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;应用意识.【分析】(1)先求出点B,点A坐标,利用待定系数法代入解析式求出c的值,即可求解;(2)先求出点M,点N坐标,利用函数的图象即可求解.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴交于点B,∴点B(0,c),c>0.∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G的坐标为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,顶点(1,4).∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标为(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴当M,N在对称轴的同侧时,﹣21≤y Q≤﹣5;当M,N在对称轴的两侧时,﹣21≤y Q≤4.∴点Q的纵坐标y Q的取值范围为﹣21≤y Q≤﹣5或﹣21≤y Q≤4.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.5.(2017•河南)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】开放型.【分析】(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程即可求解;(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),M(t+3,t2+2t﹣6),根据点M在直线y=x+3上,即可求解;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)按照△QAB和△Q′AB和△ABC的面积相同即可求解.【解答】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n =5,∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程,解得:a=1,b=2,∴抛物线方程为:y=x2+2x﹣3…①,则C(0,﹣3);(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,∴P点坐标为(3,12)或(﹣4,5),则线段OP的长度为:3或;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)过点C和C′分别做AB的平行线,交抛物线于点Q、Q′,则:△QAB和△Q′AB和△ABC的面积相同,直线QC和Q′C的方程分别为:y=x﹣3和y=x+9…②,将①、②联立,解得:x=﹣1或x=3或x=﹣4,∴Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.【考点】二次函数综合题.【专题】代数综合题;分类讨论;一元一次不等式(组)及应用;数据分析观念.【分析】(1)用待定系数法即可求解;(2)求出点B的坐标为(﹣1,3),再观察函数图象即可求解;(3)分类求解确定MN的位置,进而求解.【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=﹣2,将点A的坐标代入直线表达式得:0=﹣2+b,解得b=2;故m=﹣2,b=2;(2)由(1)得,直线和抛物线的表达式为:y=﹣x+2,y=x2﹣2x,联立上述两个函数表达式并解得或(不符合题意,舍去),即点B的坐标为(﹣1,3),从图象看,不等式x2+mx>﹣x+b的解集为x<﹣1或x>2;(3)当点M在线段AB上时,线段MN与抛物线只有一个公共点,∵M,N的距离为3,而A、B的水平距离是3,故此时只有一个交点,即﹣1≤x M<2;当点M在点B的左侧时,线段MN与抛物线没有公共点;当点M在点A的右侧时,当x M=3时,抛物线和MN交于抛物线的顶点(1,﹣1),即x M=3时,线段MN与抛物线只有一个公共点,综上所述,﹣1≤x M<2 或x M=3.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,其中(3),分类求解确定MN的位置是解题的关键.7.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【考点】二次函数的应用;一元二次方程的应用.【专题】应用题.【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x ﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x ﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1(舍去),m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM1的解析式为y=﹣x﹣,解方程组得,则M1(,﹣);在直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=,∴x=,∴M2(,﹣),综上所述,点M的坐标为(,﹣)或(,﹣).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.9.(2019•河南)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y =﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b 的解析式.(k,b可用含m的式子表示)【考点】二次函数综合题.【专题】函数的综合应用.【分析】(1)利用一次函数图象上点的坐标特征可求出点A,C的坐标,根据点A,C的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM⊥x轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑:(i)当∠MPC=90°时,PC∥x轴,利用二次函数图象上点的坐标特征可求出点P 的坐标;(ii)当∠PCM=90°时,设PC与x轴交于点D,易证△AOC∽△COD,利用相似三角形的性质可求出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线PC的解析式,联立直线PC和抛物线的解析式成方程组,通过解方程组可求出点P的坐标.综上,此问得解;②利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可得出点B,M的坐标,结合点C的坐标可得出点B′的坐标,根据点M,B,B′的坐标,利用待定系数法可分别求出直线BM,B′M和BB′的解析式,利用平行线的性质可求出直线l的解析式.【解答】解:(1)当x=0时,y=﹣x﹣2=﹣2,∴点C的坐标为(0,﹣2);当y=0时,﹣x﹣2=0,解得:x=﹣4,∴点A的坐标为(﹣4,0).将A(﹣4,0),C(0,﹣2)代入y=ax2+x+c,得:,解得:,∴抛物线的解析式为y=x2+x﹣2.(2)①∵PM⊥x轴,∴∠PMC≠90°,∴分两种情况考虑,如图1所示.(i)当∠MPC=90°时,PC∥x轴,∴点P的纵坐标为﹣2.当y=﹣2时,x2+x﹣2=﹣2,解得:x1=﹣2,x2=0,∴点P的坐标为(﹣2,﹣2);(ii)当∠PCM=90°时,设PC与x轴交于点D.∵∠OAC+∠OCA=90°,∠OCA+∠OCD=90°,∴∠OAC=∠OCD.又∵∠AOC=∠COD=90°,∴△AOC∽△COD,∴=,即=,∴OD=1,∴点D的坐标为(1,0).设直线PC的解析式为y=kx+b(k≠0),将C(0,﹣2),D(1,0)代入y=kx+b,得:,解得:,∴直线PC的解析式为y=2x﹣2.联立直线PC和抛物线的解析式成方程组,得:,解得:,,点P的坐标为(6,10).综上所述:当△PCM是直角三角形时,点P的坐标为(﹣2,﹣2)或(6,10).②当y=0时,x2+x﹣2=0,解得:x1=﹣4,x2=2,∴点B的坐标为(2,0).∵点C的坐标为(0,﹣2),点B,B′关于点C对称,∴点B′的坐标为(﹣2,﹣4).∵点P的横坐标为m(m>0且m≠2),∴点M的坐标为(m,﹣m﹣2).利用待定系数法可求出:直线BM的解析式为y=﹣x+,直线B′M的解析式为y=x﹣,直线BB′的解析式为y=x﹣2.分三种情况考虑,如图2所示:当直线l∥BM且过点C时,直线l的解析式为y=﹣x﹣2;当直线l∥B′M且过点C时,直线l的解析式为y=x﹣2;当直线l∥BB′且过线段CM的中点N(m,﹣m﹣2)时,直线l的解析式为y=x﹣m﹣2.综上所述:直线l的解析式为y=﹣x﹣2,y=x﹣2或y=x﹣m﹣2.【点评】本题考查了一次函数图象上点的坐标特征、待定系数法二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、相似三角形的判定与性质以及平行线的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)①分∠MPC=90°及∠PCM=90°两种情况求出点P的坐标;②利用待定系数法及平行线的性质,求出直线l的解析式.10.(2018•河南)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),对称轴交x轴于点H,直线y=x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c的值.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=x+1的对称点恰好落在x轴上时,请直接写出此时点P的坐标.【考点】二次函数综合题.【专题】函数的综合应用.【分析】(1)由抛物线的顶点坐标可设抛物线的解析式为y=a(x﹣1)2+4,由点C的坐标利用待定系数法可求出抛物线的解析式,进而可得出a,b,c的值;(2)利用一次函数图象上点的坐标特征可求出点D,G的坐标,进而可求出DG的长度,分DG=DM,GD=GM两种情况考虑:①当DG=DM时,由等腰三角形的性质可得出HG=HM1,进而可得出点M1的坐标;②当GD=GM时,由等腰三角形的性质可得出GM2=GM3=,结合点G的坐标可得出点M2,M3的坐标.综上,此问得解;(3)过点E作EN⊥直线DE,交x轴于点N,则△DOE∽△DEN,利用相似三角形的性质可求出点N的坐标,由点E,N的坐标利用待定系数法可求出直线EN的解析式,设点P关于直线y=x+1的对称点落在x轴上Q点处,连接PQ交DE于点R,设直线PQ 的解析式为y=﹣2x+m,利用一次函数图象上点的坐标特征可求出点Q的坐标,联立直线PQ和直线DE的解析式成方程组,通过解方程组可得出点R的坐标,进而可得出点P 的坐标,由点P的坐标利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可得出m的值,再将其代入点P的坐标中即可得出结论.【解答】解:(1)∵抛物线顶点F的坐标为(1,4),∴设抛物线的解析式为y=a(x﹣1)2+4.将C(0,3)代入y=a(x﹣1)2+4,得:a+4=3,解得:a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∴a=﹣1,b=2,c=3.(2)当y=0时,x+1=0,解得:x=﹣2,∴点D的坐标为(﹣2,0).当x=1时,y=x+1=,∴点G的坐标为(1,),∴DH=1﹣(﹣2)=3,GH=,∴DG==.分两种情况考虑(如图1):①当DG=DM时,HG=HM1,∴点M1的坐标为(1,﹣);②当GD=GM时,GM2=GM3=,∴点M2的坐标为(1,),点M3的坐标为(1,).综上所述:点M的坐标为(1,﹣),(1,)或(1,).(3)过点E作EN⊥直线DE,交x轴于点N,如图2所示.当x=0时,y=x+1=1,∴点E的坐标为(0,1),∴OE=1,DE==.∵∠DOE=∠DEN=90°,∠ODE=∠EDN,∴△DOE∽△DEN,∴=,即=,∴DN=,∴点N的坐标为(,0).∵点E(0,1),点N(,0),∴线段EN所在直线的解析式为y=﹣2x+1(可利用待定系数法求出).设点P关于直线y=x+1的对称点落在x轴上Q点处,连接PQ交DE于点R.设直线PQ的解析式为y=﹣2x+m,当y=0时,﹣2x+m=0,解得:x=,∴点Q的坐标为(,0).联立直线PQ和直线DE的解析式成方程组,得:,解得:,∴点R的坐标为(,).∵点R为线段PQ的中点,∴点P的坐标为(,).∵点P在抛物线y=﹣x2+2x+3的图象上,∴﹣()2+2×+3=,整理,得:9m2﹣68m+84=0,解得:m1=6,m2=,∴点P的坐标为(1,4)或(﹣,).【点评】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、勾股定理、等腰三角形的性质、相似三角形的判定与性质、平行线的性质、中点坐标公式以及二次函数图象上点的坐标特征,解题的关键是:(1)巧设二次函数解析式,利用待定系数法求出a值;(2)分DG=DM,GD=GM两种情况,利用等腰三角形的性质求出点M的坐标;(3)利用二次函数图象上点的坐标特征,找出关于m的一元二次方程.11.(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【考点】二次函数综合题.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN 的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=,∴M(,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(舍去)或m=0.5;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为0.5或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.考点卡片1.一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.5.验:检验所求出的根是否符合所列方程和实际问题.6.答:写出答案.2.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.。
中考数学真题分类之函数专题——反比例函数一.反比例函数的定义(共2小题) 1.已知反比例函数的解析式为y =|a|−2x,则a 的取值范围是( )A .a ≠2B .a ≠﹣2C .a ≠±2D .a =±2 2.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数二.反比例函数的图象(共1小题)3.已知ab <0,一次函数y =ax ﹣b 与反比例函数y =ax在同一直角坐标系中的图象可能( )A .B .C .D .三.反比例函数的性质(共2小题)4.反比例函数y =2x的图象位于( )A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限5.关于反比例函数y =5x 的图象,下列说法正确的( ) A .经过点(2,3) B .分布在第二、第四象限 C .关于直线y =x 对称D .x 越大,越接近x 轴四.反比例函数系数k 的几何意义(共3小题)6.如图,矩形OABC 的边AB 与x 轴交于点D ,与反比例函数y =kx(k >0)在第一象限的图象交于点E ,∠AOD =30°,点E 的纵坐标为1,△ODE 的面积是4√33,则k 的值是 .7.如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数y =k1x(x >0)的图象经过点C ,反比例函数y =k 2x(x <0)的图象分别与AD ,CD 交于点E ,F ,若S △BEF =7,k 1+3k 2=0,则k 1等于 .8.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为(1,0),点D (4,4)在反比例函数y =k x(x >0)的图象上,直线y =23x +b 经过点C ,与y 轴交于点E ,连接AC ,AE .(1)求k ,b 的值; (2)求△ACE 的面积.五.反比例函数图象上点的坐标特征(共8小题)9.如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =1x(x >0)于点C ,D .若AC =√3BD ,则3OD 2﹣OC 2的值为( )A .5B .3√2C .4D .2√310.、若点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 111.如图,点A ,B 在双曲线y =3x(x >0)上,点C 在双曲线y =1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC =BC ,则AB 等于( ) A .√2 B .2√2 C .4 D .3√212.反比例函数y =k x(x <0)的图象如图所示,下列关于该函数图象的四个结论:①k >0;②当x <0时,y 随x 的增大而增大;③该函数图象关于直线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有 个.13.已知:函数y 1=|x |与函数y 2=1|x|的部分图象如图所示,有以下结论:①当x <0时,y 1,y 2都随x 的增大而增大; ②当x <﹣1时,y 1>y 2;③y 1与y 2的图象的两个交点之间的距离是2; ④函数y =y 1+y 2的最小值是2. 则所有正确结论的序号是 . 14.如图,在平面直角坐标系中,反比例y =kx(k >0)的图象和△ABC 都在第一象限内,AB =AC =52,BC ∥x 轴,且BC =4,点A 的坐标为(3,5).若将△ABC 向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为 .15.一个不透明的口袋中有三个完全相同的小球,球上分别标有数字﹣1,1,2.第一次从袋中任意摸出一个小球(不放回),得到的数字作为点M 的横坐标x ;再从袋中余下的两个小球中任意摸出一个小球,得到的数字作为点M 的纵坐标y .(1)用列表法或树状图法,列出点M (x ,y )的所有可能结果;(2)求点M (x ,y )在双曲线y =−2x上的概率.16.如图,已知菱形ABCD 的对称中心是坐标原点O ,四个顶点都在坐标轴上,反比例函数y =k x(k ≠0)的图象与AD 边交于E (﹣4,12),F (m ,2)两点. (1)求k ,m 的值;(2)写出函数y =kx图象在菱形ABCD 内x 的取值范围.六.待定系数法求反比例函数解析式(共3小题) 17.如图,在平面直角坐标系xOy 中,A (﹣1,2).(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是 .(2)点C 与点A 关于原点O 对称,则点C 的坐标是 . (3)反比例函数的图象经过点B ,则它的解析式是 . (4)一次函数的图象经过A ,C 两点,则它的解析式是 .18.如图,已知平行四边形OABC 中,点O 为坐标原点,点A (3,0),C (1,2),函数y =kx (k ≠0)的图象经过点C . (1)求k 的值及直线OB 的函数表达式: (2)求四边形OABC 的周长.19.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB绕点A 顺时针旋转90°得到线段AC ,反比例函数y =kx(k ≠0,x >0)的图象经过点C .(1)求直线AB 和反比例函数y =kx (k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =kx (k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.七.反比例函数与一次函数的交点问题(共5小题)20.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <221.如图,一次函数y 1=(k ﹣5)x +b 的图象在第一象限与反比例函数y 2=kx的图象相交于A ,B 两点,当y 1>y 2时,x 的取值范围是1<x <4,则k = .22.已知直线y =ax (a ≠0)与反比例函数y =kx(k ≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是 .23.如图,已知反比例函数y =k x(x >0)的图象与一次函数y =−12x +4的图象交于A 和B (6,n )两点. (1)求k 和n 的值;(2)若点C (x ,y )也在反比例函数y =kx(x >0)的图象上,求当2≤x ≤6时,函数值y 的取值范围.24.如图,一次函数y =mx +b 的图象与反比例函数y =kx的图象交于A (3,1),B (−12,n )两点.(1)求该反比例函数的解析式;(2)求n 的值及该一次函数的解析式.八.反比例函数的应用(共1小题)25.南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x 千立方米,总需用时间y 天,且完成首期工程限定时间不超过600天. (1)求y 与x 之间的函数关系式及自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?九.反比例函数综合题(共1小题)26.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=k1x过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=k2x 与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=k3x与AD交于点P.当△AEP为等腰三角形时,求m的值.参考答案与试题解析一.反比例函数的定义(共2小题) 1.【解答】解:根据反比例函数解析式中k 是常数,不能等于0,由题意可得:|a |﹣2≠0, 解得:a ≠±2, 故选:C . 2.【解答】解:设等腰三角形的底角为y ,顶角为x ,由题意,得y =−12x +90°, 故选:B .二.反比例函数的图象(共1小题)3.【解答】解:若反比例函数y =ax经过第一、三象限,则a >0.所以b <0.则一次函数y =ax ﹣b 的图象应该经过第一、二、三象限;若反比例函数y =ax经过第二、四象限,则a <0.所以b >0.则一次函数y =ax ﹣b 的图象应该经过第二、三、四象限. 故选项A 正确; 故选:A .三.反比例函数的性质(共2小题) 4.【解答】解:∵k =2>0,∴反比例函数经过第一、三象限; 故选:A .5.【解答】解:A 、把点(2,3)代入反比例函数y =5x得2.5≠3不成立,故A 选项错误;B 、∵k =5>0,∴它的图象在第一、三象限,故B 选项错误;C 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故C 选项正确;D 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故D 选项错误. 故选:C .四.反比例函数系数k 的几何意义(共3小题) 6.【解答】解:如图,作EM ⊥x 轴于点M ,则EM =1. ∵△ODE 的面积是4√33, ∴12OD •EM =4√33,∴OD =8√33. 在直角△OAD 中,∵∠A =90°,∠AOD =30°, ∴∠ADO =60°,∴∠EDM =∠ADO =60°.在直角△EMD 中,∵∠DME =90°,∠EDM =60°, ∴DM =EM tan60°=√3=√33, ∴OM =OD +DM =3√3, ∴E (3√3,1).∵反比例函数y =kx(k >0)的图象过点E ,∴k =3√3×1=3√3. 故答案为3√3.7.【解答】解:设点B 的坐标为(a ,0),则A 点坐标为(﹣a ,0) 由图象可知,点C (a ,k 1a),E (﹣a ,−k 2a),D (﹣a ,k 1a),F (−a3,k 1a) 矩形ABCD 面积为:2a •k 1a=2k 1∴S △DEF =DE⋅DF 2=23a×(−2k 2a)2=−23k 2S △BCF =CF⋅BC2=43a×k 1a2=23k 1S △ABE =AB⋅AE2=2a×(−k 2a)2=−k 2∵S △BEF =7∴2k 1+23k 2−23k 1+k 2=7 ①∵k 1+3k 2=0∴k 2=−13k 1代入①式得43k 1+53×(−13k 1)=7解得k 1=9 故答案为:9 8.【解答】解:(1)由已知可得AD =5, ∵菱形ABCD ,∴B (6,0),C (9,4),∵点D (4,4)在反比例函数y =kx(x >0)的图象上, ∴k =16,将点C (9,4)代入y =23x +b ,∴b =﹣2;(2)E (0,﹣2),直线y =23x ﹣2与x 轴交点为(3,0), ∴S △AEC =12×2×(2+4)=6;五.反比例函数图象上点的坐标特征(共8小题) 9.【解答】解:延长CA 交y 轴于E ,延长BD 交y 轴于F . 设A 、B 的横坐标分别是a ,b , ∵点A 、B 为直线y =x 上的两点, ∴A 的坐标是(a ,a ),B 的坐标是(b ,b ).则AE =OE =a ,BF =OF =b .∵C 、D 两点在交双曲线y =1x (x >0)上,则CE =1a,DF =1b. ∴BD =BF ﹣DF =b −1b,AC =1a−a .又∵AC =√3BD , ∴1a−a =√3(b −1b),两边平方得:a 2+1a2−2=3(b 2+1b2−2),即a 2+1a 2=3(b 2+1b2)﹣4,在直角△ODF 中,OD 2=OF 2+DF 2=b 2+1b2,同理OC 2=a 2+1a2, ∴3OD 2﹣OC 2=3(b 2+1b 2)﹣(a 2+1a2)=4.故选:C .10.【解答】解:∵k <0,∴在每个象限内,y 随x 值的增大而增大, ∴当x =﹣1时,y 1>0, ∵2<3, ∴y 2<y 3<y 1 故选:C .11.【解答】解:点C在双曲线y=1x上,AC∥y轴,BC∥x轴,设C(a,1a ),则B(3a,1a),A(a,3a),∵AC=BC,∴3a −1a=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2√2,故选:B.12.【解答】解:观察反比例函数y=kx (x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.13.【解答】解:补全函数图象如图:①当x<0时,y1随x的增大而减小,y2随x的增大而增大;故①错误;②当x<﹣1时,y1>y2;故②正确;③y1与y2的图象的两个交点之间的距离是2;故③正确;④∵(x﹣1)2≥0,∴x2+1≥2|x|,∵y=y1+y2=|x|+1|x|=x2+1|x|≥2,∴函数y =y 1+y 2的最小值是2. 故④正确.综上所述,正确的结论是②③④. 故答案为②③④.14.【解答】解:∵AB =AC =52,BC =4,点A (3,5). ∴B (1,72),C (5,72), 将△ABC 向下平移m 个单位长度,∴A (3,5﹣m ),C (5,72−m ), ∵A ,C 两点同时落在反比例函数图象上,∴3(5﹣m )=5(72−m ), ∴m =54;故答案为54;15.【解答】解:(1)用树状图表示为: 点M (x ,y )的所有可能结果;(﹣1,1)(﹣1,2)(1,﹣1)(1,2)(2,﹣1)(2,1)共六种情况.(2)在点M 的六种情况中,只有(﹣1,2)(2,﹣1)两种在双曲线y =−2x上, ∴P =26=13;因此,点M (x ,y )在双曲线y =−2x上的概率为13.16.【解答】解:(1)∵点E (﹣4,12)在y =k x上,∴k =﹣2,∴反比例函数的解析式为y =−2x, ∵F (m ,2)在y =−2x上,∴m =﹣1.(2)函数y =kx图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.六.待定系数法求反比例函数解析式(共3小题) 17.【解答】解:(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是(2,3);(2)点C 与点A 关于原点O 对称,则点C 的坐标是(1,﹣2);(3)设反比例函数解析式为y =kx, 把B (2,3)代入得:k =6,∴反比例函数解析式为y =6x;(4)设一次函数解析式为y =mx +n ,把A (﹣1,2)与C (1,﹣2)代入得:{−m +n =2m +n =−2,解得:{m =−2n =0,则一次函数解析式为y =﹣2x .故答案为:(1)(2,3);(2)(1,﹣2);(3)y =6x;(4)y =﹣2x .18.【解答】解:(1)依题意有:点C (1,2)在反比例函数y =kx(k ≠0)的图象上,∴k =xy =2, ∵A (3,0) ∴CB =OA =3, 又CB ∥x 轴, ∴B (4,2),设直线OB 的函数表达式为y =ax , ∴2=4a ,∴a =12,∴直线OB 的函数表达式为y =12x ;(2)作CD ⊥OA 于点D , ∵C (1,2),∴OC =√12+22=√5, 在平行四边形OABC 中, CB =OA =3,AB =OC =√5,∴四边形OABC 的周长为:3+3+√5+√5=6+2√5, 即四边形OABC 的周长为6+2√5.19.【解答】解:(1)将点A(1,0),点B(0,2),代入y=mx+b,∴b=2,m=﹣2,∴y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=OB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=3x ;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+h=3x ,∴﹣2x2+hx﹣3=0,当△=h2﹣24=0时,h=2√6或﹣2√6(舍弃),此时点P到直线AB距离最短;∴P(√62,√6);七.反比例函数与一次函数的交点问题(共5小题)20.【解答】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=c x (c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.21.【解答】解:由已知得A、B的横坐标分别为1,4,所以有{k −5+b =k4(k −5)+b =k 4解得k =4, 故答案为4. 22.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称, ∴该点的坐标为(﹣2,﹣4). 故答案为:(﹣2,﹣4).23.【解答】解:(1)当x =6时,n =−12×6+4=1, ∴点B 的坐标为(6,1). ∵反比例函数y =kx 过点B (6,1),∴k =6×1=6. (2)∵k =6>0,∴当x >0时,y 随x 值增大而减小, ∴当2≤x ≤6时,1≤y ≤3.24.【解答】解:(1)∵反比例函数y =kx的图象经过A (3,1), ∴k =3×1=3,∴反比例函数的解析式为y =3x;(2)把B (−12,n )代入反比例函数解析式,可得 −12n =3, 解得n =﹣6,∴B (−12,﹣6),把A (3,1),B (−12,﹣6)代入一次函数y =mx +b ,可得{1=3m +b−6=−12m +b,解得{m =2b =−5,∴一次函数的解析式为y =2x ﹣5.八.反比例函数的应用(共1小题)25.【解答】解:(1)根据题意可得:y =600x, ∵y ≤600, ∴x ≥1;(2)设实际挖掘了m天才能完成首期工程,根据题意可得:600 m −600m+100=0.2,解得:m=﹣600(舍)或500,检验得:m=500是原方程的根,答:实际挖掘了500天才能完成首期工程.九.反比例函数综合题(共1小题)26.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=k1x 过点E,∴k1=12.∴反比例函数的解析式为y=12x.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴DNBM =CDBC,∴DNCD =BMCB,∴CNCD =CMCB,∵∠MCN =∠BCD , ∴△MCN ∽△BCD , ∴∠CNM =∠CDB , ∴MN ∥BD ,∴△CMN ∽△CBD . ∵B (6,0),D (0,8),∴直线BD 的解析式为y =−43x +8, ∵C ,C ′关于MN 对称, ∴CC ′⊥MN , ∴CC ′⊥BD , ∵C (6,8),∴直线CC ′的解析式为y =34x +72, ∴C ′(0,72).(3)如图3中,①当AP =AE =5时,∵P (m ,5),E (m +3,4),P ,E 在反比例函数图象上, ∴5m =4(m +3), ∴m =12.②当EP =AE 时,点P 与点D 重合,∵P (m ,8),E (m +3,4),P ,E 在反比例函数图象上, ∴8m =4(m +3), ∴m =3.③显然PA ≠PE ,若相等,点P 在点E 的下方,显然不可能. 综上所述,满足条件的m 的值为3或12.。
中考数学试题分类—次函数与二次函数一.一次函数的图象(共2小题)1.(2020•嘉兴)一次函数y=2x﹣1的图象大致是()A.B.C.D.2.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.二.一次函数的性质(共1小题)3.(2019•杭州)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.三.一次函数图象上点的坐标特征(共3小题)4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.5.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+26.(2019•绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4四.一次函数的应用(共10小题)7.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.8.(2020•宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?①游轮与货轮何时相距12km?10.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?11.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.12.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.①已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.13.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.14.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.15.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)16.(2019•湖州)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B ﹣C ﹣D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)五.一次函数综合题(共2小题)17.(2019•温州)如图,在平面直角坐标系中,直线y =−12x +4分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长.(2)设点Q 2为(m ,n ),当n n =17tan ∠EOF 时,求点Q 2的坐标.(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.①当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.18.(2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =n +n 3,y =n +n 3那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x =−1+43=1,y =8+(−2)3=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.①若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.六.反比例函数的性质(共1小题)19.(2020•杭州)设函数y 1=n n ,y 2=−n n (k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?七.反比例函数系数k 的几何意义(共3小题)20.(2020•温州)点P ,Q ,R 在反比例函数y =n n (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 .21.(2020•湖州)如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A在第一象限,反比例函数y =n n (x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是 .22.(2019•衢州)如图,在平面直角坐标系中,O 为坐标原点,①ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若y =n n (k ≠0)图象经过点C ,且S △BEF =1,则k 的值为 .八.反比例函数图象上点的坐标特征(共3小题)23.(2020•金华)已知点(﹣2,a),(2,b),(3,c)在函数y=n n(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a24.(2020•衢州)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=n n(x >0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8√3,则k=.25.(2019•绍兴)如图,矩形ABCD的两边分别与坐标轴平行,顶点A,C都在双曲线y=n n(常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.九.待定系数法求反比例函数解析式(共1小题)26.(2019•舟山)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=n n的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.一十.反比例函数与一次函数的交点问题(共3小题)27.(2020•宁波)如图,经过原点O的直线与反比例函数y=n n(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=nn(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD 的面积为32,则a ﹣b 的值为 ,n n 的值为 . 28.(2019•宁波)如图,过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为 .29.(2019•湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x ﹣1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=n n (k >0,x >0),y 2=2n n (x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是 .一十一.反比例函数的应用(共3小题)30.(2019•温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的度数y (度)200 250 400 500 1000 镜片焦距x(米)0.50 0.40 0.25 0.20 0.10 A .y =100n B .y =n 100 C .y =400n D .y =n 40031.(2020•台州)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.32.(2019•杭州)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.①方方能否在当天11点30分前到达B地?说明理由.参考答案与试题解析一.一次函数的图象(共2小题)1.【解答】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.2.【解答】解:A、由图可知:直线y1=ax+b,a>0,b>0.∴直线y2=bx+a经过一、二、三象限,故A正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C 、由图可知:直线y 1=ax +b ,a <0,b >0.∴直线y 2=bx +a 经过一、二、四象限,交点不对,故C 错误; D 、由图可知:直线y 1=ax +b ,a <0,b <0,∴直线y 2=bx +a 经过二、三、四象限,故D 错误.故选:A .二.一次函数的性质(共1小题)3.【解答】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{n +n =0n =1 解得:{n =−1n =1, 所以函数的解析式为y =﹣x +1,故答案为:y =﹣x +1(答案不唯一).三.一次函数图象上点的坐标特征(共3小题)4.【解答】解:∵函数y =ax +a (a ≠0)的图象过点P (1,2),∴2=a +a ,解得a =1,∴y =x +1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2),故选:A .5.【解答】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B . ∴A (﹣1,0),B (﹣3,0)A 、y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B 、y =√2x +2与x 轴的交点为(−√2,0);故直线y =√2x +2与x 轴的交点在线段AB 上;C 、y =4x +2与x 轴的交点为(−12,0);故直线y =4x +2与x 轴的交点不在线段AB 上;D 、y =2√33x +2与x 轴的交点为(−√3,0);故直线y =2√33x +2与x 轴的交点在线段AB 上; 故选:C .6.【解答】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=n +n 7=2n +n ∴{n =3n =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3;故选:C .四.一次函数的应用(共10小题)7.【解答】解:令150t =240(t ﹣12),解得,t =32,则150t =150×32=4800,∴点P 的坐标为(32,4800),故答案为:(32,4800).8.【解答】解:(1)设函数表达式为y =kx +b (k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6n +n 80=2.6n +n , 解得:{n =80n =−128, ∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时),∴x 的取值范围是1.6≤x ≤3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x ≤3.1);(2)当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v ≥120,解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.9.【解答】解:(1)C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h .∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h ).(2)①280÷20=14h ,∴点A (14,280),点B (16,280),∵36÷60=0.6(h ),23﹣0.6=22.4,∴点E (22.4,420),设BC 的解析式为s =20t +b ,把B (16,280)代入s =20t +b ,可得b =﹣40,∴s =20t ﹣40(16≤t ≤23),同理由D (14,0),E (22.4,420)可得DE 的解析式为s =50t ﹣700(14≤t ≤22.4),由题意:20t ﹣40=50t ﹣700,解得t =22,∵22﹣14=8(h ),∴货轮出发后8小时追上游轮.①相遇之前相距12km 时,20t ﹣40﹣(50t ﹣700)=12,解得t =21.6.相遇之后相距12km 时,50t ﹣700﹣(20t ﹣40)=12,解得t =22.4,当游轮在刚离开杭州12km 时,此时根据图象可知货轮就在杭州,游轮距离杭州12km ,所以此时两船应该也是想距12km ,即在0.6h 的时候,两船也相距12km∴0.6h 或21.6h 或22.4h 时游轮与货轮相距12km .10.【解答】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{n +n =0.752n +n =1, 解得{n =14n =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.11.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃),∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b ,则:{3n +n =13.25n +n =12, 解得{n =−0.6n =15, ∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15,解得h =15.∴该山峰的高度大约为15百米,即1500米.12.【解答】解:(1)设3月份购进x 件T 恤衫,18000n +10=390002n ,解得,x =150,经检验,x =150是原分式方程的解,则2x =300,答:4月份进了这批T 恤衫300件;(2)①每件T 恤衫的进价为:39000÷300=130(元),(180﹣130)a +(180×0.8﹣130)(150﹣a )=(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )化简,得b =150−n 2; ①设乙店的利润为w 元,w =(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )=54a +36b ﹣600=54a +36×150−n 2−600=36a +2100, ∵乙店按标价售出的数量不超过九折售出的数量, ∴a ≤b , 即a ≤150−n 2,解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900,答:乙店利润的最大值是3900元.13.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米. 1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入,得{150n +n =35200n +n =10, ∴{n =−0.5n =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x ≤200时,函数表达式为y =﹣0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.14.【解答】解:(1)设y 关于x 的函数解析式是y =kx +b ,{n =615n +n =3,解得,{n =−15n =6, 即y 关于x 的函数解析式是y =−15x +6;(2)当h =0时,0=−310x +6,得x =20, 当y =0时,0=−15x +6,得x =30,∵20<30,∴甲先到达地面.15.【解答】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0), 把(20,0),(38,2700)代入y =kx +b ,得{0=20n +n 2700=38n +n ,解得{n =150n =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.16.【解答】解:(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)设直线OA 的解析式为y =kx ,30k =2400,得k =80,∴直线OA 的解析式为y =80x ,当x =18时,y =80×18=1440,则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x =25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),当25≤x ≤30时s 关于x 的函数的大致图象如右图所示.五.一次函数综合题(共2小题)17.【解答】解:(1)令y =0,则−12x +4=0,∴x =8,∴B (8,0),∵C (0,4),∴OC =4,OB =8,在Rt △BOC 中,BC =√82+42=4√5,又∵E 为BC 中点,∴OE =12BC =2√5; (2)如图1,作EM ⊥OC 于M ,则EM ∥CD ,∵E 是BC 的中点∴M 是OC 的中点∴EM =12OB =4,OE =12BC =2√5∵∠CDN =∠NEM ,∠CND =∠MNE∴△CDN ∽△MEN ,∴nn nn =nn nn =1,∴CN =MN =1,∴EN =√12+42=√17,∵S △ONE =12EN •OF =12ON •EM ,∴OF =3×4√17=1217√17,由勾股定理得:EF =√nn 2−nn 2=(2√5)2−(121717)2=1417√17,∴tan ∠EOF =nn nn =14√171712√1717=76, ∴nn =17×76=16, ∵n =−12m +4, ∴m =6,n =1,∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动,∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合,∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5,∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{n =2n =2√5和{n =4n =5√5代入得{2n +n =2√54n +n =5√5,解得:{n =32√5n =−√5, ∴s =3√52n −√5,∵s ≥0,t ≥0,且32√5>0, ∴s 随t 的增大而增大, 当s ≥0时,3√52n −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52n −√5(23≤t ≤4); ①(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE ,作QH ⊥x 轴于点H ,则PH =BH =12PB , Rt △ABQ 3中,AQ 3=6,AB =4+8=12,∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t ,∵cos ∠QBH =nn nn 3=nn nn =1265=25√5,∴BH =14﹣3t ,∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5,∵Q 3Q =s =3√52t −√5,∴Q 3G =32t ﹣1,GQ =3t ﹣2, ∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2,∵∠HPQ =∠CDN ,∴tan ∠HPQ =tan ∠CDN =14,∴2t ﹣2=14(7−32n ),t =3019, (iii )由图形可知PQ 不可能与EF 平行,综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019. 18.【解答】解:(1)x =13(﹣1+7)=2,y =13(5+7)=4, 故点C 是点A 、B 的融合点;(2)①由题意得:x =13(t +3),y =13(2t +3),则t =3x ﹣3,则y =13(6x ﹣6+3)=2x ﹣1;①当∠DHT =90°时,如图1所示,点E (t ,2t +3),则T (t ,2t ﹣1),则点D (3,0),由点T 是点D ,E 的融合点得:t =n +33,2t ﹣1=2n +33, 解得:t =32,即点E (32,6);当∠TDH =90°时,如图2所示,则点T (3,5),由点T 是点D ,E 的融合点得:点E (6,15);当∠HTD =90°时,如图3所示,过点T 作x 轴的平行线交过点D 与y 轴平行的直线于点M ,交过点E 与y 轴的平行线于点N ,则∠MDT =∠NTE ,则tan ∠MDT =tan ∠NTE ,D (3,0),点E (t ,2t +3),则点T (n +33,2n +33)则MT =3−n +33=6−n 3,MD =2n +33,NE =2n +33−2t ﹣3=−2(2n +3)3,NT =n +33−t =3−2n 3, 由tan ∠MDT =tan ∠NTE得:6−n 32n +33=2(2n +3)33−2n 3, 解得:方程无解,故∠HTD 不可能为90°. 故点E (32,6)或(6,15). 六.反比例函数的性质(共1小题)19.【解答】解:(1)∵k >0,2≤x ≤3,∴y 1随x 的增大而减小,y 2随x 的增大而增大,∴当x =2时,y 1最大值为n 2=n ,①;当x =2时,y 2最小值为−n 2=a ﹣4,①; 由①,①得:a =2,k =4;(2)圆圆的说法不正确,理由如下:设m =m 0,且﹣1<m 0<0,则m 0<0,m 0+1>0,∴当x =m 0时,p =y 1=n n 0<0, 当x =m 0+1时,q =y 1=n n 0+1>0, ∴p <0<q ,∴圆圆的说法不正确.七.反比例函数系数k 的几何意义(共3小题)20.【解答】解:∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (n 3n ,3a ),Q (n 2n ,2a ),R (n n ,a ), ∴CP =n 3n ,DQ =n 2n ,ER =n n ,∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.21.【解答】解:连接OD ,过C 作CE ∥AB ,交x 轴于E , ∵∠ABO =90°,反比例函数y =n n (x >0)的图象经过OA 的中点C ,∴S △COE =S △BOD =12n ,S △ACD =S △OCD =2,∵CE ∥AB ,∴△OCE ∽△OAB ,∴n △nnnn △nnn=14, ∴4S △OCE =S △OAB ,∴4×12k =2+2+12k ,∴k =83, 故答案为:83.22.【解答】解:连接OC ,BD ,∵将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,∴OA =OE ,∵点B 恰好为OE 的中点,∴OE =2OB ,∴OA =2OB ,设OB =BE =x ,则OA =2x ,∴AB =3x ,∵四边形ABCD 是平行四边形,∴CD =AB =3x ,∵CD ∥AB ,∴△CDF ∽△BEF ,∴nn nn =nn nn =n 3n =13, ∵S △BEF =1,∴S △BDF =3,S △CDF =9,∴S △BCD =12,∴S △CDO =S △BDC =12,∴k 的值=2S △CDO =24.八.反比例函数图象上点的坐标特征(共3小题)23.【解答】解:∵k >0,∴函数y =n n (k >0)的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, ∵﹣2<0<2<3,∴b >c >0,a <0,∴a <c <b .故选:C .24.【解答】解:过点M 作MN ⊥AD ,垂足为N ,则MN =CD =3, 在Rt △FMN 中,∠MFN =30°,∴FN =√3MN =3√3,∴AN =MB =8√3−3√3=5√3,设OA =x ,则OB =x +3,∴F (x ,8√3),M (x +3,5√3),又∵点F 、M 都在反比例函数的图象上,∴8√3x =(x +3)×5√3,解得,x =5,∴F (5,8√3),∴k =5×8√3=40√3.故答案为:40√3.25.【解答】解:∵D (5,3),∴A (n 3,3),C (5,n 5),∴B (n 3,n 5),设直线BD 的解析式为y =mx +n ,把D (5,3),B (n 3,n 5)代入得{5n +n =3n 3n +n =n 5,解得{n =35n =0, ∴直线BD 的解析式为y =35x . 故答案为y =35x .九.待定系数法求反比例函数解析式(共1小题)26.【解答】解:(1)过点A 作AC ⊥OB 于点C ,∵△OAB 是等边三角形,∴∠AOB =60°,OC =12OB ,∵B (4,0),∴OB =OA =4,∴OC =2,AC =2√3. 把点A (2,2√3)代入y =n n ,得k =4√3.∴反比例函数的解析式为y =4√3n ;(2)分两种情况讨论:①点D 是A ′B ′的中点,过点D 作DE ⊥x 轴于点E . 由题意得A ′B ′=4,∠A ′B ′E =60°,在Rt △DEB ′中,B ′D =2,DE =√3,B ′E =1.∴O ′E =3,把y =√3代入y =4√3n ,得x =4,∴OE =4,∴a =OO ′=1;①如图3,点F 是A ′O ′的中点,过点F 作FH ⊥x 轴于点H . 由题意得A ′O ′=4,∠A ′O ′B ′=60°,在Rt △FO ′H 中,FH =√3,O ′H =1.把y =√3代入y =4√3n ,得x =4,∴OH =4,∴a =OO ′=3,综上所述,a 的值为1或3.一十.反比例函数与一次函数的交点问题(共3小题)27.【解答】解:如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K .由题意A ,D 关于原点对称,∴A ,D 的纵坐标的绝对值相等,∵AE ∥CD ,∴E ,C 的纵坐标的绝对值相等,∵E ,C 在反比例函数y =n n 的图象上,∴E ,C 关于原点对称,∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形,∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24,∴S △AOE =S △DEO =12,∴12a −12b =12,∴a ﹣b =24,∵S △AOC =S △AOB =12,∴BC ∥AD ,∴nn nn =nn nn ,∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=3:1,∴BC :AD =1:3,∴TB :TA =1:3,设BT =m ,则AT =3m ,AK =TK =1.5m ,BK =0.5m ,∴AK :BK =3:1,∴n △nnn n △nnn =12n −12n =3, ∴n n =−3,即n n =−13, 故答案为24,−13. 28.【解答】解:连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF , ∵过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,∴A 与B 关于原点对称,∴O 是AB 的中点,∵BE ⊥AE ,∴OE =OA ,∴∠OAE =∠AEO ,∵AE 为∠BAC 的平分线,∴∠DAE =∠AEO ,∴AD ∥OE ,∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8,∴S △ACE =S △AOC =12,设点A (m ,n n ),∵AC =3DC ,DH ∥AF ,∴3DH =AF ,∴D (3m ,n 3n ),∵CH ∥GD ,AG ∥DH ,∴△DHC ∽△AGD ,∴S △HDC =14S △ADG ,∵S △AOC =S △AOF +S梯形AFHD +S △HDC =12k +12×(DH +AF )×FH +S △HDC =12k +12×4n 3n ×2m +12×14×2n 3n ×2n =12k +4n 3+n 6=12,∴2k =12,∴k =6;故答案为6;(另解)连结OE ,由题意可知OE ∥AC ,∴S △OAD =S △EAD =8,易知△OAD 的面积=梯形AFHD 的面积,设A 的纵坐标为3a ,则D 的纵坐标为a ,∴(3a +a )(n n −n 3n )=16,解得k =6.29.【解答】解:令x =0,得y =12x ﹣1=﹣1, ∴B (0,﹣1),∴OB =1,把y =12x ﹣1代入y 2=2n n (x <0)中得,12x ﹣1=2n n (x <0), 解得,x =1−√4n +1,∴n n =1−√4n +1, ∴n △nnn =12nn ⋅|n n |=12√4n +1−12, ∵CE ⊥x 轴, ∴n △nnn =12n ,∵△COE 的面积与△DOB 的面积相等,∴12√4n +1−12=12n ,∴k =2,或k =0(舍去).经检验,k =2是原方程的解.故答案为:2.一十一.反比例函数的应用(共3小题)30.【解答】解:由表格中数据可得:xy =100,故y 关于x 的函数表达式为:y =100n . 故选:A .31.【解答】解:(1)设y 与x 之间的函数关系式为:y =n n (k ≠0,x >0), 把(3,400)代入y =n n 得,400=n 3, 解得:k =1200, ∴y 与x 之间的函数关系式为y =1200n (x >0); (2)把x =6,8,10分别代入y =1200n 得,y 1=12006=200,y 2=12008=150,y 3=120010=120, ∵y 1﹣y 2=200﹣150=50,y 2﹣y 3=150﹣120=30,∵50>30,∴y 1﹣y 2>y 2﹣y 3,故答案为:>.32.【解答】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480n ,(t ≥4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将t =6代入v =480n 得v =80;将t =245代入v =480n 得v =100. ∴小汽车行驶速度v 的范围为:80≤v ≤100.①方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480n 得v =9607>120千米/小时,超速了. 故方方不能在当天11点30分前到达B 地.。
2021年广东各地区中考数学试题分类汇编1、〔佛山〕15.如图,假设正方形.加.的顶点8和正方形物F的顶点5都在函数y = -〔x>0〕的图象上,那么点£的坐标是〔, 〕.X2、〔肇庆〕9.在直角坐标系中,将点尸〔3, 6〕向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于〔〕A.第一象限B.第二象限C.第三象限D.第四象限3、〔茂名〕9.反比例函数〕'二色〔./0〕的图象,在每一象限内,〕'的值随X值的增x大而减少,那么一次函数二-4X+〞的图象不经过〔〕A.第一象限B.第二象限C.第三象限D.第四象限4、〔梅州〕5. 一列货运火车从梅州站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,那么可以近似地刻画出火车在这段时间内的速度变化情况的是〔〕5、〔湛江〕8.函数、=工的自变量x的取值范围是〔〕x-2A. x = 2B. xw2C. xw-2D. x>26、〔湛江〕n.三角形的面积一定,那么它底边〃上的高/?与底边.之间的函数关系A. B. C.7、〔湛江〕12.如图2所示,等边三角形月式的边长为1,按图中所示的规律,用2021个这样的三角形镶嵌而成的四边形的周长是〔〕8、〔梅州〕10.函数、=7匚的自变量x的取值范围是__________ .9、〔梅州〕12.直线>' = 〃块与双曲线丁 =勺的一个交点月的坐标为〔-1, -2〕.那么加x=:k -:它们的另一个交点坐标是_______________ .10、〔东莞〕7.经过点A 〔1, 2〕的反比例函数解析式是:11、〔佛山〕22.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54 吨.现方案租用甲、乙两种货车共8辆将这批货物全部运往汶川,一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨. 〔1〕将这些货物一次性运到目的地,有几种租用货车的方案?〔2〕假设甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?12、〔佛山〕24.如图,某隧道横截面的上下轮廓线分别由抛物线对称的一局部和矩形的一局部构成,最大高度为6米,底部宽度为12米.现以.点为原点,皿所在直线为x轴建立直角坐标系.〔1〕直接写出点M及抛物线顶点尸的坐标;〔2〕求出这条抛物线的函数解析式;〔3〕假设要搭建一个矩形“支撑架" AD- DC-%,使.、.点在抛物线上,月、6点在地而加上,那么这个“支撑架〞总长的最大值是多少?13、〔肇庆〕22.〔本小题总分值8分〕点月〔2, 6〕、6〔3, 4〕在某个反比例函数的图象上.〔1〕求此反比例函数的解析式;〔2〕假设直线y ="匹与线段"相交,求m的取值范围.14、〔肇庆〕25.〔本小题总分值10分〕点A 〔a,力〕、B 〔2a, y 2 〕、C 〔3a, y 3 〕都在抛物线y = 5/+12x 上.〔1〕求抛物线与*轴的交点坐标; 〔2〕当41时,求△月SC 的面积;〔3〕是否存在含有兑、、丫3,且与a 无关的等式?如果存在,试给出一个,并加以 证实:如果不存在,说明理由.15、〔茂名〕14.依法纳税是每个公民应尽的义务,新的?中华人民共和4月份缴纳个人所得^税金55元,那么黄先生该月的工薪是 元.国个人所得税法?规定,从2021年3月1日起,公民全月工薪不超过2000元的局部不 必纳税,超过2000元的局部为全月应纳税所得税额,此项税款按右表分段累进计算.黄先生16、〔茂名〕24.〔此题总分值10分〕我市某工艺厂为配合北京奥运,设计了一款本钱为20〔1〕把上表中工、的各组对应值作为点的坐标,在下面的平而直角坐标系中描出相应的点,猜测与x的函数关系,并求出函数关系式:〔4分〕〔2〕当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?〔利润二销售总价-本钱总价〕〔4分〕〔3〕当地物价部门规定,该工艺品销售单价最高丕能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?〔2分〕如图9所示,直线[与两坐标轴的交点坐标分别是月〔-3, 0〕, 5〔0, 4〕,.是坐标 系原点.18、〔梅州〕22.此题总分值10分.“一方有难,八方支援〞.在抗击“5. 12〞汶川特大地宸灾害中,某市组织20辆汽 车装运食品、药品、生活用品三种救 灾物资共100吨到灾民安置点.按计 划20辆汽车都要装运,每辆汽车只 能装运同一种救灾物资且必须装 满.根据右表提供的信息,解答以下问题:〔1〕设装运食品的车辆数为X,装运药品的车辆数为求 >'与X 的函数关系式; 〔2〕如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆 的安排有几种方案?并写出每种安排方案:〔3〕在〔2〕的条件下,假设要求总运费最少,应采用哪种安排方案?并求出最少总运费.物资种类 食品 药品 生活用品每辆汽车运载量〔吨〕 6 5 4 每吨所需运费〔元/吨〕120 160100〔1〕求直线2所对应的函数的表达式;〔2〕假设以.为圆心,半径为R 的圆与直线£相切,如图11所示,在梯形物力中,月5〃以>,ADLDB, 止DOCB,唐L 以所在直线为工轴,过.且垂直于/L5的直线为釉建立平面直角坐标系.<1〕求/加6的度数及乩D、C三点的坐标:〔2〕求过乩D、.三点的抛物线的解析式及其对称轴,〔3〕假设产是抛物线的对称轴£上的点,那么使△氏应为等腰三角形的点尸有几个?〔不必求点尸的坐标,只需说明理由〕20、〔湛江〕26.某农户种植一种经济作物,总用水量〔米3〕与种植时间X 〔天〕之间的函数关系式如图10所示.〔1〕第20天的总用水量为多少米3?〔2〕当%A20时,求y与%之间的函数关系式.〔3〕种植时间为多少天时,总用水量到达7000米3?图1021、〔湛江〕28. 如图11所示,抛物线与x 轴交于4 6两点,与〉轴交 于点C.〔1〕求4、6、0三点的坐标.〔2〕过点力作3交抛物线于点尸,求四边形月物的面积.〔3〕在刀轴上方的抛物线上是否存在一点M 过0作加LLX 轴于点G,使以乩.从G 三点为顶点的三角形与△心相似.假设存在,请求出"点的坐标:否那么,请说明理由.22、〔东莞〕14.〔此题总分值6分〕直线y = -4x + 5和直线求两条直线乙和乙的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上y=l X -4,乙23、(东莞)22.(此题总分值9分)将两块大小一样含30°角的直角三角板,卷放在一起, 使得它们的斜边AB重合,直角边不重合,AB=8, BC=AD二4, AC与BD相交于点E,连结CD.(1)填空:如图9, AC=, BD二;四边形ABCD是梯形.(2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,假设以AB所在直线为%轴,过点A垂直于AB的直线为轴建立如图10 的平面直角坐标系,保持AABD不动,将AABC向工轴的正方向平移到△ FGH的位置,FH 与BD相交于点P,设AF=t, AFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.224、〔茂名〕25 〔此题总分值10分〕如图,在平面直角坐标系中,抛物线二一二% ?+b x+ c经过/〔0, —4〕、6 0〕、0〔工2,0〕三点,且1 2一工1=5.〔1〕求〃、,的值:〔4分〕〔2〕在抛物线上求一点.,使得四边形切团是以改为对角线的菱形:〔3分〕〔3〕在抛物线上是否存在一点P,使得四边形龙㈤是以必为对角线的菱形?假设存在, 求出点P的坐标,并判断这个菱形是否为正方形?假设不存在,请说明理由.〔3分〕相关链接ax L +hx + c = 0〔.乎°〕b〔第25题图〕。
2022年中考数学真题分类汇编:一次函数一、单选题(共15题;共45分)1.(3分)(2022·北部湾)已知反比例函数y=b x(b≠0)的图象如图所示,则一次函数y=cx−a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】D【解析】【解答】解:∵反比例函数y=bx(b≠0)的图象在第一和第三象限内,∴b>0,若a<0,则- b2a>0,所以二次函数开口向下,对称轴在y轴右侧,故A,B,C,D选项全不符合;当a>0,则- b2a<0时,所以二次函数开口向上,对称轴在y轴左侧,故只有C、D两选项可能符合题意,由C、D两选图象知,c<0,又∵a>0,则-a<0,当c<0,a>0时,一次函数y=cx-a图象经过第二、第三、第四象限,故只有D选项符合题意.故答案为:D.【分析】根据反比例函数图象所在的象限可得b>0,若a>0,则-b 2a <0时,二次函数开口向上,对称轴在y 轴左侧,据此排除A 、B ;若a>0,c<0,一次函数图象经过二、三、四象限,据此判断C 、D.2.(3分)(2022·鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y =kx+b (k 、b 为常数,且k <0)的图象与直线y =13x 都经过点A (3,1),当kx+b <13x 时,x 的取值范围是( )A .x >3B .x <3C .x <1D .x >1【答案】A【解析】【解答】解:由函数图象可知不等式kx+b <13x 的解集即为一次函数图象在正比例函数图象下方的自变量的取值范围,∴当kx+b <13x 时,x 的取值范围是x >3.故答案为:A.【分析】根据图象,找出一次函数y=kx+b 的图象在直线 y =13x 的图象下方部分所对应的x 的范围即可.3.(3分)(2022·绥化)小王同学从家出发,步行到离家a 米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y (单位:米)与出发时间x (单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )A .2.7分钟B .2.8分钟C .3分钟D .3.2分钟【答案】C【解析】【解答】解: 如图:根据题意可得A (8,a ),D (12,a ),E (4,0),F (12,0)设AE 的解析式为y=kx+b ,则{0=4k +b a =8k +b ,解得{k =a 4b =−a ∴直线AE 的解析式为y=a4x-3a同理:直线AF 的解析式为:y=-a 4x+3a ,直线OD 的解析式为:y=a12x 联立{y =a 12x y =a 4x −a ,解得{x =6y =a 2联立{y =a12xy =−a 4x +3a,解得{x =9y =3a 4 两人先后两次相遇的时间间隔为9-6=3min .故答案为C .【分析】先求出直线AE 和直线OD 的解析式,再联立方程组{y =a12x y =a 4x −a 求出{x =6y =a 2和{y =a12xy =−a 4x +3a 求出{x =9y =3a 4,最后作差即可得到答案。
2022中考数学真题分类汇编二次函数(填空题)解析一.填空题(共21小题)21.(2022常州)二次函数y=﹣某+2某﹣3图象的顶点坐标是.2.(2022漳州)已知二次函数y=(某﹣2)2+3,当某时,y随某的增大而减小.3.(2022杭州)函数y=某2+2某+1,当y=0时,某=;当1<某<2时,y随某的增大而(填写“增大”或“减小”).21教育网4.(2022天水)下列函数(其中n为常数,且n>1)①y=(某>0);②y=(n﹣1)某;③y=2(某>0);④y=(1﹣n)某+1;⑤y=﹣某+2n某(某<0)中,y的值随某的值增大而增大的函数有个.5.(2022淄博)对于两个二次函数y1,y2,满足y1+y2=2某2+2某+8.当某=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式(要求:写出的解析式的对称轴不能相同).6.(2022十堰)抛物线y=a某2+b某+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当某<﹣1时,y随着某的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)7.(2022乌鲁木齐)如图,抛物线y=a某+b某+c的对称轴是某=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)2第7题第8题第13题8.(2022长春)如图,在平面直角坐标系中,点A在抛物线y=某2﹣2某+2上运动.过点A作AC⊥某轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.9.(2022河南)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(某﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.10.(2022乐山)在直角坐标系某Oy中,对于点P(某,y)和Q (某,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=某+3图象上点M的“可控变点”,则点M的坐标为.(2)若点P在函数y=﹣某2+16(﹣5≤某≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,则实数a的取值范围是.11.(2022宿迁)当某=m或某=n(m≠n)时,代数式某2﹣2某+3的值相等,则某=m+n时,代数式某2﹣2某+3的值为.12.(2022龙岩)抛物线y=2某2﹣4某+3绕坐标原点旋转180°所得的抛物线的解析式是.13.(2022湖州)如图,已知抛物线C1:y=a1某2+b1某+c1和C2:y=a2某2+b2某+c2都经过原点,顶点分别为A,B,与某轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.14.(2022绥化)把二次函数y=2某2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.15.(2022岳阳)如图,已知抛物线y=a某2+b某+c与某轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1某2+b1某+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.第15题第19题16.(2022莆田)用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是2cm.2-1-c-n-j-y17.(2022资阳)已知抛物线p:y=a某2+b某+c的顶点为C,与某轴相交于A、B两点(点A在点B左侧),点C关于某轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=某2+2某+1和y=2某+2,则这条抛物线的解析式为.18.(2022营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.19.(2022温州)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.20.(2022湖州)已知在平面直角坐标系某Oy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和某轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=a某2+b某+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=a某2+b某+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.21.(2022衢州)如图,已知直线y=﹣某+3分别交某轴、y轴于点A、B,P是抛物线y=﹣某+2某+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣某+3于点Q,则当PQ=BQ时,a的值是.22022中考数学真题分类汇编:二次函数(填空题)参考答案与试题解析一.填空题(共21小题)21.(2022常州)二次函数y=﹣某+2某﹣3图象的顶点坐标是(1,﹣2).考点:二次函数的性质.分析:此题既可以利用y=a某2+b某+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.21·世纪某教育网解答:解:∵y=﹣某2+2某﹣32=﹣(某﹣2某+1)﹣2=﹣(某﹣1)2﹣2,故顶点的坐标是(1,﹣2).故答案为(1,﹣2).点评:本题考查了二次函数的性质,求抛物线的顶点坐标有两种方法①公式法,②配方法.2.(2022漳州)已知二次函数y=(某﹣2)2+3,当某<2时,y随某的增大而减小.考点:二次函数的性质.分析:根据二次函数的性质,找到解析式中的a为1和对称轴;由a 的值可判断出开口方向,在对称轴的两侧可以讨论函数的增减性.21教育名师原创作品解答:解:在y=(某﹣2)2+3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为某=2,当某<2时,y的值随着某的值增大而减小;当某>2时,y的值随着某的值增大而增大.故答案为:<2.点评:本题考查了二次函数的性质,找到的a的值和对称轴,对称轴方程是解题的关键.23.(2022杭州)函数y=某+2某+1,当y=0时,某=﹣1;当1<某<2时,y随某的增大而增大(填写“增大”或“减小”).考点:二次函数的性质.2分析:将y=0代入y=某+2某+1,求得某的值即可,根据函数开口向上,当某>﹣1时,y随某的增大而增大.2解答:解:把y=0代入y=某+2某+1,得某2+2某+1=0,解得某=﹣1,当某>﹣1时,y随某的增大而增大,∴当1<某<2时,y随某的增大而增大;故答案为﹣1,增大.点评:本题考查了二次函数的性质,重点掌握对称轴两侧的增减性问题,解此题的关键是利用数形结合的思想.4.(2022天水)下列函数(其中n为常数,且n>1)①y=(某>0);②y=(n﹣1)某;③y=(某>0);④y=(1﹣n)某+1;⑤y=﹣某2+2n某(某<0)中,y的值随某的值增大而增大的函数有3个.考点:二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.分析:分别根据正比例函数、一次函数、反比例函数和二次函数的性质进行分析即可.解答:解:①y=(某>0),n>1,y的值随某的值增大而减小;②y=(n﹣1)某,n>1,y的值随某的值增大而增大;③y=(某>0)n>1,y的值随某的值增大而增大;④y=(1﹣n)某+1,n>1,y的值随某的值增大而减小;⑤y=﹣某2+2n某(某<0)中,n>1,y的值随某的值增大而增大;y的值随某的值增大而增大的函数有3个,故答案为:3.点评:此题主要考查了正比例函数、一次函数、反比例函数和二次函数的性质,关键是掌握正比例函数y=k某(k≠0),k>0时,y的值随某的值增大而增大;一次函数的性质:k>0,y随某的增大而增大,函数从左到右上升;k<0,y随某的增大而减小,函数从左到右下降;二次函数y=a某2+b某+c(a≠0)当a<0时,抛物线y=a某2+b某+c(a≠0)的开口向下,某<﹣时,y随某的增大而增大;反比例函数的性质,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随某的增大而增大.5.(2022淄博)对于两个二次函数y1,y2,满足y1+y2=2某2+2某+8.当某=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式y2=某2+3,y2=(某+)2+3(要求:写出的解析式的对称轴不能相同).考点:二次函数的性质.专题:开放型.分析:已知当某=m时,二次函数y1的函数值为5,且二次函数y2有最小值3,故抛物线的顶点坐标为(m,3),设出顶点式求解即可.解答:解:答案不唯一,例如:y2=某2+3,2y2=(某+)+3.故答案为:y2=某2+3,y2=(某+)2+3.点评:考查了二次函数的性质,二次函数y=a某+b某+c(a≠0)的顶点坐标是(﹣).6.(2022十堰)抛物线y=a某2+b某+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当某<﹣1时,y随着某的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是③⑤.(只填写序号)考点:二次函数图象与系数的关系.专题:数形结合.分析:根据题意画出抛物线的大致图象,利用函数图象,由抛物线开口方向得a>0,由抛物线的对称轴位置得b<0,由抛物线与y轴的交点位置得c<0,于是可对①进行判断;由于抛物线过点(﹣1,0)和(m,0),且1<m<2,根据抛物线的对称性和对称轴方程得到0<﹣<,变形可得a+b>0,则可对②进行判断;利用点A(﹣3,2,y1)和点B(3,y2)到对称轴的距离的大小可对③进行判断;根据抛物线上点的坐标特征得a﹣b+c=0,am2+bm+c=0,两式相减得am2﹣a+bm+b=0,然后把等式左边分解后即可得到a(m﹣1)+b=0,则可对④进行判断;根据顶点的纵坐标公式和抛物线对称轴的位置得到<c≤﹣1,变形得到b2﹣4ac>4a,则可对⑤进行判断.点评:此题考查了二次函数的图象与几何变换,用到的知识点是姐妹抛物线的定义、二次函数的图象与性质、矩形的判定,关键是根据姐妹抛物线的定义得出姐妹抛物线的二次项的系数、一次项系数、常数项之间的关系.2·1·c·n·j·y2分析:直接根据“上加下减,左加右减”的原则进行解答.解答:解:由“左加右减”的原则可知,将二次函数y=2某2的图象向左平移1个单位长22度所得抛物线的解析式为:y=2(某+1),即y=2(某+1);由“上加下减”的原则可知,将抛物线y=2(某+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(某+1)2﹣2,即y=2(某+1)2﹣2.2故答案为:y=2(某+1)﹣2.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.15.(2022岳阳)如图,已知抛物线y=a某2+b某+c与某轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1某2+b1某+c1,则下列结论正确的是③④.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.考点:二次函数图象与几何变换;二次函数图象与系数的关系.分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴为某=﹣>0,可得b<0,据此判断即可.②根据抛物线y=a某2+b某+c的图象,可得某=﹣1时,y>0,即a﹣b+c>0,据此判断即可.③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底某高,求出阴影部分的面积是多少即可.④根据函数的最小值是解答:解:∵抛物线开口向上,∴a>0,又∵对称轴为某=﹣>0,,判断出c=﹣1时,a、b的关系即可.∴b<0,∴结论①不正确;∵某=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=a某2+b某+c的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2某2=4,∴结论③正确;∵,c=﹣1,∴b2=4a,∴结论④正确.综上,结论正确的是:③④.故答案为:③④.点评:(1)此题主要考查了二次函数的图象与几何变换,要熟练掌握,解答此类问题的关键是要明确:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.考点:二次函数的最值.解答:解:设矩形的一边长是某cm,则邻边的长是(16﹣某)cm.则矩形的面积S=某(16﹣某),即S=﹣某2+16某,当某=﹣=﹣=8时,S有最大值是:64.故答案是:64.点评:本题考查了二次函数的性质,求最值得问题常用的思路是转化为函数问题,利用函数的性质求解.2分析:先求出y=某2+2某+1和y=2某+2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=某2+2某+1的顶点A坐标(﹣1,0),接着利用点C和点C′关于某轴对称得到C(1,2﹣4),则可设顶点式y=a(某﹣1)﹣4,然后把A点坐标代入求出a的值即可得到原抛物线解析式.解答:解:∵y=某2+2某+1=(某+1)2,∴A点坐标为(﹣1,0),解方程组得或,∴点C′的坐标为(1,4),∵点C和点C′关于某轴对称,∴C(1,﹣4),2设原抛物线解析式为y=a(某﹣1)﹣4,把A(﹣1,0)代入得4a﹣4=0,解得a=1,∴原抛物线解析式为y=(某﹣1)2﹣4=某2﹣2某﹣3.故答案为y=某2﹣2某﹣3.18.(2022营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22元时,该服装店平均每天的销售利润最大.考点:二次函数的应用.分析:根据“利润=(售价﹣成本)某销售量”列出每天的销售利润y(元)与销售单价某(元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.解答:解:设定价为某元,根据题意得:y=(某﹣15)[8+2(25﹣某)]=﹣2某2+88某﹣870∴y=﹣2某2+88某﹣870,2=﹣2(某﹣22)+98∵a=﹣2<0,∴抛物线开口向下,∴当某=22时,y最大值=98.故答案为:22.。
2022年中考数学真题汇编反比例函数一、选择题1.(2022·云南省)反比例函数y=6的图象分别位于()xA. 第一、第三象限B. 第一、第四象限C. 第二、第三象限D. 第二、第四象限2.(2022·浙江省丽水市)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A. R至少2000ΩB. R至多2000ΩC. R至少24.2ΩD. R至多24.2Ω3.(2022·山东省滨州市)在同一平面直角坐标系中,函数y=kx+1与y=-k(k为常数且k≠0)x的图象大致是()A. B. C. D.4.(2022·四川省德阳市)一次函数y=ax+1与反比例函数y=-a在同一坐标系中的大致图x象是()A. B.B.C. D.5. (2022·山东省)已知二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 的图象和反比例函数y =a+b+c x的图象在同一坐标系中大致为( )A.B.C.D.6. (2022·广东省)a ≠0,函数y =ax 与y =-ax 2+a 同一直角坐标系中的大致图象可能是( )A.B.C. D.7. (2022·广东省)在平面直角坐标系xOy 中,矩形OABC 的点A 在函数y =1x (x >0)的图象上,点C 在函数y =-4x (x <0)的图象上,若点B 的横坐标为-72,则点A 的坐标为( ) A. (12,2) B. (√22,√2) C. (2,12)D. (√2,√22)8.(2022·四川省)已知点A(x1、y1),B(x2,y2)在反比例函数y=3−2mx的图象上,当x1<x2<0时,y1>y2,则m的范围为()A. m>23B. m<23C. m>32D. m<32二、填空题(本大题共10小题,共30.0分)9.(2022·四川省凉山彝族自治州)如图,点A在反比例函数y=kx(x>0)的图象上,过点A作AB⊥x轴于点B,若△OAB的面积为3,则k=______.10.11.12.13.(2022·山东省滨州市)若点A(1,y1)、B(-2,y2)、C(-3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系为______.14.(2022·湖南省株洲市)如图所示,矩形ABCD顶点A、D在y轴上,顶点C在第一象限,x轴为该矩形的一条对称轴,且矩形ABCD的面积为6.若反比例函数y=kx的图象经过点C,则k的值为______.15.16.(2022·江西省)已知点A在反比例函数y=12x(x>0)的图象上,点B在x轴正半轴上,若△OAB为等腰三角形,且腰长为5,则AB的长为______.17.18.19.(2022·四川省成都市)在平面直角坐标系xOy中,若反比例函数y=k−2x的图象位于第二、四象限,则k的取值范围是______.20.(2022·浙江省湖州市)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,tan∠ABO=3,以AB为边向上作正方形ABCD.若图象经过点C的反比例函数的解析式是y=1x,则图象经过点D的反比例函数的解析式是______.21.(2022·安徽省)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=1x 的图象经过点C,y=kx(k≠0)的图象经过点B.若OC=AC,则k=______.22.(2022·浙江省舟山市)如图,在直角坐标系中,△ABC的顶点C与原点O重合,点A在反比例函数y=kx(k>0,x>0)的图象上,点B的坐标为(4,3),AB与y轴平行,若AB=BC,则k=______.23.24.(2022·浙江省绍兴市)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=k(k≠0)x 的图象经过点C和DE的中点F,则k的值是______.25.(2022·浙江省宁波市)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=6√2(x>0)的图象上,BE⊥x轴于点E.若xDC的延长线交x轴于点F,当矩形OABC的面积为9√2时,EF的值为______,点FOE的坐标为______.三、解答题26.(2022·山东省泰安市)如图,点A在第一象限,AC⊥x轴,垂足为C,OA=2√5,tan A=1,2反比例函数y=k的图象经过OA的中点B,与AC交于点D.x27.(1)求k值;28.(2)求△OBD的面积.29.(2022·浙江省金华市)如图,点A在第一象限内,AB⊥x轴于点B,反比例函数y=k(k≠0,x x>0)的图象分别交AO,AB于点C,D.已知点C的坐标为(2,2),BD=1.30.(1)求k的值及点D的坐标.31.(2)已知点P在该反比例函数图象上,且在△ABO的内部(包括边界),直接写出点P的横坐标x的取值范围.32.(2022·湖南省株洲市)如图所示,在平面直角坐标系xOy中,点A、B分别在函数y1=2x (x>0,k>0)的图象上,点C在第二象限内,AC⊥x轴于点P,(x<0)、y2=kxBC⊥y轴于点Q,连接AB、PQ,已知点A的纵坐标为-2.33.(1)求点A的横坐标;34.(2)记四边形APQB的面积为S,若点B的横坐标为2,试用含k的代数式表示S.35. (2022·浙江省宁波市)如图,正比例函数y =-23x 的图象与反比例函数y =kx (k ≠0)的图象都经过点A (a ,2).36. (1)求点A 的坐标和反比例函数表达式.37. (2)若点P (m ,n )在该反比例函数图象上,且它到y 轴距离小于3,请根据图象直接写出n 的取值范围.38. (2022·浙江省温州市)已知反比例函数y =kx (k ≠0)的图象的一支如图所示,它经过点(3,-2).39. (1)求这个反比例函数的表达式,并补画该函数图象的另一支. 40. (2)求当y ≤5,且y ≠0时自变量x 的取值范围.41.(2022·江西省)如图,点A(m,4)在反比例函数y=k(x>0)的图象上,点B在yx轴上,OB=2,将线段AB向右下方平移,得到线段CD,此时点C落在反比例函数的图象上,点D落在x轴正半轴上,且OD=1.42.(1)点B的坐标为______,点D的坐标为______,点C的坐标为______(用含m的式子表示);43.(2)求k的值和直线AC的表达式.44.(2022·甘肃省武威市)如图,B,C是反比例函数y=k(k≠0)在第一象限图象上的点,x过点B的直线y=x-1与x轴交于点A,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD,CD=3.45.(1)求此反比例函数的表达式;46.(2)求△BCE的面积.47.(2022·广东省)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.48.(1)求y1关于x的函数解析式,并画出这个函数的图象;49.(2)若反比例函数y2=k的图象与函数y1的图象相交于点A,且点A的纵坐标为2.x50.①求k的值;51.②结合图象,当y1>y2时,写出x的取值范围.52.(2022·山东省)如图,过C点的直线y=-1x-2与x轴,y轴分别交于点A,B两点,且2BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数y=k(x>0)的图象于点xD,连接OD,△ODH的面积为6.53.(1)求k值和点D的坐标;54.(2)如图,连接BD,OC,点E在直线y=-1x-2上,且位于第二象限内,若△BDE2的面积是△OCD面积的2倍,求点E的坐标.55.(2022·四川省)如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=k的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.x56.(1)求反比例函数的解析式;时x的取值范围;(2)结合图象,直接写出2x>kx图象上的一点,且满足△OPC与△ABC的面积相等,(3)若点P是反比例函数y=kx求出点P的坐标.参考答案1.A2.A3.A4.B5.D6.D7.A8.D9.610.y2<y3<y111.312.5或2√5或√1013.k<214.y=-3x15.316.3217.618.12(3√32,0)19.解:(1)∵∠ACO=90°,tan A=12,∴AC=2OC,∵OA=2√5,由勾股定理得:(2√5)2=OC2+(2OC)2,∴OC=2,AC=4,∴A(2,4),∵B是OA的中点,∴B(1,2),∴k=1×2=2;(2)当x=2时,y=1,∴D(2,1),∴AD=4-1=3,∵S △OBD =S △OAD -S △ABD=12×3×2-12×3×1 =1.5.20.解:(1)∵点C (2,2)在反比例函数y =k x (k ≠0,x >0)的图象上,∴2=k 2,解得k =4,∵BD =1.∴点D 的纵坐标为1,∵点D 在反比例函数y =4x (k ≠0,x >0)的图象上,∴1=4x ,解得x =4,即点D 的坐标为(4,1);(2)∵点C (2,2),点D (4,1),点P 在该反比例函数图象上,且在△ABO 的内部(包括边界),∴点P 的横坐标x 的取值范围是2≤x ≤4. 21.解:(1)∵点A 在函数y 1=2x (x <0)的图象上,点A 的纵坐标为-2,∴-2=2x ,解得x =-1,∴点A 的横坐标为-1;(2)∵点B 在函数y 2=k x (x >0,k >0)的图象上,点B 的横坐标为2,∴B (2,k 2),∴PC =OQ =k 2,BQ =2,∵A (-1,-2),∴OP =CQ =1,AP =2,∴AC =2+k 2,BC =1+2=3,∴S =S △ABC -S △PQC =12AC •BC -12PC •CQ =12×3×(2+k 2)-12×k 2×1=3+12k . 22.解:(1)把A (a ,2)的坐标代入y =23x ,即2=-23a ,解得a =-3,∴A (-3,2),又∵点A (-3,2)是反比例函数y =k x 的图象上,∴k =-3×2=-6, ∴反比例函数的关系式为y =-6x ;(2)∵点P (m ,n )在该反比例函数图象上,且它到y 轴距离小于3,∴-3<m <0或0<m <3,当m =-3时,n =−6−3=2,当m =3时,n =−63=2,由图象可知,若点P (m ,n )在该反比例函数图象上,且它到y 轴距离小于3,n 的取值范围为n >2或n <-2. 23.解:(1)把点(3,-2)代入y =k x (k ≠0),-2=k 3, 解得:k =-6,∴反比例函数的表达式为y =-6x ,补充其函数图像如下:(2)当y =5时,-6x =5,解得:x =-65,∴当y ≤5,且y ≠0时,x ≤-65或x >0. 24.(0,2) (1,0) (m +1,6)25.解:(1)当y =0时,即x -1=0,∴x =1,即直线y=x-1与x轴交于点A的坐标为(1,0),∴OA=1=AD,又∵CD=3,∴点C的坐标为(2,3),而点C(2,3)在反比例函数y=kx的图象上,∴k=2×3=6,∴反比例函数的图象为y=6x;(2)方程组{y=x−1y=6x的正数解为{x=3y=2,∴点B的坐标为(3,2),当x=2时,y=2-1=1,∴点E的坐标为(2,1),即DE=1,∴EC=3-1=2,∴S△BCE=12×2×(3-2)=1,答:△BCE的面积为1.26.解:(1)由题意y1=|x|.函数图象如图所示:(2)①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同理当点A在第二象限时,k=-4.综上,k的值为4或-4.②观察图象可知:当k>0时,x>2或x<0时,y1>y2.当k<0时,x<-2或x>0时,y1>y2.27.解:(1)设点D 坐标为(m ,n ),由题意得12OH •DH =12mn =6,∴mn =12,∵点D 在y =k x 的图象上,∴k =mn =12,∵直线y =-12x -2的图象与x 轴交于点A , ∴点A 的坐标为(-4,0),∵CD ⊥x 轴,∴CH ∥y 轴,∴AO OH =AB BC =1,∴OH =AO =4,∴点D 的横坐标为4.∵点D 在反比例函数y =12x 的图象上∴点D 坐标为(4,3);(2)由(1)知CD ∥y 轴,∴S △BCD =S △OCD ,∵S △BDE =2S △OCD ,∴S △EDC =3S △BCD ,过点E 作EF ⊥CD ,垂足为点F ,交y 轴于点M , ∵S △EDC =12CD •EF ,S △BCD =12CD •OH ,∴CD •EF =3CD •OH ,∴EF =3OH =12.∴EM =8,∴点E 的横坐标为-8,∵点E 在直线y =-12x -2上,∴点E 的坐标为(-8,2). 28.解:(1)把x =2代入y =2x 中,得y =2×2=4, ∴点A 坐标为(2,4),∵点A 在反比例函数y =kx 的图象上,∴k =2×4=8, ∴反比例函数的解析式为y =8x ;(2)根据对称性可知B (-2,-4), 由图象可知,-2<x <0或x >2时,2x >k x . (3)∵AC ⊥OC ,∴OC =2,∵A 、B 关于原点对称,∴B 点坐标为(-2,-4),∴B 到OC 的距离为4,∴S △ABC =2S △ACO =2×12×2×4=8, ∴S △OPC =8,设P 点坐标为(x ,8x ),则P 到OC 的距离为|8x |,∴12×|8x |×2=8,解得x =1或-1, ∴P 点坐标为(1,8)或(-1,-8).。
2021年全国各省市数学中考分类汇编一次函数含答案一、选择题1. (2021·安徽省)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A. 23cmB. 24cmC. 25cmD. 26cm2. (2021·辽宁省丹东市)若实数k 、b 是一元二次方程(x +3)(x -1)=0的两个根,且k <b ,则一次函数y =kx +b 的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. (2021·湖南省娄底市)如图,直线y =x +b 和y =kx +4与x 轴分别相交于点A (-4,0),点B (2,0),则{x +b >0kx +4>0解集为( )A. −4<x <2B. x <−4C. x >2D. x <−4或x >24. (2021·江苏省扬州市)如图,一次函数y =x +√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A. √6+√2B. 3√2C. 2+√3D. √3+√25. (2021·天津市)已知函数y =kx (k ≠0)的图象经过第二、四象限,(-2,y 1)、(1,y 2)、(2,y 3)是函数y =(k -3)x -1图象上的三个点,则y 1、y 2、y 3的大小关系是( )A. y 2<y 3<y 1B. y 1<y 2<y 3C. y 3<y 1<y 2D. y 3<y 2<y 16.(2021·内蒙古自治区包头市)已知二次函数y=ax2-bx+c(a≠0)的图象经过第一象限的点(1,-b),则一次函数y=bx-ac的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.(2021·福建省)如图,一次函数y=kx+b(k>0)的图象过点(-1,0),则不等式k(x-1)+b>0的解集是()A. x>−2B. x>−1C. x>0D. x>18.(2021·贵州省黔东南苗族侗族自治州)已知直线y=-x+1与x轴、y轴分别交于A、B两点,点P是第一象限内的点,若△PAB为等腰直角三角形,则点P的坐标为()A. (1,1)B. (1,1)或(1,2)C. (1,1)或(1,2)或(2,1)D. (0,0)或(1,1)或(1,2)或(2,1)9.(2021·辽宁省营口市)已知一次函数y=kx-k过点(-1,4),则下列结论正确的是()A. y随x增大而增大B. k=2C. 直线过点(1,0)D. 与坐标轴围成的三角形面积为210.(2021·内蒙古自治区赤峰市)点P(a,b)在函数y=4x+3的图象上,则代数式8a-2b+1的值等于()A. 5B. −5C. 7D. −611.(2021·广东省)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A. 0个B. 1个C. 2个D. 1个或2个12.(2021·广东省)一次函数y=-3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B. y3<y2<y1C. y2<y1<y3D. y3<y1<y213.(2021·内蒙古自治区赤峰市)甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论正确的个数是()①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点12米;③甲、乙两人之间的距离超过32米的时间范围是44<x<89;④乙到达终点时,甲距离终点还有68米.A. 4B. 3C. 2D. 114.(2021·江苏省苏州市)已知点A(√2,m),B(32,n)在一次函数y=2x+1的图象上,则m与n的大小关系是()A. m>nB. m=nC. m<nD. 无法确定15.(2021·湖北省武汉市)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是()A.53ℎ B. 32ℎ C. 75ℎ D. 43ℎ二、填空题16. (2021·辽宁省阜新市)育红学校七年级学生步行到郊外旅行.七(1)班出发1h 后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s (km )与七(2)班行进时间t (h )的函数关系图象如图所示.若已知联络员用了23h 第一次返回到自己班级,则七(2)班需要______h 才能追上七(1)班.17. (2021·江苏省南通市)下表中记录了一次试验中时间和温度的数据.时间/分钟 0 5 10 15 20 25 温度/℃ 10 25 40 55 70 85若温度的变化是均匀的,则14分钟时的温度是______ ℃. 18. (2021·广西壮族自治区桂林市)如图,与图中直线y =-x +1关于x 轴对称的直线的函数表达式是______ .19. (2021·广西壮族自治区梧州市)如图,在同一平面直角坐标系中,直线l 1:y =14x +12与直线l 2:y =kx +3相交于点A ,则方程组{y =14x +12y =kx +3的解为______ .20. (2021·贵州省毕节市)将直线y =-3x 向下平移2个单位长度,平移后直线的解析式为______ .21. (2021·湖北省黄石市)将直线y =-x +1向左平移m (m >0)个单位后,经过点(1,-3),则m 的值为______ .22.(2021·江苏省无锡市)请写出一个函数表达式,使其图象在第二、四象限且关于原点对称:______ .23.(2021·四川省眉山市)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是______ .24.(2021·山东省威海市)已知点A为直线y=-2x上一点,过点A作AB∥x轴,交双曲线y=4于点B.若点A与点B关于y轴对称,则点A的坐标为______ .x25.(2021·广西壮族自治区贺州市)如图,一次函数y=x+4与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB上的点,且∠OPC=45°,PC=PO,则点P的标为______ .三、解答题26.(2021·湖南省郴州市)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位元)之间有如下表所示关系:x… 4.0 5.0 5.5 6.57.5…y…8.0 6.0 5.0 3.0 1.0…(1)根据表中的数据,在如图中描出实数对(x,y)所对应的点,并画出y关于x 的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元),①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元?27.(2021·山东省)在2018春季环境整治活动中,某社区计划对面积为1600m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y关于x 的函数关系式;(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.28.(2021·黑龙江省牡丹江市)在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A地路程s(米)之间的函数图象.(1)a= ______ ,乐乐去A地的速度为______ ;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.29.(2021·贵州省毕节市)某中学计划暑假期间安排2名老师带领部分学生参加红色旅游.甲、乙两家旅行社的服务质量相同,且报价都是每人1000元.经协商,甲旅行社的优惠条件是:老师、学生都按八折收费;乙旅行社的优惠条件是:两位老师全额收费,学生都按七五折收费.(1)设参加这次红色旅游的老师学生共有x名,y甲,y乙(单位:元)分别表示选择甲、乙两家旅行社所需的费用,求y甲,y乙关于x的函数解析式;(2)该校选择哪家旅行社支付的旅游费用较少?30.(2021·福建省)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?31.(2021·黑龙江省)A,B,C三地在同一条公路上,C地在A,B两地之间,且到A,B两地的路程相等.甲、乙两车分别从A,B两地出发,匀速行驶.甲车到达C地并停留1小时后以原速继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回C地停止行驶,乙车经C地到达A地停止行驶.在两车行驶的过程中,甲、乙两车距C地的路程y(单位:千米)与所用的时间x(单位:小时)之间的函数图象如图所示,请结合图象信息解答下列问题:(1)直接写出A,B两地的路程和甲车的速度;(2)求乙车从C地到A地的过程中y与x的函数关系式(不用写自变量的取值范围);(3)出发后几小时,两车在途中距C地的路程之和为180千米?请直接写出答案.32.(2021·四川省雅安市)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.(1)求y与x之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?33.(2021·黑龙江省大庆市)如图①是甲,乙两个圆柱形水槽的横截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度y(cm)与注水时间x(min)之间的关系如图②所示,根据图象解答下列问题:(1)图②中折线EDC表示______ 槽中水的深度与注入时间之间的关系;线段AB 表示______ 槽中水的深度与注入时间之间的关系;铁块的高度为______ cm.(2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)34.(2021·黑龙江省绥化市)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息.已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)m= ______ ,n= ______ ;(2)求CD和EF所在直线的解析式;(3)直接写出t为何值时,两人相距30米.35.(2021·黑龙江省齐齐哈尔市)在一条笔直的公路上依次有A、C、B三地,甲、乙两人同时出发,甲从A地骑自行车匀速去B地,途经C地时因事停留1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行匀速从B 地至A地.甲、乙两人距A地的距离y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)甲的骑行速度为______ 米/分,点M的坐标为______ ;(2)求甲返回时距A地的距离y(米)与时间x(分)之间的函数解析式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回到A地之前,______ 分钟时两人距C地的距离相等.36.(2021·黑龙江省双鸭山市)一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km.两车相遇后休息一段时间,再同时继续行驶.两车之间的距离y(km)与货车行驶时间x(h)之间的函数图象如图所示的折线AB-BC-CD-DE,结合图象回答下列问题:(1)甲、乙两地之间的距离是______ km;(2)求两车的速度分别是多少km/h?(3)求线段CD的函数关系式.直接写出货车出发多长时间,与轿车相距20km?37.(2021·吉林省长春市)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:【实验观察】实验小组通过观察,每2小时记录一次箭尺读数,得到如表:供水时间x(小时)02468箭尺读数y(厘米)618304254【探索发现】①建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.②观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.【结论应用】应用上述发现的规律估算:①供水时间达到12小时时,箭尺的读数为多少厘米?②如果本次实验记录的开始时间是上午8:00,那当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)38.(2021·山东省聊城市)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?量的1339.(2021·江苏省南京市)甲、乙两人沿同一直道从A地去B地.甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示.(1)在图中画出乙离A地的距离y2(单位:m)与时间x之间的函数图象;(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.40.(2021·江苏省宿迁市)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为______ km/h,C点的坐标为______ .(2)慢车出发多少小时后,两车相距200km.参考答案1.B2.C3.A4.A5.A6.C7.C8.C9.C10.B11.D12.B13.C14.C15.B16.217.5218.y =x -119.{x =2y =120.y =-3x -221.-322.y =-1x 答案不唯一 23.a <-3224.(√2,-2√2)或(-√2,2√2)25.(-2√2,4-2√2)26.解:(1)(2)根据图象设y =kx +b ,把(4.0,8.0)和(5.0,6.0)代入上式,得{8.0=4.0k +b 6.0=5.0k +b, 解得{k =−2b =16, ∴y =-2x +16,∵y ≥0,∴-2x +16≥0,解得x ≤8,∴y 关于x 的函数表达式为y =-2x +16(x ≤8);(3)①P =(x -2)y=(x -2)(-2x +16)=-2x ²+20x -32,即P 与x 的函数表达式为:P =-2x ²+20x -32(x ≤8); ②∵物价局限定商品的销售单价不得超过进价的200%,∴x ≤2×200%,即x ≤4,由题意得P =10,∴-2x ²+20x -32=10, 解得x 1=3,x 2=7,∵x ≤4,∴此时销售单价为3元.27.解:(1)设乙队每天能完成绿化面积为am 2,则甲队每天能完成绿化面积为2am 2 根据题意得:400a −4002a=5 解得a =40经检验,a =40为原方程的解则甲队每天能完成绿化面积为80m 2答:甲、乙两工程队每天能完成绿化的面积分别为80m 2、40m 2(2)由(1)得80x +40y =1600整理的:y=-2x+40(3)由已知y+x≤25∴-2x+40+x≤25解得x≥15总费用W=0.6x+0.25y=0.6x+0.25(-2x+40)=0.1x+10∵k=0.1>0∴W随x的增大而增大∴当x=15时,W最低=1.5+10=11.528.2 200米/分钟29.解:(1)y甲=0.8×1000x=800x,y乙=2×1000+0.75×1000×(x-2)=750x+500;(2)①y甲<y乙,800x<750x+500,解得x<10,②y甲=y乙,800x=750x+500,解得x=10,③y甲>y乙,800x>750x+500,解得x>10,答:当老师学生数超10人时,选择乙旅行社支付的旅游费用较少;当老师学生数为10人时,两旅行社支付的旅游费用相同;当老师学生数少于10人时,选择甲旅行社支付的旅游费用较少.30.解:(1)设该公司当月零售这种农产品x箱,则批发这种农产品(100-x)箱,依题意得70x+40(100-x)=4600,解得:x=20,100-20=80(箱),答:该公司当月零售这种农产品20箱,批发这种农产品80箱;(2)设该公司当月零售这种农产品m 箱,则批发这种农产品(1000-m )箱,依题意得 m ≤1000×30%,解得m ≤300,设该公司获得利润为y 元,依题意得y =70m +40(1000-m ),即y =30m +40000,∵30>0,y 随着m 的增大而增大,∴当m =300时,y 取最大值,此时y =30×300+40000=49000(元), ∴批发这种农产品的数量为10000-m =700(箱),答:该公司零售、批发这种农产品的箱数分别是300箱,700箱时,获得最大利润为49000元.31.解:(1)当0h 时,甲车和乙车距C 地为180km ,∴两地的路程为:180+180=360km ,设甲车经过180km 用了x h ,则:x +x +x +1=5.5,∴x =1.5,则甲车速度为:180÷1.5=120(km /h ); (2)设乙车从C 地到A 地的过程中y 与x 的函数关系式为:y =kx +b (k ≠0), 将(3,0),(6,180)代入y =kx +b (k ≠0),得:{3k +b =06k +b =180, 解得:{k =60b =−180, ∴乙车从C 地到A 地的过程中y 与x 的函数关系式为:y =60x -180;(3)由图可知,分别在3个时间段可能两车在途中距C 地路程之和为180km , ①甲车从A 地到C 地,乙车从B 到C ,-120x +180+60x +180=180,解得:x =1;②甲车从C 到B ,乙车从C 到A ,-120x -300+60x -180=180,记得:x =113;③甲车从B 到C ,乙车从C 到A ,-120x +660+60x -180=180,解得:x =5.总上所述:分别在1h ,113h ,5h 这三个时间点,两车在途中距C 地的路程之和为180km .32.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),将(12,90),(15,75)代入y =kx +b ,{12k +b =9015k +b =75,解得:{k =−5b =150, ∴y 与x 之间的函数关系式为y =-5x +150(10≤x ≤21,且x 为整数).(2)依题意得:w =(x -10)(-5x +150)=-5x 2+200x -1500=-5(x -20)2+500. ∵-5<0,∴当x =20时,w 取得最大值,最大值为500.答:当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大利润是500元.33.乙 甲 1634.16160335.240 (6,1200) 4或6或836.18037.解:【探索发现】①如图②,②观察上述各点的分布规律,可得它们是否在同一条直线上,设这条直线所对应的函数表达式为y =kx +b ,则{b =62k +b =18, 解得:{k =6b =6, ∴y =6x +6;结论应用】应用上述发现的规律估算:①x =12时,y =6×12+6=78, ∴供水时间达到12小时时,箭尺的读数为78厘米;②y =90时,6x +6=90,解得:x =14,∴供水时间为14小时,∵本次实验记录的开始时间是上午8:00,8:00+14=22:00,∴当箭尺读数为90厘米时是22点钟.38.解:(1)设A 种花卉每盆x 元,B 种花卉每盆(x +0.5)元,根据题意,得:600x =900x+0.5, 解这个方程,得:x =1,经检验,x =1是原方程的解,并符合题意,此时,x +0.5=1+0.5=1.5(元),∴A 种花卉每盆1元,B 种花卉每盆1.5元,答:A 种花卉每盆1元,B 种花卉每盆1.5元;(2)设购买A 种花卉t 盆,购买这批花卉的总费用为w 元,由题意,得:w =t +1.5(6000-t )=-0.5t +9000,∵t≤1(6000-t),3解得:t≤1500,∵w是t的一次函数,k=-0.5<0,∴w随t的增大而减小,∴当t=1500时,w最小,w min=-0.5×1500+9000=8250(元),∴购买A种花卉1500盆时购买这批花卉总费用最低,最低费用是8250元.答:购买A种花卉1500盆时购买这批花卉总费用最低,最低费用是8250元.39.解:(1)如图:(2)设甲的速度是v m/min,乙整个行程所用的时间为t min,由题意得:2v•t=(t+1+5)v,解得:t=6,6+1+5=12(min),答:甲整个行程所用的时间为12min.40.100 (8,480)。
2021年江苏省中考数学真题分类汇编:函数一.选择题(共10小题)1.(2021•南通)如图,四边形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,垂足分别为E,F,且AE=EF=FB=5cm,DE=12cm.动点P,Q均以1cm/s的速度同时从点A出发,其中点P沿折线AD﹣DC﹣CB运动到点B停止,点Q沿AB运动到点B停止,设运动时间为t(s),△APQ的面积为y(cm2),则y与t对应关系的图象大致是()A.B.C.D.2.(2021•徐州)在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 3.(2021•常州)为规范市场秩序、保障民生工程,监管部门对某一商品的价格持续监控.该商品的价格y1(元/件)随时间t(天)的变化如图所示,设y2(元/件)表示从第1天到第t天该商品的平均价格,则y2随t变化的图象大致是()A.B.C.D.4.(2021•苏州)已知点A(,m),B(,n)在一次函数y=2x+1的图象上,则m与n 的大小关系是()A.m>n B.m=n C.m<n D.无法确定5.(2021•常州)已知二次函数y=(a﹣1)x2,当x>0时,y随x增大而增大,则实数a 的取值范围是()A.a>0B.a>1C.a≠1D.a<1 6.(2021•宿迁)已知双曲线过点(3,y1)、(1,y2)、(﹣2,y3),则下列结论正确的是()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y1 7.(2021•宿迁)已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a>0;②b2﹣4ac>0;③4a+b=1;④不等式ax2+(b﹣1)x+c<0的解集为1<x<3,正确的结论个数是()A.1B.2C.3D.4 8.(2021•苏州)已知抛物线y=x2+kx﹣k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.﹣5或2B.﹣5C.2D.﹣2 9.(2021•南通)平面直角坐标系xOy中,直线y=2x与双曲线y=(k>2)相交于A,B两点,其中点A在第一象限.设M(m,2)为双曲线y=(k>2)上一点,直线AM,BM分别交y轴于C,D两点,则OC﹣OD的值为()A.2B.4C.6D.8 10.(2021•无锡)设P(x,y1),Q(x,y2)分别是函数C1,C2图象上的点,当a≤x≤b 时,总有﹣1≤y1﹣y2≤1恒成立,则称函数C1,C2在a≤x≤b上是“逼近函数”,a≤x ≤b为“逼近区间”.则下列结论:①函数y=x﹣5,y=3x+2在1≤x≤2上是“逼近函数”;②函数y=x﹣5,y=x2﹣4x在3≤x≤4上是“逼近函数”;③0≤x≤1是函数y=x2﹣1,y=2x2﹣x的“逼近区间”;④2≤x≤3是函数y=x﹣5,y=x2﹣4x的“逼近区间”.其中,正确的有()A.②③B.①④C.①③D.②④二.填空题(共10小题)11.(2021•南京)如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是.12.(2021•扬州)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为.13.(2021•连云港)某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是元.14.(2021•南通)下表中记录了一次试验中时间和温度的数据.时间/分钟0510152025温度/℃102540557085若温度的变化是均匀的,则14分钟时的温度是℃.15.(2021•徐州)如图,点A、D分别在函数y=、y=的图象上,点B、C在x轴上.若四边形ABCD为正方形,点D在第一象限,则点D的坐标是.16.(2021•无锡)请写出一个函数表达式,使其图象在第二、四象限且关于原点对称:.17.(2021•无锡)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB 的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:.18.(2021•泰州)在函数y=(x﹣1)2中,当x>1时,y随x的增大而.(填“增大”或“减小”)19.(2021•南京)如图,正比例函数y=kx与函数y=的图象交于A,B两点,BC∥x轴,AC∥y轴,则S△ABC=.20.(2021•宿迁)如图,点A、B在反比例函数y =(x>0)的图象上,延长AB交x轴于C点,若△AOC的面积是12,且点B是AC的中点,则k=.三.解答题(共10小题)21.(2021•盐城)为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到图表:该地区每周接种疫苗人数统计表周次第1周第2周第3周第4周第5周第6周第7周第8周710121825293742接种人数(万人)根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点(3,12)、(8,42)作一条直线(如图所示,该直线的函数表达式为y=6x﹣6),那么这条直线可近似反映该地区接种人数的变化趋势.请根据以上信息,解答下列问题:(1)这八周中每周接种人数的平均数为万人;该地区的总人口约为万人;(2)若从第9周开始,每周的接种人数仍符合上述变化趋势.①估计第9周的接种人数约为万人;②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少a(a>0)万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果a=1.8,那么该地区的建议接种人群最早将于第几周全部完成接种?22.(2021•南通)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A超市的购物金额为:300×0.9+(500﹣300)×0.7=410(元);去B超市的购物金额为:100+(500﹣100)×0.8=420(元).(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.23.(2021•南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=x+的图象的“等值点”.(1)分别判断函数y=x+2,y=x2﹣x的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数y=(x>0),y=﹣x+b的图象的“等值点”分别为点A,B,过点B作BC ⊥x轴,垂足为C.当△ABC的面积为3时,求b的值;(3)若函数y=x2﹣2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1,W2两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.24.(2021•盐城)学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′,经过进一步探究,小明发现,当上述点P在某函数图象上运动时,点P′也随之运动,并且点P′的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A的坐标、角度α的大小来解决相关问题.【初步感知】如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图象上的动点,已知该一次函数的图象经过点P1(﹣1,1).(1)点P1旋转后,得到的点P1′的坐标为;(2)若点P′的运动轨迹经过点P2′(2,1),求原一次函数的表达式.【深入感悟】如图2,设A(0,0),α=45°,点P是反比例函数y=﹣(x<0)的图象上的动点,过点P′作二、四象限角平分线的垂线,垂足为M,求△OMP′的面积.【灵活运用】如图3,设A(1,﹣),α=60°,点P是二次函数y=x2+2x+7图象上的动点,已知点B(2,0)、C(3,0),试探究△BCP′的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.25.(2021•南京)已知二次函数y=ax2+bx+c的图象经过(﹣2,1),(2,﹣3)两点.(1)求b的值;(2)当c>﹣1时,该函数的图象的顶点的纵坐标的最小值是.(3)设(m,0)是该函数的图象与x轴的一个公共点.当﹣1<m<3时,结合函数的图象,直接写出a的取值范围.26.(2021•扬州)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A (﹣1,0)、B(3,0),与y轴交于点C.(1)b=,c=;(2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;(3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.27.(2021•无锡)在平面直角坐标系中,O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,二次函数y=ax2+2x+c的图象过B、C两点,且与x轴交于另一点A,点M为线段OB上的一个动点,过点M作直线l平行于y轴交BC于点F,交二次函数y =ax2+2x+c的图象于点E.(1)求二次函数的表达式;(2)当以C、E、F为顶点的三角形与△ABC相似时,求线段EF的长度;(3)已知点N是y轴上的点,若点N、F关于直线EC对称,求点N的坐标.28.(2021•常州)【阅读】通过构造恰当的图形,可以对线段长度......等进行比较,直观地得到一些不....、图形面积大小等关系或最值,这是“数形结合”思想的典型应用.【理解】(1)如图1,AC⊥BC,CD⊥AB,垂足分别为C、D,E是AB的中点,连接CE.已知AD=a,BD=b(0<a<b).①分别求线段CE、CD的长(用含a、b的代数式表示);②比较大小:CE CD(填“<”、“=”或“>”),并用含a、b的代数式表示该大小关系.【应用】(2)如图2,在平面直角坐标系xOy中,点M、N在反比例函数y=(x>0)的图象上,横坐标分别为m、n.设p=m+n,q=,记l=pq.①当m=1,n=2时,l=;当m=3,n=3时,l=;②通过归纳猜想,可得l的最小值是.请利用图...2.构造恰当的图形,并说明你的猜想成立.29.(2021•常州)如图,在平面直角坐标系xOy中,正比例函数y=kx(k≠0)和二次函数y=﹣x2+bx+3的图象都经过点A(4,3)和点B,过点A作OA的垂线交x轴于点C.D 是线段AB上一点(点D与点A、O、B不重合),E是射线AC上一点,且AE=OD,连接DE,过点D作x轴的垂线交抛物线于点F,以DE、DF为邻边作▱DEGF.(1)填空:k=,b=;(2)设点D的横坐标是t(t>0),连接EF.若∠FGE=∠DFE,求t的值;(3)过点F作AB的垂线交线段DE于点P若S△DFP=S▱DEGF,求OD的长.30.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在P A的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC 于点H,当△PFH为等腰三角形时,求线段PH的长.2021年江苏省中考数学真题分类汇编:函数参考答案与试题解析一.选择题(共10小题)1.(2021•南通)如图,四边形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,垂足分别为E,F,且AE=EF=FB=5cm,DE=12cm.动点P,Q均以1cm/s的速度同时从点A出发,其中点P沿折线AD﹣DC﹣CB运动到点B停止,点Q沿AB运动到点B停止,设运动时间为t(s),△APQ的面积为y(cm2),则y与t对应关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】函数及其图象;推理能力.【分析】根据点P在AD,DC,BC上分三种情况,将面积表示成t的函数,即可确定对应的函数图象.【解答】解:∵AD=,∴AB>AD,∴点P先到D,当0≤t<13时,过点P作PH⊥AB于H,则,∴PH=,∴,∴图象开口向上,∴A,B不符合题意,当18<t<31时,点P在BC上,∴,只有D选项符合题意,故选:D.【点评】本题主要考查动点问题求面积,关键是要根据动点在不同的线段上分情况讨论,依次来确定对应的分段的函数的图象.2.(2021•徐州)在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1【考点】二次函数图象与几何变换.【专题】二次函数图象及其性质;平移、旋转与对称;推理能力.【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【解答】解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再向上平移1个单位长度得到:y=(x+2)2+1.故选:B.【点评】此题主要考查二次函数图象与几何变换,正解掌握平移规律是解题的关键.3.(2021•常州)为规范市场秩序、保障民生工程,监管部门对某一商品的价格持续监控.该商品的价格y1(元/件)随时间t(天)的变化如图所示,设y2(元/件)表示从第1天到第t天该商品的平均价格,则y2随t变化的图象大致是()A.B.C.D.【考点】函数的图象.【专题】函数及其图象;应用意识.【分析】根据商品的价格y1(元/件)随时间t(天)的变化图分析得出y2随t变化的规律即可求出答案.【解答】解:由商品的价格y1(元/件)随时间t(天)的变化图得:商品的价格从5增长到15,然后保持15不变,一段时间后又下降到5,∴第1天到第t天该商品的平均价格变化的规律是先快后慢的增长,最后又短时间下降,但是平均价格始终小于15.故选:A.【点评】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4.(2021•苏州)已知点A(,m),B(,n)在一次函数y=2x+1的图象上,则m与n 的大小关系是()A.m>n B.m=n C.m<n D.无法确定【考点】一次函数图象上点的坐标特征.【专题】一次函数及其应用;运算能力;应用意识.【分析】根据点A(,m),B(,n)在一次函数y=2x+1的图象上,可以求得m、n的值,然后即可比较出m、n的大小,本题得以解决.【解答】解:∵点A(,m),B(,n)在一次函数y=2x+1的图象上,∴m=2+1,n=2×+1=3+1=4,∵2+1<4,∴m<n,故选:C.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是求出m、n的值.5.(2021•常州)已知二次函数y=(a﹣1)x2,当x>0时,y随x增大而增大,则实数a 的取值范围是()A.a>0B.a>1C.a≠1D.a<1【考点】二次函数图象与系数的关系.【专题】二次函数图象及其性质;推理能力.【分析】由二次函数的性质得a﹣1>0,即可求解.【解答】解:∵二次函数y=(a﹣1)x2,当x>0时,y随x增大而增大,∴a﹣1>0,∴a>1,故选:B.【点评】本题考查了二次函数的图象与性质,熟记二次函数的性质是解题的关键.6.(2021•宿迁)已知双曲线过点(3,y1)、(1,y2)、(﹣2,y3),则下列结论正确的是()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y1【考点】反比例函数图象上点的坐标特征.【专题】反比例函数及其应用;推理能力.【分析】根据k的符号确定反比例函数图象所在的象限,根据反比例函数的性质即可得出答案.【解答】解:∵k<0,∴反比例函数的图象在第二、四象限,∵反比例函数的图象过点(3,y1)、(1,y2)、(﹣2,y3),∴点(3,y1)、(1,y2)在第四象限,(﹣2,y3)在第二象限,∴y2<y1<0,y3>0,∴y2<y1<y3.故选:A.【点评】本题考查了反比例函数的图象和性质的应用,注意:当k<0时,反比例函数图象在第二、四象限,在每个象限内y随x的增大而增大.7.(2021•宿迁)已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a>0;②b2﹣4ac>0;③4a+b=1;④不等式ax2+(b﹣1)x+c<0的解集为1<x<3,正确的结论个数是()A.1B.2C.3D.4【考点】二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式(组).【专题】二次函数图象及其性质;几何直观;应用意识.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴无交点情况进行推理,进而对所得结论进行判断.【解答】解:①抛物线开口向上,则a>0,故正确;②由图象可知:抛物线与x轴无交点,即△<0∴△=b2﹣4ac<0,故错误;③由图象可知:抛物线过点(1,1),(3,3),即当x=1时,y=a+b+c=1,当x=3时,ax2+bx+c=9a+3b+c=3,∴8a+2b=2,即b=1﹣4a,∴4a+b=1,故正确;④∵点(1,1),(3,3)在直线y=x上,由图象可知,当1<x<3时,抛物线在直线y=x的下方,∴ax2+(b﹣1)x+c<0的解集为1<x<3,故正确;故选:C.【点评】此题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.8.(2021•苏州)已知抛物线y=x2+kx﹣k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.﹣5或2B.﹣5C.2D.﹣2【考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换.【专题】二次函数图象及其性质;运算能力.【分析】根据抛物线平移规律写出新抛物线解析式,然后将(0,0)代入,求得k的值.【解答】解:∵抛物线y=x2+kx﹣k2的对称轴在y轴右侧,∴x=﹣>0,∴k<0.∵抛物线y=x2+kx﹣k2=(x+)²﹣.∴将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线的表达式是:y=(x+﹣3)²﹣+1,∴将(0,0)代入,得0=(0+﹣3)²﹣+1,解得k1=2(舍去),k2=﹣5.故选:B.【点评】本题主要考查了二次函数图象与几何变换,二次函数的性质以及二次函数图象上点的坐标特征,解题的关键是写出平移后抛物线解析式.9.(2021•南通)平面直角坐标系xOy中,直线y=2x与双曲线y=(k>2)相交于A,B 两点,其中点A在第一象限.设M(m,2)为双曲线y=(k>2)上一点,直线AM,BM分别交y轴于C,D两点,则OC﹣OD的值为()A.2B.4C.6D.8【考点】反比例函数与一次函数的交点问题;相似三角形的判定与性质.【专题】一次函数及其应用;反比例函数及其应用;运算能力;应用意识.【分析】解法一:设A(a,2a),M(m,2),则B(﹣a,﹣2a),分别计算直线AM和BM的解析式,令x=0可得OC和OD的长,相减可得结论;解法二:作辅助线,构建相似三角形,先根据两个函数的解析式计算交点A和B的坐标,根据M(m,2)为双曲线y=(k>2)上一点,将点M的坐标代入反比例函数的解析式可得M的坐标,证明△EMD∽△FDB和△CP A∽△CEM,列比例式分别计算OC和OD的长,可得结论.【解答】解:解法一:设A(a,2a),M(m,2),则B(﹣a,﹣2a),设直线BM的解析式为:y=nx+b,则,解得:,∴直线BM的解析式为:y=x+,∴OD=,同理得:直线AM的解析式为:y=x+,∴OC=,∵a•2a=2m,∴m=a2,∴OC﹣OD=﹣=4;解法二:由题意得:,解得:,,∵点A在第一象限,∴A(,),B(﹣,﹣),∵M(m,2)为双曲线y=(k>2)上一点,∴2m=k,∴m=,∴M(,2),如图,过点A作AP⊥y轴于P,过点M作ME⊥y轴于E,过点B作BF⊥y轴于F,∴∠MED=∠BFD=90°,∵∠EDM=∠BDF,∴△EMD∽△FBD,∴,即==,∴OD==﹣2,∵∠CP A=∠CEM=90°,∠ACP=∠ECM,∴△CP A∽△CEM,∴,即==,∴OC===+2,∴OC﹣OD=+2﹣(﹣2)=4.故选:B.【点评】本题考查反比例函数的综合问题,解题关键是构造相似三角形求解.10.(2021•无锡)设P(x,y1),Q(x,y2)分别是函数C1,C2图象上的点,当a≤x≤b 时,总有﹣1≤y1﹣y2≤1恒成立,则称函数C1,C2在a≤x≤b上是“逼近函数”,a≤x ≤b为“逼近区间”.则下列结论:①函数y=x﹣5,y=3x+2在1≤x≤2上是“逼近函数”;②函数y=x﹣5,y=x2﹣4x在3≤x≤4上是“逼近函数”;③0≤x≤1是函数y=x2﹣1,y=2x2﹣x的“逼近区间”;④2≤x≤3是函数y=x﹣5,y=x2﹣4x的“逼近区间”.其中,正确的有()A.②③B.①④C.①③D.②④【考点】一次函数的性质;一次函数图象上点的坐标特征;二次函数的性质;二次函数图象上点的坐标特征.【专题】新定义;一次函数及其应用;二次函数的应用;应用意识.【分析】根据当a≤x≤b时,总有﹣1≤y1﹣y2≤1恒成立,则称函数C1,C2在a≤x≤b 上是“逼近函数”,a≤x≤b为“逼近区间”,逐项进行判断即可.【解答】解:①y1﹣y2=﹣2x﹣7,在1≤x≤2上,当x=1时,y1﹣y2最大值为﹣9,当x =2时,y1﹣y2最小值为﹣11,即﹣11≤y1﹣y2≤﹣9,故函数y=x﹣5,y=3x+2在1≤x ≤2上是“逼近函数”不正确;②y1﹣y2=﹣x2+5x﹣5,在3≤x≤4上,当x=3时,y1﹣y2最大值为1,当x=4时,y1﹣y2最小值为﹣1,即﹣1≤y1﹣y2≤1,故函数y=x﹣5,y=x2﹣4x在3≤x≤4上是“逼近函数”正确;③y1﹣y2=﹣x2+x﹣1,在0≤x≤1上,当x=时,y1﹣y2最大值为﹣,当x=0或x=1时,y1﹣y2最小值为﹣1,即﹣1≤y1﹣y2≤﹣,当然﹣1≤y1﹣y2≤1也成立,故0≤x ≤1是函数y=x2﹣1,y=2x2﹣x的“逼近区间”正确;④y1﹣y2=﹣x2+5x﹣5,在2≤x≤3上,当x=时,y1﹣y2最大值为,当x=2或x=3时,y1﹣y2最小值为1,即1≤y1﹣y2≤,故2≤x≤3是函数y=x﹣5,y=x2﹣4x的“逼近区间”不正确;∴正确的有②③,故选:A.【点评】本题考查一次函数、二次函数的综合应用,解题的关键是读懂“逼近函数”和“逼近区间”的含义,会求函数在某个范围内的最大、最小值.二.填空题(共10小题)11.(2021•南京)如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是6.【考点】坐标与图形性质.【专题】几何图形问题;应用意识.【分析】由C、D的横坐标求出线段CD的长度,结合中位线的定义和性质,得出OB的长度,从而得到B点的横坐标.【解答】解:∵边AO,AB的中点为点C、D,∴CD是△OAB的中位线,CD∥OB,∵点C,D的横坐标分别是1,4,∴CD=3,∴OB=2CD=6,∴点B的横坐标为6.故答案为:6.【点评】本题主要考查了中位线定义和性质应用,解题的关键是由点C、D的横坐标求出线段CD的长度.12.(2021•扬州)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为2.【考点】解一元一次不等式组;坐标确定位置.【专题】平面直角坐标系;运算能力.【分析】根据第二象限的点的横坐标小于0,纵坐标大于0列出不等式组,然后求解即可.【解答】解:由题意得:,解得:,∴整数m的值为2,故答案为:2.【点评】本题考查了点的坐标及解一元一次不等式组,记住各象限内点的坐标的符号是解决的关键.13.(2021•连云港)某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是1264元.【考点】二次函数的应用.【专题】二次函数的应用;应用意识.【分析】设每份A种快餐降价a元,则每天卖出(40+2a)份,每份B种快餐提高b元,则每天卖出(80﹣2b)份,由于这两种快餐每天销售总份数不变,可得出等式,求得a =b,用a表达出W,结合二次函数的性质得到结论.【解答】解:设每份A种快餐降价a元,则每天卖出(40+2a)份,每份B种快餐提高b 元,则每天卖出(80﹣2b)份,由题意可得,40+2a+80﹣2b=40+80,解a=b,∴总利润W=(12﹣a)(40+2a)+(8+a)(80﹣2a)=﹣4a2+48a+1120=﹣4(a﹣6)2+1264,∵﹣4<0,∴当a=6时,W取得最大值1264,即两种快餐一天的总利润最多为1264元.故答案为:1264.【点评】本题属于经济问题,主要考查二次函数的性质,设出未知数,根据“这两种快餐每天销售总份数不变”列出等式,找到量之间的关系是解题关键.14.(2021•南通)下表中记录了一次试验中时间和温度的数据.时间/分钟0510152025温度/℃102540557085若温度的变化是均匀的,则14分钟时的温度是52℃.【考点】一次函数的应用.【专题】一次函数及其应用;应用意识.【分析】根据表格中的数据可知温度随时间的增加而上升,且每分钟上升3℃,写出函数关系式,进而把t=14min代入计算即可.【解答】解:根据表格中的数据可知温度T随时间t的增加而上升,且每分钟上升3℃,则关系式为:T=3t+10,当t=14min时,T=3×14+10=52(℃).故14min时的温度是52℃.故答案为:52.【点评】本题考查了一次函数的应用,解题的关键是分析表格得出温度T与时间t的关系式.15.(2021•徐州)如图,点A、D分别在函数y=、y=的图象上,点B、C在x轴上.若四边形ABCD为正方形,点D在第一象限,则点D的坐标是(2,3).【考点】反比例函数的性质;反比例函数图象上点的坐标特征;正方形的性质.【专题】反比例函数及其应用;运算能力.【分析】根据题意设出A、D的纵坐标为n,即可得出A(﹣,n),D(,n),根据正方形的性质得出+=n,求得n=3,即可求得D的坐标为(2,3).【解答】解:设A的纵坐标为n,则D的纵坐标为n,∵点A、D分别在函数y=、y=的图像上,∴A(﹣,n),D(,n),∵四边形ABCD为正方形,\∴+=n,解得n=3(负数舍去),∴D(2,3),故答案为(2,3).【点评】本题考查了反比例函数图象上点的坐标特征,正方形的性质,表示出A、D的坐标是解题的关键.16.(2021•无锡)请写出一个函数表达式,使其图象在第二、四象限且关于原点对称:y =﹣答案不唯一.【考点】一次函数的性质;正比例函数的性质;反比例函数的性质;二次函数的性质;关于原点对称的点的坐标.【专题】反比例函数及其应用;推理能力.【分析】根据反比例函数的性质得到k<0,然后取k=﹣1即可得到满足条件的函数解析式.【解答】解:若反比例函数y=(k是常数,且k≠0)的图象在第二、四象限,则k<0,故k可取﹣1,此时反比例函数解析式为y=﹣.故答案为:y=﹣答案不唯一.【点评】本题考查了反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限;当k<0,双曲线的两支分别位于第二、第四象限.17.(2021•无锡)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB 的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:y=x2.【考点】一次函数图象上点的坐标特征;二次函数图象上点的坐标特征;待定系数法求二次函数解析式.【专题】函数的综合应用;图形的相似;应用意识.【分析】过A作AD⊥y轴于D,过B作BE⊥y轴于E,又CB=3AC,得CE=3CD,BE =3AD,设AD=m,则BE=3m,A(﹣m,m2),B(3m,9m2),可得C(0,3m2),而P为CB的中点,故P(m,6m2),即可得y=x2.【解答】解:过A作AD⊥y轴于D,过B作BE⊥y轴于E,如图:∵AD⊥y轴,BE⊥y轴,∴AD∥BE,∴==,∵CB=3AC,∴CE=3CD,BE=3AD,设AD=m,则BE=3m,∵A、B两点在二次函数y=x2的图象上,∴A(﹣m,m2),B(3m,9m2),∴OD=m2,OE=9m2,∴ED=8m2,而CE=3CD,∴CD=2m2,OC=3m2,∴C(0,3m2),∵P为CB的中点,∴P(m,6m2),又已知P(x,y),∴,∴y=x2;故答案为:y=x2.【点评】本题考查二次函数图象上点坐标的特征,涉及相似三角形的判定与性质等知识,解题的关键是用含字母的代数式表示C的坐标.18.(2021•泰州)在函数y=(x﹣1)2中,当x>1时,y随x的增大而增大.(填“增大”或“减小”)【考点】二次函数的性质.【专题】二次函数图象及其性质;推理能力.【分析】直接利用二次函数的增减性进而分析得出答案.【解答】解:∵函数y=(x﹣1)2,∴a=1>0,抛物线开口向上,对称轴为直线x=1,∴当x>1时,y随x的增大而增大.故答案为:增大.【点评】此题主要考查了二次函数的性质,正确把握二次函数的增减性是以对称轴为界是解题关键.19.(2021•南京)如图,正比例函数y=kx与函数y=的图象交于A,B两点,BC∥x轴,AC∥y轴,则S△ABC=12.【考点】反比例函数与一次函数的交点问题.【专题】反比例函数及其应用;应用意识.【分析】方法一:根据反比例函数的性质可判断点A与点B关于原点对称,则S△AON=S,由BC∥x轴,AC∥y轴可得S△AON=S△CON,S△OBM=S△OCM,再根据S△AON=x A △OBM•y A=3,即可得出三角形ABC的面积.方法二:设出A点坐标,根据题意得出B、C点的坐标,再根据面积公式刚好消掉未知数求出面积的值.【解答】解:方法一:连接OC,设AC交x轴于点N,BC交y轴于M点,。
中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。
中考真题分类汇编(函数)----函数与几何(2)1.(2021•四川省眉山市)如图,直线y=x+6与x轴交于点A,与y轴交于点B.直线MN∥AB,且与△AOB的外接圆⊙P相切,与双曲线y=﹣在第二象限内的图象交于C、D两点.(1)求点A,B的坐标和⊙P的半径;(2)求直线MN所对应的函数表达式;(3)求△BCN的面积.2.(2021•四川省南充市)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F 的坐标;若不存在,请说明理由.3. (2021•遂宁市)如图,已知二次函数的图象与x 轴交于A 和B (-3,0)两点,与y 轴交于C (0,-3),对称轴为直线1x =-,直线y =-2x +m 经过点A ,且与y 轴交于点D ,与抛物线交于点E ,与对称轴交于点F . (1)求抛物线的解析式和m 的值;(2)在y 轴上是否存在点P ,使得以D 、E 、P 为顶点的三角形与△AOD 相似,若存在,求出点P 的坐标;若不存在,试说明理由;(3)直线y =1上有M 、N 两点(M 在N 的左侧),且MN =2,若将线段MN 在直线y =1上平移,当它移动到某一位置时,四边形MEFN 的周长会达到最小,请求出周长的最小值(结果保留根号).4. (2021•四川省自贡市) 如图,抛物线(1)()y x x a =+-(其中1a >)与x 轴交于A 、B 两点,交y 轴于点C .(1)直接写出OCA ∠的度数和线段AB 的长(用a 表示);(2)若点D 为ABC 的外心,且BCD △与ACO △104,求此抛物线的解析式;(3)在(2)的前提下,试探究抛物线(1)()y x x a =+-上是否存在一点P ,使得CAP DBA ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由.5. (2021•天津市)已知抛物线22y ax ax c =-+(a ,c 为常数,0a ≠)经过点()0,1C -,顶点为D .(Ⅰ)当1a =时,求该抛物线的顶点坐标;(Ⅱ)当0a >时,点()0,1E a +,若22DE DC =,求该抛物线的解析式; (Ⅲ)当1a <-时,点()0,1F a -,过点C 作直线l 平行于x 轴,(),0M m 是x 轴上的动点,()3,1N m +-是直线l 上的动点.当a 为何值时,FM DN +的最小值为10,并求此时点M ,N 的坐标.6. 2021•湖北省恩施州)如图,在平面直角坐标系中,四边形ABCD 为正方形,点A ,B 在x 轴上,抛物线y =x 2+bx +c 经过点B ,D (﹣4,5)两点,且与直线DC 交于另一点E . (1)求抛物线的解析式;(2)F 为抛物线对称轴上一点,Q 为平面直角坐标系中的一点,是否存在以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形.若存在,请求出点F 的坐标;若不存在,请说明理由;(3)P 为y 轴上一点,过点P 作抛物线对称轴的垂线,垂足为M ,连接ME ,BP ,探究EM+MP+PB是否存在最小值.若存在,请求出这个最小值及点M的坐标;若不存在,请说明理由.7.(2021•浙江省金华市)在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:y=x上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB 的长;若不存在,请说明理由.8.(2021•湖北省荆门市)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,交y轴于点C(0,﹣3),点Q为线段BC上的动点.(1)求抛物线的解析式;(2)求|QO|+|QA|的最小值;(3)过点Q作PQ∥AC交抛物线的第四象限部分于点P,连接P A,PB,记△P AQ与△PBQ面积分别为S1,S2,设S=S1+S2,求点P坐标,使得S最大,并求此最大值.9.(2021•江苏省盐城市)学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′,经过进一步探究,小明发现,当上述点P 在某函数图象上运动时,点P′也随之运动,并且点P′的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A的坐标、角度α的大小来解决相关问题.【初步感知】如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图象上的动点,已知该一次函数的图象经过点P1(﹣1,1).(1)点P1旋转后,得到的点P1′的坐标为(1,3);(2)若点P′的运动轨迹经过点P2′(2,1),求原一次函数的表达式.【深入感悟】如图2,设A(0,0),α=45°,点P是反比例函数y=﹣(x<0)的图象上的动点,过点P′作二、四象限角平分线的垂线,垂足为M,求△OMP′的面积.【灵活运用】如图3,设A (1,﹣),α=60°,点P 是二次函数y =x 2+2x +7图象上的动点,已知点B (2,0)、C (3,0),试探究△BCP ′的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.10. (2021•重庆市A )如图,在平面直角坐标系中,抛物线2y x bx c =++经过A (0,﹣1),B (4,1).直线AB 交x 轴于点C ,P 是直线AB 下方抛物线上的一个动点.过点P 作PD ⊥AB ,垂足为D ,PE ∥x 轴,交AB 于点E .(1)求抛物线的函数表达式;(2)当△PDE 的周长取得最大值时,求点P 的坐标和△PDE 周长的最大值;(3)把抛物线2y x bx c =++平移,使得新抛物线的顶点为(2)中求得的点P .M 是新抛物线上一点,N 是新抛物线对称轴上一点,直接写出所有使得以点A ,B ,M ,N 为顶点的四边形是平行四边形的点M 的坐标,并把求其中一个点M 的坐标的过程写出来.11.(2021•重庆市B )如图,在平面直角坐标系中,抛物线y =ax 2+bx ﹣4(a ≠0)与x 轴交于点A (﹣1,0),B (4,0),与y 轴交于点C . (1)求该抛物线的解析式;(2)直线l 为该抛物线的对称轴,点D 与点C 关于直线l 对称,点P 为直线AD 下方抛物线上一动点,连接P A ,PD ,求△P AD 面积的最大值.(3)在(2)的条件下,将抛物线y =ax 2+bx ﹣4(a ≠0)沿射线AD 平移4个单位,得到新的抛物线y 1,点E 为点P 的对应点,点F 为y 1的对称轴上任意一点,在y 1上确定一点G ,使得以点D ,E ,F ,G 为顶点的四边形是平行四边形,写出所有符合条件的点G 的坐标,并任选其中一个点的坐标,写出求解过程.12. (2021•湖北省十堰市) 已知抛物线25y ax bx =+-与x 轴交于点()1,0A -和()5,0B -,与y 轴交于点C ,顶点为P ,点N 在抛物线对称轴上且位于x 轴下方,连AN 交抛物线于M ,连AC 、CM .(1)求抛物线的解析式;(2)如图1,当tan 2ACM ∠=时,求M 点的横坐标;(3)如图2,过点P 作x 轴的平行线l ,过M 作MD l ⊥于D ,若3MD MN =,求N 点的坐标.13. (2021•湖南省张家界市)如图,已知二次函数c bx ax y ++=2的图象经过点)3,2(-C ,且与x 轴交于原点及点)0,8(B . (1)求二次函数的表达式;(2)求顶点A 的坐标及直线AB 的表达式; (3)判断ABO ∆的形状,试说明理由;(4)若点P 为⊙O 上的动点,且⊙O 的半径为 22,一动点E 从点A 出发,以每秒2个单位长度的速度沿线段AP 匀速运动到点P ,再以每秒1个单位长度的速度沿线段PB 匀速运动到点B 后停止运动,求点E 的运动时间t 的最小值.14. (2021•海南省)已知抛物线y =ax 2+x +c 与x 轴交于A 、B 两点,与y 轴交于C 点,且点A 的坐标为(﹣1,0)、点C 的坐标为(0,3). (1)求该抛物线的函数表达式;(2)如图1,若该抛物线的顶点为P ,求△PBC 的面积;(3)如图2,有两动点D 、E 在△COB 的边上运动,速度均为每秒1个单位长度,它们分别从点C 和点B 同时出发,点D 沿折线COB 按C →O →B 方向向终点B 运动,点E_y _x _ A _ B _ O _ C _ P沿线段BC 按B →C 方向向终点C 运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为t 秒,请解答下列问题: ①当t 为何值时,△BDE 的面积等于;②在点D 、E 运动过程中,该抛物线上存在点F ,使得依次连接AD 、DF 、FE 、EA 得到的四边形ADFE 是平行四边形,请直接写出所有符合条件的点F 的坐标.15. (2021•广西玉林市)已知抛物线:234y ax ax a =--(0a >)与x 轴交点为A ,B(A 在B 的左侧),顶点为D .(1)求点A ,B 的坐标及抛物线的对称轴; (2)若直线32y x =-与抛物线交于点M ,N ,且M ,N 关于原点对称,求抛物线的解析式;(3)如图,将(2)中抛物线向上平移,使得新的抛物线的顶点D 在直线7:8l y =上,设直线l 与y 轴的交点为O ',原抛物线上的点P 平移后的对应点为点Q ,若O P O Q ''=,求点P ,Q 的坐标.16. (2021•广西贺州市)如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,且()1,0A -,对称轴为直线2x =. (1)求该抛物线的函数达式;(2)直线l 过点A 且在第一象限与抛物线交于点C .当45CAB ∠=︒时,求点C 的坐标; (3)点D 在抛物线上与点C 关于对称轴对称,点P 是抛物线上一动点,令(,)P P P x y ,当1P x a ≤≤,15a ≤≤时,求PCD 面积的最大值(可含a 表示).17. 2021•山东省济宁市)如图,直线y =﹣x +分别交x 轴、y 轴于点A ,B ,过点A 的抛物线y =﹣x 2+bx +c 与x 轴的另一交点为C ,与y 轴交于点D (0,3),抛物线的对称轴l 交AD 于点E ,连接OE 交AB 于点F . (1)求抛物线的解析式; (2)求证:OE ⊥AB ;(3)P 为抛物线上的一动点,直线PO 交AD 于点M ,是否存在这样的点P ,使以A ,O ,M 为顶点的三角形与△ACD 相似?若存在,求点P 的横坐标;若不存在,请说明理由.18 . (2021•内蒙古包头市) 如图,在平面直角坐标系中,抛物线24y x x =-+经过坐标原点,与x 轴正半轴交于点A ,点(,)M m n 是抛物线上一动点.(1)如图1,当0m >,0n >,且3n m =时,①求点M 的坐标: ②若点15,4B y ⎛⎫ ⎪⎝⎭在该抛物线上,连接OM ,BM ,C 是线段BM 上一动点(点C 与点M ,B 不重合),过点C 作//CD MO ,交x 轴于点D ,线段OD 与MC 是否相等?请说明理由; (2)如图2,该抛物线的对称轴交x 轴于点K ,点7,3E x ⎛⎫ ⎪⎝⎭在对称轴上,当2m >,0n >,且直线EM 交x 轴的负半轴于点F 时,过点A 作x 轴的垂线,交直线EM 于点N ,G 为y 轴上一点,点G 的坐标为180,5⎛⎫ ⎪⎝⎭,连接GF .若2EF NF MF +=,求证:射线FE 平分AFG ∠.19. (2021•齐齐哈尔市) 综合与探究如图,在平面直角坐标系中,抛物线2()20y ax x c a =++≠与x 轴交于点A 、B ,与y 轴交于点C ,连接BC ,1OA =,对称轴为2x =,点D 为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C,D两点之间的距离是__________;(3)点E是第一象限内抛物线上的动点,连接BE和CE.求BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.。
二次函数综合题1.(2019年滨州)如图①,抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠P AD的值.2.(2021年滨州)如下列图形所示,在平面直角坐标系中,一个三角板的直角顶点与原点O重合,在其绕原点O旋转的过程中,两直角边所在直线分别与抛物线y=x2相交于点A、B(点A在点B的左侧).(1)如图1,若点A、B的横坐标分别为﹣3、,求线段AB中点P的坐标;(2)如图2,若点B的横坐标为4,求线段AB中点P的坐标;(3)如图3,若线段AB中点P的坐标为(x,y),求y关于x的函数解析式;(4)若线段AB中点P的纵坐标为6,求线段AB的长.3.(2020年滨州)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F (2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P (m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.4.(2022年滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当P A=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.5.(2017年滨州)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF 的最小值.6.(2018德州)如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.7.(2019德州)如图,抛物线y=mx2﹣mx﹣4与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=.(1)求抛物线的解析式;(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥时,均有y1≤y2,求a的取值范围;(3)抛物线上一点D(1,﹣5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.8.(2017年东营)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.9.(2018年东营)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.10.(2019年东营)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.11.(2020年东营)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.12.(2021年东营)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,直线y=﹣x+2过B、C两点,连接AC.(1)求抛物线的解析式;(2)求证:△AOC∽△ACB;(3)点M(3,2)是抛物线上的一点,点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为抛物线对称轴上一动点,当线段DE的长度最大时,求PD+PM的最小值.13.(2022年东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B (3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.14.(2022•菏泽)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.(1)求抛物线的表达式;(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.15..(2021•菏泽)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣4交x轴于A(﹣1,0)、B(4,0)两点,交y轴于点C.(1)求该抛物线的表达式;(2)点P为第四象限内抛物线上一点,连接PB,过点C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;(3)在(2)的条件下,将抛物线y=ax2+bx﹣4向右平移经过点(,0)时,得到新抛物线y=a1x2+b1x+c1,点E在新抛物线的对称轴上,在坐标平面内是否存在一点F,使得以A、P、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为(,).16.(2020•菏泽)如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB=4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.(1)求抛物线的函数表达式;(2)若点D在x轴的下方,当△BCD的面积是时,求△ABD的面积;(3)在(2)的条件下,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.17.(2019•菏泽)如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.18.(2018•菏泽)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.19.(2017•菏泽)如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DC⊥x轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM面积的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N 为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.20.(2020济南)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.21.(2019济南)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.22.(2018济南)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.23.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.24.如图,直线y=﹣x+分别交x轴、y轴于点A,B,过点A的抛物线y=﹣x2+bx+c与x轴的另一交点为C,与y轴交于点D(0,3),抛物线的对称轴l交AD于点E,连接OE交AB于点F.(1)求抛物线的解析式;(2)求证:OE⊥AB;(3)P为抛物线上的一动点,直线PO交AD于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与△ACD相似?若存在,求点P的横坐标;若不存在,请说明理由.25.已知抛物线()2211:1(1)12C y m x m x =-+-+-与x 轴有公共点.(1)当y 随x 的增大而增大时,求自变量x 的取值范围;(2)将抛物线1C 先向上平移4个单位长度,再向右平移n 个单位长度得到抛物线2C (如图所示),抛物线2C 与x 轴交于点A ,B (点A 在点B 的右侧),与y 轴交于点C .当OC =OA 时,求n 的值;(3)D 为抛物线2C 的顶点,过点C 作抛物线2C 的对称轴l 的垂线,垂足为G ,交抛物线2C 于点E ,连接BE 交l 于点F .求证:四边形CDEF 是正方形.26.抛物线2y ax bx c =++过A (2,3),B (4,3),C (6,﹣5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D 在线段AC 的上方,DE ⊥AB 交AC 于点E ,若满足2DE AE ,求点D 的坐标;(3)如图②,F 为抛物线顶点,过A 作直线l ⊥AB ,若点P 在直线l 上运动,点Q 在x 轴上运动,是否存在这样的点P 、Q ,使得以B 、P 、Q 为顶点的三角形与△ABF 相似,若存在,求P 、Q 的坐标,并求此时△BPQ 的面积;若不存在,请说明理由.27、(2018年莱芜)如图,抛物线y =ax 2+bx +c 经过A (﹣1,0),B (4,0),C (0,3)三点,D 为直线BC 上方抛物线上一动点,DE ⊥BC 于E .(1)求抛物线的函数表达式;(2)如图1,求线段DE 长度的最大值;(3)如图2,设AB 的中点为F ,连接CD ,CF ,是否存在点D ,使得△CDE 中有一个角与∠CFO 相等?若存在,求点D 的横坐标;若不存在,请说明理由.28、(2019年莱芜)如图,抛物线y =ax 2+bx +c 经过A (﹣3,0),B (1,0),C (0,3)三点.(1)求抛物线的函数表达式;(2)如图1,P为抛物线上在第二象限内的一点,若△P AC面积为3,求点P的坐标;(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由.29.(2017年聊城)如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠P AB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止.当两个动点移动t秒时,求四边形P AMB 的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?30.(2018年聊城)如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5).(1)求出这条抛物线的表达式;(2)当t=0时,求S△OBN的值;(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时,S有最大值,最大值是多少?31.(2019年聊城)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x 轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.32.(2020年聊城)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l 分别交抛物线和线段BC 于点P 和点F ,动直线l 在抛物线的对称轴的右侧(不含对称轴)沿x 轴正方向移动到B 点.(1)求出二次函数y =ax 2+bx +4和BC 所在直线的表达式;(2)在动直线l 移动的过程中,试求使四边形DEFP 为平行四边形的点P 的坐标;(3)连接CP ,CD ,在动直线l 移动的过程中,抛物线上是否存在点P ,使得以点P ,C ,F 为顶点的三角形与△DCE 相似?如果存在,求出点P 的坐标;如果不存在,请说明理由.33. (2021年聊城)如图,抛物线y =ax 2+32x +c 与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,C 两点坐标分别是A (1,0),C (0,﹣2),连接AC ,BC .(1)求抛物线的表达式和AC 所在直线的表达式;(2)将ABC 沿BC 所在直线折叠,得到DBC ,点A 的对应点D 是否落在抛物线的对称轴上,若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第三象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ 的面积记为S 1,ABQ 的面积记为S 2,求12S S 的值最大时点P 的坐标. 34. (2022年聊城)如图,在直角坐标系中,二次函数2y x bx c =-++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,3C ,对称轴为直线1x =-,顶点为点D .(1)求二次函数的表达式;(2)连接DA ,DC ,CB ,CA ,如图①所示,求证:DAC BCO ∠=∠;(3)如图②,延长DC 交x 轴于点M ,平移二次函数2y x bx c =-++的图象,使顶点D 沿着射线DM 方向平移到点1D 且12CD CD =,得到新抛物线1y ,1y 交y 轴于点N .如果在1y 的对称轴和1y 上分别取点P ,Q ,使以MN 为一边,点M ,N ,P ,Q 为顶点的四边形是平行四边形,求此时点Q 的坐标.35.(2017临沂)如图,抛物线y=ax 2+bx ﹣3经过点A (2,﹣3),与x 轴负半轴交于点B ,与y 轴交于点C ,且OC=3OB .(1)求抛物线的解析式;(2)点D 在y 轴上,且∠BDO=∠BAC ,求点D 的坐标;(3)点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点A ,B ,M ,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由.36..(2018•临沂)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠P AD的值.37..(临沂2019)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.38. (2020年临沂)已知抛物线22232(0)y ax ax a a =--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围.39.(2022•青岛)如图,在Rt △ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,将△ABC 绕点A 按逆时针方向旋转90°得到△ADE ,连接CD .点P 从点B 出发,沿BA 方向匀速运动、速度为1cm /s ;同时,点Q 从点A 出发,沿AD 方向匀速运动,速度为1cm /s .PQ 交AC 于点F ,连接CP ,EQ ,设运动时间为t (s )(0<t <5).解答下列问题:(1)当EQ ⊥AD 时,求t 的值;(2)设四边形PCDQ 的面积为S (cm 2),求S 与t 之间的函数关系式;(3)是否存在某一时刻t ,使PQ ∥CD ?若存在,求出t 的值;若不存在,请说明理由.40..(2018年青岛市)(12分)已知:如图,四边形ABCD ,AB ∥DC ,CB ⊥AB ,AB =16cm ,BC =6cm ,CD =8cm ,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2cm /s .点P 和点Q 同时出发,以QA 、QP 为边作平行四边形AQPE ,设运动的时间为t (s ),0<t <5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t 的值;若不存在,请说明理由.41.(2017年青岛市)(本小题满分12分)已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一条直线上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°。
(3)函数——2022年中考数学真题专项汇编1.【2022年北京】下面的三个问题中都有两个变量:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 与行驶时间x ; ②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 与放水时间x ; ③用长度一定的绳子围成一个矩形,矩形的面积y 与一边长x ,其中,变量y 与变量x 之间的函数关系可以利用如图所示的图象表示的是( )A.①②B.①③C.②③D.①②③2.【2022年天津】若点()1,2A x ,()2,1B x -,()3,4C x 都在反比例函数8y x=的图象上,则1x ,2x ,3x 的大小关系是( )A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<3.【2022年安徽】在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图象可能是( )A. B. C. D.4.【2022年陕西A 】已知二次函数223y x x =--的自变量1x ,2x ,3x 对应的函数值分别为1y ,2y ,3y .当110x -<<,212x <<,33x >时,1y ,2y ,3y 三者之间的大小关系是( )A.123y y y <<B.213y y y <<C.312y y y <<D.231y y y <<5.【2022年山东青岛】已知二次函数2y ax bx c =++的图象开口向下,对称轴为直线1x =-,且经过点(3,0)-,则下列结论正确的是( ) A.0b >B.0c <C.0a b c ++>D.30a c +=6.【2022年天津】已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a c <<)经过点(1,0),有下列结论: ①20a b +<;②当1x >时,y 随x 的增大而增大;③关于x 的方程2()0ax bx b c +++=有两个不相等的实数根.其中,正确结论的个数是( ) A.0B.1C.2D.37.【2022年安徽】如图,OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x=的图象经过点C ,(0)ky k x =≠的图象经过点B .若OC AC =,则k =_________.8.【2022年北京】在平面直角坐标系xOy 中,若点1(2,)A y ,2(5,)B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)9.【2022年天津】在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2 km ,超市离学生公寓2 km.小琪从学生公寓出发,匀速步行了12 min 到阅览室;在阅览室停留70 min 后,匀速步行了10 min 到超市;在超市停留20 min 后,匀速骑行了8 min 返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离y km 与离开学生公寓的时间x min 之间的对应关系. 请根据相关信息,解答下列问题: (Ⅰ)填表:①阅览室到超市的距离为___________km ;②小琪从超市返回学生公寓的速度为___________km/min ;③当小琪离学生公寓的距离为1 km 时,他离开学生公寓的时间为___________min. (Ⅲ)当092x ≤≤时,请直接写出y 关于x 的函数解析式.10.【2022年北京】在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(4,3),(2,0)-,且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.11.【2022年山东青岛】如图,一次函数y kx b =+的图象与x 轴正半轴相交于点C ,与反比例函数2y x=-的图象在第二象限相交于点(1,)A m -,过点A 作AD x ⊥轴,垂足为D ,AD CD =.(1)求一次函数的表达式;(2)已知点(,0)E a 满足CE CA =,求a 的值.12.【2022年重庆A 】已知一次函数()0y kx b k =+≠的图象与反比例函数4y x=的图象相交于点()1,A m ,(),2B n -.(1)求一次函数的表达式,并在图中画出这个一次函数的图象; (2)根据函数图象,直接写出不等式4kx b x+>的解集; (3)若点C 是点关于y 轴的对称点,连接AC ,BC ,求ABC △的面积.13.【2022年天津】已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a >)的顶点为P ,与x 轴相交于点(1,0)A -和点B . (Ⅰ)若2b =-,3c =-, ①求点P 的坐标;②直线x m =(m 是常数,13m <<)与抛物线相交于点M ,与BP 相交于点G ,当MG 取得最大值时,求点M ,G 的坐标.(Ⅱ)若32b c =,直线2x =与抛物线相交于点N ,E 是x 轴的正半轴上的动点,F 是y 轴的负半轴上的动点,当PF FE EN ++的最小值为5时,求点E ,F 的坐标.14.【2022年重庆A 】如图,在平面直角坐标系中,抛物线212y x bx c =++与直线AB 交于点()0,4A -,()4,0B .(1)求该抛物线的函数表达式;(2)点P 是直线AB 下方拋物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作y 轴的平行线交x 轴于点D ,求PC PD +的最大值及此时点P 的坐标;(3)在(2)中PC PD +取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,M 为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N ,使得以点E ,F ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.15.【2022年安徽】如图(1),隧道截面由抛物线的一部分AED 和矩形ABCD 构成,矩形的一边BC 为12米,另一边AB 为2米,以BC 所在的直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系xOy ,规定一个单位长度代表1米.(0,8)E 是抛物线的顶点.(1)求此抛物线对应的函数表达式. (2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图(2)、图(3)中粗线段所示,点1P ,4P 在x 轴上,MN 与矩形1234PP P P 的一边平行且相等.栅栏总长l 为图中粗线段12P P ,23P P ,34P P ,MN 长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图(2),点2P ,3P 在抛物线AED 上.设点1P 的横坐标为m(06m <≤),求栅栏总长l 与m 之间的函数表达式和l 的最大值. (ⅱ)现修建一个总长为18的栅栏,有如图(3)所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形1234PP P P 面积的最大值,及取最大值时点1P 的横坐标的取值范围(1P 在4P 右侧).答案以及解析1.答案:A解析:①②中,y 与x 之间是一次函数关系,当0x =时,0y >,且y 随x 的增大而减小,故①②中y 与x 的函数关系可以用题图所示的图象表示;③中,设绳子的长度为a ,则2222a x ay x x x -=⋅=-+,故y 与x 之间的函数关系图象是抛物线的一部分.故选A. 2.答案:B解析:方法一:反比例函数8y x=的图象在第一、三象限,在每个象限内,y 随x 的增大而减小,故2310x x x <<<,即231x x x <<. 方法二:对于8y x=,1(,2)A x ,()2,1B x -,()3,4C x ,14x ∴=,28x =-,32x =,231x x x ∴<<. 3.答案:D解析:由两个函数的解析式可知,当1x =时,两个函数对应的y 值都是2a a +,即直线2y ax a =+与2y a x a =+均过点2(1,)a a +,故可排除选项A 和选项C.若0a >,则一次函数2y ax a =+与2y a x a =+均满足y 随x 的增大而增大;若0a <,则对于一次函数2y ax a =+,y 随x 的增大而减小,且图象与y 轴交于正半轴,对于一次函数2y a x a =+,y 随x 的增大而增大,且图象与y 轴交于负半轴,故选项D 符合.故选D. 4.答案:B解析:抛物线223y x x =--的开口向上,对称轴为直线1x =,则抛物线上的点到直线1x =的距离越大,其纵坐标越大.已知110x -<<,212x <<,33x >,则213111x x x -<-<-,故213y y y <<.5.答案:D解析:选项A :抛物线开口向下,0a ∴<.对称轴为直线1x =-,12ba∴-=-.2b a ∴=.0b ∴<.故选项A 错误;选项B :设抛物线与x 轴的另一个交点为(,0)x ,则抛物线的对称轴可表示为1(3)2x x =-,11(3)2x ∴-=-,解得1x =,∴抛物线与x 轴的两个交点为(1,0)和(3,0)-.又抛物线开口向下,∴抛物线与y 轴交于正半轴.0c ∴>.故选项B 错误.选项C :抛物线过点(1,0).0a b c ∴++=.故选项C 错误;选项D :2b a =,且0a b c ++=,30a c ∴+=.故选项D 正确.故选:D. 6.答案:C解析:抛物线经过点(1,0),0a b c ∴++=,b a c ∴=--.0a c <<,0a b a a b c ∴++<++=,20a b ∴+<,故结论①正确.0a >,故抛物线开口向上,由①可知,12b a ->,∴当12b x a<<-时,y 随x 的增大而减小,故结论②错误.0a >,20a b +<,0b ∴<.对于关于x 的方程2()0ax bx b c +++=,2224()()4()()40b a b c a c a b c a c ab ∆=-+=+-+=-->,故该方程有两个不相等的实数根,即结论③正确.故选C. 7.答案:3解析:分别过点C ,B 作x 轴的垂线,垂足分别为D ,E .OC AC =,OD AD ∴=.由反比例函数中||k 的几何意义可知12COD S =△.四边形OABC 是平行四边形,//OC AB ∴,//BC OA ,OC AB =,COD BAE ∴∠=∠.又90CDO BEA ∠=∠=︒,COD BAE ∴≅△△,AE OD AD ∴==.方法一:连接OB ,如图,则3332BOE BAE COD S S S ===△△△,3232k ∴=⨯=.方法二:设1,C a a ⎛⎫ ⎪⎝⎭,则13,B a a ⎛⎫ ⎪⎝⎭,133k a a∴=⋅=.8.答案:>解析:0k >,∴反比例函数ky x=的图象位于第一、三象限,且在同一象限内,y 随x 的增大而减小.又520>>,12y y ∴>. 9.答案:(Ⅰ)0.8,1.2,2 (Ⅱ)①0.8 ②0.25 ③10或116(Ⅲ)当012x ≤≤时,0.1y x =; 当1282x <≤时, 1.2y =; 当8292x <≤时,0.08 5.36y x =-. 解析:(Ⅱ)①0.8②2(120112)0.25÷-=(km/min )③当012x ≤≤时,设y 关于x 的解析式为y kx =,由(12,1.2)可知0.1y x =.当1y =时,10x =.当112120x <≤时,设y 关于x 的解析式为y mx n =+, 由(112,2),(120,0)可知0.2530y x =-+.当1y =时,116x =. 故他离开学生公寓的时间为10 min 或116 min. 10.答案:(1)112y x =+,(0,1)A (2)1n ≥解析:(1)把(4,3),(2,0)-分别代入y kx b =+, 得43,20,k b k b +=⎧⎨-+=⎩解得1,21,k b ⎧=⎪⎨⎪=⎩∴该函数的解析式为112y x =+. 对于112y x =+,当0x =时,1y =, (0,1)A ∴.(2)1n ≥. 解法提示:函数112y x =+的图象如图所示,易知当直线y x n =+与y 轴的交点与点A 重合或在点A 上方时符合题意,故1n ≥.11.答案:(1)1y x =-+ (2)1-1+解析:解:(1)点(1,)A m -在反比例函数2y x=-的图象上, 221m =-∴=- (1,2)A ∴- AD x ⊥轴2AD ∴=,1OD =2CD AD ∴==211OC CD OD =∴=--=(1,0)C ∴点(1,2)A -,(1,0)C 在一次函数y kx b =+的图象上 20k b k b -+=⎧∴⎨+=⎩ 解得11k b =-⎧⎨=⎩∴一次函数的表达式为1y x =-+.(2)在Rt ADC △中,由勾股定理得,AC ==AC CE ∴==当点E 在点C 的左侧时,1a =-当点E 在点C 的右侧时,1a =+∴a 的值为1-1+12.答案:(1)一次函数的表达式是22y x =+,一次函数的图象见解析 (2)20x -<<或1x > (3)12解析:(1)把()1,A m ,(),2B n -分别代入4y x=中, 得41m =,42n-=, 解得4m =,2n =-, ∴点(1,4)A ,(2,2)B --,将(1,4)A ,(2,2)B --分别代入y kx b =+, 得4,22,k b k b +=⎧⎨-+=-⎩解得2,2,k b =⎧⎨=⎩∴一次函数的表达式为22y x =+.一次函数22y x =+的图象如图所示.(2)由函数图象可知,当20x -<<或1x >时,一次函数()0y kx b k =+≠的图象在反比例函数4y x=的图象的上方, ∴不等式4kx b x+>的解集为20x -<<或1x >; (3)点C 是点(2,2)B --关于y 轴的对称点, ∴点(2,2)C -,2(2)4BC ∴=--=.过点A 作AH BC ⊥于点H ,如图.(1,4)A ,4(2)6AH ∴=--=, 11461222ABC S BC AH ∴=⋅=⨯⨯=△. 13.答案:(Ⅰ)①(1,4)-②点M 的坐标为(2,3)-,点G 的坐标为(2,2)-(Ⅱ)5,07E ⎛⎫ ⎪⎝⎭,200,21F ⎛⎫- ⎪⎝⎭ 解析:(Ⅰ)①抛物线2y ax bx c =++与x 轴相交于点(1,0)A -,0a b c ∴-+=.又2b =-,3c =-,得1a =,∴抛物线的解析式为223y x x =--.2223(1)4y x x x =--=--,∴点P 的坐标为(1,4)-.②当0y =时,由2230x x --=,解得11x =-,23x =.∴点B 的坐标为(3,0).设经过B ,P 两点的直线的解析式为y kx n =+,有30,4,k n k n +=⎧⎨+=-⎩解得2,6,k n =⎧⎨=-⎩∴直线BP 的解析式为26y x =-.直线x m =(m 是常数,13m <<)与抛物线223y x x =--相交于点M ,与BP 相交于点G , ∴点M 的坐标为()2,23m m m --,点G 的坐标为(,26)m m -, ()222(26)2343(2)1MG m m m m m m ∴=----=-+-=--+,∴当2m =时,MG 有最大值1.此时,点M 的坐标为(2,3)-,点G 的坐标为(2,2)-.(Ⅱ)由(Ⅰ)知0a b c -+=,又32b c =,2b a ∴=-,3(0)c a a =->.∴抛物线的解析式为223y ax ax a =--.2223(1)4y ax ax a a x a =--=--,∴顶点P 的坐标为(1,4)a -.直线2x =与抛物线223y ax ax a =--相交于点N ,∴点N 的坐标为(2,3)a -.作点P 关于y 轴的对称点P ',作点N 关于x 轴的对称点N ',得点P '的坐标为(1,4)a --,点N '的坐标为(2,3)a .当满足条件的点E ,F 落在直线P N ''上时,PF FE EN ++取得最小值,此时,5PF FE EN P N +=''+=.延长P P '与直线2x =相交于点H ,则P H N H '⊥'.在Rt P HN ''△中,3PH =,3(4)7HN a a a =--=',222294925P N P H HN a ''∴+=+'==', 解得147a =,247a =-(舍), ∴点P '的坐标为161,7⎛⎫-- ⎪⎝⎭,点N '的坐标为122,7⎛⎫ ⎪⎝⎭. 可得直线P N ''的解析式为420321y x =-, ∴点5,07E ⎛⎫ ⎪⎝⎭和点200,21F ⎛⎫- ⎪⎝⎭即为所求. 14.答案:(1)2142y x x =-- (2)PC PD +取得最大值是254,此时点P 的坐标为335,28⎛⎫- ⎪⎝⎭ (3)113,28N ⎛⎫- ⎪⎝⎭,1513,28N ⎛⎫- ⎪⎝⎭,145,28N ⎛⎫ ⎪⎝⎭解析:(1)把(0,4)A -,(4,0)B 分别代入212y x bx c =++中, 得4,840,c b c =-⎧⎨++=⎩解得1,4,b c =-⎧⎨=-⎩ 故该抛物线的函数表达式为2142y x x =--. (2)如图,记PD 交直线AB 于点H .易得PCH △是等腰直角三角形,即PC PH =,PC PD PH PD ∴+=+.(0,4)A -,(4,0)B ,∴直线AB 的函数表达式为4y x =-. 设21,42P m m m ⎛⎫-- ⎪⎝⎭,则(,0)D m ,(,4)H m m -,22221132544[0(4)]342224PH PD m m m m m m m m ⎡⎤⎛⎫⎛⎫∴+=----+---=-++=--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 10-<,∴当32m =时,PC PD +取得最大值,最大值是254,此时点P 的坐标为335,28⎛⎫- ⎪⎝⎭. (3)满足条件的点N 的坐标有113,28⎛⎫- ⎪⎝⎭,1513(,)28-,145,28⎛⎫ ⎪⎝⎭. 由题意,得平移后的抛物线的函数表达式为217422y x x =++,735,28E ⎛⎫-- ⎪⎝⎭, ∴平移后的抛物线的对称轴为直线4x =-,70,2F ⎛⎫ ⎪⎝⎭. 设217,422N n n n ⎛⎫++ ⎪⎝⎭. ①若四边形是以MF 为对角线,则当EN 与MF 互相平分时,四边形MNFE 为平行四边形,70(4)2n ⎛⎫∴+-=+- ⎪⎝⎭, 12n ∴=-, 113,28N ⎛⎫∴- ⎪⎝⎭. ②若四边形是以ME 为对角线,则当FN 与ME 互相平分时,四边形MFEN 为平行四边形,70(4)2n ∴+=-+-, 152n ∴=-, 1513,28N ⎛⎫∴- ⎪⎝⎭. ③若四边形是以EF 为对角线,则当MN 与EF 互相平分时,四边形MFNE 为平行四边形,7(4)02n ⎛⎫∴+-=+- ⎪⎝⎭, 12n ∴=, 145,28N ⎛⎫∴ ⎪⎝⎭. 15.答案:(1)2186y x =-+ (2)(ⅰ)栅栏总长l 与m 之间的函数表达式为212242l m m =-++,l 的最大值为26(ⅱ)见解析解析:(1)由题意可知(6,2)A -. 设2y ax c =+,将(6,2)A -,(0,8)E 分别代入,得362,8,a c c +=⎧⎨=⎩解得1,68,a c ⎧=-⎪⎨⎪=⎩ 故此抛物线对应的函数表达式为2186y x =-+. (2)(ⅰ)由题意得1(,0)P m ,将x m =代入2186y x =-+,得2186y m =-+, 221,86P m m ⎛⎫∴-+ ⎪⎝⎭, 231,86P m m ⎛⎫∴--+ ⎪⎝⎭,4(,0)P m -, 232P P m ∴=,23412186MN P P PP m ===-+, 222111382224(2)26622l m m m m m ⎛⎫∴=-++=-++=--+ ⎪⎝⎭, 102-<,06m <≤, ∴当2m =时,l 的值最大,最大值为26. 综上,栅栏总长l 与m 之间的函数表达式为212242l m m =-++,l 的最大值为26. (ⅱ)方案一:设1234(08)PP MN P P t t ===<<, 则23183P P t =-,12342(183)3(3)27P P P P S t t t ∴=-=--+矩形.30-<,∴当3t =时,1234P P P P S 矩形的值最大,最大值为27. 将3y =代入2186y x =-+,解得1x,2x =,4P∴横坐标的最小值为1P 当3t =时,14231899PP P P ==-=,1P∴横坐标的最小值为91P ∴横坐标的取值范围为19P x 方案二:设23MN P P n ==,则34129P P PP n ==-, 12342981(9)24P P P P S n n n ⎛⎫∴=-=--+ ⎪⎝⎭矩形. 10-<,∴当92n =时,1234P P P P S 矩形的值最大,最大值为814, 此时341292P P PP ==.把92y =代入2186y x =-+,解得1x =2x4P ∴横坐标的最小值为1P 当92n =时,1492PP n ==,∴当4P 的横坐标为1P 的横坐标取最小值,为921P ∴的横坐标的取值范围是192P x ≤≤。
2020年广东各地区中考数学试题分类汇编——函数1、(佛山)15.如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数()的图象上,则点E的坐标是(,).2、(肇庆)9.在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于()A.第一象限 B.第二象限 C.第三象限D.第四象限3、(茂名)9.已知反比例函数=(≠0)的图象,在每一象限内,的值随值的增大而减少,则一次函数=-+的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4、(梅州)5.一列货运火车从梅州站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,那么可以近似地刻画出火车在这段时间内的速度变化情况的是()5、(湛江)8.函数的自变量的取值范围是()A. B. C. D.6、(湛江)11.已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是()1yx=0x>yxa a y xy a x a12yx=-x2x=2x≠2x≠-2x>a h aO ABC EFD xy第15题图h hh hA .B .C .D .7、(湛江)12. 如图2所示,已知等边三角形ABC 的边长为,按图中所示的规律,用个这样的三角形镶嵌而成的四边形的周长是( )A.B. C. D.8、(梅州)10. 函数的自变量的取值范围是_____.9、(梅州)12. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.10、(东莞)7.经过点A (1,2)的反比例函数解析式是_____ _____;11、(佛山)22.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨. 现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨. (1) 将这些货物一次性运到目的地,有几种租用货车的方案?(2) 若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?12008200820092010201111-=x y x mx y =xky =m k 图2CAB┅┅12、(佛山)24. 如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1) 直接写出点M 及抛物线顶点P 的坐标; (2) 求出这条抛物线的函数解析式;(3) 若要搭建一个矩形“支撑架”AD- DC- CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?13、(肇庆)22.(本小题满分8分)已知点A (2,6)、B (3,4)在某个反比例函数的图象上.(1) 求此反比例函数的解析式;(2)若直线与线段AB 相交,求m 的取值范围.mx y OxyM3第24题图AB CD P14、(肇庆)25.(本小题满分10分)已知点A (a ,)、B (2a ,y )、C (3a ,y )都在抛物线上.(1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有、y 、y ,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.15、(茂名)14.依法纳税是每个公民应尽的义务,新的《中华人民共和国个人所得税法》规定,从2008年3月1日起,公民全月工薪不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得税额,此项税款按右表分段累进计算.黄先生4月份缴纳个人所得税税金55元,那么黄先生该月的工薪是 元.1y 23x x y 1252+=1y 2316、(茂名)24.(本题满分10分)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中、的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想与的函数关系,并求出函数关系式;(4分)(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(4分)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?(2分)x y y x 销售单价(元∕件) …… 30 40 50 60 …… 每天销售量(件) ……500400300200 ……x y 10 20 30 40 50 60 70 80100 200 300 400 500 600 700 800(第24题图)如图9所示,直线L与两坐标轴的交点坐标分别是A(-3,0),B(0,4),O是坐标系原点.(1)求直线L所对应的函数的表达式;(2)若以O为圆心,半径为R的圆与直线L相切,求R的值.18、(梅州)22.本题满分10分.“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为,装运药品的车辆数为.求与的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.x y y x物资种类食品药品生活用品每辆汽车运载量(吨) 6 5 4每吨所需运费(元/吨)120 160 100如图11所示,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB ,AD =DC =CB ,AB =4.以AB 所在直线为轴,过D 且垂直于AB 的直线为轴建立平面直角坐标系.(1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L .(3)若P 是抛物线的对称轴L 上的点,那么使PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)20、(湛江)26. 某农户种植一种经济作物,总用水量(米)与种植时间(天)之间的函数关系式如图10所示. (1)第天的总用水量为多少米?(2)当时,求与之间的函数关系式. (3)种植时间为多少天时,总用水量达到7000米?x y ∆y 3x 203x ≥20y x 3图10O(天) y (米)40001000302021、(湛江)28. 如图11所示,已知抛物线与轴交于A 、B 两点,与轴交于点C .(1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积.(3)在轴上方的抛物线上是否存在一点M ,过M 作MG 轴于点G ,使以A 、M 、G 三点为顶点的三角形与PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由.22、(东莞)14.(本题满分6分)已知直线:和直线::,求两条直线和的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上21y x =-x y x ⊥x ∆1l 54+-=x y 2l 421-=x y 1l 2l 图11CPByA23、(东莞)22.(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD . (1)填空:如图9,AC= ,BD= ;四边形ABCD 是 梯形. (2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB 所在直线为轴,过点A 垂直于AB 的直线为轴建立如图10的平面直角坐标系,保持ΔABD 不动,将ΔABC 向轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值范围.x y x DCBAE图9 E DC HFG BAPyx 图1010相关链接 :若是一元二次方程的两根,则24、(茂名)25(本题满分10分)如图,在平面直角坐标系中,抛物线=-++经过A (0,-4)、B (,0)、 C (,0)三点,且-=5.(1)求、的值;(4分)(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3分) (3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)y 32x 2b xc x 1x 2x2x 1b c (第25题图)AxyB CO。