当前位置:文档之家› 超声波焊接机原理与应用技术资料

超声波焊接机原理与应用技术资料

超声波焊接机原理与应用技术资料
超声波焊接机原理与应用技术资料

超声波焊接机原理与应用技术资料

超声波焊接机原理与应用技术资料

一.超声波应用原理

我们知道正确的波的物理定义是:振动在物体中的传递形成波。这样波的形成必须有两个条件:一是振动源,二是传播介质。波的分类一般有如下几种:一是根据振动方向和传播方向来分类。当振动方向与传播方向垂直时,称为横波。当振动方向与传播方向一致时,称为纵波。二是根据频率分类,我们知道人耳敏感的听觉范围是20HZ-20000HZ,所以在这个范围之内的波叫做声波。低于这个范围的波叫做次声波,超过这个范围的波叫超声波。

波在物体里传播,主要有以下的参数:一是速度V,二是频率F,三是波长λ。三者之间的关系如下:V=F.λ。波在同一种物质中传播的速度是一定的,所以频率不同,波长也就不同。另外,还需要考虑的一点就是波在物体里传播始终都存在着衰减,传播的距离越远,能量衰减也就越厉害,这在超声波加工中也属于考虑范围。

1、超声波在塑料加工中的应用原理:

塑料加工中所用的超声波,现有的几种工作频率有15KHZ,18KHZ,20KHZ,40KHZ。其原理是利用纵波的波峰位传递振幅到塑料件的缝隙,在加压的情况下,使两个塑料件或其它件与塑料件接触部位的分子相互撞击产生融化,使接触位塑料熔合,

达到加工目的。

2、超声波焊机的组成部分

超声波焊接机主要由如下几个部分组成:发生器、气动部分、程序控制部分,换能器部分。

发生器主要作用是将工频50HZ的电源利用电子线路转化成高频(例如20KHZ)的高压电波。

气动部分主要作用是在加工过程中完成加压、保压等压力工作需要。

程序控制部分控制整部机器的工作流程,做到一致的加工效果。

换能器部分是将发生器产生的高压电波转换成机械振动,经过传递、放大、达到加工表面。

3.换能器部分由三部分组成:换能器(TRANSDUCER);增幅器(又称二级杆、变幅杆,BOOSTER);焊头(又称焊模,

HORN或SONTRODE)。

①换能器(TRANSDUCER):换能器的作用是将电信号转换成机械振动信号。将电信号转换成机械振动信号有两种物理效应可以应用。A:磁致伸缩效应。B:压电效应的反效应。磁致伸缩效应在早期的超声波应用中较常使用,其优点是可做的功率容量大;缺点是转化效率低,制作难度大,难于大批量工业生产。自从朗之万压电陶瓷换能器的发明,使压电效应反效应的应用得以广泛采纳。压电陶瓷换能器具有转换效率高,大批量生产等优点,缺点是制作的功率容量偏小。现有的超声波机器一般都采用压电陶瓷换能器。压电陶瓷换能器是用两个金属的前后负载块将压电陶瓷夹在中间,通过螺杆紧密连接而制成的。

通常的换能器输出的振幅为10μm左右。

②焊头(HORN):焊头的作用是对于特定的塑料件制作,符合塑料件的形状、加工范围等要求。

换能器、变幅杆、焊头均设计为所工作的超声频率的半波长,所以它们的尺寸和形状均要经过特别的设计;任何的改动均可能引致频率、加工效果的改变,它们需专业制作。耐用根据所采用的材料不同,尺寸也会有所不同。适合做超声波的换能器、变

幅杆和焊头的材料有:钛合金、铝合金、合金钢等。由于超声波是不停地以20KHZ左右高频振动的,所以材料的要求非常高,

并不是普通的材料所能承受的。

二:超声波工作原理:

热可塑性塑料的超声波加工,是利用工作接面间高频率的摩擦而使分子间急速产生热量,当此热量足够熔化工作时,停止超声

波发振,此时工件接面由熔融而固化,完成加工程序。

通常用于塑料加工的频率有20KHZ和15KHZ,其中20KHZ仍在人类听觉之外,故称为超声波,但15KHZ仍在人类听觉范

围只内。

三:超声波机构原理:

将220V,50HZ转变为15KHZ(或20KHZ)之高压电能,利用震动子转换成机械能。如此的机械振动,经由传动子,焊头传至加工物,并利用空气压力,产生工作接面之摩擦效果。振动子和传动子装置在振筒内,外接焊头,利用空压系统和控制回

路,在事先设定之条件下升降,以完成操作程序。

四:组件功用说明:

1.延迟时间设定:调整开始发振时间,在限制开关动作后0~9.99秒开始发振。

2.熔接时间设定:调整熔接时间长短,在延迟时间终了发振0~9.99秒之范围。

3.硬化时间设定:调整发振终了工作物熔接处冷却定型时间在0~9.99秒之范围。

4.计数器:工作循环次数记录用,附有归零压扣。

5.调整及压力表:工作压力之指示及调整压力用。

6.声波调整:调整振动子系与发振回路之共振匹配,使转换效率达到理想。

7.振幅表:显示声波空载或负载工作之振幅强弱。

8.电源开关及灯:电源开关之控制,及指示开路之信号

9.选择开关(自动/手动/声波检查):自动或手动之选择,及作声波空载检视之按纽。

10.声波出力调整纽:声波出力段数之设定用,1~2段为一般使用,3~4段为强力输出用。

11.声波过载灯:显示声波过载之不正常,需做声波调整,至过载灯不会显示为止。(若仍无法解除,请来电洽询)

12.频率指示:调试机器时做机器频率显示

13焊头:传动振动能量于工作物之上,使之熔接。

14上升/下降缓冲调整:调整孔位于机台侧面可适当调整,使升降惯性适中。

15下降速度调整:调整合理适当之下降工作速度用。

16熔接位置视窗:检视正常熔接时焊头压附工作物之状况。

17.最低点微调螺丝:在熔接熔化块,或外形尺寸需精确时使用可限制汽缸之下降。

18水平微调螺丝:调整此四支螺丝,可使焊头平均压附在工作物上。

19输出电缆及插座:联接机体振动子系统与发振箱线路用。

20控制电缆及插座:联接机体控制单元与发振箱自动控制回路用。

21接地螺母:电子回路之接地线连接用,漏电时之安全保障。

22保险丝座:电子线路之过载保护。

五:机器安装法:

1.将发振箱放置于机体附近操作员易于观察及调整之处。

2.接地:将地线一端接地,另一端接于发振箱后面之接地旋钮。

3.发振箱与机体联接:将机体之输出电缆插头及控制电缆插头接于发振箱插座及机体插座上

4.接空压源:将高压气压管引清净干燥之空压源与熔接机体上空气滤清器入口接头以管束结合锁紧。

5.接电源:发振箱后面之电源线及插头,请接上AC220V,∮60/50HZ电源。

六:各部调整及熔接前准备工作:

1.装焊头:

(1)先将换能器(CONE)及焊头(HORN)以及焊头螺丝,以酒精或汽油擦洗干净,再将焊头螺丝及换能器,焊头结合面抹上一层薄薄的黄油脂再将焊头螺丝锁于焊头上。注意:换能器,焊头之结合面若有损伤时,振动之传达效率会递减,应谨保养。

(2)再紧固4支焊头水平调整螺丝,将换能器固定在其旋转范围之中间位置处。

(3)把焊头用手旋入换能器到不能回转为止。

(4)以焊头锁紧扳手焊头旋紧(约300Kg/cm之扭力),此时特别注意不让换能器旋转,以防止转梢扭断。(若发现旋转则

4支焊头水平调整螺丝要再紧固些)。

2.焊头调整:

(1)调整准备:

①打开气压源,并调整压力至2kg/C㎡。

②打开发振箱上之总电源开关,此时电源指示灯亮。

(2)焊头方向调整:

①放松4支水平调整螺丝,将焊头之方位与工作物对正,再按机体升降开关使焊头压附工作物。

(3)焊头水平调整:

轻拍焊头四周,使焊头与工作物吻合状况后,平均固定4支水平调整螺丝。

(4)焊头高低位置调整:

①若工作物之熔接对于高低需准备时,调整最低点微调螺丝顶于升降筒在熔接后最适当位置。

(5)熔接准备:

①依工作物之状况,设定出力段数于适当位置。(应从低段数试起以维寿命)再按声波检查开关,并转声波调整螺丝,使振幅

表之指示在最低刻度为止。注意:按声波检查开关,应按下三秒停止一秒间歇方式,以维护振动子寿命。

七:熔接操作:熔接延迟时间及硬化时间设定方法

一.面板按键说明:

7

1 2 3 4 5 6

1.手动/自动:手动自动转换。 2.声波检测:测试声波是否正常。

3. 1.00S:时间增加1秒。 4.0.10S:时间增加0.1秒。

5.0.01S:时间增加0.01秒。 6. 设定:设定延迟时间/熔接时间和硬化时间

7.时间显示:显示全部时间时为自动待机状态,数字全部显示为“0”时机器处于手动状态,数字为单组时间显示另两组不显示时为设定状态。(每三个数字(8.88)为一组时间,共三组时间)

二.时间设定方法:

1.按“设定”钮,延迟时间与熔接时间变暗不显示,硬化时间处于设定状态。此时可通过时间设定键增加相应的时间(例:按1.00S键及增加1秒,依次类推按0.10S及增加0.1秒,按0.01S增加0.01秒)。时间为循环式设定,及相应的时间到“9”

以后在增加时间及又从“0”开始。(例:时间显示为9.99时,按1.00S键后时间即变为0.99。)

2.延迟时间和硬化时间与熔接时间调整方法相同。按设定键一次为硬化时间设定,再按一次为熔接时间设定,再按一次为延迟

时间设定。再按一次及回到工作状态。(三组时间中单一显示的一组时间及为正在设定的时间。)

3.完成上述之各部调整及熔接前准备后,按手动/自动按钮,使机器处与自动状态。(三组时间均显示为正常的预设时间)

4.熔接按钮试熔接,熔接机即可自动熔接工作一次。

5.视察熔接工作状况及熔接后工作物形态,再调整焊头,并重新设定工作条件,再试熔,重复调整至工作物理想熔接条件。(延迟时间、硬化时间之设定,从较长时间递减设定至理想条件,声波出力及熔接时间之设定,则需由小而大渐增方式设定,以维

护振动子之寿命。)

4.设定至理想熔接条件后。即可从事作业生产,生产前,首先将计数器归零,及做声波检查,并清除工作机上不必要之物品,

再行作业。

八:熔接动作说明:

1.焊头下降:在发振箱导入电源及气压源接通后,按下熔接按钮(WELD),焊头即下降。

2.延迟时间:焊头下降至限制开关动作之同时,延迟时间计时器即开始计时。

3.熔接时间:延迟时间计时终了之同时,熔接时间计时器即开始计时,振动子同时发振熔接。

4.硬化时间:熔接时间计时终了之同时,硬化时间计时器即开始计时。

5.焊头上升:硬化时间计时终了,焊头随之上升,计数器即累计一次,完成一次循环动作。

九:注意事项:

1.本机请勿置于潮湿或多尘及过热之场所,机器上方勿放置流体物,平时注意整洁,随时擦拭,但不可使用液体清洗。

2.人体请勿重压于发振之焊头,以免灼伤,自动操作中遇危险请按紧急按钮(EMERGENCY STOP)。

3.非本公司设计之焊头请勿使用在本机台上。

4.声波检查在无负荷时,振幅表勿超过1A,超过1A时请调整声波调整螺丝,若经调整仍不能降至1A以下,则可能焊头或机

台有异常,请联络本公司处理。

5.按声波检查开关以间歇方式按下,勿连续按超过三秒以维护振动子寿命。

6.在操作时(有负荷状态),振动表勿超过红色区(在标准型熔接机时)若指示超过时,以降低压力,减少出力段数,及调整

声波调整之,若经过调整,仍不能降下时,请联络本公司处理。

7.本机之振动子及发振机内有高压线路,除了外部作业之调整外,使用客户请勿做机内之修护。

8.焊头本身是依熔接物来决定,且必须配合振动系统之共振,所以焊头应使用本公司设计制造之产品,以免损害振动系统。

9.空压源注意清洁,本机之空气滤清器(AIR FILTER)内若有滞留1/2的水请随时排除,如水分过多时则须时常清理空压机之

水分。

10.接地线需接地,且不可接于供电源之地线上,以防止高压漏电。

11.振动子及换能器不可做超过360°之旋转,以免扭断高压线。

十:熔接机保养与维护:

1.焊头、底模及工作物常保持清洁。

2.定期检查电缆接头是否松动。

3.定期清洗空气滤清器,应使用清洁剂或水,不可使用挥发性之溶剂。

4.机械定期擦拭,但不可使用液体清洗,发振箱上方勿重压或放置流体物。

5.工作场所保持空气畅通,周围温度不可过高。(40℃以下)。

6.搬运机器时,发振箱应与机体分离(拆开电缆插座),搬运须小心,勿受撞击。

7.长时间不使用时,请将本机外观擦拭,上油保养,置于干燥通风场所。

8.每月应打开控制箱上盖,用干净不带水分空气枪,清除箱内粉尘,以保持零件散热通风之良好。

十一:不良动作之对策:

状况原因对策

按下熔接按钮,焊头随即下降碰到加工物未发振即上升。①下降冲程未到熔接位置。

②极限开关不良。①转升降手轮使熔接位置视窗线对正在升降筒熔接位置。

②调整其动作位置或换修。

操作中过负载灯亮。①焊头松动。

②调波不当。

③焊头破裂。①锁紧焊头。

②重新调整声波。

③换修。

按下熔接按钮焊头随之下降,但熔接后不上升。①气压不够。

②控制电路不良。①调整空气压力。

②换修时控板。

电源指示灯不亮,发振箱风扇转弱,不能发振或焊接强度转弱。①电源电压不足。

②电路短路保险丝熔断。

③电源插座接触不良。①改换较稳定之电源。

②换保险丝。

③换修。

空气压力、电源、焊头均正常但无法操作。①紧急上升按钮接触不良。

②控制电路不良。①检查或换修。

②换修。

焊头上升或下降冲击太大①缓冲调整不合适。

②缓冲调整锁死。

③下降速度设定太高。①重新调整缓冲。

②检查并做调整。

③调整下降速度调整钮。

熔接过熔①过熔后工作物之外型尺寸不一。

②工作物外表损伤太多。①调整最低点微调螺丝。

②换装合适振幅之焊头。

③熔接时间太长欲缩短。

打开电源总开关,保险丝即熔断。①发振箱本体故障。①换修。

十二:熔接状况处理:

现象原因解决办法

熔接过度输入工作的能量过多1.降低使用压力

2.减少熔接时间

3.降低振幅段数

4.减缓焊头之下降速度

熔接不足输入工作的能量太少1.增加使用压力

2.加长熔接时间

3.增加振幅段数

4.使用较大功率之机型

5.冶具消耗能量、更换冶具。

熔接不均工件扭曲变形1.检视工件尺寸是否差异。

2.检视操作条件是否造成工作物变形。

3.调整缓冲速度或压力。

焊头、底座、工件之接触面不平贴1.守能点重新设计,使高度均一。

2.调整水平螺丝。

3.检视造作条件是否确实。

4.检视工件尺寸之形状尺寸。

侧面弯曲工件加肋骨。

修改冶具,避免工件向外弯曲。

底座支撑不确实1.在必要处,改善支撑点。

2.底座重新设计。

3.换成硬质底座。

4.若大面积之电木板发生倾斜则需补强。

工件误差太大缩紧工件之公差。

重新修改工件尺寸。

检视操作条件(压力、延迟计时、熔接计时、固化计时等)

现象原因解决办法

熔接不均工件对准性不当1.检视熔接时,工件是否偏移。

2.检视组合时,工件是否对准。

3.检视焊头、工件、冶具之平行度。

接合面缺乏紧密接触1.检视工件尺寸。

2.检视工件之公差。

3.检视接合面之顶针位置。

4.检视工件组合之对准性。

5.检视工件是否凹陷。

焊头接触不均1.检视工件与焊头之贴合度。

2.检视冶具的支撑是否适当。

脱模剂1.用FreonTF清除接合面。

2.如果脱模剂不可避免,请使用可印式或可漆式之等级。

填加物1.检讨工件条件。

2.降低填加物之比例。

熔接结果不一致

脱模剂1.用FreonTF清洁接合面。

2.如果脱模剂不可避免,请使用可印式或可漆式之等级。

工件之公差太大 1.缩紧工件之公差。

2.检视工件之尺寸。

3.检查操作条件。

射出模与模间之变化1.采取某一特定射出模之工件熔接统计是否改善。

2.检视工件之公差及尺寸。

3.检视模具是否磨损。

4.检查操作条件。

使用次料或次级塑膜1.与射出厂检查料质。

2.检讨操作条件。

3.降低次料比例

4.改进次料品质

电源电压发生变化使用电源稳压器

气源压力降落1.提升气源输出压力

2.装置加压筒

现象原因解决办法

熔接结果不一致填加物比例太高1.降低填加物。

2.检查操作条件。

3.变更填加物种类,亦即将短线锥改成长线锥。

填加物分布不均1.检查操作条件

2.检查模具设计

材料品质较差检查操作条件

工件贴合度不佳1.检视工件尺寸。

2.检视工件公差。

3.检查操作条件。

使用熔合性不良之材质参考塑膜熔合性表与原料供应商检查

使用次料1.与射出厂检查材料。

2.检查操作条件。

表面伤害焊头温度升高1.检查焊头螺丝是否松动。

2.检查焊头工具是否松动。

3.减短熔接时间。

4.使焊头散热冷却。

5.检视焊头与传动子之接面。

6.检视焊头是否断裂。

7.如果焊头是钛材,换为铝料。

8.如果焊头是铜材,则降低放大倍数。

工件局部碰伤1.检视工件尺寸。

2.检视工件与焊头之贴合度。

工件与冶具贴合不当1.检视支撑是否适当。

2.重新设计冶具。

3.检视模与模门工件之变化。

表面伤害氧化铝

(来自焊头)1.焊头作硬铬处理。

2.使用防热塑膜模(袋)。

现象原因解决办法

表面伤害焊头与工件贴合不当检视工件尺寸。

重做新焊头。

检视模与模间工件之变化。

现象原因

熔接时间过长1.增加压力或振幅,以减少熔接时间。

2.调整缓冲压力。

焊头、工件、底座之接触面贴合度差1.检视焊头工件与底座之平行度。

2.检视焊头与工件之贴合度。

3.检视工件与底座之贴合度。

4.在必要的地方,垫平底座。

工件变形的影响太大减少变形的影响量。

熔接时间太长减少熔接时间。

接合面之尺寸不均匀1.重新设计接合面。

2.检查操作条件。

工件太紧1.放松工件贴合度。

2.放松工件之公差。

熔接后工件不能对准工件组合时没有对准1.两片工件间增加固桩。

2.如果可能,设计冶具以导正。

底座支撑不当1.重新设计适当的支撑冶具在必要的地方垫高底座。

2.如果电木板倾斜,加添硬质支架。

侧壁弯曲1.工件侧壁增加肋骨。

2.如果电木板倾斜,加添硬质支架。

工件公差太大1.缩紧工件公差。

2.检查操作条件。

熔接时,内部零件受损振幅太大降低振幅。

现象原因解决办法

熔接时,内部零件受损熔接时间过长1.增加振幅或压力,以减少熔接时间受损。

2.调整缓冲速度与延迟时间。

工件吸收过多能量1.降低振幅。

2.降低压力。

3.减少熔接时间。

4.使用能量控制器。

零件组合不当,亦即太接近接合面1.确定内部零件适当组合。

2.移动内部零件,避开能量集中区或变更压着处。

3.设计冶具抵消局部能量。

工件接合面以外熔化或破裂内角过锐将锐角改钝

振幅过大降低振幅

熔接时间过长1.增加振幅。

2.增加压力。

3.调整缓冲速度与延迟时间。

内应力1.检查射出条件。

2.检查工件设计。

操作条件不当检查操作条件。

工件表面中心熔损振幅过大降低振幅。

熔接时间过长增加振幅或压力,以减少熔接时间。

料口位置1.检查改变进料口。

2.改变料口形状。

3.检查操作条件。

4.工件加强肋骨设计。

5.在料口下方增加工件材料厚度。

焊头形状及配合1.变更焊头。

2.检查焊头与工件之贴合度。

3.使用截面向下倾斜之焊头。

内部零件熔合内部零件与外壳材质相同1.改变内部零件之材质。

2.内部零件涂抹防焊油。

十三. 一般故障原因与排除:

原因对策

一.按下焊接按钮机器不动作。

1. 焊接机开关没有打开。

2. 焊接机电源没有打开。

3. 焊接机气源不正常。

4. 焊接机行程开关没有到位。

5. 电磁阀坏。

6. 焊接机信号线接触不好。①打开焊接机开关。

②打开焊接机电源。

③检查和调整气源。

④调整行程开关。

⑤更换电磁阀。

⑥检查线路连接。

二.焊接机下来不上去。★★★

1. 焊接机手动自动开关在手动位置。

2. 时间数码开关接触不良。

3. 气压过低。

4. 控制板故障①把开关打到自动位置。

②检查时间数码开关。

③调整气压。

④检修控制电路

三.机器常振

1.熔接时间接触不良

2.发振板及光电偶故障

3.时控板故障①拨动熔接时间开关及更换

②更换光电偶及检修发振板

③检修时控板

四.空载电流过大、过载(1A以上)★★★

1. 焊头没锁紧

2. 音波调整不良。

3. 模具不匹配或模具裂掉。

4. 若不带焊头,电流大,此换能器有裂纹

5. 功率管特性有变异或烧毁

6. 功率放大电路部分有故障①锁紧焊头

②按动音波检查按钮,调整音波调整螺丝,使电流指示为最小。(请参考其他相关内容)

③更换模具。

④更换相关零件

⑤检修功率管

⑥检修功率放大电路

五.焊接时电流偏大、过载(7A以上)

1.气压偏高

2.输出档位过大,冲击电流大

3.缓冲过小

4.触发压力高,延迟时间长①降低气压

②降低档位

③加大缓冲

④减少延迟时间

六.不焊接,不发振(电源正常)★★★★★

1. 晶体板(管)坏。

2. 发振板坏。

3. 焊接过载保护。

4. 输出保险丝断。

5. 档位开关0位或者接触不好。

6. 输出线路未接好。①更换晶体板(管)。(附:晶体板(管)检修方法。)

②更换发振板。

③调整音波和档位及压力。

④更换保险丝。

⑤调整档位开关。

⑥接好输出线路。

十四. 塑料熔接不同材质可配表

丙烯晴双烯苯乙烯ABS 缩醛树脂(塑钢)压克力纤维素 ABS和P.C合成物压克力和PVC合金聚亚苯氧化物尼龙聚碳酸脂PC 聚乙烯PE 聚丙烯PP 聚苯乙烯PS 聚讽聚氯乙烯苯乙烯丙烯晴聚脂树脂聚

.

ABS ★★★

ACETAL ★

ACRYLICS ★★

CELLULOSICS ★

CYCOLOY-800 ★★

CYCOVIN ★

KYDEX ★

NOROY ★★

NYLON ★

PC ★★

PE ★

PP ★

PC ★★

POLYSULFONE ★

PVC ★

SAN ★

POLYESTER ★

XT-POL YMER ★

★熔接良好可以结合不宜熔接

十五. 塑料件材料对超声波焊接的影响

超声波在塑料件中传播,塑料件或多或少对超声波能量有吸收和衰减,从而对超声加工效果产生一定的影响,塑料一般有非晶体材料之分,按硬度有硬胶和软胶之分,还有模数的区分,通俗地来说,硬度高,低熔点的塑料超声加工性能优于硬度低、高

熔点的塑料。1、塑料件的加工条件对超声焊接的影响

塑料件经过注塑、挤压或吹塑等的不同加工形式以及不同的加工条件都会形成对超声焊接产生一定影响的因素。

A:湿度缺陷:湿度缺陷一般在制作有条纹或疏松的塑料件过程中形成,湿度缺陷在焊接中衰减有用能量,使密封位渗水,加长焊接时间,所以湿度高的塑料件在焊接前要作烘干处理。如聚甲醛等。

B:注塑过程的影响:

注塑过程参数的调整会引致如下缺陷:

①尺寸变化(收缩、弯曲变形)

②重量变化

③表面损伤

④统一性不佳

C:保存期:塑料件注塑加工出来后,一般最少放置24小时后,再进行焊接,以消除塑料件本身应力、变形等因素。无定形塑

料通过注塑出来的塑料件可不按此要求。

D:再生塑料

再生塑料的强度比较差,对超声波焊接适应性也较差,所以如用再生塑料,各种设计尺寸均要酌情加以考虑。

E:脱模剂和杂质

脱模剂和杂质对超声波焊接有一定的影响。虽然超声波加工时可将加工表面的溶剂、杂质等震开,但对于要求密封、或在高强度的情况下,应尽可能去除。在有些情况下,先清洗塑料件是必要的。

十六、塑料件的设计

现代注塑方式能有效提供比较完美的焊接用塑胶件。当我们决定用超声波焊接技术完成熔合时,塑料件的结构设计必须首先考

虑如下几点:

①焊缝的大小(即要考虑所需强度)

②是否需要水密、气密

③是否需要完美的外观

④避免塑料熔化或合成物的溢出

⑤是否适合焊头加工要求

焊接质量可以通过下面几点的控制来获得:

①材质

②塑料件的结构

③焊接线的位置和设计

④焊接面的大小

⑤上下表面的位置和松紧度

⑥焊头与塑料件的接触面

⑦顺畅的焊接路径

⑧底模的支持

为了获得完美的、可重复的熔焊方式,必须遵循三个主要设计方向:

①最初接触的两个表面必须小,以便将所需能量集中,并尽量减少所需要的总能量(即接时间)来完成熔接。

②找到适合的固定和对齐的方法,如;塑料件的接插孔、台阶或企口之类。

③围绕着连接界面的焊接面必须是统一而且相互紧密接触的。如果可能的话,接触面尽量在同一个平面上,这样可使能量转

换时保持一致。

下面就对塑料件设计中的要点进行分类举例说明:

1整体塑料件的设计

1.1塑料件的结构

塑料件必须有一定的刚性及足够的壁厚。太薄的壁厚有一定的危险性,超声波焊接时是需要加压的,一般气压为2-6Kg f/cm2。

所以塑料件必须保证在加压情况下基本不变形。

1.2罐状或箱形塑料等,在其接触焊头的表面会引起共振而形成一些集中的能量聚焦点,从而产生烧伤、穿孔的情况(如图1

所示),在设计时可以在罐状顶部做如下考虑:

图1 带尖角图2 带圆弧过渡

1、加厚塑料件

2、增加加强筋

3、焊头中间位置避空

1.3尖角

如果一个注塑出来的零件出现应力非常集中的情况,比如尖角位,在超声波的作用下会产生折裂、融化。这种情况可考虑在尖

角位加R角。如图2所示。

1.4塑料悠扬的附属物

注塑件内部或外部表面附带的突出或细小件会因超声波振动产生影响而断裂或脱落,例如固定梢等(如图3所示)。通过以下

设计可尽可能减小或消除这种问题:

①在附属物与主体相交的地方加一个大的R角,或加加强筋。

②增加附属物的厚度或直径。

图3 图4

1.5塑料件的孔和间隙

如被焊头接触的零件有孔或其它开口,则在超声波传递过程中会产生干扰和衰减。(如图4所示)。根据村料类型(尤其是半晶体材料)和孔的大小,在开口的下端会直接出现少量焊接或完全熔不到的情况,因此要尽量预以避免。

1.6塑料件中薄而弯曲的传递结构

被焊头接触的塑料件的形状中,如果有薄而弯曲的结构,而且需要用来传递超声波能量的时候,特别对于半晶体材料,超声波震动很难传递到加工面(如图5所示)。对这种设计应尽量避免。

图5

1.7 近距离和远距离焊接

近距离焊接指被焊接位距离焊头接触位在6mm以内,远距离焊接则大于6mm。

超声波焊接中的能量在塑料件传递时会被衰减,尤以半晶体材料为甚。在非晶体塑料中,由于分子的无序排列,振动基本不衰减地传递。衰减在低硬度塑料里也较厉害。因引,设计时,要特别注意到要让足够的能量伟到加工区域。

远距离焊接,对于硬胶(如PS、ABS、AS、PMMA)等比较适合,一些半晶体塑料(如POM、PETP、PBTB、PA)通过合适

的形状设计也可用于远距离焊接。

1.8塑料件焊头接触面的设计

注塑件可以设计成任何形状,但是超声波焊头并不能随意制作。形状、长短均可能影响焊头频率、振幅等参数。焊头的设计需要有一个基准面,即按照其工件频率决定的基准频率面。基准频率面一般占到焊头表面的70%以上的面积,所以,注塑件表面的突起等形状最好小于整个塑料而后30%。平滑、圆弧过渡的塑料件表面,则此标准可以适当放宽。且突出位尽量位于塑料件

的中部或对称设计。

塑料件焊头接触面至少大于熔接面,且尽量对正焊接位。过小的焊头接触面(如图6所示),会引起较大的损伤和变形,以及

不理想的熔接效果。

在焊头表面有损伤纹,或其形状与塑料件配合有少许差异的情况下,焊接进,会在塑料件表面留下伤痕。避免方法是:在焊头

与塑料件表面之间垫薄膜(例如PE膜等)。

图6

2焊接线的设计

焊接线是超声波直接作用熔化的部分,其基本的两种设计方式:

①能量导向

②剪切设计

所有其它的变化都可归类于这两种类型或混和类型。

2.1能量导向

能量导向是一种典型的在将被焊接的一个面注塑出突起三角形柱。能量导向的基本功能是:集中能量,使其快速软化和熔化接触面。能量导向允许快速焊接,同时获得最大的力度。在这种导向中,其材料在部分流向接触面。能量导向是非晶态材料中最

常用的方法。

能量导向柱的大小和位置取决于如下几点:

①材料

②塑料件结构

③使用要求。

图7所示为能量导向柱的典型尺寸。当使用较易焊接的材料,如聚苯乙稀等硬度高、熔点低的材料时,建议高度最低为0.25mm。当材料为半晶体材料或高温混合脂时(如聚乙碳),则高度至少要为0.5mm。当用能量导向来焊接半晶体树脂时(如乙缩荃、

尼龙),最大的连接力主要从能量导向柱的底盘宽度来获得。

图7

没有规则说明能量导向应做在塑料件哪一面,特殊情况要通过实验来确定。当两个塑料件村质、强度不同时,能量导向一般设

置在熔点高和强度低的一面。

根据塑料件要求(例如水密、气密性、强度等),能量导向设计可以组合、分段设计。例如:只是需要一定的强度的情况下,

分段能量导向经常采用(例如手机电池等)。如图8所示。

图8

2.2能量导向设计中对位方式的设计

上下塑料件在焊接过程中都要保证对位准确,限位高度一般不低于1mm,上下塑料平行松动位必须很小,一般小于0.05mm。基本的能量导向可合并为连接设计,而不是简单的对接,包括对位方式。采用能量导向的不同连接设计后例子包括以下几种:插销定位:图9所示为基本的插销定位方式,插销定位中应保证插销件的强度,防止超声波震断。

图9

台阶定位:图10所示为基本的台阶定位方式,如h大于焊线的高度,则会在塑料件外部形成一条装饰线,一般装饰线的大小为0.25mm左右,创出更吸引人的外观,而两个零件之间的差异就不易发现。图11所示台阶定位,则可能产生外溢料。图12所示台阶定位,则可能产生内溢料。图13所示台阶定位为双面定位,可防止内外溢料。

企口定位:如图14所示(见上页),采用这种设计的好处是防止内外溢料,并提供校准,材料容易有加强密封性的获得。但这种方法要求保证凸出零件的斜位缝隙,因此使零件更难于注塑,同时,减小了焊接面,强度不如直接完全对接。

底模定位:如图15所示,采用这种设计,塑料件的设计变得简单,但对底模要求高。通常会引致塑料件的平行移位,同时底模

固定太紧会影响生产效率。

图15 图16

焊头加底模定位:如图16所示,采用这种设计一般用于特殊情况,并不实用及常用。

其它情况:

A:如图17所示,为大型塑料件可用的一种方式,应注意的是下支撑模具必须支撑住凸缘,上塑料件凸缘必须接触焊头,上塑料件的上表面离凸缘不能太远,如必要情况下,可采用多焊头结构。

B:如连接中采用能量导向,且将两个焊面注成磨砂表面,可增加摩擦和控制熔化,改善整个焊接的质量和力度。通常磨砂深度

是0.07mm-0.15mm。

图17 图18 图19

C:在焊接不易熔接的树脂或不规则形状时,为了获得密封效果,则有必要插入一个密封圈。如图18所示。需要注意的是密封圈只压在焊接末端。图19所示为薄壁零件的焊接,比如热成形的硬纸板(带塑料涂层),与一个塑料盖的焊接。

2.3剪切式设计

在半晶体塑料(如尼龙、乙缩醛、聚丙烯、聚乙烯和热塑聚脂)的熔接中,采用能量导向的连接设计也许达不到理想的效果。这是因为半晶体的树脂会很快从固态转变成融化状态,或者说从融化状态转化为固态,而且是经过一个相对狭窄的温度范围,从能量导向柱流出的融化物在还没与相接界面融合时,又将很快再固化。因此,在这种情况下,只要几何原理允许,我们推荐

使用剪切连接的结构。

采用剪切连接的设计,首先是熔化小的和最初接触的区域来完成焊接,然后当零件嵌入到一起时,继续沿着其垂直壁,用受控的接触面来融化。如图20所示,这样,可获得强劲结构或很好的密封效果,因为界面的熔化区域不会让周围的空气进来。由于

此原因,剪切连接尤其对半晶体树脂非常有用。

图20 图21

剪切连接的熔接深度是可以调节的,深度不同所获得的强度不同,熔接深度一般建议为0.8-1.5mm。当塑料件壁厚较厚及强

度要求高时,熔接深度建议为1.25x壁厚。

图21所示为几种基本的剪切式结构:

剪切连接要求一个塑料壁面有足够强度能支持及防止焊接中的偏差。有需要时,底模的支撑高于焊接位,提供辅助的支撑。

下表所示为零件大小尺寸和接触面、零件误差的大概尺寸:

零件最大尺寸接触面尺寸零件尺寸允许误差

<18mm 0.2mm-0.3mm ±0.025mm

18mm-35mm 0.3mm-0.4mm ±0.05mm

>35mm 0.4mm-0.6mm ±0.075mm

当零件尺寸大于90mm时,或零件有不规则的形状时,建议不采用剪切连接。这是因为注塑时很难控制误差及变形使其保持一

致。如果是上述情况,建议采用能量导向的形式。

图22所示为双面剪切式设计

图23所示为扣式焊线设计,用于高强度,但上下塑料件不接触的情况下。在特殊情况下,可用于增加密封圈的情况。

图22 图23

焊头设计

本公司有专业工程师为顾客设计各类型超声波焊头,提供专业技术指导及维修服务,以及解决一切熔接难题。同时,更骋有专业设计师为阁下设计特定之自动化超声波熔接机,以应顾客不同之生产需求。

设计工件熔接线图解

超声波焊接原理和应用

超声波焊接原理: 超声波焊接是熔接热塑性塑料制品的高科技技术,各种热塑性胶件均可使用超声波熔接处理,而不需加溶剂,粘接剂或其它辅助品。 其优点是增加多倍生产率,降低成本,提高产品质量及安全生产。 超声波塑胶焊接原理是由发生器产生20KHz(或15KHz)的高压、高频信号,通过换能系统,把信号转换为高频机械振动,加于塑料制品工件上,通过工件表面及在分子间的磨擦而使传递到接口的温度升高,当温度达到此工件本身的熔点时,使工件接口迅速熔化,继而填充于接口间的空隙,当震动停止,工件同时在一定的压力下冷却定形,便达成完美的焊接。 新型的15KHz超声波塑胶焊接机,对焊接较软的PE、PP材料,以及直径超大,长度超长塑胶焊件,具有独特的效果,能满足各种产品的需要,能为用户生产效率以及产品档次贡献。 超声波焊接工艺: 一、超声波焊接: 以超声波超高频率振动的焊头在适度压力下,使二块塑胶的结合面产生磨擦热而瞬间熔融接合,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品带来的不便,实现高效清洁的焊接焊接强度可与本体媲美。 二、铆焊法: 将超声波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。三、埋植: 借着焊头之传导及适当压力,瞬间将金属零件(如螺母、螺杆等)挤入预留的塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。

一、超声波塑料焊接的相容性和适应性: 热塑性塑料,由于各种型号性质不同,造成有的容易进行超声波焊接,有的不易焊接;下表中黑方块的表示两种塑料的相容性好,容易进行超声波焊接;圆圈表示在某些情况下相容,焊接性能尚可;空格表示两种塑料相容性很差,不易焊接。 注意:表中所列仅供参考,因为熟知的变化可导致结果略有差异.

超声波点焊机使用说明书

1.0目的:正确操作设备,确保设备正常运行,保证正常生产和产品质量. 2.0适用范围:本公司所有超声波点焊机操作人员及机修人员. 3.0工作原理及结构: 3.1超声波点焊机是一种固相焊接机,焊件之间的连接是 通过声学系统的高频弹性振动以及在工件之间静压 力的夹持作用下实现的. 3.2PC系列超声波点焊机主要由机架、换能系统、机头、 超声波发生器、程序控制器等主要部件,组成; 4.0操作规程: 4.1本机应放置在环境温度0℃-40℃室内空气干燥、无腐 蚀气体、振动小的地方; 4.2接通电源,单相220V;并接好地线; 4.3接通气源; 4.4打开发生器电源,电源指示灯亮; 4.5设定功率、预压、焊接、保压时间; 4.6根据焊接牢固度修正参数; 5.0功率调整:开机后,将应焊工件的试样搁在上下焊头间, 对功率进行缓慢调整,即拨动(功率设定)拨码开关,顺序渐进(每次可调整数为10),如10、20、30、40…… 直至被焊工件达到焊接牢固的要求。即为功率之最佳设定;

6.0停机:停止工作时,将电源开关关闭; 7.0日常维护及注意事项: 7.1保持点焊机及其工作台清洁卫生; 7.2保持点焊头干净清洁,作业时网纹中不可夹杂其它硬 物,尤其铁钉类,以免损伤机器或影响焊接效果; 7.3长期焊接铝材会带来上下焊头的吸附,清定期视焊面 情况用铜丝刷按焊头面网纹方向轻轻刷抹,以清洁网 纹内的吸附物,防止焊面与工件在焊接时的粘接; 7.4本机焊头网纹面使用寿命(在保持不退火状态下)一 般为10万次,当达到使用寿命或网纹磨损时,可由机 修进行修复后再使用; 8.0相关文件:《超声波点焊机使用说明书》。 如有侵权请联系告知删除,感谢你们的配合!

超声波焊接原理及材料对其的影响

★超声波焊接是热塑性塑料在超声波振动作用下,由于表面分子间摩擦生热而使两块塑料熔接在一起的焊接方法。 超声波金属焊接: 1、超声波金属焊接 超声波金属焊接的优点在于快速、节能、熔合强度高、导电性好、无火花、接近冷态加工;缺点是所焊接金属件不能太厚(一般小于或等于5mm)、焊点位不能太大、需要加压。超声波金属焊接是一种机械处理过程,在焊接过程中,并无电流在被焊件中流过,也无诸如电焊模式的焊弧产生,由于超声焊接不存在热传导与电阻率等问题,因此对于有色金属材料来说,无疑是一种理想的金属焊接设备系统,对于不同厚度的片材,能有效地进行焊接。 超声波焊接原理: 超声波塑料焊接机超声波塑料焊接原理 当超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。当超声波停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料强度。超声波塑料焊接的好坏取决于换能器焊头的振幅,所加压力及焊接时间等三个因素,焊接时间和焊头压力是可以调节的,振幅由换能器和变幅杆决定。这三个量相互作用有个适宜值,能量超过适宜值时,塑料的熔解量就大,焊接物易变形;若能量小,则不易焊牢,所加的压力也不能太大。这个最佳压力是焊接部分的边长与边缘每1mm的最佳压力之积 原理分析图

超声波焊接优点: 1、超声波塑料焊接优点:焊接速度快,焊接强度高、密封性好;取代传统的焊接/粘接工艺,成本低廉,清洁无污染且不会损伤工件;焊接过程稳定,所有焊接参数均可通过软件系统进行跟踪监控,一旦发现故障很容易进行排除和维护。 2、超声波金属焊接优点:1)、焊接材料不熔融,不脆弱金属特性。2)、焊接后导电性好,电阻系数极低或近乎零。3)、对焊接金属表面要求低,氧化或电镀均可焊接。4)、焊接时间短,不需任何助焊剂、气体、焊料。5)、焊接无火花,环保安全。 超声波金属焊接适用产品: 1)、镍氢电池镍氢电池镍网与镍片互熔与镍片互熔。2)、锂电池、聚合物电池铜箔与镍片互熔,铝箔与铝片互熔。3)、电线互熔,偏结成一条与多条互熔。4)、电线与名种电子元件、接点、连接器互熔。5)、名种家电用品、汽车用品的大型散热座、热交换鳍片、蜂巢心的互熔。6)、电磁开关、无熔丝开关等大电流接点,异种金属片的互熔。7)、金属管的封尾、切断可水、气密。 超音波的熔焊应用方法: 一、熔接法:以超音波超高频率振动的焊头在适度压力下,使二块塑胶的接合面产生摩擦热而瞬间熔融接合,焊接强度可与本体媲美,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品所带来的不便,实现高效清洁的熔接。二、铆焊法:将超音波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。三、埋植:藉着焊头之传道及适当之压力,瞬间将金属零件(如螺母、螺杆等)挤入预留入塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。四、成型:本方法与铆焊法类似,将凹状的焊头压着于塑胶品外圈,焊头发出超音波超高频振动后将塑胶溶融成形而包覆于金属物件使其固定,且外观光滑美观、此方法多使用在电子类、喇叭之固定成形,及化妆品类之镜片固定等。五、点焊:A、将二片塑胶分点熔接无需预先设计焊线,达到熔接目的。B、对比较大型工件,不易设计焊线的工件进行分点焊接,而达到熔接效果,可同时点焊多点。六、切割封口:运用超音波瞬间发振工作原理,对化纤织物进行切割,其优点切口光洁不开裂、不拉丝。超声波金属焊接机2、超声波金属焊接原理是利用超声频率(超过16KHz )的机械振动能量,连接同种金属或异种金属的一种特殊方法.金属在进行超声波焊接时,既不向工件输送电流,也不向工件施以高温热源,只是在静压力之下,将框框振动能量转变为工作间的摩擦功、形变能及有限的温升.接头间的冶金结合是母材不发生熔化的情况下实现的一种固态焊接.因此它有效地克服了电阻焊接时所产生的飞溅和氧化等现象.超

超声波焊接机说明书

目录: 一、使用安全指导 1.1注意事项 (2) 1.2使用安全注意事项 (2) 二、机器概述 2.1 机器基本参数 (3) 2.2本机各部件的组成 (3) 2.2.1超声波发生器(机箱)……………………………………………………‥‥4 2.2.2焊接机机体(机架)……………………………………………………………5-6 2.2.3 超声波振动系统…………………………………………………………………6-7 三、超声波发生器的使用………………………………………………………………………8-9 四、线束的焊接放置 (10) 五、安装详述 (10) 六、使用步骤 (11) 6.1 开箱 (11) 6.2 压缩空气进气源 (11) 6.3 焊接机和发生器之间连接 (12) 6.4 启动发生器 (13) 七、调整 (14) 7.1 焊头的更换调整………………………………………………………………14-15-16 7.2 左、右夹块间隙的调整 (17) 7.3线束宽度、高度调节 (18) 7.4 焊接面的更换 (19) 八、拆装系统的检测、拆装与更换.....................................................................19-20 十、维护与保养 (21)

一、使用安全指导 1. 1 注意事项 在启动和使用本公司超声波焊接机之前,请务必仔细阅读以下注意事项! ●使用手册会为你详细介绍超声波焊接机的正确使用方法,请您务必严格遵守执行 ●安装和使用本机必须由经过相关培训的专业人员进行。 ●在工作运行过程中,请您务必不要接触焊接工具头。超声波振动有可能导致严重的皮肤 灼伤。 ●操作人员经过适当培训后,才允许使用超声波焊接机。 ●本机在维护和检修前,应先断电源,防止误操作。维修和保养工作必须由受过专门培训的技术人员来完成。 ●未经设备生产厂商的许可,不得擅自打开机箱,调整机器。否则生产厂商的所有保证将自动失效。 ●操作人员均须严格遵守操作手册的安全和使用事项。 1.2 使用安全注意事项 ●在启动和使用之前,应先确保电缆线是否连接正确,确保超声波 焊接机正常接地。 ●基于使用安全的目的和避免发生损伤请勿将金属钢销或类似的 材料放置在焊接工具之间。 ●请经常的按时对焊接机及焊接工具进行维护保养,确保机器工作 在正常状态下。 ●在焊接过程中出现一些异常的情况、声音,为了避免机器的损伤, 请立即停止使用,由相关的专业人员进行维护或联系售后人员。

超声波焊接原理【深度解析】

超声波焊接原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。 超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40 KHz 电能。被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将塑料熔化。超声波不仅可以被用来焊接硬热塑性塑料,还可以加工织物和薄膜。一套超声波焊接系统的主要组件包括超声波发生器,换能器变幅杆/焊头三联组,模具和机架。线性振动摩擦焊接利用在两个待焊工件接触面所产生的摩擦热能来使塑料熔化。热能来自一定压力下,一个工件在另一个表面以一定的位移或振幅往复的移动。一旦达到预期的焊接程度,振动就会停止,同时仍旧会有一定的压力施加于两个工件上,使刚刚焊接好的部分冷却、固化,从而形成紧密地结合。轨道式振动摩擦焊接是一种利用摩擦热能焊接的方法。在进行轨道式振动摩擦焊接时,上部的工件以固定的速度进行轨道运动——向各个方向的圆周运动。运动可以产生热能,使两个塑料件的焊接部分达到熔点。一旦塑料开始熔化,运动就停止,两个工件的焊接部分将凝固并牢牢的连接在一起。小的夹持力会导致工件产生最小程度的变形,直径在10英寸以内的工件可以用应用轨道式振动摩擦进行焊接。 焊接原理 超声波焊接原理:超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。当超声波停止作用后,让压力持续几秒钟,

自动追频超声波使用说明

使用說明書INSTRUCTIONS Array 智能型超聲波焊接發生器

目錄 安全要求與警告 (1) 智慧型超聲波焊接發生器簡介 (2) 技術參數 (3) 安裝要求 (4) 操作使用說明 (5)

一.安全要求與警告 本節解釋了手冊上各種“安全注意”符號和標誌的意義,並提供了超聲波焊接發生器的常規安全預防措施。 “警告”標誌下包括了需要注意的潛在危險情況,如果忽略,可能造成不同程度的傷害事故。 在接觸超聲波發生器前應採取以下預防措施: 在進行任何電氣連接前,確定電源處於關閉(OFF)狀態。使用帶有接地端子的電源插座來防止觸電事故。 超聲波發生器會產生高壓。對其進行操作前,應: 關閉電源開關; 拔下主電源插頭; 等待2分鐘讓電容充分放電。 超聲波發生器會產生高壓,非專業人員請勿打開外殼。 超聲波發生器會產生高壓,並且其高壓的公共端並不與大地相連通,因此,在檢測時請使用 不接地而使用電池作為電源的萬用表,用其他的方法進行檢測可能導致觸電。 不要將手放在焊頭下,向下的壓力和超聲波振動可能引起傷害事故。 當高頻電纜或換能器處於斷開狀態時,不要執行焊接及測試操作。 在使用大焊頭時,不要將手指放到焊頭和模具之間。 此機型必須一人操作,禁止多人同時操作及調試。 二.智慧型超聲波焊接發生器簡介 超聲波信號發生器由一個能將50/60Hz的工頻交流電轉換為超音頻供換能器工作的超聲波功放模組和一個帶有“系統保護監測”及“自動調諧”功能的控制模組組成。控制模組能在超聲波焊接工作發生故障時切斷超聲波能量從而為發生器乃至整套焊接設備提供極高的安全性

和可靠性。 1、真正全自動追頻(AFC)適應各種大小焊模和不同的設計模具,自動追蹤頻率範圍:±400HZ (依15KHZ超聲波為例,模具頻率在14.40-15.20KHZ可自動頻率追蹤使用)。追頻精度:±5HZ 2、採用CPU電腦監控各程式速度快適應力特強、內置各種保護系統“系統保護監測”功能會 對以下情況發生回應: ◆ IGBT溫度過高保護 ◆壓力過高從而導致超載 ◆超聲波發生器電流過大 ◆焊頭、變幅器或者換能器鬆動或其他故障 ◆發生器電路失效 ◆發生器和換能器間的線纜故障 ◆供電頻率不穩自動補償 3、“自動調諧”功能能使超聲波發生器自動跟蹤並且補償焊頭頻率發生的變化。當溫度過高,焊頭表面有磨損或有雜物在焊頭上時,這種頻率變化都會發生。 4、內置全自動恒振幅系統,對不同的氣壓變化及電壓波動自動補償,可對超聲波振幅由50%-100%無級調節,適應不同焊接工件之要求。 5、採用IGBT做功率放大,反應快,比傳統矽功率管反應速度快100倍多,故保護功能較優。 三、主要技術參數 1、外型尺寸:長380mm×寬290mm×高110mm 2、主機淨重:7Kg 3、輸出功率:0-4200W 4、輸出電壓:0-3000V AC

超声波焊接机的工作原理

超声波焊接机的工作原理 超音波焊接机的工作原理是: 是通过振荡电路振荡出高频信号由换能器转化成机械能(即频率超出人耳听觉阈的高频机械振动能),该能量通过焊头传导到塑料工件上,以每秒上几十万次的振动加上压力使塑料工件的接合面剧烈摩擦后熔化。振动停止后维持在工件上的短暂压力使两焊件以分子链接方式凝固为一体。一般焊接时间小于1秒钟,所得到的焊接强度可与本体相媲美。超声波塑料焊接机可用于热塑性塑料的对焊,也用于铆焊、点焊、嵌入、切除等加工工艺。根据产品的外观来设计模具的大小、形状。 超声波塑料焊接机由气压传动系统、控制系统、超声波发生器、换能器及工具头和机械装置等组成。 1、气动传动系统 包括有:过滹器、减压阀、油雾器、换向器、节流阀、气缸等。 工作时首先由空压机驱动冲程气缸,以带动超声换能器振动系统上下移动,动力气压在中小功率的超声波焊接中气压根据焊接需要调定。 2、控制系统 控制系统由时间继电器或集成电路时间定时器组成。主要功能是:一是控制气压传动系统工作,使其焊接时在定时控制下打开气路阀门,气缸加压使焊头下降,以一定压力压住被焊物件,当焊接完后保压一段时间,然后控制系统将气路阀门换向,使焊头回升复位;二是控制超声波发生器工作时间,本系统使整个焊接过程实现自动化,操作时只启动按钮产生一个触发脉冲,便能自动地完在本次焊接全过程。整个控制系统的顺序是:电源启动一触发控制信号气压传动系统,气缸加压焊头下降并压住焊触发超声发生器工作,发射超声并保持一定焊接时间去除超声发射继续保持一定压力时间退压,焊头回升焊接结束。 3、超声波发生器 (1)功率较大的超声波塑料焊接机,发生器信号采用锁相式频率自动跟踪电路,使发生器输出的频率基本上与换能器谐振频率一致。

超声波检测技术及应用

超声波检测技术及应用 刘赣 (青岛滨海学院,山东省青岛市经济开发区266000) 摘要:无损检测(nondestructive test)简称NDT。无损检测就是不破坏和不损伤受检物体,对它的性能、质量、有无内部缺陷进行检测的一种技术。本文主要讲的是超声波检测(UT)的工作原理以及在现在工业中的应用和发展。 关键词:超声波检测;纵波;工业应用;无损检测 1.超声波检测介绍 1.1超声波的发展史 声学作为物理学的一个分支, 是研究声波的发生、传播、接收和效应的一门科学。在1940 年以前只有单晶压电材料, 使得超声波未能得到广泛应用。20 世纪70 年代, 人们又研制出了PLZT 透明压电陶瓷, 压电材料的发展大大地促进了超声波领域的发展。声波的全部频率为10- 4Hz~1014Hz, 通常把频率为2×104Hz~2×109Hz 的声波称为超声波。超声波作为声波的一部分, 遵循声波传播的基本定律, 1.2超声波的性质 1)超声波在液体介质中传播时,达到一定程度的声功率就可在液体中的物体界面上产生强烈的冲击(基于“空化现象”)。从而引出了“功率超声应用技术“例如“超声波清洗”、“超声波钻孔”、“超声波去毛刺”(统称“超声波加工”)等。2)超声波具有良好的指向性 3)超声波只能在弹性介质中传播,不能再真空中传播。一般检测中通常把空气介质作为真空处理,所以认为超声波也不能通过空气进行传播。 4)超声波可以在异质界面透射、反射、折射和波型转化。 5)超声波具有可穿透物质和在物质中衰减的特性。 6)利用强功率超声波的振动作用,还可用于例如塑料等材料的“超声波焊接”。 1.2超声波的产生与接收 超声波的产生和接收是利用超声波探头中压电晶体片的压电效应来说实现的。由超声波探伤仪产生的电振荡,以高频电压形式加载于探头中压电晶体片的两面电极上时,由于逆压电效应的结果,压电晶体片会在厚度方向上产生持续的伸缩变形,形成了机械振动。弱压电晶体片与焊件表面有良好的耦合时,机械振动就以超声波形式传播进入被检工件,这就是超声波的产生。反之,当压电晶体片收到超声波作用而发生伸缩变形时,正压电效应的结果会使压电晶体片两面产生不同极性的电荷,形成超声频率的高频电压,以回波电信号的形势经探伤仪显示,这就是超声波的接收。 1.3超声波无损检测的原理 超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种

超声波塑料焊接机说明书之安装与调试

(一)、超声波塑料焊接机装设程序: 1、超声波塑料焊接机应安置在坚固,水平的工作台上。机器后面应留有大于150mm 的空间,以利通风散热。 2、为确保安全操作,本机必须可靠接地,对地电阻必须小于4欧姆。 3、将三苡控制电线两头分别插入焊机后方三脚插座,并旋紧螺母。 4、将选择开关置于手动位置。 5、锁紧升降的四只螺钉,以固定超声振头,但切勿用力过度,以免滑牙。 6、将上焊模与超声振头之接触面擦干净,用螺丝接合,使用随机专用扳手锁紧,锁紧力距为25牛顿/米。 7、把外气源的气管接入焊接机的空气滤净器。 8、音波检验程序: 为发挥超声波塑料焊接机的最佳使用效果,维护焊机的性能及安全生产,每次使用机器或更换焊模,必须调整超声波塑料焊接机发振系统与振动系统的发振程度,因此该项音波检测程序非常重要。 A、检测前,上焊模与超声振头两者必须密合锁紧,检验时上焊模切勿接触工件。 B、合上电源开关,此时电源指示灯亮. C、打开侧盖板之门页。 D、将选择开关按至音波检测档位置,观测振幅表之指示值,每次音波检测开关不能连续按下超过3秒。 E、顺逆旋转音波检测螺丝使振幅表指针在最低刻度值位置。注意:振幅表指针能调到1.2(或100)刻度值以下,且确保为最低刻度位置,焊机的发振系统与振动系统谱振最好。

[注意]: 1.调节音波选择螺丝,振幅表之指针会左右摆动,但并非表示功率输出之大小,而仅表示发振系统与振动系统之谐振程度,指示刻度值越小,则表示谐振程度越佳。 2.振幅表在空载发振时,表示谐振程度,负载发振时表示输出能量。 3.焊接前务必做音波检测,以确保发振系统与振动系统之谐振。 4.更换焊模后,切记一定要做音波检测程式。 5.调整时,如果过载指示灯发亮,则立即放开音波检验钮,约过1秒钟后,再转动音波调整螺丝作音波选择调整. 6.正确的调谐非常重要,如果无法调较到正常状态,不能达到音波检测程式第5项的要求时,请即送修,不可勉强使用,以免扩大故障。 7.工作气压不能超过5kg/cm. 8.校模程序: 为达到超声波塑料焊接机最大能量,上焊模与工件间的距离应尽量缩短,但仍应留有必要的距离,以便工件的放置和取出。升降台的最大行程为75mm,因此在校模前,在确定上焊模在最大行程时,不会接触工件。 a)将选择开关置于手动位置,调较压力调整旋钮,使压力表指示在0.2Mpa左右,(大约能使焊头上升之最小压力) b)置下焊模于工作台面,再放工件于下焊模内。 c)放松机体的锁紧摇手,转动升降手轮,使上焊模与工件之距离大于75mm,扳紧锁紧摇手。 d)双手按下两个下降按钮,使上焊模下降。

超声波的原理与应用

新疆大学课程大作业 题目:超声波的原理与应用姓名:xx xx 学院:电气工程学院 专业:电气工程及其自动化班级:电气xx-x班 完成日期:2012年11月27日

超声波的原理与应用 概述: 超声波是一种机械波。声的发生是由于发声体的机械振动,引起周围弹性介质中质点的振动由近及远的传播,这就是声波。人耳所能听闻的声波其频率在20~20000Hz之间,频率在20~20000Hz以外的声波不能引起声音的感觉。频率超过20000Hz的叫做超声波,频率低于20Hz的叫做次声波。超声波的频率可以高达911Hz,而次声波的频率可以低达9-8Hz。 早在1830年,F·Savart曾用齿轮,第一次产生24000HZ的超声,1876年F·Galton用气哨产生30000Hz 的超声。1912年4月10日,泰坦尼克号触冰山沉没,引起科学界注意,希望可以探测到水下的冰山。直到第一次世界大战中,德国大量使用潜艇,击沉了协约国大量舰船,探测潜艇的任务又提到科学家的面前[1]。当时的科学家郎之万和他的朋友利用当时已出现的功率很大的放大器和石英压电晶体结合起来,能向水下发射几十千赫兹的超声波,成功的将超声波应用到实际中。 现在,超声波测试把超声波作为一种信息载体,它已在海洋探测与开发、无损检测、医学诊断等领域发挥着不可取代的独特作用。例如:在海洋应用中,超声波可以用来探测鱼群和冰山,可以用于潜艇导航或传送信息、地形地貌测绘和地质勘探等。在检测中,利用超声波检测固体材料内部缺陷、材料尺寸测量、物理参数侧量等。在医学中,可以利用超声波进行人体内部器官的组织结构扫描和血流速度的测量等。 超声波工作原理 这次做机器人用到了超声波,才开始看它的工作原理,感觉还很简单,但是调试到最后,发现了很多问题,该碰到的都碰到了。赶紧写出来分享给大家。 先把超声波的工作原理贴出来:

超声波焊接机基础学习知识原理

超声波焊接机原理 超声波塑胶焊接原理是由发生器产生20KHz(或15KHz)的高压、高频信号,通过换能系统,把信号转换为高频机械振动,加于塑料制品工件上,通过工件表面及在分子间的磨擦而使传递到接口的温度升高,当温度达到此工件本身的熔点时,使工件接口迅速熔化,继而填充于接口间的空隙,当震动停止,工件同时在一定的压力下冷却定形,便达成完美的焊接。 概述 超声波模治具架设不准确受力不平均原理 在一般认为超音波作业时,产品与模具表面只要接触准确就可以得到应该 会产生音波传导的现象. 我们如果单只观察硬件(模治具)的稳合程度,而忽略了整合型态的超音波作业方式,必定会产生舍本逐末或误判的后果,所以在此必须先强调超音波熔接的作业方式是传导音波,使成振动摩擦转为热能而熔接. 这时候超音波模治具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百分之百承受相同的压力。 另一方面上模(H o r n)输出的能量,每一点都有其误差值,并非整个面发出的能量都相同。就这整体而言,势必产生产品熔接线熔接程度的差异。所以也就必须作修正,如何修正,那就是靠超音波熔接机本身的水平螺丝,或是贴较薄的胶带或铝箔来克服了。

塑料产品材质配合不当 每一种塑料材质的熔点,各有不同,例如ABS塑料材质的熔点约115℃,耐隆约175℃、PC之145℃以上、PE约85℃为例:ABS与PE二种材质的熔点差距太大,超音波熔接势必困难。而ABS与PC二种材质,亦有差距,但已非前项差距如此之大,是以尚可熔接,但在超音波功率相同,能量扩大相同的情况下,相异的塑料材质,绝无法比相同材质的熔接效果好。 超声波台输出能量不足 客户在购买超音波熔接机时,通常较难预料未来产品发展的规格,所以会遇到较大产品对象超出超音波标准熔接的情形。此时在不增加成本的预算下,只得以现有设备来作业生一、超声波模治具架设不准确超声波、受力不平均怎么办? 在一般认为超音波作业时,产品与模具表面只要接触准确就可以得到应该的熔接效果,其实这只是表面的看法,超音波既然是摩擦振,就会产生音波传导的现象. 我们如果单只观察硬件(模治具)的稳合程度,而忽略了整合型态的超音波作业方式,必定会产生舍本逐末或误判的后果,所以在此必须先强调超音波熔接的作业方式是传导音波,使成振动摩擦转为热能而熔接. 这时候超音波模治具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百分之百承受相同的压力。 另一方面上模(H o r n)输出的能量,每一点都有其误差值,并非整个面发出的能量都相同。就这整体而言,势必产生产品熔接线熔接程度的差异。

超声波焊接机常见故障与维修

超声波焊接机常见故障 与维修 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常见故障与维修 1、打开电源开关,电源指示灯不亮,没有任何动作。 原因:A、电源线与电源插座接触不良; B、机器的电源保险丝烧毁。 2、打开电源开关,电源指示灯亮,但没有任何动作,按超声测试按钮有输出。 原因:A、机器底座与机架连接的五芯线开路; B、机器程序电路板故障。 3、打开电源开关,电源指示灯亮,但没有任何动作,按超声测试按钮没有超声波输出。 原因:A、检查机器急停开关是否按下; B、电源变压器110V或24V电源供电不正常; C、机器程序电路板故障。 4、机器有动作,但按下超声测试按钮和工作按钮都没有超声输出。 原因:A、电源变压器110V电源供电不正常; B、电路主板的110V电源线脱落。 5、按下测试按钮机器能正常工作,但按下工作按钮机器却没有动作。 原因:A、工作开关损坏; B、机器底座与机架连接的五芯线开路。 6、按超声测试按钮时功率负载表指示值大于20%且通过调谐器无法调低。原因:A、换能器系统出现故障;

B、机器功率管烧毁。 7、焊接时机器过载指示灯亮,焊件焊接效果不理想。 原因:A、机器工作气压调节过大; B、插入性的焊件配合过紧; C、换能器系统出现故障。 8、焊件焊接效果不理想,但焊接时过载指示灯不亮,超声波输出较弱。 原因:A、电源变压器24V电源供电不正常,继电器不动作; B、机器程序板上的三端稳压器LM7824损坏。 9、焊件焊接效果不理想,按超声测试按钮听到啸叫声。 原因:换能器系统装配出现问题。 10、打开电源开关就听到微弱的啸叫声。 原因:电路板上功率管烧毁1-2个。 11、工作过程中,焊头下降,但没有超声波输出,焊头也不复位。 原因:A、机器工作气压调节过小; B、机器的触发预置按钮损坏或调整不当; C、机器程序板电路板故障。 12、机器超声波输出正常,但机器不动作。 原因:A、压缩泵供气不正常; B、气路堵塞或气动元件(电磁阀、节流阀或调压阀)有故障。 13、机器和换能器系统正常,但焊接效果不理想,机器工作时观察功率负载表,指示值小于20%。

超声波热量表原理及应用

一、超声波热量表原理: 1、基本原理: 热量表是将一对温度传感器分别安装在通过载热流体的上行管和下行管 号,一对温度传感器给出表示温度高低的模拟信号,而积算仪采集来自流量 热水所提供的热量与热水的进回水温差及热水流量成正比例关系。热水流量采用声波时差法原理进行测量,进回水温度则通过铂电阻温度计测量。热能表积算仪将热水流量和进回水温度进行数据运算处理,最后得出所消耗掉的热量,单位为 kWh 、 MWh、MJ 或 GJ。

2、 计算方法: a 、焓差法(依据供回水温度、流量对水流时间进行积分来计算) Q =∫q m ×?h ×d τ=∫ρ×q v ×??×d ττ1 τ0τ1τ0 Q :系统释放或吸收的热量; q m :水的质量流量 q v :水的体积流量 ?? :供水和回水温度的水的焓值差 b 、热系数法(根据供回水温差、水的累积流量) Q =∫k ×?θ×dv v0 v1 K=ρ???θ V :水的体积 ?θ:供水和回水的温差 k :热系数 (具体密度及焓的取值参见GB/T 32224-2015附录A ) 二、 超声波热量表的选用 1、 机械部分 a 、热量表外形尺寸选用:热量表公称口径;公称压力;热量表全长、热量表计算器长度、高度、计算器高度、表接螺纹、流量计表体材质等。保证热量表可以正确安装在设备无干涉、且后期检修方便。 b 、热量表技术数据选用:包含热量表的最小流量、最大流量、过载流量、热量表温度围、公称流量下的压力损失、最大温差、最小温差、测算精度、热量表防护等级等。 2、 电气及软件部分 热量表供电方式:一般为24V 和230V (具体参见说明书)。 温度传感器类型、传感器导线长度(严禁自行加长、截短或更换导线)、热量表的通讯方式及通讯接口、流量计计量周期、用户M-Bus 抄表系统、

超声波焊接机技术原理

超声波焊接机技术原理 超声波焊接机工作原理是:通过物体上下振动,使焊接件伸缩发热熔接。其机械原理是:把电能转化成机械能。当超声换能器产生的能量传送到焊区,由于焊区,即两个焊接的交界面处声阻大,因此会产生局部高温。由于塑料导热性差,热量聚集在焊区,使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。 一、超声波模治具架设不准确、受力不平均怎么办? 在一般认为超音波作业时,产品与模具表面只要接触准确就可以得到应该的超声波焊接机熔接效果,其实这只是表面的看法,超音波既然是摩擦振,就会产生音波传导的现象. 我们如果单只观察硬件(模治具)的稳合程度,而忽略了整合型态的超音波作业方式,必定会产生舍本逐末或误判的后果,所以在此必须先强调超音波熔接的作业方式是传导音波,使成振动摩擦转为热能而熔接. 这时候超音波模治具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百分之百承受相同的压力。 另一方面上模(H o r n)输出的能量,每一点都有其误差值,并非整个面发出的能量都相同。就这整体而言,势必产生产品熔接线熔接程度的差异。所以也就必须作修正,如何修正,那就是靠超音波熔接机本身的水平螺丝,或是贴较薄的胶带或铝箔来克服了。 二、塑料产品材质配合不当? 每一种塑料材质的熔点,各有不同,例如ABS塑料材质的熔点约115℃,耐隆约175℃、PC之145℃以上、PE约85℃为例:ABS与PE二种材质的熔点差距太大,超音波熔接势必困难。而ABS与PC二种材质,亦有差距,但已非前项差距如此之大,是以尚可熔接,但在超音波功率相同,能量扩大相同的情况下,相异的塑料材质,绝无法比相同材质的熔接效果好。 热熔塑胶分析图:

专题实验-超声波测试原理及应用

实验一、超声波的产生与传播 实验方案 1. 直探头延迟的测量 参照附录A 连接JDUT-2型超声波实验仪和示波器。超声波实验仪接h 直探头,并把探 头放在CSK-IB 试块的正面,仪器的射频输出与示波器第1通道相连,触发与示波器外触发 相连,示波器采用外触发方式,适半设置超声波实验仪衰减器的数值和示波器的电圧范用与 时间范闱,使示波器上看到的波形如图1.7所示。 在图1.7中,S 称为始波,t 0对应于发射超声波的初始时刻;Bl 称为 图1.7 直探头延迟的测虽 试块的1次底面回波,h 对应于超声波传播到试块底面,并被发射回来后,被超声波探头接 收到的时刻,因此h 对应于超声波在试块内往复传播的时间:B 2称为试块的2次底面冋波, 它対应于超声波在试块内往复传播到试块的上表面后,部分超声波被上表面反射,并被试块 底面再次反射,即在试块内部往复传播两次后被接收到的超声波。依次类推,右3次、4次 和多次底面反射回波。 从示波器上读出传播h 和t2,则直探头的延迟为 (1-6) 2. 脉冲波频率和波长的测量 调节示波器时间范闱,使试块的1次底面回波出现在示波屏的中央,脉冲波的振幅小于 IVO 测量两个振动波峰之间的时间间隔,则得到一个脉冲周期的振动时间t,则脉冲波的频 率为^1/t :已知铝试块的纵波声速为6.32InInUS,贝IJ 脉冲波在铝试块中的波长为l=6.32t β 3. 波型转换的观察与测最 号时间范悅改变探头的入射角,并在改变的过程中适当移动探头的位宜,使每一个入射角 对应的R 2圆弧面的反射回波最 人。則在探头入射角由小变人的过 程中,我们町以先后观察到回波 B 1. B 2和B3;它们分别对应于纵 波反射回波、横波反射回波和表面 波反射回波。 让探头靠近试块背而,通过调节入 射角调,使能够同时观测到回波 BI 和(如图1.9),且它们的幅 度基本相等:再让探头逐步靠近试 块正面,则又会在Bl 前面观测到一个回波bl , 参照附录B 给出铝试块的纵波声速与横波声速,通过简单测量和计算,可以确定b 、Bl 和氏对应的波型和反射面。 4. 折射角的测量 确定Bi 、B?的波型后,町以分别测量纵波和横波的折射角。参照图Llo 首先让把探头 的纵波声束对正(回波幅度最人时为正对位宜)CSK-IB 试块 把超声波实验 仪换上町变角探头, 参照图1-8把探头 放在试块上,并使探 头靠近试块背面,使 探头的斜射声束只 打在 R2圆弧而上。 适当 设置超声波实 验仪衰减器的数值 和示波器 的电压范阖 CT ? V V R2 -C I ? 图1.8观察波型转换现彖

超声波电机的原理与应用

超声波电机的原理与应用 周传运 超声波电机(Ultrasonic Motor ,USM )是国外近20年发展起来的一种新型电机。事实上,在超声波电机问世之前,已有以压电效应驱动的电机,但其频率并不局限于超声波范围。早在1948年,威廉和布朗就申请了“压电马达”的美国专利;1964年,前苏联基辅理工学院设计了第一个压电旋转电机;1970~1972年,西门子公司和松下公司发明了压电步进电机,不过因无法达到较大的输出转矩而没能实际应用。1980年,日本的指田年生研制成超声波压电电动机(即现代意义上的超声波电动机),克服了传统压电电动机转换效率低和变位微小的缺陷,使压电电动机进入工业实用阶段。 一、超声波电机的原理和结构超声波电机的原理 超声波电机利用压电材料的逆压电效应①产生超声波振动,把电能转换为弹性体的超声波振动,并把这种振动通过摩擦传动的方式驱使运动体回转或直线运动。磁极和绕组,它一般由振动体②和移动体③组成,为了减少振动体和移动体之间相对运动产生的磨损,通常在二者间加一层摩擦材料。当在振动体的压电陶瓷(PZT )上施加20KHz 以上超声波频率的交流电压时,赫的超声波振动,使振动体表面起驱动作用的质点形成一定运动轨迹的超声波频率的微观振动(振幅一般为数微米),如椭圆、李萨如轨迹等,该微观振动通过振动体和移动体之间的摩擦作用使移动体沿某一方向做连续宏观运动。因此,超声波电机是将弹性材料的微观形变通过共振放大和摩擦耦合转换成转子或滑块的宏观运动。根据这一思想,日、德等国近几年相继研发出多种超声波电机,如环形行波USM 、步进USM 、多自由度USM 等,且行波型USM 已有较成熟的设计。下面以行波型USM 的 旋转说明其工作原理。 行波型USM 要旋转,需具备两个条件:与转子相接触的定子表面质点须做椭圆运动,定子、转子之间的接触面须有摩擦力。图1中的弹性体为定子,其上部为转子,定子、转子间夹一层摩擦材料。摩擦材料一般粘接在转子表面上。利用电能激励压电陶 瓷复合振子,使之产生超声振动,并在弹性体内产生 行波。当电信号频率调整到与定子(弹性体)的机械共振频率一致时,定子的振动幅度最大,并形成行波。在行波的弯曲传播过程中,定子表面的质点就会形成椭圆振动轨迹。当无数个这样的粒子都以同相位振动时,就会在定子表面形成力矩,力矩方向与行波传播方向相反。该力矩依靠定子、转子间的摩擦力驱动转子运动。转子的运动速度由定子表面质点的振幅和频率决定,振幅大则速度快;另外,加大定子、转子间压力,增加其间的摩擦力,也会增大转子受到的力矩。 图1 定子表面质点的椭圆运动轨迹 环形行波型超声波电机的结构 图2为环形行波型USM 的结构示意图。主要部件为定子和转子。定子由弹性环、压电陶瓷环和粘接在其上的带有凸齿的弹性金属环组成,弹性环由不锈钢、硬铝或铜等金属制成。凸齿的作用是放大定子表面振动的振幅,使转子获得较大的输出能量。压电陶瓷环采用的是施加交变电压后能够产生机械谐振位移的“硬性”压电陶瓷材料,其质量好坏直接影响电机性能。粘接剂多用高温固化的环氧树脂胶。 图2 环形行波型USM 的结构示意图 转子由转动环和摩擦材料构成。转动环一般用 不锈钢、硬铝或塑料等制成。摩擦材料必须牢固地粘接在转子的接触表面,从而增加定子、转子间的摩 ? 63?现代物理知识

超声波提取原理、特点与应用介绍

超声波提取原理、特点与应用介绍 超声波指频率高于20KHz,人的听觉阈以外的声波。 超声波提取在中药制剂质量检测中(药检系统)已广泛应用。《中华人民共和国药典》中,应用超声波处理的有232个品种,且呈日渐增多的趋势。 近年来,超声波技术在中药制剂提取工艺中的应用越来越受到关注。超声波技术用于天然产物有效成分的提取是一种非常有效的方法和手段。作为中药制剂取工艺的一种新技术,超声波提取具有广阔的前景。 超声波提取是利用超声波具有的机械效应,空化效应和热效应,通过增大介质分子的运动速度、增大介质的穿透力以提取生物有效成分。 1、提取原理 (1)机械效应超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。 (2)空化效应通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。 (3)热效应和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。 此外,超声波还可以产生许多次级效应,如乳化、扩散、击碎、化学效应等,这些作用也促进了植物体中有效成分的溶解,促使药物有效成分进入介质,并于介质充分混合,加快了提取过程的进行,并提高了药物有效成分的提取率。 2、超声波提取的特点 (1)超声波提取时不需加热,避免了中药常规煎煮法、回流法长时间加热对有效成分的不良影响,适用于对热敏物质的提取;同时,由于其不需加热,因而也节省了能源。 (2)超声波提取提高了药物有效成分的提取率,节省了原料药材,有利于中药资源的充分利用,提高了经济效益。 (3)溶剂用量少,节约了溶剂。 (4)超声波提取是一个物理过程,在整个浸提过程中无化学反应发生,不影响大多数药物有效成分的生理活性。 (5)提取物有效成分含量高,有利于进一步精制。 3、超声波技术在天然产物提取方面的应用 与水煎煮法对比,采用超声波法对黄芩的提取结果表明,超声波法提取与常规煎煮法相比,提取时间明显缩短,黄芩苷的提取率升高;超声波提取10、20、40、60min均比煎煮法提取3h的提取率高。 应用超声波法对槐米中主要有效成分芦丁的提取结果表明,超声波处理槐米30min所

超声波定位系统的原理与应用

超声波定位系统的原理与应用 Pr i nc iple and Appl ica tion of Superson ic L oca tion Syste m ●王富东 W ang Fudong 1 基本原理 已经获得广泛应用的无线电定位系统的基本原理是通过接收几个固定位置的发射点的无线电波,从而得到主体到这几个发射点的距离,经计算后即可得到主体的位置。超声波定位的原理与此相仿,只不过由于超声波在空气中的衰减较大,它只适用于较小的范围。 超声波在空气中的传播距离一般只有几十米。短距离的超声波测距系统已经在实际中有所应用,测距精度为厘米级。超声波定位系统可用于无人车间等场所中的移动物体定位。其具体实现可有两种方案。 方案1:在三面有墙壁的场所,利用装在主体上的反射式测距系统可以测得主体到三面墙壁的距离。如果以三面墙壁的交点为原点建立直角坐标系,则可直接得到主体的三个直角坐标如图1所示 。 图1 利用三面垂直的墙壁进行定位 这种方案在实际应用中要受到某些限制。首先,超声波传感器必须与墙面基本保持垂直。其次墙壁表面必须平整,不能有凸出和凹进。传感器与墙壁之间也不能有其它物体。这 在很大程度上影响了其实际使用的效果。方案2:在空间的某些固定位置上设立超声波发射装置,主体上设立接收器(反之亦可)。分别测量主体到各发射点的距离,经过计算后便可得到主体的位置。由于超声波的传播具有一定的发散性及绕射作用,这种方法所受到的空间条件限制较少。即使在主体与发射点之间有障碍物,只要不完全阻断超声波的传播系统仍然可以工作。故本文重点介绍这种方法。发射点的位置通常按直角方位配置。以三维空间为例,可在坐标原点及(X ,0,0),(0,Y ,0)三个位置布置发射点如图2所示 。 图2 距离与坐标换算 主体坐标(x ,y ,z )到三个发射点的距离分别为L 1,L 2,L 3,由距离计算坐标的原理如下: 由图2可得如下三角关系: X 2+Y 2+Z 2=L 1 2 (1) (X -x )2+Y 2+Z 2=L 2 2 (2) X 2+(Y -y )2+Z 2=L 3 2 (3) 求解上列方程可得: x = (L 22-L 12+X 2) 2Y (4)王富东,现在苏州大学工学院工作。 地址:苏州市干将东路178号38信箱 邮政编码:215021收稿日期:1997年12月29日(磁盘来稿)

相关主题
文本预览
相关文档 最新文档