传感器原理与应用实验报告
- 格式:doc
- 大小:98.50 KB
- 文档页数:6
传感器原理及应用实验报告实验一 金属箔式应变片——单臂电桥性能实验一、 实验目的:了解金属箔式应变片的应变效应, 并掌握单臂电桥工作原理和性能。
二、 基本原理:1、 应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。
以圆柱形导体为例:设其长为:L 、半径为 r 、材料的电阻率为ρ 时,根据电阻的定义式得)2^r /(/πρρL A L R ==( 1—1)当导体因某种原因产生应变时,其长度 L 、截面积 A 和电阻率ρ 的变化为 dL 、dA 、 d ρ相应的电阻变化为 dR 。
对式(1—1)全微分得电阻变化率dR/R 为: ρρ//2//d d r dr L dL R R +-= (1—2)式中:dL/L 为导体的轴向应变量εL;dr/r 为导体的横向应变量εr 。
由材料力学得:εL= -μεr(1—3),式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。
将式(1—3)代入式(1—2)得:ρρξμ/)21(/dR d R ++=(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。
2、 应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。
金属导体的应变灵敏度 K :主要取决于其几何效应;可取 ξμ)21(/d +≈R R ( 1—5)其灵敏度系数为:)21()/(d μξ+=R R)21()/(d K μξ+==R R金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。
金属导体的电阻应变灵敏度一般在2左右。
3、箔式应变片的基本结构金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或金属箔制成,如图1—1所示。
传感器原理及实验报告传感器原理及实验报告引言:传感器是一种能够将非电气量转化为电信号的装置,广泛应用于各个领域,如工业自动化、环境监测、医疗设备等。
本文将介绍传感器的基本原理,并通过实验报告展示传感器在温度检测方面的应用。
一、传感器的基本原理传感器的基本原理是利用物理、化学等原理将被测量的非电气量转化为电信号。
常见的传感器类型包括温度传感器、压力传感器、光敏传感器等。
以温度传感器为例,其工作原理是基于物体的温度变化对电阻值的影响。
二、实验目的本实验旨在通过使用温度传感器,测量不同物体的温度变化,并分析实验结果。
三、实验装置1. Arduino开发板2. 温度传感器3. 连接线4. 电脑四、实验步骤1. 将温度传感器连接到Arduino开发板上的模拟输入引脚。
2. 打开Arduino开发环境,编写程序以读取传感器的电压值。
3. 将温度传感器接触不同物体的表面,记录下相应的电压值。
4. 将电压值转化为温度值,并记录下实验结果。
5. 分析实验结果,探讨不同物体的温度变化规律。
五、实验结果与讨论实验中,我们将温度传感器接触了三种不同物体的表面:水杯、金属块和塑料块。
记录下的电压值如下表所示:物体电压值(V)水杯 1.23金属块 0.98塑料块 1.67通过将电压值转化为温度值的公式,我们得到了如下结果:物体温度值(℃)水杯 25.6金属块 20.3塑料块 34.8从实验结果可以看出,不同物体的温度值存在明显的差异。
这是因为不同物体的导热性质不同,导致温度传感器接触到的表面温度也不同。
六、结论通过本次实验,我们了解了传感器的基本原理,并通过温度传感器的实验展示了其在温度检测方面的应用。
实验结果表明,温度传感器可以准确地测量不同物体的温度变化,并为我们提供了有价值的信息。
七、进一步探讨除了温度传感器,还有许多其他类型的传感器可以用于不同的应用。
例如,压力传感器可以用于测量液体或气体的压力变化,光敏传感器可以用于检测光线强度的变化。
传感器的原理与应用物理实验报告实验目的掌握传感器的基本原理,并通过实验了解传感器在物理应用中的具体应用。
实验器材和试剂•传感器模块•Arduino开发板•Jumper wires•电脑或笔记本电脑实验原理传感器是一种能够感知、判断和响应外界物理量的装置。
它能够将感受到的物理量转换为可被电子设备识别的信号,并通过算法进行处理。
本实验主要介绍两种常见的传感器:温度传感器和光敏传感器。
温度传感器温度传感器是一种可以测量环境温度的传感器。
它采用了温度和电阻之间的线性关系,通过测量电阻值的变化来反映所测量物体的温度。
常用的温度传感器有NTC(Negative Temperature Coefficient)和PTC(Positive Temperature Coefficient)两种类型。
光敏传感器光敏传感器是一种可以感知环境中光照强度的传感器。
它可以将光的能量转化为电能,并输出相应的电压信号。
根据工作原理的不同,光敏传感器分为光敏电阻和光电二极管两种。
实验步骤1.将Arduino开发板与电脑连接,并通过Arduino IDE软件编写代码。
2.将温度传感器模块连接到Arduino开发板的数字引脚。
3.编写代码,读取从温度传感器传输的数据,并将其转换为实际温度值。
4.将光敏传感器模块连接到Arduino开发板的模拟引脚。
5.编写代码,读取从光敏传感器传输的数据,并将其转换为实际光照强度。
6.运行代码,观察温度和光照强度的变化,并记录数据。
7.根据记录的数据,分析温度和光照强度之间的关系。
实验结果与分析通过实验我们得到了一组温度和光照强度的数据。
通过分析这些数据,我们可以得出温度和光照强度之间的关系。
例如,随着温度的升高,光照强度可能会增加或减少。
这个关系可以被用来设计和控制一些具有温度敏感性的系统,如温室控制系统或温度调节器。
实验总结通过本实验,我们了解了传感器的基本原理,并学会了如何使用传感器进行物理实验。
第1篇一、实验背景随着科技的飞速发展,传感器技术在各个领域都得到了广泛的应用。
传感器作为一种将非电学量转换为电学量的装置,对于信息采集、处理和控制具有至关重要的作用。
本实验旨在通过一系列传感器实验,加深对传感器基本原理、工作原理和应用领域的理解。
二、实验目的1. 了解传感器的定义、分类和基本原理。
2. 掌握常见传感器的结构、工作原理和特性参数。
3. 熟悉传感器在信息采集、处理和控制中的应用。
4. 培养动手操作能力和分析问题、解决问题的能力。
三、实验内容本次实验共分为以下几个部分:1. 压电式传感器实验- 实验目的:了解压电式传感器的测量振动的原理和方法。
- 实验原理:压电式传感器由惯性质量块和受压的压电片等组成。
工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
- 实验步骤:1. 将压电传感器装在振动台面上。
2. 将低频振荡器信号接入到台面三源板振动源的激励源插孔。
3. 将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。
将压电传感器实验模板电路输出端Vo1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
4. 合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。
5. 改变低频振荡器的频率,观察输出波形变化。
2. 电涡流传感器位移特性实验- 实验目的:了解电涡流传感器测位移的原理和方法。
- 实验原理:电涡流传感器利用电磁感应原理,当传感器靠近被测物体时,在物体表面产生涡流,通过检测涡流的变化来测量物体的位移。
- 实验步骤:1. 将电涡流传感器安装在实验平台上。
2. 调整传感器与被测物体的距离,观察示波器波形变化。
3. 改变被测物体的位移,观察示波器波形变化。
3. 光纤式传感器测量振动实验- 实验目的:了解光纤传感器动态位移性能。
传感器原理及应用实验报告的传感器原理及应用实验报告1. 引言传感器是一种能够将物理量转化为可测量的电信号的装置,广泛应用于各个领域,如工业控制、医疗监护、环境监测等。
本实验旨在探究传感器的工作原理,并通过一系列的应用示例,展示传感器在实际应用中的优势和价值。
2. 传感器的工作原理传感器的工作原理基于不同的物理原理,常见的有电阻、电容、磁性、光电等原理。
以电阻式传感器为例,其基本原理是通过测量感应电阻的变化来获得目标物理量的信息。
当被测量物理量发生变化时,传感器内部的电路会产生相应的变化,这种变化可以通过电压、电流等形式的输出信号来实现。
3. 传感器的分类与应用3.1 光电传感器光电传感器利用光敏元件(如光电二极管、光电三极管等)对光信号进行感知,并将其转化为电信号。
光电传感器广泛应用于工业自动化控制、安防监控、光电测距等领域。
3.2 压力传感器压力传感器通过测量物体受到的外部压力,将其转化为电信号。
压力传感器在汽车制造、气体检测、医疗器械等领域有着重要的应用。
3.3 温度传感器温度传感器通过测量物体的温度变化,将其转化为电信号。
温度传感器广泛应用于气象观测、温控设备、冷链物流等领域。
3.4 加速度传感器加速度传感器用于测量物体的加速度或振动状态,常见于汽车安全系统、运动监测、智能手机等设备中。
3.5 湿度传感器湿度传感器用于测量空气中的湿度水分含量,广泛应用于农业、气象观测、室内环境监测等领域。
4. 传感器应用实例4.1 工业领域在工业自动化领域,传感器起着至关重要的作用。
通过使用温度传感器和压力传感器,可以实现对生产过程中温度和压力的监测与控制,提升生产效率和质量。
4.2 医疗监护传感器在医疗监护领域也广泛应用。
心电传感器可以实时监测患者的心电图数据;血氧传感器可以测量血氧饱和度;体温传感器可以监测患者体温的变化,及时发现异常情况。
4.3 环境监测传感器在环境监测领域具有重要作用。
空气质量传感器可以检测空气中的恶劣气体浓度;水质传感器可以监测水质的污染程度;土壤湿度传感器可以及时监测土壤的湿度状况。
传感器原理及应用(一)工程物理系 工物22 方侨光 022041【实验一】热电传感器——热电偶一、实验目的观察了解热电偶的结构,熟悉热电偶的工作特性,学会查阅热电偶分度表。
二、实验原理热电偶是热电式传感器种的一种,它可将温度变化转化成电势的变化,其工作原理是建立在热电效应的基础上的。
即将两种不同材料的导体组成一个闭合回路,如果两个结电的温度不同,则回路中将产生一定的电流(电势),其大小与材料的性质和结点的温度有关。
因此只要保持冷端温度T 0不变,当加热结点时,热电偶的输出电势E 会随温度T 变化,通过测量此电势即可知道两端温差,从而实现温度的测量。
电势E 和温度T 之间的关系是利用分度表的形式来表达的,在制分度表时,通常采用热电偶的冷端温度T 0=0℃条件下测得的,所以在使用热电偶时,只有满足T 0=0℃的条件,才能直接使用分度表。
在实际工况环境中,由于冷端温度不是0℃而是某一温度Tn ,因此在使用分度表前要对所测电动势进行修正。
E(T ,T 0) = E(T ,T n ) + E(T n ,T 0) 即: 实际电动势 = 仪表指示值 + 温度修正值 式中E 为热电偶的电动势,T 为热电偶的热端温度,T 0为热电偶参考端温度为0℃,T n 为热电偶参考端所处的温度。
三、实验结果T n =21.0℃ 查表得到修正值:E(T n ,T 0)=0.832mV 加热前,电压表读数:0.008V 加热后,电压表读数:-0.171V于是得到:E(T ,T n )=179/200mV=0.895mV 从而得到实际电动势:E(T ,T 0)=1.727mV 查表可得:T=42.7℃【实验二】热敏电阻测温度一、实验目的观察了解热敏电阻的结构,熟悉热敏电阻的工作特性,学会使用热敏电阻测温。
二、实验原理本实验中所用热敏电阻为负温度系数。
其定义为热敏电阻在其自身温度变化1℃时,电阻值的相对变化量,可用下式表示为:21T T dR BR dT Tα==-式中B 为热敏电阻常数。
《传感器原理及应用》电涡流传感器的位移特性实验报告1.实验功能要求了解电涡流传感器测量位移的工作原理和特性;了解不同的被测材料对电涡流传感器性能的影响:了解电涡流传感器在实际应用中其位移与被测体的形状和尺寸有关。
2.实验所用传感器原理基本原理:电涡流式传感器是一种建立在涡流效应源理上的传感器。
电涡流式传感器由传感器线圈和被测物体(导电体一金属涡流片)组成,根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I₁时,线圈周围空间会产生交变磁场H₁,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流J₂,而I₂所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。
我们可以把被测导体上形成的电涡等效成一个短路环。
图中R₁、L₁为传感器线圈的电阻和电感。
短路环钉以认为是一匝短路线圈,其电阻为R₂、电感为L₂。
线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。
电涡流变换器原理图3.实验电路图2 电涡流传感器安装示意图图3 电涡流传感器接线图3.实验过程1、接线:按图3-1-5示意接线,将测微头钉始位置调到0mm或者1mm,作为位移起点(也可以选择15mm左右作为位移起点,从0mm逆时针测到15mm,与从15mm顺时针测到0mm,效果相似),调整电涡流传感器高度与电涡流检测片(大圆振动台上的小圆片)相贴时拧紧轴套紧固螺钉。
2、计数:将电压表(F/V表)量程切换开关切换到20V档,检查接线无误后扛开主、副电源(在涡流变换器输入端可接示波器观测振荡波形),记下电压表读数,然后从0mm逆时针(此时电涡流线圈与其检测片间距为零,互感为零,M=0)调节测微头微分筒每隔0.2mm读一个数,直到输出Vo变化很小为止并记入表1.3、根据表1数据作出V-X实验曲线。
《传感器原理及应用》扩散硅压阻式压力传感器的压力测
量实验报告
1.实验功能要求
了解扩散硅压阻式压力传感器测量压力的原理与方法。
2.实验所用传感器原理
压阻压力传感器是指利用单晶硅材料的压阻效应和集成电路技术制成的传感器。
单晶硅材料在受到力的作用后,电阻率发生变化,通过测量电路就可得到正比于力变化的电信号输出。
它又称为扩散硅压阻压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。
3.实验电路
4.实验过程
1.按图10-2接好“差动放大器”与“电压放大器”,“电压放大器”输出端接数显直流电压表,选择20V档,打开直流开关电源。
2.调节“差动放大器”与“电压放大器”的增益调节电位器到适当位置并保持不动,用导线将“差动放大器”的输入端短接,然后调节调零电位器使直流电压表20V档显示为零。
3.取下短路导线,并按图10-2连接“压力传感器”与“分压器”。
4.气室的活塞退回到刻度“17”的小孔后,使气室的压力相对大气压均为0,气压计指在“零”刻度处,将“压力传感器”的输出接到差动放大器的输入端,调节Rw1使直流电压表20V档显示为零。
5.增大输入压力到0.01MPa,每隔0.005Mpa记下“电压放大器”输出的电压值U。
直到压强达到0.095Mpa;填入表。
5.实验结果
绘制P1-Uo2曲线:
y=p1*x+p2
P1=110.3
P2=0.87657
由图读出m=0.392
故灵敏度S=△U/ΔP =P1=110.3v/kp
非线性误差δf=(0.392/11.4)X100%=3.5%。
传感器的原理及应用实验报告总结1. 引言本实验旨在通过研究传感器的原理及其在现实生活中的应用,加深对传感器技术的理解。
在实验过程中,我们选择了几种常见的传感器进行了测试,并记录了实验结果。
本文将对实验过程、结果和结论进行总结和讨论。
2. 实验材料和方法2.1 实验材料•Arduino开发板•温度传感器•光敏传感器•声音传感器•加速度传感器•湿度传感器2.2 实验方法1.将传感器分别连接到Arduino开发板上并通过编程进行数据读取。
2.将每种传感器放置在不同的测试环境中,如室内、室外等,进行数据收集。
3.根据实验要求,对传感器进行不同条件下的测试,如温度的变化、光照强度的变化等。
4.记录实验结果以及传感器输出的数据。
3. 实验结果与分析3.1 温度传感器•在不同环境温度下,温度传感器能够精确读取当前的温度值。
•传感器的输出与实际温度值之间存在一定的误差,在高温环境下误差较大。
3.2 光敏传感器•光敏传感器能够检测出光照强度的变化,并将其转化为电信号输出。
•在强光环境下,传感器的输出电压较高,而在弱光环境下,输出电压较低。
3.3 声音传感器•声音传感器能够检测出声音的频率和强度,并将其转化为电信号输出。
•在安静环境下,传感器的输出电压较低;而在嘈杂环境下,输出电压较高。
3.4 加速度传感器•加速度传感器能够检测物体的加速度大小和方向。
•在水平方向上,传感器的输出为0;而在竖直方向上,输出为重力加速度。
3.5 湿度传感器•湿度传感器能够检测空气中的湿度,并将其转化为电信号输出。
•传感器的输出电压随着环境湿度的增加而增加。
4. 结论1.传感器技术在现实生活中有着广泛的应用,包括温度监测、光照控制、声音识别等方面。
2.不同传感器具有不同的原理和特点,在不同的应用场景下有着不同的表现。
3.传感器的准确性和精度受到环境因素的影响,需注意实际应用中的误差。
4.传感器技术的不断发展和改进,将为人们带来更多便利和现实应用的可能性。
传感器原理与应用实验报告实验名称:传感器原理与应用实验实验目的:1. 了解传感器的基本原理;2. 学习传感器的应用。
实验器材:1. Arduino开发板;2. 温度传感器;3. 光敏传感器;4. 气体传感器;5. 电位器。
实验原理:传感器是一种能够感知或测量特定物理量的装置,它能够将感知到的物理量转化为电信号输出。
传感器的工作原理根据不同的物理量而有所不同,常见的传感器包括温度传感器、光敏传感器、气体传感器等。
温度传感器是一种能够测量温度的传感器,它利用温度对电阻值的影响来测量温度。
常见的温度传感器有热敏电阻和热电偶等。
光敏传感器是一种能够感知光强的传感器,它利用光敏元件对光的敏感性来测量光强。
常见的光敏传感器有光敏电阻和光电二极管等。
气体传感器是一种能够检测、测量和监测气体浓度和组成的传感器。
常见的气体传感器有气敏电阻和气敏传感器等。
电位器是一种能够调节电阻值的装置,它通过改变电阻值来改变电路中的电流或电压。
实验步骤:1. 将温度传感器连接到Arduino开发板的模拟输入引脚;2. 将光敏传感器连接到Arduino开发板的模拟输入引脚;3. 将气体传感器连接到Arduino开发板的模拟输入引脚;4. 将电位器连接到Arduino开发板的模拟输入引脚;5. 编写Arduino代码,读取传感器的电信号,并将其转换为温度、光强、气体浓度等物理量;6. 将物理量通过串口输出或显示到LCD屏幕上。
实验结果:通过实验,我们成功地读取了温度传感器、光敏传感器、气体传感器和电位器的电信号,并将其转换为相应的物理量。
实验结果显示,温度传感器测得的温度为25℃,光敏传感器测得的光强为100 lux,气体传感器测得的气体浓度为200 ppm,电位器调节后的电阻值为500欧姆。
实验总结:通过本实验,我们深入了解了传感器的工作原理和应用。
传感器在现代科技中起着重要的作用,广泛应用于环境监测、工业自动化、智能家居等领域。
传感器原理及应用实验报告引言传感器是现代科技发展中重要的组成部分,它们可以将物理量或化学量转化为电信号,用于测量和监测各种参数。
本实验报告将介绍传感器的原理及其在实际应用中的重要性。
传感器原理传感器的原理基于特定的物理或化学效应,用于测量目标物体或环境的特性。
传感器可以根据测量的参数分为多种类型,例如温度传感器、压力传感器、湿度传感器等。
以下是一些常见的传感器原理:1.电阻性传感器:根据目标物体的电阻变化来测量参数,如温度传感器和光敏电阻。
2.电容性传感器:根据目标物体的电容变化来测量参数,如接近传感器和湿度传感器。
3.电磁感应传感器:根据目标物体对电磁场的影响来测量参数,如电流传感器和磁场传感器。
4.光学传感器:利用光学效应来测量参数,如光电二极管和激光传感器。
5.化学传感器:根据目标物体的化学反应来测量参数,如气体传感器和pH传感器。
传感器的工作原理决定了其在不同领域中的应用。
传感器应用传感器在各个领域中都有广泛的应用,如工业、医疗、环境监测等。
以下是一些传感器的应用示例:1.温度传感器:用于测量环境温度,广泛应用于空调、温度控制等领域。
2.压力传感器:用于测量液体或气体的压力,常用于汽车制造和工业流程控制中。
3.湿度传感器:用于测量空气中的湿度,可应用于温室、气象监测等场合。
4.加速度传感器:用于测量物体的加速度,广泛应用于汽车、智能手机等设备中的运动检测。
5.光敏传感器:用于测量光线强度,常用于自动照明系统和光电设备中。
这些只是传感器应用的一小部分,实际上还有许多其他类型的传感器应用于各种领域。
传感器实验为了深入理解传感器的原理和应用,我们进行了一项传感器实验。
实验中我们选择了温度传感器作为研究对象,通过Arduino开发板进行数据采集和处理。
实验步骤1.准备实验材料:Arduino开发板、温度传感器、杜邦线等。
2.连接电路:将温度传感器与Arduino开发板连接,确保电路连接正确无误。
传感器原理与应用实验报告传感器原理与应用实验报告概述:传感器是一种能够感知和测量环境中各种物理量的装置或设备。
它通过将感知到的物理量转换成电信号,从而实现对环境的监测和控制。
本实验旨在探究传感器的工作原理以及应用领域,并通过实验验证其性能和可靠性。
一、传感器的工作原理传感器的工作原理基于物理效应,常见的包括电阻、电容、电感、压电效应等。
以压力传感器为例,其工作原理是通过测量被测物体对传感器施加的压力,进而转换成电信号输出。
压力传感器通常由一个弹性元件和一个电阻器组成,当被测物体施加压力时,弹性元件会产生形变,从而改变电阻器的电阻值,进而输出与压力成正比的电信号。
二、传感器的应用领域1. 工业自动化领域:传感器在工业自动化领域中起到了至关重要的作用。
例如,温度传感器、湿度传感器、压力传感器等被广泛应用于工业生产过程中的温度、湿度、压力监测与控制。
2. 环境监测领域:传感器在环境监测领域中也发挥着重要作用。
例如,气体传感器可用于检测空气中的有害气体浓度,光照传感器可用于测量光照强度,水质传感器可用于监测水体的污染程度等。
3. 医疗健康领域:传感器在医疗健康领域中的应用日益广泛。
例如,心率传感器、血压传感器、血糖传感器等可用于监测人体的生理参数,并实时反馈给医务人员,帮助进行疾病的诊断和治疗。
三、实验设计与结果分析本实验选择温度传感器作为研究对象,通过搭建实验装置,测量不同温度下传感器的电阻值,并进一步分析电阻值与温度之间的关系。
实验结果显示,随着温度的升高,传感器的电阻值呈现出线性增加的趋势。
通过对实验数据进行拟合分析,得到了温度与电阻值之间的数学关系模型。
这为后续的温度测量提供了理论基础。
四、传感器的性能与可靠性评估传感器的性能与可靠性是评估传感器质量的重要指标。
本实验通过对传感器的灵敏度、线性度、稳定性等性能指标进行测试,以及对传感器的抗干扰性和长期稳定性进行验证,对传感器的性能和可靠性进行评估。
第1篇一、实验目的1. 理解传感器的基本原理和分类。
2. 掌握常见传感器的工作原理和特性。
3. 学会传感器信号的采集和处理方法。
4. 提高实验操作能力和数据分析能力。
二、实验设备与器材1. 传感器实验平台2. 数据采集卡3. 信号发生器4. 示波器5. 计算机及相应软件6. 传感器:热敏电阻、霍尔传感器、光电传感器、电容式传感器、差动变压器等三、实验内容及步骤1. 热敏电阻实验(1)目的:了解热敏电阻的工作原理和特性。
(2)步骤:1. 将热敏电阻连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集热敏电阻的输出信号。
3. 使用示波器观察热敏电阻输出信号的波形和幅度。
4. 分析热敏电阻输出信号与温度的关系。
2. 霍尔传感器实验(1)目的:了解霍尔传感器的工作原理和特性。
1. 将霍尔传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集霍尔传感器的输出信号。
3. 使用示波器观察霍尔传感器输出信号的波形和幅度。
4. 分析霍尔传感器输出信号与磁场强度的关系。
3. 光电传感器实验(1)目的:了解光电传感器的工作原理和特性。
(2)步骤:1. 将光电传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集光电传感器的输出信号。
3. 使用示波器观察光电传感器输出信号的波形和幅度。
4. 分析光电传感器输出信号与光照强度的关系。
4. 电容式传感器实验(1)目的:了解电容式传感器的工作原理和特性。
(2)步骤:1. 将电容式传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集电容式传感器的输出信号。
3. 使用示波器观察电容式传感器输出信号的波形和幅度。
4. 分析电容式传感器输出信号与电容变化的关系。
5. 差动变压器实验(1)目的:了解差动变压器的工作原理和特性。
1. 将差动变压器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
感应传感器的原理及应用实验报告1. 引言感应传感器是一种用于检测并感知周围环境的装置。
它通过测量和记录物理量来帮助我们理解和控制外部环境。
本实验旨在研究感应传感器的工作原理,并探索其在不同应用中的实际应用。
2. 原理感应传感器通过测量周围环境中的物理量来感知外部环境。
主要的感应传感器类型包括温度传感器、光敏传感器、声音传感器和运动传感器等。
2.1 温度传感器温度传感器是一种测量温度的传感器。
它们基于物体与环境的热量交换原理来测量温度。
常见的温度传感器包括热电偶和热敏电阻。
实验中,我们将使用热敏电阻来测量温度。
2.2 光敏传感器光敏传感器是一种测量光线强度的传感器。
它们利用材料对光线的敏感性来测量光线的强度。
常见的光敏传感器包括光敏电阻和光电二极管。
实验中,我们将使用光敏电阻来测量光线的强度。
2.3 声音传感器声音传感器是一种测量声音强度的传感器。
它们基于声波的产生和传播原理来测量声音的强度。
常见的声音传感器包括麦克风。
实验中,我们将使用麦克风来测量声音的强度。
2.4 运动传感器运动传感器是一种测量物体运动状态的传感器。
它们通过检测周围环境中的物体运动来测量和记录物体的位置和速度。
常见的运动传感器包括加速度计和陀螺仪。
实验中,我们将使用加速度计来测量物体的运动状态。
3. 实验过程3.1 温度传感器实验1.准备一个热敏电阻和连接电路。
2.将热敏电阻固定在一个温度控制实验装置上。
3.打开电路并记录电阻的数值。
4.通过调节实验装置的温度,改变电阻的数值。
5.记录不同温度下的电阻数值。
3.2 光敏传感器实验1.准备一个光敏电阻和连接电路。
2.将光敏电阻暴露在不同光照强度下。
3.打开电路并记录电阻的数值。
4.改变光照强度,并记录不同光照强度下的电阻数值。
3.3 声音传感器实验1.准备一个麦克风和连接电路。
2.将麦克风暴露在不同声音强度下。
3.打开电路并记录麦克风的输出电压。
4.改变声音强度,并记录不同声音强度下的麦克风输出电压。
传感器原理及应用实验报告一、实验目的1、深入理解各类传感器的工作原理。
2、掌握传感器的性能参数和测量方法。
3、学会使用传感器进行物理量的测量和数据采集。
4、培养分析和解决实验中出现问题的能力。
二、实验设备1、压力传感器及测量电路。
2、温度传感器及测量电路。
3、位移传感器及测量电路。
4、数据采集卡及计算机。
三、实验原理(一)压力传感器压力传感器通常基于压阻效应或电容原理工作。
压阻式压力传感器是在硅片上扩散出电阻,并将其连接成电桥形式。
当压力作用于硅片时,电阻值发生变化,从而导致电桥输出电压的变化。
电容式压力传感器则是通过改变两个极板之间的距离或有效面积,从而改变电容值,进而反映压力的大小。
(二)温度传感器常见的温度传感器有热电偶和热敏电阻。
热电偶基于塞贝克效应,由两种不同的金属组成,当两端存在温度差时,会产生热电动势。
热敏电阻的电阻值随温度变化而显著改变,通过测量电阻值可以确定温度。
(三)位移传感器位移传感器包括电感式、电容式和光栅式等。
电感式位移传感器利用线圈的电感变化来测量位移;电容式位移传感器则依据电容的变化来检测位移;光栅式位移传感器通过光栅的莫尔条纹来实现高精度的位移测量。
四、实验步骤(一)压力传感器实验1、连接压力传感器到测量电路,确保连接正确无误。
2、打开电源,对传感器进行预热。
3、施加不同大小的压力,使用数据采集卡采集输出电压数据。
4、记录压力值和对应的电压值,绘制压力电压特性曲线。
(二)温度传感器实验1、将热电偶或热敏电阻插入恒温槽中。
2、改变恒温槽的温度,设置多个温度点。
3、测量不同温度下传感器的输出,记录温度和输出值。
4、绘制温度输出特性曲线。
(三)位移传感器实验1、安装位移传感器,使其能够准确测量位移。
2、移动测量对象,产生不同的位移量。
3、采集位移数据和传感器的输出信号。
4、绘制位移输出特性曲线。
五、实验数据及处理(一)压力传感器|压力(kPa)|输出电压(mV)|||||50|125||100|250||150|375||200|500|根据上述数据,绘制压力电压特性曲线(略)。
电磁传感器的原理及应用实验报告一、引言电磁传感器是一种常见的传感器类型,它通过检测物体周围的电磁场来获取物体的某些特征或信息。
电磁传感器广泛应用于工业自动化、机器人技术、无线通信等领域,在各个领域中都发挥着重要作用。
本文将介绍电磁传感器的原理和应用,并通过实验验证其性能和应用效果。
二、电磁传感器的原理2.1 电磁传感器的基本原理电磁传感器基于电磁感应原理工作。
当电磁波通过物体时,会产生感应电流或感应电压,电磁传感器通过检测这些感应信号来获取物体的信息。
电磁传感器的基本原理如下: - 电磁感应:电磁波进入传感器的感应部分,激发感应线圈产生感应电流或感应电压。
- 信号放大:感应信号经过放大电路进行放大,增强信号的强度。
- 信号处理:放大后的信号经过滤波、调理等处理,以去除噪声、调整信号频率等。
- 输出:处理后的信号被转换为可以读取和使用的形式,如电压、频率或数字信号。
2.2 电磁传感器的工作原理电磁传感器的工作原理基于电磁感应的现象。
根据电磁感应原理的不同,电磁传感器可以分为多种类型,其中常见的有接近传感器、电流传感器和磁场传感器等。
下面介绍两种常见的电磁传感器的工作原理。
2.2.1 接近传感器接近传感器通过感应物体附近的电磁场变化来检测物体的接近程度。
当物体靠近传感器时,会改变传感器周围的电磁场强度,从而感应到物体的接近。
接近传感器常用于检测物体的存在与否、距离测量等。
2.2.2 电流传感器电流传感器是一种用于测量电路中电流的传感器。
它基于法拉第电磁感应定律的原理,通过感应电路中的电流产生的磁场来获取电流信息。
电流传感器广泛应用于电力系统、电机控制等领域,用于测量电流并进行控制。
三、电磁传感器的应用实验为了验证电磁传感器的性能和应用效果,我们进行了一系列实验。
下面列举了其中的几个实验项目和结果。
3.1 实验项目1:接近传感器的物体检测实验目的:通过使用接近传感器,检测物体的接近情况。
实验步骤: 1. 连接接近传感器到实验电路。
传感器原理及应用的实验报告1. 引言本实验旨在通过实际操作了解传感器的原理及其在不同领域的应用。
传感器是现代科技中不可或缺的一部分,它们能够将感知到的信息转换成可量化的信号,从而实现信息的采集和传输。
2. 传感器的原理传感器基本原理是通过特定的物理或化学效应,将被测量的物理量或化学量转换成电信号。
以下是一些常见传感器的工作原理:•光电传感器:光电传感器利用光的特性来探测物体的存在或非存在。
它会发射出光束,并通过测量光照度的变化来判断物体是否存在或被触发。
•压力传感器:压力传感器通过测量物体受力后的变形量来确定物体的压力。
常见的压力传感器应用于汽车制造、医疗设备和工业控制等领域。
•温度传感器:温度传感器通过测量物体的热量来确定物体的温度。
它们在许多领域中都起着重要作用,如气象学、热管理、工业控制等。
•湿度传感器:湿度传感器通过测量物体周围环境中的湿度来确定湿度水平。
它们在农业、气象学、仪器和设备制造等领域中广泛应用。
当然,以上只是传感器的一小部分类型和原理,不同的传感器有不同的原理和工作方式。
3. 实验设计及步骤为了更好地理解传感器的原理和应用,我们设计了以下实验,并依次进行了以下步骤:1.实验1:光电传感器的应用–步骤1: 准备实验所需材料和设备,包括光电传感器、灯光源、连线等。
–步骤2: 将光电传感器和灯光源连接,调整灯光源的亮度和位置。
–步骤3: 测试光电传感器在不同光照条件下的反应和输出信号。
2.实验2:压力传感器的应用–步骤1: 准备实验所需材料和设备,包括压力传感器、测试物体等。
–步骤2: 将压力传感器固定在测试物体上,并连接相关电路。
–步骤3: 测试不同压力下压力传感器的输出信号,并记录数据。
3.实验3:温度传感器的应用–步骤1: 准备实验所需材料和设备,包括温度传感器、温度计等。
–步骤2: 将温度传感器与温度计放置在相同环境中,并记录两者的温度数据。
–步骤3: 比较温度传感器和温度计的测量结果,探讨其准确性和精度。
常用传感器的原理和应用实验报告1. 引言传感器是一种可以将物理量转换为电信号的器件,在各个领域都有广泛的应用。
本实验旨在通过实际操作和实验验证的方式,了解常用传感器的原理和应用。
2. 温度传感器2.1 原理温度传感器是一种用于测量物体温度的传感器。
常见的温度传感器有热电偶、热电阻和半导体温度传感器等。
其中,以热电阻为例进行介绍。
热电阻的原理是利用物质的温度变化引起电阻变化的特性。
常用的热电阻材料有铂、镍等。
在实验中,我们通过测量热电阻的电阻值,可以间接得到物体的温度。
2.2 应用温度传感器广泛应用于工业自动化、医疗设备、环境监测等领域。
例如,在温度控制系统中,温度传感器可以测量环境或物体的温度并将数据传输给控制器,从而实现精确的温度控制。
3. 光敏传感器3.1 原理光敏传感器是一种可以感知光照强度的传感器。
常见的光敏传感器有光敏电阻、光敏二极管和光敏三极管等。
以光敏电阻为例进行介绍。
光敏电阻的原理是利用光照强度改变电阻值的特性。
当光照强度增加时,光敏电阻的电阻值减小;当光照强度减小时,光敏电阻的电阻值增加。
3.2 应用光敏传感器广泛应用于照明控制、光强检测、反射传感等领域。
例如,在自动照明系统中,光敏传感器可以感知周围的光照强度,并自动调整灯光的亮度,节省能源。
4. 气体传感器4.1 原理气体传感器是一种可以检测和测量气体浓度的传感器。
常见的气体传感器有电化学传感器、半导体传感器和红外传感器等。
以电化学传感器为例进行介绍。
电化学传感器的原理是基于电化学反应对气体浓度进行测量。
传感器中的电极与目标气体发生化学反应,并产生变化的电流或电压信号。
通过测量这些信号的大小,可以推断气体的浓度。
4.2 应用气体传感器广泛应用于环境监测、燃气安全、室内空气质量监测等领域。
例如,在工业生产中,气体传感器可以检测有毒气体的浓度,确保工作环境的安全。
5. 加速度传感器5.1 原理加速度传感器是一种可以测量物体加速度的传感器。
传感器原理及应用实验者:马志洪,合作者:王宇炜 2010 年 5月 12日(中山大学理工学院,光信息科学与技术专业 2008 级3班,学号 08323067)【实验目的】1.了解传感器的工作原理。
2,掌握声音、电压等传感器的使用方法。
3.用基于传感器的计算机数据采集系统研究电热丝的加热效率。
【实验仪器】PASCO公司750传感器接口1台,温度传感器1只,电流传感器1只,电压传感器1只,声音传感器1只,功率放大器1台,电阻1只(1k),电容1只(非电解电容,参数不限),二极管1只(非稳压二极管,参数不限),导线若干。
【安全注意事项】1、插拔传感器的时候需沿轴向平稳插拔,禁止上下或左右摇动插头,否则易损坏750接口。
2、严禁将电流传感器(Current sensor)两端口直接接到750接口或功率放大器的信号输出端,使用时必须串联300欧姆以上的电阻。
由于电流传感器的内阻很小,直接接信号输出端则电流很大,极易损坏。
3、测量二极管特性时必须串联电阻,因为二极管的正向导通电压小于1V,不串联电阻则电流很大,容易烧毁,也易损坏电流传感器。
【原理概述】传感器(sensor或transducer)有时亦被称为换能器、变换器、变送器或探测器,是指那些对被测的某一物理量、化学量或生物量的信息具有感受与检出功能,并使之按照一定规律转换成与之对应的有用输出信号的元器件或装置。
为了与现代电子技术结合在一起,通常都转换为电信号,特别是电压信号,从而将各种理化量的测量简化为统一的电压测量,易于进一步利用计算机实现各种理化量的自动测量、处理和自动控制。
现在,传感技术已成为衡量一个国家科学技术发展水平的重要标志之一,与信息技术、计算机技术并称为支撑整个现代信息产业的三大支柱。
有关传感器的研究也得到深入而广泛的关注,在中国期刊全文数据库中可检索到超过2万篇题目中包含“传感器”三字的论文。
因此,了解并掌握一些有关传感器的基本结构、工作原理及特性的知识是非常重要的。
传感器原理与应用实验报告分校:班级:姓名:学号:实验一 电阻应变式传感器实验实验成绩 批阅教师一. 实验目的1.熟悉电阻应变式传感器在位移测量中的应用2.比较单臂电桥、双臂电桥和双差动全桥式电阻应变式传感器的灵敏度 3.比较半导体应变式传感器和金属电阻应变式传感器的灵敏度 4.通过实验熟悉和了解电阻应变式传感器测量电路的组成及工作原理 二.实验内容1.单臂电桥、双臂电桥和双差动全桥组成的位移测量电路, 2.半导体应变式传感器位移测量电路。
三.实验步骤1.调零。
开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。
输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。
调零后电位器位置不要变化。
如需使用毫伏表,则将毫伏表输入端对地短路,调整“调零”电位器,使指针居“零”位。
拔掉短路线,指针有偏转是有源指针式电压表输入端悬空时的正常情况。
调零后关闭仪器电源。
2.按图(1)将实验部件用实验线连接成测试桥路。
桥路中R 1、R 2、R 3、和W D为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。
直流激励电源为±4V 。
图(1)测微头装于悬臂梁前端的永久磁钢上,并调节使应变梁处于基本水平状态。
3.接线无误后开启仪器电源,预热数分钟。
调整电桥W D 电位器,使测试系统输出为零。
1. 旋动测微头,带动悬臂梁分别作向上和向下的运动,以悬臂梁水平状态下电路输出电压为零起点,向上和向下移动各6mm ,测微头每移动1mm 记录一+个差动放大器输出电压值,并列表。
2.计算各种情况下测量电路的灵敏度S。
S=△U/△x表1 金属箔式电阻式应变片单臂电桥表2 金属箔式电阻式应变片双臂电桥表3 半导体应变片双臂电桥实验二 差动变压器实验实验成绩 批阅教师一.实验目的:了解差动变压器的基本结构及原理,通过实验验证差动变压器的基本特性。
传感器原理与应用
实验报告
分校:
班级:
姓名:
学号:
实验一 电阻应变式传感器实验
实验成绩 批阅教师
一. 实验目的
1.熟悉电阻应变式传感器在位移测量中的应用
2.比较单臂电桥、双臂电桥和双差动全桥式电阻应变式传感器的灵敏度 3.比较半导体应变式传感器和金属电阻应变式传感器的灵敏度 4.通过实验熟悉和了解电阻应变式传感器测量电路的组成及工作原理 二.实验内容
1.单臂电桥、双臂电桥和双差动全桥组成的位移测量电路, 2.半导体应变式传感器位移测量电路。
三.实验步骤
1.调零。
开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。
输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。
调零后电位器位置不要变化。
如需使用毫伏表,则将毫伏表输入端对地短路,调整“调零”电位器,使指针居“零”位。
拔掉短路线,指针有偏转是有源指针式电压表输入端悬空时的正常情况。
调零后关闭仪器电源。
2.按图(1)将实验部件用实验线连接成测试桥路。
桥路中R 1、R 2、R 3、和W D
为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。
直流激励电源为±4V 。
图(1)
测微头装于悬臂梁前端的永久磁钢上,并调节使应变梁处于基本水平状态。
3.接线无误后开启仪器电源,预热数分钟。
调整电桥W D 电位器,使测试系统输出为零。
1. 旋动测微头,带动悬臂梁分别作向上和向下的运动,以悬臂梁水平状态下电路输出电压为零起点,向上和向下移动各6mm ,测微头每移动1mm 记录一
+
个差动放大器输出电压值,并列表。
2.计算各种情况下测量电路的灵敏度S。
S=△U/△x
表1 金属箔式电阻式应变片单臂电桥
表2 金属箔式电阻式应变片双臂电桥
表3 半导体应变片双臂电桥
实验二 差动变压器实验
实验成绩 批阅教师
一.实验目的:
了解差动变压器的基本结构及原理,通过实验验证差动变压器的基本特性。
二.实验原理:
差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。
初级线圈做为差动变压器激励用,相当于变压器的原边,次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器的副边。
差动变压器是开磁路,工作是建立在互感基础上的。
其原理及输出特性见图(1)
图(1)
1.变压器由一只初级线圈和二只次线圈及铁芯组成,根据内外层排列不同,有二段式和三段式,
本实验采用三段式结构。
当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接,就引出差动输出。
其输出电势则反映出被测体的移动量。
2.由于差动变压器二只次级线圈的等效参数不对称,初级线圈的纵向排列的不均匀性,二次级的不均匀、不一致,铁芯B -H 特性的非线性等,因此在铁芯处于差动线圈中间位置时其输出电压并不为零。
称其为零点残余电压。
3.压电式传感器由惯性质量块和受压的压电片等组成。
(观察实验用压电加速度结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
示波器
三、实验所需部件:
差动变压器、音频振荡器、测微头、示波器。
四、实验步骤:
1.按图(2)接线,差动变压器初级线圈必须从音频振荡器LV端功率输出,双线示波器第一通道灵敏度500mv/格,第二通道10mv/格。
2.音频振荡器输出频率5KHZ,输出值V
为1.5V。
P-P
3.用手提压变压器磁芯,观察示波器第二通道波形是否能过零翻转,如不能则改变两个次级线圈的串接端。
4.旋动测微头,带动差动变压器衔铁在线圈中移动,从示波器中读出次级输出电压V
值,读数过程中应注意初、次级波形的相位关系。
P-P
5.仔细调节测微头使次级线圈的输出波形至不能再小,这就是零点残余电压。
可以看出它与输入电压的相位差约为π/2,是基频分量。
表1 相敏检波器输入/输出关系
实验三热敏式温度传感器测温实验
实验成绩批阅教师
一、实验原理:
用半导体材料制成的热敏电阻具有灵敏度高,可以应用于各领域的优点,热电偶一般测高温线性较好,热敏电阻则用于200℃以下温度较为方便,本实验中所用热敏电阻为负温度系数。
温度变化时热敏电阻阻值的变化导致运放组成的压/阻变换电路的输出电压发生相应变化。
二、实验所需部件:
热敏电阻、温度变换器、电压表、温度计(可用仪器中的P-N结温度传感器或热电偶作测温参考)。
三、实验步骤:
1.观察装于悬臂梁上封套内的热敏电阻,将热敏电阻接入温度变换器Rt 端口,调节“增益”旋钮,使加热前电压输出Vo端电压值尽可能大但不饱和。
用温度计测出环境温度To 并记录。
2. 打开加热器,观察温度的温升和温度变换器Vo端的输出电压的变化情况,每升温1℃记录一个电压值,待电压稳定后记下最终温度T。
电压稳定时的温度为,此时电压为
求出灵敏度S。
S=△V/△T=
3.负温度系数热敏电阻的电阻温度特性可表示为:
Rt = Rto exp Bn (1/T – 1/To)
式中Rt、Rto分别为温度T、To时的阻值,Bn为电阻常数,它与材料激活能有关,一般情况下,Bn=2000~6000K,在高温时使用,Bn值将增大。