新课标高中数学必修解析几何全部教案
- 格式:doc
- 大小:665.51 KB
- 文档页数:78
解析几何课程教案一、教学目标1. 知识与技能:(1)理解解析几何的基本概念,如点、直线、圆等;(2)掌握坐标系中直线、圆的方程的求法与应用;(3)了解解析几何在实际问题中的应用。
2. 过程与方法:(1)通过实例引入解析几何的概念,培养学生的空间想象能力;(2)运用代数方法研究直线、圆的方程,提高学生解决问题的能力;(3)利用数形结合思想,分析实际问题,提升学生的应用能力。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣,激发学习热情;(2)培养学生克服困难的意志,提高自主学习能力;(3)感受数学在生活中的重要性,培养学生的应用意识。
二、教学内容1. 第一课时:解析几何概述(1)点的坐标;(2)直线的方程;(3)圆的方程。
2. 第二课时:直线的方程(1)直线的一般方程;(2)直线的点斜式方程;(3)直线的截距式方程。
3. 第三课时:圆的方程(1)圆的标准方程;(2)圆的一般方程;(3)圆的方程的性质。
4. 第四课时:直线与圆的位置关系(1)直线与圆相交的条件;(2)直线与圆相切的条件;(3)直线与圆相离的条件。
5. 第五课时:解析几何在实际问题中的应用(1)线性方程组的解法;(2)最大(小)值问题;(3)几何最优化问题。
三、教学策略1. 采用问题驱动的教学方法,引导学生通过观察、思考、讨论,探索解析几何的基本概念和性质;2. 利用数形结合思想,引导学生将几何问题转化为代数问题,提高解决问题的能力;3. 注重实际问题的引入,激发学生的学习兴趣,培养学生的应用意识。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 作业完成情况:检查学生作业的完成质量,评估学生对知识点的掌握程度;3. 课后实践:鼓励学生参加数学竞赛或研究性学习,提升学生的应用能力。
五、教学资源1. 教材:人教版《高中数学》解析几何部分;2. 教辅:同步练习册、习题集等;3. 教学软件:几何画板、数学公式编辑器等;4. 网络资源:相关教学视频、课件、论文等。
高中数学解析几何教学一、教学任务及对象1、教学任务本教学任务是基于高中数学课程中的解析几何部分,旨在让学生掌握解析几何的基本概念、原理和方法,能够运用坐标系解决几何问题,理解图形与方程之间的关系,并培养其空间想象能力、逻辑思维能力和解决实际问题的能力。
具体包括:坐标系与点、直线、圆的方程,圆锥曲线的基本性质,以及它们在实际问题中的应用。
2、教学对象教学对象为高中二年级学生,他们已经具备了一定的代数基础,包括对函数、方程等概念的理解,以及初步的几何知识。
在此基础上,学生将通过本课程的学习,进一步提升数学素养,为后续的数学学习和理工科专业的深造打下坚实的基础。
同时,考虑到学生的个体差异,教学过程中将注重因材施教,激发学生的学习兴趣,提高他们的自主学习能力。
二、教学目标1、知识与技能(1)理解坐标系的基本概念,掌握直角坐标系和平面极坐标系的转换方法;(2)熟练掌握点、直线、圆的方程表示,并能运用方程解决相关的几何问题;(3)掌握圆锥曲线(椭圆、双曲线、抛物线)的标准方程及其基本性质,能够分析并解决涉及圆锥曲线的问题;(4)通过解析几何的学习,培养学生的空间想象能力和逻辑思维能力,提高他们运用数学工具解决实际问题的能力;(5)运用几何画板等教学软件,辅助学生直观地理解几何图形与方程之间的关系,提高学生的动手操作能力和信息技术素养。
2、过程与方法(1)采用问题驱动的教学方法,引导学生通过自主探究、合作交流的方式,发现问题、解决问题;(2)鼓励学生运用多种方法解决问题,培养他们灵活多变的解题技巧;(3)通过典型例题的讲解,使学生掌握分析问题、解决问题的方法,提高学生的举一反三能力;(4)注重培养学生的批判性思维,让他们在思考问题的过程中,敢于质疑、勇于创新;(5)利用现代教育技术手段,如多媒体、网络资源等,丰富教学手段,提高学生的学习兴趣。
3、情感,态度与价值观(1)激发学生对数学学科的兴趣,培养他们热爱数学的情感;(2)引导学生树立正确的学习态度,养成勤奋刻苦、严谨治学的良好习惯;(3)通过解析几何的学习,让学生体会数学的优美和实用性,增强他们对数学价值的认识;(4)培养学生的团队协作精神,使他们学会尊重他人、倾听他人意见,形成良好的人际沟通能力;(5)通过解析几何在实际问题中的应用,让学生认识到数学与现实生活的紧密联系,提高他们运用数学知识为社会服务的意识。
高中数学解析几何教案教案一:平面与空间解析几何基础知识一、教学内容1. 平面解析几何的基本概念和性质a. 平面方程的一般形式b. 平面的点法式方程c. 平面的截距式方程2. 空间解析几何的基本概念和性质a. 空间直线和平面的方程b. 点到直线和点到平面的距离公式c. 直线与平面的位置关系二、教学目标1. 理解平面解析几何的基本概念和性质2. 掌握平面的方程形式以及点法式和截距式方程的应用3. 理解空间解析几何的基本概念和性质4. 掌握空间直线和平面的方程形式以及点到直线和点到平面的距离公式的运用5. 掌握直线与平面的位置关系1. 导入(5分钟)利用实际生活中的例子,引导学生思考平面和空间的概念,激发学生学习解析几何的兴趣。
2. 概念讲解(30分钟)分别介绍平面解析几何和空间解析几何的基本概念,通过示意图和实例帮助学生理解。
3. 平面解析几何的基本概念和性质(50分钟)a. 讲解平面方程的一般形式,并通过示例演示如何由一般方程得到点法式方程和截距式方程。
b. 指导学生进行练习,巩固平面的方程形式转换和方程应用题目。
4. 空间解析几何的基本概念和性质(50分钟)a. 教授空间直线和平面的方程形式,并解释其几何意义。
b. 讲解点到直线和点到平面的距离公式,并通过实例演示应用。
c. 引导学生分析直线与平面的位置关系,并讲解相应的判定条件。
5. 总结与拓展(15分钟)小结平面解析几何和空间解析几何的基本知识,并提出进一步拓展的问题,以激发学生的思考和探索欲望。
1. 教学课件或投影仪2. 教材和练习题3. 黑板和粉笔五、教学评估1. 教学过程中的教师观察和评价2. 学生的练习作业和小组讨论表现3. 课后作业的完成情况和准确性通过本教案的教学,学生能够掌握平面和空间解析几何的基本概念和性质,理解方程的几何意义,并能够应用到平面和空间解析几何的问题中。
同时,通过合作讨论和实际练习,学生的解决问题的能力和思维能力也能得到提升。
解析几何课程教案一、教学目标1. 让学生掌握解析几何的基本概念和基本公式。
2. 培养学生运用解析几何知识解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 解析几何的基本概念:坐标系、点、直线、圆等。
2. 解析几何的基本公式:直线方程、圆的方程等。
3. 解析几何中的重要性质和定理。
三、教学方法1. 采用讲授法,系统地讲解解析几何的基本概念、基本公式和重要性质。
2. 利用图形展示,让学生直观地理解解析几何的知识。
3. 设置例题和练习题,巩固所学知识,培养学生的解题能力。
四、教学步骤1. 引入坐标系,讲解点的坐标表示方法。
2. 讲解直线的基本概念和直线方程的求法。
3. 讲解圆的基本概念和圆的方程的求法。
4. 讲解解析几何中的重要性质和定理。
5. 通过例题和练习题,让学生运用所学知识解决问题。
五、教学评价1. 课堂问答:检查学生对解析几何基本概念的理解。
2. 作业批改:检查学生对解析几何知识的掌握和运用能力。
3. 阶段性测试:评估学生对解析几何的整体掌握情况。
4. 学生反馈:了解学生在学习过程中的需求和困惑,及时调整教学方法。
六、教学难点与对策1. 难点:理解并掌握解析几何中的抽象概念和复杂公式。
对策:通过具体例子和图形展示,帮助学生直观地理解抽象概念;分步骤讲解公式,让学生逐步掌握。
2. 难点:解决实际问题时的坐标运算。
对策:引导学生将实际问题转化为坐标问题,逐步讲解运算方法,让学生熟练运用。
七、教学实践与拓展1. 案例分析:选取实际问题,让学生运用解析几何知识解决。
2. 拓展练习:设计有一定难度的练习题,激发学生的学习兴趣,提高解题能力。
八、课程资源与辅助工具1. 教材:选用权威、实用的教材,为学生提供系统、全面的学习资源。
2. 网络资源:利用互联网查找相关教学视频、文章,丰富教学内容。
3. 几何画板:为学生提供直观的图形展示,帮助理解抽象概念。
九、课程进度安排1. 课时:本课程共计30课时。
一、教案基本信息教案名称:《解析几何》课程教案课时安排:共24 课时,每课时45 分钟教学对象:高中一年级学生教学目标:1. 让学生掌握解析几何的基本概念、方法和技巧。
2. 培养学生运用解析几何知识解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
教学内容:第一章:解析几何概述1.1 解析几何的定义与发展历程1.2 坐标系与坐标轴1.3 点、直线、圆的方程第二章:直线方程2.1 直线方程的定义与分类2.2 直线方程的斜率与截距2.3 直线方程的应用第三章:圆的方程3.1 圆的方程定义与性质3.2 圆的标准方程与一般方程3.3 圆的方程应用第四章:曲线与方程4.1 曲线与方程的概念4.2 常见曲线的方程4.3 曲线与方程的应用第五章:解析几何中的问题解决策略5.1 解析几何问题的类型与解法5.2 图形分析与变换5.3 解析几何在实际问题中的应用二、教学方法1. 采用讲授法,系统地讲解解析几何的基本概念、方法和技巧。
2. 运用案例分析法,结合具体实例分析,让学生深入理解解析几何的应用。
3. 采用互动教学法,鼓励学生提问、讨论,提高学生的参与度。
4. 利用数形结合法,引导学生通过图形来直观理解解析几何问题。
三、教学评价1. 平时作业:检查学生对基本概念、方法和技巧的掌握程度。
2. 课堂练习:评估学生在课堂上解决问题、分析问题的能力。
3. 课程报告:考察学生对实际问题应用解析几何知识的能力。
4. 期末考试:全面测试学生对本课程的掌握情况。
四、教学资源1. 教材:选用权威、实用的解析几何教材。
2. 课件:制作精美、清晰的课件,辅助课堂教学。
3. 习题库:提供丰富、多样的习题,便于学生课后练习。
4. 参考资料:推荐学生阅读相关书籍、论文,拓展知识面。
五、教学进度安排第1-4 课时:解析几何概述第5-8 课时:直线方程第9-12 课时:圆的方程第13-16 课时:曲线与方程第17-20 课时:解析几何中的问题解决策略第21-24 课时:复习与总结六、教学策略及建议6.1 针对不同学生的学习基础,采取分层教学,既注重基础知识的学习,又提供一定的拓展内容。
高中数学解析几何教案一、教学目标1.了解解析几何的定义和发展背景,明确解析几何在数学中的作用。
2.掌握解析几何的基本概念和性质,包括点、直线、平面的坐标表示等。
3.熟练运用解析几何的方法和技巧,解决与实际问题相关的数学题目。
4.培养学生对几何学问题的分析和解决能力,提高推理和证明的能力。
二、教学内容1. 解析几何的概念和历史发展(理论课)1.1 解析几何的定义解析几何是数学中的一个分支,旨在用坐标和方程的方法来研究几何学问题。
它将几何问题与代数问题相结合,使得几何问题可以通过代数方法来解决。
1.2 解析几何的发展背景解析几何的发展可以追溯到17世纪的笛卡尔几何,由法国数学家笛卡尔首先提出。
而后,欧拉、拉格朗日等数学家进一步完善了解析几何的理论体系。
2. 坐标系及其性质(理论课)2.1 二维直角坐标系二维直角坐标系是解析几何中最常用的坐标系,由横轴x和纵轴y构成。
2.2 坐标表示法在二维直角坐标系中,任意一个点P的坐标可以记作P(x, y),其中x表示点P在x轴上的投影长度,y表示点P在y轴上的投影长度。
2.3 坐标系的性质•坐标轴上的点的坐标分别为(0, 0)。
•坐标轴间的夹角为直角。
•点A、B在坐标系中的位置关系可以通过比较它们的横坐标和纵坐标的大小来确定。
3. 直线及其方程(理论课)3.1 直线的定义直线是由无数个点组成的,它的两个相邻点可以用直线方程表示。
3.2 直线的一般方程直线的一般方程可以用Ax + By + C = 0来表示,其中A、B、C为实数且A和B不全为0。
3.3 直线的斜率和截距直线的斜率表示了直线的倾斜程度,在二维直角坐标系中,直线的截距可以用直线与横轴和纵轴的交点坐标表示。
4. 平面及其方程(理论课)4.1 平面的定义平面是一个无边界的二维空间。
4.2 平面的一般方程平面的一般方程可以用Ax + By + Cz + D = 0来表示,其中A、B、C和D为实数且A、B和C不全为0。
高中数学必修2第二章《解析几何初步》全部教案(2009年秋期)南阳市八中王庆凡§2、1直线与直线的方程第一课时直线的倾斜角和斜率一、教学目标: 1、知识与技能:(1)、正确理解直线的倾斜角和斜率的概念.(2)、理解直线的倾斜角的唯一性.(3)、理解直线的斜率的存在性.(4)、斜率公式的推导过程,掌握过两点的直线的斜率公式.2、情感态度与价值观:(1) 通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2) 通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.二、重点与难点:直线的倾斜角、斜率的概念和公式.三、教学用具:计算机教学方法:启发、引导、讨论.四、教学过程(一)、直线的倾斜角的概念我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗? 如图, 过一点P可以作无数多条直线a,b,c, …易见,答案是否定的.这些直线有什么联系呢?(1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同?引入直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角....特别地,当直线l与x轴平行或重合时, 规定α= 0°.问: 倾斜角α的取值范围是什么? 0°≤α<180°.当直线l与x轴垂直时, α= 90°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.如图, 直线a∥b∥c, 那么它们YXcbaO的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点...P.和一个倾斜角α........(二)直线的斜率一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.例如, α=45°时, k = tan45°= 1;α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1.学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.(三) 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率?可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略)斜率公式: 对于上面的斜率公式要注意下面四点:(1) 当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°, 直线与x轴垂直;(2)k与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角α=0°,直线与x轴平行或重合.(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.(四)例题:例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA的斜率, 并判断它们的倾斜角是钝角还是锐角.(用计算机作直线, 图略)分析: 已知两点坐标, 而且x1≠x2, 由斜率公式代入即可求得k的值;而当k = tanα<0时, 倾斜角α是钝角;而当k = tanα>0时, 倾斜角α是锐角;而当k = tanα=0时, 倾斜角α是0°.略解: 直线AB的斜率k1=1/7>0, 所以它的倾斜角α是锐角;直线BC的斜率k2=-0.5<0, 所以它的倾斜角α是钝角;直线CA的斜率k3=1>0, 所以它的倾斜角α是锐角.例2 在平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 及-3的直线a, b, c, l. 分析:要画出经过原点的直线a, 只要再找出a上的另外一点M. 而M的坐标可以根据直线a的斜率确定; 或者k=tanα=1是特殊值,所以也可以以原点为角的顶点,x 轴的正半轴为角的一边, 在x 轴的上方作45°的角, 再把所作的这一边反向延长成直线即可.略解: 设直线a上的另外一点M的坐标为(x,y),根据斜率公式有, 1=(y-0)/(x-0)所以 x = y,可令x = 1, 则y = 1, 于是点M的坐标为(1,1).此时过原点和点M(1,1), 可作直线a. 同理, 可作直线b, c, l.(用计算机作动画演示画直线过程)(五)练习: P91 1. 2. 3. 4.(六)小结: (1)直线的倾斜角和斜率的概念.(2) 直线的斜率公式.(七)课后作业: P94 习题3.1 1. 3.五、教后反思:第二课时两条直线的平行与垂直一、教学目标(一)知识教学:理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.(二)能力训练:通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力, 以及数形结合能力.(三)学科渗透:通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.二、重难点重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题.三、教学方法:启发、引导、讨论.四、教学过程(一)先研究特殊情况下的两条直线平行与垂直上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时, 两直线的平行与垂直设直线 L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tgα1=tgα2.即 k1=k2.反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°, 0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.下面我们研究两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.,可以推出: α1=90°+α2. L1⊥L2.结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2; 反之则不一定.(借助计算机, 让学生通过度量, 感知k1, k2的关系, 并使L1(或L2)转动起来, 但仍保持L1⊥L2, 观察k1, k2的关系, 得到猜想, 再加以验证. 转动时, 可使α1为锐角,钝角等). (三)、例题:例1 已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.分析: 借助计算机作图, 通过观察猜想:BA∥PQ, 再通过计算加以验证.(图略)解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5, 直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5, 因为 k1=k2=0.5, 所以直线BA∥PQ.例2 已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD 的形状,并给出证明. (借助计算机作图, 通过观察猜想: 四边形ABCD是平行四边形,再通过计算加以验证) 解同上.例3 已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,直线PQ的斜率k2= (6-3)(-2-0)=-3/2, 因为k1·k2 = -1 所以 AB⊥PQ.例4 已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)(四)、课堂练习:P94 练习 1. 2.(五)、课后小结:(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 判定两条直线平行或垂直.(3) 应用直线平行的条件, 判定三点共线.(六)、布置作业:P94 习题3.1 5. 8.五、教后反思:第三课时直线的点斜式方程一、教学目标1、知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。
一、教案基本信息教案名称:《解析几何》课程教案课时安排:共10课时,每课时45分钟教学目标:1. 让学生掌握解析几何的基本概念和基本公式。
2. 培养学生解决实际问题的能力,提高空间想象能力。
3. 引导学生运用数形结合的思想,提高数学思维能力。
教学内容:1. 坐标系与直线方程2. 圆的方程3. 二次曲线4. 空间几何5. 解析几何在实际问题中的应用二、第一课时:坐标系与直线方程教学重点:坐标系的建立,直线的斜率,直线方程的求法。
教学难点:坐标系的转换,直线方程的求法。
教学准备:黑板,粉笔,坐标系图示,实际问题案例。
教学过程:1. 导入:讲解坐标系的建立,引导学生理解坐标系的作用。
2. 新课讲解:讲解直线的斜率,直线方程的求法。
3. 案例分析:分析实际问题中的直线方程,引导学生运用所学知识解决实际问题。
4. 课堂练习:布置相关练习题,让学生巩固所学知识。
三、第二课时:圆的方程教学重点:圆的标准方程,圆的一般方程,圆的性质。
教学难点:圆的方程的求法,圆的性质的理解。
教学准备:黑板,粉笔,圆的图示,实际问题案例。
教学过程:1. 导入:讲解圆的定义,引导学生理解圆的特点。
2. 新课讲解:讲解圆的标准方程,圆的一般方程,圆的性质。
3. 案例分析:分析实际问题中的圆的方程,引导学生运用所学知识解决实际问题。
4. 课堂练习:布置相关练习题,让学生巩固所学知识。
四、第三课时:二次曲线教学重点:二次曲线的标准方程,二次曲线的性质。
教学难点:二次曲线方程的求法,二次曲线性质的理解。
教学准备:黑板,粉笔,二次曲线的图示,实际问题案例。
教学过程:1. 导入:讲解二次曲线的定义,引导学生理解二次曲线的特点。
2. 新课讲解:讲解二次曲线的标准方程,二次曲线的性质。
3. 案例分析:分析实际问题中的二次曲线,引导学生运用所学知识解决实际问题。
4. 课堂练习:布置相关练习题,让学生巩固所学知识。
五、第四课时:空间几何教学重点:空间几何的基本概念,空间几何图形的性质。
高中数学教案解析几何的基础知识高中数学教案:解析几何的基础知识解析几何是高中数学教学中的重要内容之一,它是代数与几何的结合,通过数学符号和方程表达几何问题,解析几何的基础知识对学生理解和掌握几何概念、培养几何思维具有重要作用。
本教案将从坐标系、二维几何和三维几何三个方面讲解解析几何的基础知识。
一、坐标系坐标系是解析几何的基础,通过坐标系可以将几何问题用代数的方式来表示和解决。
在平面直角坐标系中,以直角坐标系和极坐标系为主要内容。
直角坐标系由x轴和y轴组成,而极坐标系由极径和极角组成。
具体内容如下:1. 直角坐标系直角坐标系中,点的坐标表示为(x,y)。
其中x轴和y轴的交点为原点O,x轴上的点的坐标为(x,0),y轴上的点的坐标为(0,y)。
2. 极坐标系极坐标系中,点的坐标表示为(r,θ)。
其中r为点到原点O的距离,θ为点与x轴的正向夹角。
通过极径和极角的表示,可以将点与原点的位置关系表示出来。
二、二维几何二维几何是解析几何研究的重点内容,其中包括直线、圆、抛物线等几何图形。
在解析几何中,通过方程和不等式等方式来表示和研究这些几何图形。
1. 直线的方程直线的方程有多种表示方式,如一般式、斜截式和点斜式等。
其中,一般式的表示形式为Ax+By+C=0,斜截式的表示形式为y=kx+b,点斜式的表示形式为y-y₁=k(x-x₁)。
通过掌握直线的不同方程形式,可以更好地理解和解决相关几何问题。
2. 圆的方程圆的方程是通过圆心和半径来表示的,其中圆心的坐标为(h,k),半径为r。
圆的方程有标准式和一般式两种形式,标准式的表示形式为(x-h)²+(y-k)²=r²,一般式的表示形式为x²+y²+Dx+Ey+F=0。
掌握圆的方程形式能够帮助学生更好地理解和应用圆的性质。
三、三维几何三维几何是解析几何的拓展内容,包括点、直线、平面以及几何体等。
在解析几何中,通过坐标和向量表示来研究和分析这些几何图形。
解析几何专题教案一、教学目标1. 知识与技能:(1)掌握解析几何的基本概念和基本公式;(2)学会用坐标系表示点、直线、圆等几何图形;(3)能够运用解析几何方法解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳,培养学生的逻辑思维能力;(2)运用数形结合的方法,提高学生的问题解决能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、克服困难的精神。
二、教学内容1. 解析几何基本概念(1)坐标系(2)点、直线、圆的坐标表示2. 解析几何基本公式(1)两点间的距离公式(2)直线的一般方程与斜率(3)圆的标准方程与直径公式三、教学重点与难点1. 教学重点:(1)解析几何的基本概念和基本公式;(2)坐标系下点、直线、圆的表示方法。
2. 教学难点:(1)直线、圆的方程的求解;(2)运用解析几何解决实际问题。
四、教学过程1. 导入:(1)复习相关知识点,如坐标系、两点间的距离公式等;(2)通过实例引入解析几何的概念。
2. 讲解:(1)讲解解析几何的基本概念,如点、直线、圆的坐标表示;(2)引导学生掌握解析几何的基本公式,如直线的一般方程与斜率、圆的标准方程与直径公式。
3. 练习:(1)让学生独立完成相关练习题,巩固所学知识;(2)引导学生运用解析几何方法解决问题。
五、课后作业1. 完成教材后的练习题;2. 运用解析几何方法解决实际问题,如测量两地间的距离、计算圆的面积等。
教学评价:通过课后作业的完成情况,评价学生对解析几何知识的掌握程度以及运用能力。
六、教学案例分析1. 案例一:直线与圆的位置关系(1)问题描述:分析直线与圆的位置关系,判断直线是否与圆相交、相切或相离;(2)解决方案:运用解析几何公式,求解直线与圆的交点,分析位置关系;(3)案例分析:培养学生运用解析几何方法分析问题、解决问题的能力。
2. 案例二:几何图形的面积计算(1)问题描述:计算三角形、四边形的面积;(2)解决方案:运用解析几何方法,求解坐标系的交点,运用公式计算面积;(3)案例分析:培养学生运用解析几何方法解决实际问题的能力。
《解析几何》课程教案一、教学目标1. 知识与技能:(1)理解解析几何的基本概念和性质;(2)掌握直线的斜率、截距、方程以及直线与坐标轴的交点;(3)学会运用解析几何解决实际问题。
2. 过程与方法:(1)通过实例引导学生认识解析几何的基本概念,培养学生的空间想象能力;(2)借助图形软件或坐标纸,直观展示直线方程的图形含义,提高学生的数形结合能力;(3)运用小组讨论、探究等方法,探讨直线与坐标轴的交点问题,培养学生的合作与交流能力。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和好奇心;(2)培养学生勇于探索、坚持不懈的科学精神;(3)通过实际问题,让学生感受数学与生活的紧密联系,提高学生运用数学解决实际问题的能力。
二、教学内容1. 解析几何的基本概念与性质(1)点的坐标;(2)直线的斜率与截距;(3)直线方程的表示方法。
2. 直线的斜率、截距与方程(1)斜率的定义与计算;(2)截距的定义与计算;(3)直线方程的斜截式与点斜式。
3. 直线与坐标轴的交点(1)直线与x轴的交点;(2)直线与y轴的交点;(3)直线与坐标轴的交点求解方法。
三、教学重点与难点1. 教学重点:(1)解析几何的基本概念与性质;(2)直线的斜率、截距与方程;(3)直线与坐标轴的交点求解方法。
2. 教学难点:(1)直线方程的表示方法;(2)直线与坐标轴的交点求解方法。
四、教学方法与手段1. 教学方法:(1)讲授法:讲解解析几何的基本概念、性质和直线的斜率、截距、方程;(2)案例分析法:分析实际问题,引导学生运用解析几何知识解决问题;(3)小组讨论法:探讨直线与坐标轴的交点问题,培养学生的合作与交流能力。
2. 教学手段:(1)多媒体教学:利用PPT、图形软件等展示直线方程的图形含义;(2)板书教学:板书关键步骤,强化学生对知识点的理解;(3)实践操作:让学生动手操作,绘制直线图形,提高学生的实践能力。
五、教学评价1. 过程性评价:关注学生在课堂上的参与程度、思考问题的方式和方法,以及与合作同学之间的交流情况;2. 终结性评价:通过课后作业、课堂测试等方式,检查学生对直线方程、直线与坐标轴交点等知识的掌握程度;3. 综合评价:结合学生的课堂表现、作业完成情况和测试成绩,全面评价学生对解析几何知识的掌握及运用能力。
《解析几何》课程教案一、教学目标1. 让学生掌握解析几何的基本概念和基本公式。
2. 培养学生解决实际问题能力,提高空间想象能力。
3. 引导学生运用数形结合思想,提高数学思维能力。
二、教学内容1. 解析几何的基本概念(1)坐标系(2)点、直线、圆的方程(3)图形的位置关系2. 解析几何的基本公式(1)距离和角度公式(2)直线方程的求解(3)圆的方程及其应用三、教学重点与难点1. 重点:解析几何的基本概念和基本公式的掌握。
2. 难点:直线与圆的位置关系的理解和应用。
四、教学方法1. 采用讲授法,系统讲解解析几何的基本概念和基本公式。
2. 利用数形结合思想,引导学生直观理解直线、圆等图形的性质。
3. 运用案例分析法,分析实际问题,提高学生解决实际问题的能力。
五、教学过程1. 引入:通过简单的实例,让学生感受解析几何在实际生活中的应用,激发学习兴趣。
2. 讲解:系统讲解解析几何的基本概念和基本公式,注意引导学生理解和记忆。
3. 练习:布置相关习题,让学生巩固所学知识,并及时解答学生的疑问。
4. 应用:分析实际问题,引导学生运用所学知识解决实际问题,提高学生解决实际问题的能力。
5. 总结:对本节课的内容进行总结,强调重点和难点,布置课后作业。
教案暂编至此,如有需要,后续章节将继续编写。
请您参考并提出宝贵意见。
六、教学评价1. 评价方式:过程性评价与终结性评价相结合,主要评价学生对解析几何基本概念和公式的掌握程度,以及解决实际问题的能力。
2. 评价指标:(1)课堂参与度:学生参与课堂讨论、提问和练习的情况。
(2)作业完成情况:学生完成作业的质量和速度。
(3)实际问题解决能力:学生运用所学知识解决实际问题的能力和创新意识。
七、教学资源1. 教材:《解析几何》教材,为学生提供系统的学习材料。
2. 课件:制作精美的课件,辅助讲解,提高课堂效果。
3. 习题库:收集各种类型的习题,为学生提供充足的练习机会。
4. 案例素材:收集与实际问题相关的素材,用于教学实践环节。
解析几何专题教案一、教学目标1. 知识与技能:(1)理解解析几何的基本概念,掌握直角坐标系中点的坐标表示方法。
(2)熟练运用解析几何方法解决实际问题,提高空间想象能力。
2. 过程与方法:(1)通过实例分析,引导学生掌握点的坐标表示方法,培养学生的抽象思维能力。
(2)运用图形直观展示解析几何问题,培养学生数形结合的解题思想。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生探索几何问题的热情。
(2)培养学生克服困难的意志,增强学生解决问题的信心。
二、教学内容1. 解析几何基本概念(1)直角坐标系(2)点的坐标表示方法(3)直线、圆的方程2. 点的坐标表示方法及应用(1)坐标轴上的点(2)坐标轴上的点与几何图形的关系(3)点的坐标在实际问题中的应用三、教学重点与难点1. 教学重点:(1)解析几何的基本概念(2)点的坐标表示方法及应用2. 教学难点:(1)直线、圆的方程的推导与理解(2)坐标轴上的点与几何图形的关系四、教学方法与手段1. 教学方法:(1)讲授法:讲解解析几何基本概念、直线的方程等。
(2)实践操作法:引导学生动手绘制图形,分析点的坐标表示方法。
(3)案例分析法:分析实际问题,培养学生运用解析几何方法解决问题的能力。
2. 教学手段:(1)黑板:板书关键知识点、解题步骤等。
(2)多媒体课件:展示图形、动态演示等。
(3)练习题:巩固所学知识,提高解题能力。
五、教学过程1. 导入新课:(1)复习相关知识点,如坐标轴、坐标系等。
(2)通过实例引入解析几何的基本概念。
2. 讲解新课:(1)讲解直线的方程,引导学生理解直线的几何性质。
(2)讲解点的坐标表示方法,结合实例进行分析。
3. 课堂练习:(1)布置练习题,巩固点的坐标表示方法。
(2)选讲典型题目,分析解题思路和方法。
4. 课堂小结:总结本节课所学内容,强调解析几何的基本概念和点的坐标表示方法的重要性。
5. 课后作业:布置作业,要求学生掌握点的坐标表示方法,并能运用解析几何解决实际问题。
新课标高中数学解析几何全部教案一、教学目标(一)知识教学点知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式.(二)能力训练点通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力.(三)学科渗透点分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想.二、教材分析1.重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生研究这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫.2.难点:一次函数与其图像的对应关系、直线方程与直线的对应关系是难点.由于以后还要特地研究曲线与方程,对这一点只需一般引见就能够了.3.疑点:是否有继续研究直线方程的必要?三、活动设计启发、思考、问答、讨论、练习.4、教学进程(一)复习一次函数及其图像已知一次函数y=2x+1,试判断点A(1,2)和点B(2,1)是否在函数图象上.初中我们是如许解答的:∵A(1,2)的坐标满足函数式,∴点A在函数图象上.∵B(2,1)的坐标不满足函数式,∴点B不在函数图象上.现在我们问:这样解答的理论依据是什么?(这个问题是本课的难点,要给足够的时间让学生思考、体会.) 讨论作答:判断点A在函数图象上的理论依据是:满足函数关系式的点都在函数的图象上;判断点B不在函数图象上的理论依据是:函数图象上的点的坐标应满足函数关系式.简言之,就是函数图象上的点与满足函数式的有序数对具有一一对应关系.(二)直线的方程引导学生考虑:直角坐标平面内,一次函数的图像都是直线吗?直线都是一次函数的图像吗?一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是.一次函数y=kx+b,x=a都能够看作二元一次方程,这个方程的解和它所表示的直线上的点逐一对应.以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解.这时,这个方程就叫做这条直线的方程;这条直线就叫做这个方程的直线.上面的定义可简言之:(方程)有一个解(直线上)就有一个点;(直线上)有一个点(方程)就有一个解,即方程的解与直线上的点是一一对应的.显然,直线的方程是比一次函数包含对象更广泛的一个概念.(三)进一步研究直线方程的必要性经由进程研究一次函数,我们对直线的方程已有了一些了解,但有些题目还没有完整解决,如y=kx+b中k的几何含意、直线上一点和直线的偏向如何求直线的方程、如何经由进程直线的方程来研究两条直线的位置关系等都有待于我们连续研究.(四)直线的倾斜角一条直线l向上的偏向与x轴的正偏向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α.特别地,当直线l 和x轴平行时,我们划定它的倾斜角为°,因此,倾斜角的取值范围是°≤α<180°.直线倾斜角角的定义有下面三个要点:(1)以x轴正向作为参考方向(始边);(2)直线向上的方向作为终边;(3)最小正角.按照这个定义不好看出:直线与倾角是多对一的映射关系.(五)直线的斜率倾斜角不是90°的直线.它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示,即直线与斜率之间的对应不是映射,因为垂直于x轴的直线没有斜率.(六)过两点的直线的斜率公式在坐标平面上,已知两点P1(x1,y1)、P2(x2,y2),由于两点可以确定一条直线,直线P1P2就是确定的.当x1≠x2时,直线的倾角不等于90°时,这条直线的斜率也是确定的.怎样用P2和P1的坐标来表示这条直线的斜率?P2分别向x轴作垂线P1M1、P2M2,再作P1Q⊥P2M,垂足分别是M1、M2、Q.那么:α=∠QP1P2(图1-22甲)或α=π-∠P2P1Q(图1-22乙)综上所述,我们得到经过点P1(x1,y1)、P2(x2,y2)两点的直线的斜率公式:关于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边偶然义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可欠亨过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(七)例题例1如图1-23,直线l1的倾斜角α1=30°,直线l2⊥l1,求l1、l2的斜率.∵l2的倾斜角α2=90°+30°=120°,本例题是用来复习巩固直线的倾斜角和斜率以及它们之间的关系的,可由学生课堂练习,学生演板.例2求经过A(-2,0)、B(-5,3)两点的直线的斜率和倾斜角.∴tgα=-1.∵°≤α<180°,∴α=135°.因此,这条直线的斜率是-1,倾斜角是135°.讲此例题时,要进一步强调k与P1P2的顺序无关,直线的斜率和倾斜角可经由进程直线上的两点的坐标求得.(八)课后小结(1)直线的方程的倾斜角的概念.(2)直线的倾斜角和斜率的观点.(3)直线的斜率公式.五、安置功课1.(1.3练习第1题)在坐标平面上,画出下列方程的直线:(1)y=x(2)2x+3y=6(3)2x+3y+6=0(4)2x-3y+6=0作图要点:利用两点确定一条直线,找出方程的两个特解,以这两个特解为坐标描点连线即可.2.(1.4练习第2题)求经过下列每两个点的直线的斜率和倾斜角:(1)C(10,8),D(4,-4);解:(1)k=2α=arctg2.(3)k=1,α=45°.3.(1.4练习第3题):a、b、c是两两不相等的实数,求经过以下每两个点的直线的倾斜角:(1)A(a,c),(b,c);(2)C(a,b),D(a,c);(3)P(b,b+c),Q(a,c+a).解:(1)α=0°;(2)α=90°;(3)α=45°.4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.∵A、B、C三点在一条直线上,∴kAB=kAC.六、板书设计直线方程的点斜式、斜截式、两点式和截距式一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(二)能力训练点经由进程直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,锻炼学生由一般到特殊的处理题目方法;经由进程直线的方程特性观察直线的位置特性,造就学生的数形联合本领.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.2、课本阐发1.重点:由于斜截式方程是点斜式方程的特殊情形,截距式方程是两点式方程的特殊情形,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.3、活动设计阐发、开导、诱导、讲练联合.四、教学过程(一)点斜式直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,如何求直线l的方程(图1-24)?设点P(x,y)是直线l上分歧于P1的任意一点,根据经过两点的斜率公式得注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程.重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程.这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为°时(图1-25),k=0,直线的方程是y=y1.当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.(二)斜截式已知直线l在y轴上的截距为b,斜率为b,求直线的方程.这个题目,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情形,代入点斜式方程可得:y-b=k(x-0)也就是上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.当k≠时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距.(三)两点式已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请同学们求直线l的方程.当y1≠y2时,为了便于影象,我们把方程改写成请同学们给这个方程命名:这个方程是由直线上两点确定的,叫做直线的两点式.对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码的规律完全一样.(四)截距式例1直线l在x轴和y轴上的截距划分是a和b(a≠,b≠0),求直线l的方程.此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得就是学生也可能用先求斜率,然后用点斜式方程求得截距式.引导学生给方程命名:这个方程是由直线在x轴和y轴上的截距确定的,叫做直线方程的截距式.对截距式方程要注意下面三点:(1)如果直线在两轴上的截距,能够直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,能够观察出直线在x轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不克不及用截距式表示.(五)例题例2三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边地点直线的方程.本例题要在引导学生灵活选用方程形式、简化运算上多下功夫.解:直线AB的方程可由两点式得:即3x+8y+15=0这就是直线AB的方程.BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即5x+3y-6=0.这就是直线BC的方程.由截距式方程得AC的方程是即2x+5y+10=0.这就是直线AC的方程.(六)课后小结(1)直线方程的点斜式、斜截式、两点式和截距式的命名都是可以顾名思义的,要会加以区别.(2)四种形式的方程要在熟记的基础上灵活运用.(3)要注意四种形式方程的不适用范围.五、安置功课1.(1.5练习第1题)写出下列直线的点斜式方程,并画出图形:(1)经过点A(2,5),斜率是4;(4)经过点D(0,3),倾斜角是°;(5)经过点E(4,-2),倾斜角是120°.解:2.(1.5练习第2题)以下直线的点斜方程,试根据方程确定各直线经过的点、直线的斜率和倾斜角:解:(1)(1,2),k=1,α=45°;(3)(1,-3),k=-1,α=135°;3.(1.5练习第3题)写出下列直线的斜截式方程:(2)倾斜角是135°,y轴上的截距是3.4.(1.5练习第4题)求过以下两点的直线的两点式方程,再化成截距式方程,并根据截距式方程作图.(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1).解:(图略)六、板书设计直线方程的点斜式、斜截式、两点式和截距式一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(二)能力训练点通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.2、课本阐发1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.3、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)点斜式已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?设点P(x,y)是直线l上分歧于P1的任意一点,根据经过两点的斜率公式得注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不克不及称作直线l的方程.反复上面的进程,能够证实直线上每个点的坐标都是这个方程的解;对上面的进程逆推,能够证实以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程.这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为°时(图1-25),k=0,直线的方程是y=y1.当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不克不及用点斜式表示.但因l上每点的横坐标都等于x1,所以它的方程是x=x1.(二)斜截式已知直线l在y轴上的截距为b,斜率为b,求直线的方程.这个题目,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情形,代入点斜式方程可得:y-b=k(x-0)也就是上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.当k≠时,斜截式方程就是直线的表示形式,如许一次函数中k和b的几何意义就是划分表示直线的斜率和在y轴上的截距.(三)两点式直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请同砚们求直线l的方程.当y1≠y2时,为了便于影象,我们把方程改写成请同学们给这个方程命名:这个方程是由直线上两点确定的,叫做直线的两点式.对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码的规律完全一样.(四)截距式例1已知直线l在x轴和y轴上的截距分别是a和b(a≠,b≠0),求直线l的方程.此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得就是学生也可能用先求斜率,然后用点斜式方程求得截距式.引导学生给方程命名:这个方程是由直线在x轴和y轴上的截距确定的,叫做直线方程的截距式.对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示.(五)例题例2三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程.本例题要在引导学生灵活选用方程形式、简化运算上多下功夫.解:直线AB的方程可由两点式得:即3x+8y+15=0这就是直线AB的方程.BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即5x+3y-6=0.这就是直线BC的方程.由截距式方程得AC的方程是即2x+5y+10=0.这就是直线AC的方程.(六)课后小结(1)直线方程的点斜式、斜截式、两点式和截距式的命名都是可以顾名思义的,要会加以区别.(2)四种形式的方程要在熟记的基础上灵活运用.(3)要注意四种形式方程的不适用范围.五、布置作业1.(1.5练习第1题)写出下列直线的点斜式方程,并画出图形:(1)经过点A(2,5),斜率是4;(4)经过点D(0,3),倾斜角是°;(5)经过点E(4,-2),倾斜角是120°.解:2.(1.5练习第2题)以下直线的点斜方程,试根据方程确定各直线经过的点、直线的斜率和倾斜角:解:(1)(1,2),k=1,α=45°;(3)(1,-3),k=-1,α=135°;3.(1.5练习第3题)写出以下直线的斜截式方程:(2)倾斜角是135°,y轴上的截距是3.4.(1.5练习第4题)求过下列两点的直线的两点式方程,再化成截距式方程,并根据截距式方程作图.(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1).解:(图略)六、板书设计直线方程的一般形式1、教学目标(一)知识教学点掌握直线方程的一般形式,能用定比分点公式设点后求定比.(二)能力训练点通过研究直线的一般方程与直线之间的对应关系,进一步强化学生的对应概念;通过对几个典型例题的研究,培养学生灵活运用知识、简化运算的能力.(三)学科渗透点经由进程对直线方程的几种形式的特性的阐发,造就学生看题目一分为二的辩证唯物主义观点.二、教材分析1.重点:直线的点斜式、斜截式、两点式和截距式表示直线有一定的局限性,只有直线的一般式能表示所有的直线,教学中要讲清直线与二元一次方程的对应关系.2.难点:与重点相同.3.疑点:直线与二元一次方程是一对多的关系.同条直线对应的多个二元一次方程是同解方程.三、活动设计分析、启发、讲练结合.4、教学进程(一)引入新课点斜式、斜截式不能表示与x轴垂直的直线;两点式不能表示与坐标轴平行的直线;截距式既不能表示与坐标轴平行的直线,又不能表示过原点的直线.与x轴垂直的直线可表示成x=x,与x轴平行的直线可表示成y=y。
人教版高中数学解析几何教案2023一、教学目标通过本节课的学习,学生应能够:1. 理解解析几何的基本概念和相关定理;2. 掌握解析几何的常用方法和技巧;3. 运用解析几何解决实际问题;4. 培养逻辑思维和数学建模能力。
二、教学重点1. 解析几何的基本概念和相关定理;2. 解析几何的常用方法和技巧;3. 解决实际问题的应用能力。
三、教学内容1. 解析几何的基本概念解析几何是研究几何图形与代数方程之间的关系的数学分支。
在解析几何中,我们通常使用坐标系来描述和研究几何图形,其中平面几何用二维坐标系表示,空间几何用三维坐标系表示。
2. 直线的表示与性质直线是解析几何中最常见的图形之一。
在二维坐标系中,我们通常使用直线的一般方程、点斜式方程和两点式方程来表示直线。
直线的性质包括平行、垂直和夹角的概念。
3. 圆的表示与性质圆是由平面上距离一个固定点的距离相等的所有点组成的图形。
在解析几何中,我们通常使用圆的标准方程和一般方程来表示圆。
圆的性质包括切线、切点和弦的概念。
4. 解析几何中的常用方法和技巧解析几何中有一些常用的方法和技巧,包括平移、旋转、放缩和证明。
这些方法和技巧可以帮助我们解决一些复杂的几何问题。
5. 实际问题的解决解析几何不仅可以用于研究几何图形本身,还可以应用于解决实际问题。
例如,解析几何可以用于计算物体的运动轨迹、设计建筑的结构等方面。
四、教学方法1. 导入法通过与学生的互动,引出解析几何的基本概念和相关定理,以激发学生的学习兴趣。
2. 示范法通过具体的例子和实际问题,向学生展示解析几何的常用方法和技巧,帮助他们理解和掌握相关知识。
3. 练习法通过大量的练习和实战演练,培养学生解决实际问题的能力,提高他们的应用能力。
4. 归纳法通过总结和归纳,帮助学生理清解析几何的知识体系,加深他们对相关概念和定理的理解。
五、教学资源1. 人教版高中数学教材及相关参考书籍;2. 多媒体课件和板书;3. 解析几何相关的练习题和试题。
山东高中数学解析几何教案第一节:直线与平面的位置关系直线与平面的位置关系是解析几何中的重要基础知识点。
本节教案将介绍直线与平面的位置关系的基本概念和判定方法,并结合实例进行详细解析。
1. 直线与平面的基本概念在解析几何中,直线与平面的位置关系主要有三种情况:直线在平面内、直线与平面相交、直线与平面平行。
我们首先来了解这些概念的具体定义。
(1)直线在平面内:如果一条直线上的所有点都在一个平面内,那么我们称这条直线在这个平面内。
(2)直线与平面相交:如果一条直线与一个平面有且仅有一个公共点,那么我们称这条直线与这个平面相交。
(3)直线与平面平行:如果一条直线与一个平面上的所有点都不相交或平行于该平面,那么我们称这条直线与这个平面平行。
2. 直线与平面的判定方法在解析几何中,我们有多种方法来判定直线与平面的位置关系。
(1)判定直线在平面内的方法:如果直线上有两个不重合的点都在平面内,则这条直线在这个平面内。
(2)判定直线与平面相交的方法:如果直线与平面上的一条射线相交,且这条射线的起点在平面内,则这条直线与这个平面相交。
(3)判定直线与平面平行的方法:如果直线上的一条射线平行于这个平面,且直线上有一个点在平面外,则这条直线与这个平面平行。
3. 实例分析现在我们通过几个具体的实例来演示直线与平面的位置关系的判定方法。
实例1:判断直线L: 2x + y - 3 = 0与平面α: x + 2y - z + 1 = 0的位置关系。
解析:首先,我们可以通过求解直线与平面的交点来判断它们的位置关系。
将直线方程代入平面方程中,得到2x + y - 3 + 2(2x + y - 3) - z + 1 = 0,化简得5x + 3y - z - 5 = 0。
解这个方程组可以得到交点P(2, -1, 5)。
因为直线L上的点P在平面α上,所以直线L与平面α相交。
实例2:判断直线L: x - 2 = y + 3 = z - 1与平面α: 2x - 3y + 5z - 4 = 0的位置关系。
北师大版高中数学必修2第二章《解析几何初步》全部教案§2、1直线与直线的方程 第一课时 直线的倾斜角和斜率一、教学目标: 1、 知识与技能:(1)、正确理解直线的倾斜角和斜率的概念.(2)、理解直线的倾斜角的唯一性(3)、理解直线的斜率的存在性(4)、斜率公式的推导过程,掌握过两点的直线的斜率公式.2、情感态度与价值观:1 通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.2 通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.二、重点与难点: 直线的倾斜角、斜率的概念和公式 三、教学用具:计算机教学方法:启发、引导、讨论 四、教学过程(一)、直线的倾斜角的概念我们知道, 经过两点有且只有确定一条直线 那么, 经过一点PcbaYXO YXcb aO1. 2. 3),(y xl ),(000y x P k ),(y x P l yx ,00,,y x k yxOP P 0),(y xx x ≠00x x y y k --=)(00x x k y y -=-),(000y x P k l),(000y x P k lx y ),(000y x P x y ),(000y x P y xyxOP 0yxOP 0四、教后反思:第五课时直线的一般式方程一、教学目标1、知识与技能:(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。
2、过程与方法:学会用分类讨论的思想方法解决问题。
3、情态与价值观:(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。
二、教学重点、难点1、重点:直线方程的一般式。
2、难点:对直线方程一般式的理解与应用。
三、教学方法:探析交流法四、教学过程四、教后反思:第六课时两直线的交点坐标一、教学目标1、知识与技能:(1)直线和直线的交;(2)二元一次方程组的解。
《解析几何》教学设计方案《《解析几何》教学设计方案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习主题介绍学习主题名称:《解析几何》主题内容简介:本节课的主题内容是通过之前学生对直线、圆、椭圆、双曲线及抛物线等平面几何的初步认识与了解,利用微课的详细分析让学生初步了解直线与曲线相结合所出现的特点与性质区别,掌握解析几何的知识拓展。
学习目标分析1、知识与技能方面:熟悉直线、圆、椭圆、双曲线和抛物线各自的定义、方程、图形与性质特点,能利用自己的学习方法来区分识记它们,了解和认识它们,学会对它们的简单应用。
2、过程与方法方面:直线、圆、椭圆、双曲线和抛物线都属于平面几何,图形特点非常明显,要有足够的数形结合思想来认识和区分它们,一定要用图形来分析和了解解析几何问题,借助微课进行观看、讨论、模仿练习、作业展示和总结来培养训练学生的耐心与细心、自主发现问题和解决问题、总结、释疑和思考等各种学习能力。
3、情感态度与价值观方面:直线、圆、椭圆、双曲线和抛物线有各自的图形美,这点可以足够吸引学生的眼球和学习兴趣,也与学生的平时生活认识相渗透,学生会有更大的兴趣去了解它们,学习和掌握它们,从而在学习的过程中培养和训练各种学习能力。
学情分析前需知识掌握情况:必须先了解学生对直线、圆、椭圆、双曲线和抛物线这些平面几何的定义、方程、图形与性质的认识与掌握的熟悉程度,教师所制作的微课的内容必须能够根据学生已有的学习认识水平来选择相对应的内容,微课里面所涉及内容的知识深度与广度要符合学生的学习方法与接受能力范围,能让学生通过微课的学习后,可以进行自主学习与思考,得到更多的认识与掌握。
对微课的认识:我所任教的班级的学生生源基础比较薄弱,他们到目前为止还没接触过微课,平时上课都是传统的课堂教学,不管是知识点还是例题分析,都得尽量选用容易识记的口诀与详细的分析方法,让学生一步一步,从简单到复杂,慢慢地理解,渗透与学习掌握。
百读文库CHENyx2011 woaiwojia直线的倾斜角和斜率一、教学目标(一)知识教学点知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式.(二)能力训练点通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力.(三)学科渗透点分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想.二、教材分析1.重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫.2.难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点.由于以后还要专门研究曲线与方程,对这一点只需一般介绍就可以了.3.疑点:是否有继续研究直线方程的必要?三、活动设计启发、思考、问答、讨论、练习.四、教学过程(一)复习一次函数及其图象已知一次函数y=2x+1,试判断点A(1,2)和点B(2,1)是否在函数图象上.初中我们是这样解答的:∵A(1,2)的坐标满足函数式,∴点A在函数图象上.∵B(2,1)的坐标不满足函数式,∴点B不在函数图象上.现在我们问:这样解答的理论依据是什么?(这个问题是本课的难点,要给足够的时间让学生思考、体会.)讨论作答:判断点A在函数图象上的理论依据是:满足函数关系式的点都在函数的图象上;判断点B不在函数图象上的理论依据是:函数图象上的点的坐标应满足函数关系式.简言之,就是函数图象上的点与满足函数式的有序数对具有一一对应关系.(二)直线的方程引导学生思考:直角坐标平面内,一次函数的图象都是直线吗?直线都是一次函数的图象吗?一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是.一次函数y=kx+b,x=a都可以看作二元一次方程,这个方程的解和它所表示的直线上的点一一对应.以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解.这时,这个方程就叫做这条直线的方程;这条直线就叫做这个方程的直线.上面的定义可简言之:(方程)有一个解(直线上)就有一个点;(直线上)有一个点(方程)就有一个解,即方程的解与直线上的点是一一对应的.显然,直线的方程是比一次函数包含对象更广泛的一个概念.(三)进一步研究直线方程的必要性通过研究一次函数,我们对直线的方程已有了一些了解,但有些问题还没有完全解决,如y=kx+b中k的几何含意、已知直线上一点和直线的方向怎样求直线的方程、怎样通过直线的方程来研究两条直线的位置关系等都有待于我们继续研究.(四)直线的倾斜角一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α.特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°.直线倾斜角角的定义有下面三个要点:(1)以x轴正向作为参考方向(始边);(2)直线向上的方向作为终边;(3)最小正角.按照这个定义不难看出:直线与倾角是多对一的映射关系.(五)直线的斜率倾斜角不是90°的直线.它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示,即直线与斜率之间的对应不是映射,因为垂直于x轴的直线没有斜率.(六)过两点的直线的斜率公式在坐标平面上,已知两点P1(x1,y1)、P2(x2,y2),由于两点可以确定一条直线,直线P1P2就是确定的.当x1≠x2时,直线的倾角不等于90°时,这条直线的斜率也是确定的.怎样用P2和P1的坐标来表示这条直线的斜率?P2分别向x轴作垂线P1M1、P2M2,再作P1Q⊥P2M,垂足分别是M1、M2、Q.那么:α=∠QP1P2(图1-22甲)或α=π-∠P2P1Q(图1-22乙)综上所述,我们得到经过点P1(x1,y1)、P2(x2,y2)两点的直线的斜率公式:对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(七)例题例1 如图1-23,直线l1的倾斜角α1=30°,直线l2⊥l1,求l1、l2的斜率.∵l2的倾斜角α2=90°+30°=120°,本例题是用来复习巩固直线的倾斜角和斜率以及它们之间的关系的,可由学生课堂练习,学生演板.例2 求经过A(-2,0)、B(-5,3)两点的直线的斜率和倾斜角.∴tgα=-1.∵0°≤α<180°,∴α=135°.因此,这条直线的斜率是-1,倾斜角是135°.讲此例题时,要进一步强调k与P1P2的顺序无关,直线的斜率和倾斜角可通过直线上的两点的坐标求得.(八)课后小结(1)直线的方程的倾斜角的概念.(2)直线的倾斜角和斜率的概念.(3)直线的斜率公式.五、布置作业1.(1.3练习第1题)在坐标平面上,画出下列方程的直线:(1)y=x(2)2x+3y=6(3)2x+3y+6=0(4)2x-3y+6=0作图要点:利用两点确定一条直线,找出方程的两个特解,以这两个特解为坐标描点连线即可.2.(1.4练习第2题)求经过下列每两个点的直线的斜率和倾斜角:(1)C(10,8),D(4,-4);解:(1)k=2 α=arctg2.(3)k=1,α=45°.3.(1.4练习第3题)已知:a、b、c是两两不相等的实数,求经过下列每两个点的直线的倾斜角:(1)A(a,c),(b,c);(2)C(a,b),D(a,c);(3)P(b,b+c),Q(a,c+a).解:(1)α=0°;(2)α=90°;(3)α=45°.4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.∵A、B、C三点在一条直线上,∴k AB=k AC.六、板书设计直线方程的点斜式、斜截式、两点式和截距式一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(二)能力训练点通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.二、教材分析1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)点斜式已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程.重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程.这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1.当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.(二)斜截式已知直线l在y轴上的截距为b,斜率为b,求直线的方程.这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:y-b=k(x-0)也就是上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距.(三)两点式已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请同学们求直线l的方程.当y1≠y2时,为了便于记忆,我们把方程改写成请同学们给这个方程命名:这个方程是由直线上两点确定的,叫做直线的两点式.对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码的规律完全一样.(四)截距式例1 已知直线l在x轴和y轴上的截距分别是a和b(a≠0,b≠0),求直线l的方程.此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得就是学生也可能用先求斜率,然后用点斜式方程求得截距式.引导学生给方程命名:这个方程是由直线在x轴和y轴上的截距确定的,叫做直线方程的截距式.对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x 轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示.(五)例题例2 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程.本例题要在引导学生灵活选用方程形式、简化运算上多下功夫.解:直线AB的方程可由两点式得:即 3x+8y+15=0这就是直线AB的方程.BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即 5x+3y-6=0.这就是直线BC的方程.由截距式方程得AC的方程是即 2x+5y+10=0.这就是直线AC的方程.(六)课后小结(1)直线方程的点斜式、斜截式、两点式和截距式的命名都是可以顾名思义的,要会加以区别.(2)四种形式的方程要在熟记的基础上灵活运用.(3)要注意四种形式方程的不适用范围.五、布置作业1.(1.5练习第1题)写出下列直线的点斜式方程,并画出图形:(1)经过点A(2,5),斜率是4;(4)经过点D(0,3),倾斜角是0°;(5)经过点E(4,-2),倾斜角是120°.解:2.(1.5练习第2题)已知下列直线的点斜方程,试根据方程确定各直线经过的已知点、直线的斜率和倾斜角:解:(1)(1,2),k=1,α=45°;(3)(1,-3),k=-1,α=135°;3.(1.5练习第3题)写出下列直线的斜截式方程:(2)倾斜角是135°,y轴上的截距是3.4.(1.5练习第4题)求过下列两点的直线的两点式方程,再化成截距式方程,并根据截距式方程作图.(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1).解:(图略)六、板书设计直线方程的点斜式、斜截式、两点式和截距式一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(二)能力训练点通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.二、教材分析1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)点斜式已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程.重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程.这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1.当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.(二)斜截式已知直线l在y轴上的截距为b,斜率为b,求直线的方程.这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:y-b=k(x-0)也就是上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距.(三)两点式已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请同学们求直线l的方程.当y1≠y2时,为了便于记忆,我们把方程改写成请同学们给这个方程命名:这个方程是由直线上两点确定的,叫做直线的两点式.对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码的规律完全一样.(四)截距式例1 已知直线l在x轴和y轴上的截距分别是a和b(a≠0,b≠0),求直线l的方程.此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得就是学生也可能用先求斜率,然后用点斜式方程求得截距式.引导学生给方程命名:这个方程是由直线在x轴和y轴上的截距确定的,叫做直线方程的截距式.对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x 轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示.(五)例题例2 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程.本例题要在引导学生灵活选用方程形式、简化运算上多下功夫.解:直线AB的方程可由两点式得:即 3x+8y+15=0这就是直线AB的方程.BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即 5x+3y-6=0.这就是直线BC的方程.由截距式方程得AC的方程是即 2x+5y+10=0.这就是直线AC的方程.(六)课后小结(1)直线方程的点斜式、斜截式、两点式和截距式的命名都是可以顾名思义的,要会加以区别.(2)四种形式的方程要在熟记的基础上灵活运用.(3)要注意四种形式方程的不适用范围.五、布置作业1.(1.5练习第1题)写出下列直线的点斜式方程,并画出图形:(1)经过点A(2,5),斜率是4;(4)经过点D(0,3),倾斜角是0°;(5)经过点E(4,-2),倾斜角是120°.解:2.(1.5练习第2题)已知下列直线的点斜方程,试根据方程确定各直线经过的已知点、直线的斜率和倾斜角:解:(1)(1,2),k=1,α=45°;(3)(1,-3),k=-1,α=135°;3.(1.5练习第3题)写出下列直线的斜截式方程:(2)倾斜角是135°,y轴上的截距是3.4.(1.5练习第4题)求过下列两点的直线的两点式方程,再化成截距式方程,并根据截距式方程作图.(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1).解:(图略)六、板书设计直线方程的一般形式一、教学目标(一)知识教学点掌握直线方程的一般形式,能用定比分点公式设点后求定比.(二)能力训练点通过研究直线的一般方程与直线之间的对应关系,进一步强化学生的对应概念;通过对几个典型例题的研究,培养学生灵活运用知识、简化运算的能力.(三)学科渗透点通过对直线方程的几种形式的特点的分析,培养学生看问题一分为二的辩证唯物主义观点.二、教材分析1.重点:直线的点斜式、斜截式、两点式和截距式表示直线有一定的局限性,只有直线的一般式能表示所有的直线,教学中要讲清直线与二元一次方程的对应关系.2.难点:与重点相同.3.疑点:直线与二元一次方程是一对多的关系.同条直线对应的多个二元一次方程是同解方程.三、活动设计分析、启发、讲练结合.四、教学过程(一)引入新课点斜式、斜截式不能表示与x轴垂直的直线;两点式不能表示与坐标轴平行的直线;截距式既不能表示与坐标轴平行的直线,又不能表示过原点的直线.与x 轴垂直的直线可表示成x=x0,与x轴平行的直线可表示成y=y0。