光学分析法导论
- 格式:ppt
- 大小:180.00 KB
- 文档页数:24
第2章光学分析法导论光学分析法是一种常用的分析方法,广泛应用于材料科学、化学、生物、医学等领域。
在分析过程中,通过光的吸收、散射、反射等性质来获得样品的信息。
本章将介绍光学分析法的基本原理和常见的应用。
1.光学分析法原理光学分析法是利用光与物质相互作用来获得样品信息的方法。
其中最基本的原理是光的吸收、散射和发射。
当光通过物质时,会与物质的分子或原子发生相互作用,导致光的振动矢量和频率发生改变。
通过测量光的吸收、散射或发射,可以得到物质的各种信息。
2.光的吸收法光的吸收法是通过测量物质对特定波长光的吸收来确定样品中其中一种物质的含量。
该方法常用于分析有机化合物和无机物中的金属离子含量。
测量方法包括光度法、比色法、比较法等。
其中最常见的是光度法,即通过测量光的强度来确定样品中物质的含量。
在实际应用中,可以根据吸收光谱图来确定样品中各种物质的含量和种类。
3.光的发射法光的发射法是通过测量样品发光的强度来确定样品的成分和性质。
发射光谱的特点是样品发射出符合波长的光,通常用于分析无机化合物中的金属元素。
常用的方法包括原子发射光谱法和荧光光谱法。
其中原子发射光谱法是在样品被激发时,各种金属元素自发射出特定波长的光,通过测量光的强度来确定金属元素的含量。
荧光光谱法则是通过将样品激发到荧光状态,然后测量样品散射出的荧光光强度来确定样品的成分和性质。
4.光的散射法光的散射法是通过测量光的散射强度来确定样品的成分和性质。
散射光谱的特点是样品散射出具有不同波长的光,通常用于分析颗粒物质的大小、浓度和形状等。
常用的方法包括拉曼光谱法和动态光散射法。
拉曼光谱法是通过测量样品散射光中与入射光具有不同频率和振幅的拉曼散射光来确定样品的成分。
动态光散射法则是通过测量样品散射光的强度和角度分布来估算样品颗粒的大小和浓度。
5.光学分析法的应用光学分析法在各个领域都有广泛的应用。
在材料科学中,可以通过测量光的吸收、发射和散射来研究材料的光学性质、结构和相变等。
以能量(吸光度或透过率)为纵坐标,波长(或频率)为横坐标的曲线
为比例系数,b为自吸系数
高压氢灯以
低压氢灯是在有氧化物涂层的灯丝和金属电极间形成电弧,启
棱镜单色器
③在
但在
θ=0出现明条纹
θ符合b sinθ=2n(λ/2)时,半波长整倍时出现暗条纹θ符合bsinθ=(2n+1)(λ/2)时,半波长的奇数倍时为明条纹
(b)闪耀光栅
将反射光栅的线槽加工成适当形状能使有效强度集中在特定的衍射角上。
图所示反射光栅是由与光栅表面成β角的小斜面构成(小阶梯光栅,闪耀光栅),β角叫做闪耀角。
选择适宜的闪耀角,可以使90%的有效能量集中在单独一级的衍射上。
1.光学分析法导论第一章光学分析法导论(An Introduction to Optical Analysis )1.1 电磁辐射的性质电磁辐射(electromagnetic radiation )是一种以极大的速度(在真空中为2.9979×1010cm ·s -1)通过空间,不需要任何物质作为传播媒介的能量。
它包括无线电波、微波、红外光、紫外-可见光以及X 射线和γ射线等形式。
电磁辐射具有波动性和微粒性。
1.1.1 电磁辐射的波动性根据Maxwell 的观点,电磁辐射的波动性可以用电场矢量E 和磁场矢量M 来描述,如图1.1.1所示。
它是最简单的单个频率的平面偏振电磁波。
平面偏振就是它的电场矢量E 在一个平面内振动,而磁场矢量M 在另一个与电场矢量相垂直的平面内振动。
电场和磁场矢量都是正弦波形,并且垂直于波的传播方向。
与物质的电子相互作用的是电磁波的电场,所以磁场矢量可以忽略,仅用电场矢量代表电磁波。
波的传播以及反射、衍射、干涉、折射和散射等现象表现了电磁辐射具有波的性质,可以用以下波参数来描。
图1.1.1 电磁波的电场矢量E 和磁场矢量M1)周期T相邻两个波峰或波谷通过空间某一固定点所需要的时间间隔称为周期,单位为s (秒)。
2)频率ν单位时间内通过传播方向上某一点的波峰或波谷的数目,即单位时间内电磁场振动的次数称为频率,它等于周期的倒数1/T ,单位为1/s (1/秒),称为赫兹,以Hz 表示。
电磁波的频率只取决于辐射源,与通过的介质无关。
3)波长λ相邻两个波峰或波谷的直线距离。
若电磁波传播速度为c ,频率为ν,那么波长λ为:νλ1=c (1.1.1)不同的电磁波谱区可采用不同的波长单位,可以是m ,cm ,μm 或nm ,他们之间的换算关系为1m=102cm=106μm=109nm 。
4)波数每厘米长度内含有波长的数目,即波长的倒数:c νλ==1 (1.1.2)单位为cm -1(厘米-1),将波长换算成波长的关系式为:(cm -1))(10)(14m cm μλλ== (1.1.3) 5)传播速度υ辐射的速度等于频率ν乘以波长λ,即υ=νλ。