基坑支护设计计算——土压力.
- 格式:doc
- 大小:434.00 KB
- 文档页数:13
第二部分基坑支护结构的计算支护结构的设计和施工,影响因素众多,不少高层建筑的支护结构费用已超过工程桩基的费用。
为此,对待支护结构的设计和施工均应采取极慎重的态度,在保证施工安全的前提下,尽量做到经济合理和便于施工。
一、支护结构承受的荷载支护结构承受的荷载一般包括–土压力–水压力–墙后地面荷载引起的附加荷载。
1 土压力⑴主动土压力:若挡墙在墙后土压力作用下向前位移时随位移增大,墙后土压力渐减小。
当位移达某一数值时,土体内出现滑裂面,墙后土达极限平衡状态,此时土压力称为主动土压力,以表示。
⑵静止土压力:若挡墙在土压力作用下墙本身不发生变形和任何位移(移动或滑动),墙后填土处于弹性平衡状态,则此时作用在挡墙上的土压力成为静止土压力。
以E0表示。
(3)被动土压力:若挡墙在外力作用下墙向墙背向移动,随位移增大,墙所受土的反作用力渐增大,当位移达一定数值时,土体内出现滑裂面,墙后土处被动极限平衡状态,此时土压力称为被动土压力,以表示。
主动土压力计算•主动土压力强度•无粘性土粘性土土压力分布对于粘性土按计算公式计算时,主动土压力在土层顶部(0处)为负值,即表明出现拉力区,这在实际上是不可能发生的。
只计算临界高度以下的主动土压力。
土压力分布可计算此种情况下的临界高度,进而计算临界高度以下的主动土压力。
被动土压力计算被动土压力强度•无粘性土粘性土计算土压力时应注意•不同深度处土的内聚力C不是一个常数,它与土的上覆荷重有关,一般随深度的加大而增大,对于暴露时间长的基坑,土的内聚力可由于土体含水量的变化和氧化等因素的影响而减小甚至消失。
•、C 值是计算侧向土压力的主要参数,但在工程桩打设前后的、C值是不同的。
在粘性土中打设工程桩时,产生挤土现象,孔隙水压力急剧升高,对、C值产生影响。
另外,降低地下水位也会使、C值产生变化。
水压力作用于支护结构上的水压力一般按静水压力考虑。
有稳态渗流时按三角形分布计算。
在有残余水压力时,水压力按梯形分布。
基坑支护工程中土压力的计算[摘要]本文针对基坑支护工程中土压力的计算进行了理论探讨,对经典的朗肯土压力理论和库仑土压力理论“水土合算”与“水土分算”进行了分析。
对给出了工程设计计算中主动土压力区和被动土压力区抗剪强度指标的选取原则。
[关键词]土压力;地下水的影响;抗剪强度指标中图分类号:tu753 文献标识码:a 文章编号:1009-914x(2013)23-0138-02基坑支护工程中,主要的荷载为作用于维护结构上的侧向压力,包括土压力和水压力。
工程中侧向荷载的确定一般是依据经典的朗肯土压力理论和库仑土压力理论,但是经典的朗肯土压力理论和库仑土压力理论是在严格的假设条件下得到的,因此土压力与工程实际中得到的数据是有差别的,本文就此问题进行探讨。
1.0.经典的土压力理论朗肯—库仑土压力理论距今已有一、二百年的历史,现代随着建设规模的发展和扩大,测量技术和计算技术的迅速发展,人们对土压力的性质和土压力的分布与变化规律也有了更深刻的认识,在一些文献中,人们发表了测试结果与理论计算土压力不符合,有的人甚至怀疑经典的土压力理论。
实际上经典的土压力理论是在严格的假设条件下得到的,实际工程中的工况与经典的土压力理论的假设相去甚远,因此我们需要对经典理论的假设条件有个再认识的过程。
1.1 经典的土压力理论给出的是极限值应用经典的土压力理论进行支护工程的侧压力计算时,得到的是土压力的极限值,即达到主动极限状态或被动极限状态时的接触压力,在实际工程设计时应对此值除以一个合理的安全系数。
当维护结构处于正常的工作状态时,不可能出现这种极限状态,接触压力不是极限值,此时测得的变形、土压力、孔隙水压力等数值一般不能与经典理论的计算结果相比较。
基坑开挖时作用在维护结构墙面上的是静止土压力,此时土体处于完全弹性状态,基坑开挖后土体处于塑性局部发展的过程中,墙后和墙前的土压力都没有达到极限状态。
1.2.经典的土压力理论只能计算刚性接触面上的土压力经典土压力理论没有考虑挡墙土身的变形,挡墙是绝对刚性的,只考虑挡墙的平动或转动等刚性位移。
基坑⽀护设计计算书桩锚设计计算书⼀、计算原理1.1 ⼟压⼒计算⼟压⼒采⽤库仑理论计算1.1.1 主动⼟压⼒系数()2sin sin cos cos++=φδφδφa K1.1.2 被动⼟压⼒系数()2sin sin cos cos+-=φδφδφpK1.1.3 主动⼟压⼒强度a a ajk K ChK e 2-=γ1.1.4 被动⼟压⼒强度p pp j k K ChKe 2+=γ1.2 桩锚设计计算1.2.1单排锚杆嵌固深度按照下式设计计算:02.1)(011≥-++∑∑ai a d T c pj p E h h h T E h γ式中,h p 为合⼒∑E pj 作⽤点⾄桩底的距离,∑E pj 为桩底以上基坑内侧各⼟层⽔平抗⼒标准值的合⼒之和,T c1为锚杆拉⼒,h T1为锚杆⾄基坑底⾯距离,h d 为桩⾝嵌固深度,γ0为基坑侧壁重要性系数,h a 为合⼒∑E ai 作⽤点⾄桩底的距离,∑E ai 为桩底以上基坑外侧各⼟层⽔平荷载标准值的合⼒之和。
1.2.2 多排锚杆采⽤分段等值梁法设计计算,对每⼀段开挖,将该段状上的上部⽀点和插⼊段弯矩零点之间的桩作为简⽀梁进⾏计算,上⼀段梁中计算出的⽀点反⼒假定不变,作为外⼒来计算下⼀段梁中的⽀点反⼒,该设计⽅法考虑了实际施⼯情况。
1.3 配筋计算公式为:钢筋笼配筋采⽤圆形截⾯常规配筋,并根据桩体实际受⼒情况,适当减少受压⾯的配筋数。
sy cm cm s y A f A f A f A f 32/2sin 25.1++=ππαα()tsy cm s r f Arf KSM A παπαπππαsin sinsin 323+-=α225.1-=t式中,K 为配筋安全系数,S 为桩距,M 为最⼤弯矩,r 为桩半径,f cm 和fy 分别为混凝⼟和钢筋的抗弯强度,As 为配筋⾯积,A 为桩截⾯⾯积,α对应于受压区混凝⼟截⾯⾯积的圆⼼⾓与2π的⽐值,⽤叠代法计算As 。
基坑支护结构上水土压力计算分析摘要:分析了目前在基坑开挖中广泛应用的水土分算、水土合算计算水土压力的问题,讨论7计算中所用抗剪强度的测定与选择,并通过工程实例计算,认为考虑渗流作用的水土分算法与实际情况更符合。
关键词:水土分算;水土合算;流网法;强度指标中图分类号: s157 文献标识码: a 文章编号:在进行深基坑支护结构设计时,首先要计算深基坑开挖过程中作用在支护结构上的水压力和土压力。
力的大小主要取决于基坑开挖的深度、场地土体的性质和地下水水位。
对于地下水位高的基坑场地,墙后土体饱和,存在静水压力,甚至有渗流和超孔隙压力的影响。
经典的极限土压力理论是从砂土发展起来的,对于场地复杂多变、受多种因素影响的实际工程,很难给出符合实际的结果,尤其是对于粘性土。
近年来,基坑支护结构上的水土压力计算成为岩土工程界的一个热点问题。
1水土分算水土分算是指在计算土压力时,按有效应力原理将土骨架压力和孔隙水压力(静孔隙水压力和超静孔隙水压力)分别考虑的一种算法。
在基坑工程中由于土方开挖和基坑降水的影响,很容易在墙前后的土体中形成一个水头差,因此分两种情况来讨论水土分算。
1.1不考虑渗流影响时的水土分算当基坑内外存在水位差时,如果支护结构插入坑底的不透水土层中,且可以确定基坑内外的地下水不会发生渗流时,可以不考虑渗流的影响。
在没有地下水渗流作用的土中,不必考虑渗透力的影响,按传统计算的水、土压力值基本和实测值吻合。
1.2考虑稳态渗流影响时的水土分算在基坑支护工程中,由于工程的需要,通常需要进行降水处理,从而造成支护结构两侧水位有差异,形成渗流,当支护结构未插入坑底的不透水土层时,渗流将会通过土体空隙经支护体流向被动侧。
此时,土压力的计算必须考虑渗流的影响。
在基坑支护中考虑稳态渗流的影响计算水压力时,除采用常用计算公式外,还经常采用流网法和直线比例法。
1. 2.1考虑稳态渗流影响的水土分算计算公式(1)式中:一静孔隙水压力或稳定渗流中的水压力;一超静孔隙水压力。
基坑支护的结构的计算基坑支护是指在建筑工地或者其他开挖工程中,为了防止土方塌方和保证施工安全而采取的一系列措施。
基坑支护结构的计算是基坑工程设计中重要的一部分,本文将对基坑支护结构的计算进行详细介绍。
一、基坑支护结构的分类基坑支护结构通常可以分为两类:一是按照支护方式的不同分为主动支护和被动支护;二是按照结构形式的不同分为钢支撑结构和混凝土支护结构。
主动支护是指通过设置支撑结构对基坑进行支护,常见的主动支护结构有钢支撑和桩墙支护。
被动支护是指利用土体自身力学性质对基坑进行支撑,常见的被动支护结构有土钉墙和锚杆墙。
钢支撑结构是以钢材为主要材料的支护结构,常见的有钢板桩和钢管桩。
混凝土支护结构则是以混凝土为主要材料的支护结构,常见的有混凝土梁和混凝土墙。
二、基坑支护结构的计算方法基坑支护结构的计算方法主要包括以下几个方面:1.基坑支护结构受力分析:支护结构需要承受土压力、地下水压力和附加荷载等多种作用力,计算时需要对支护结构的受力情况进行全面的分析。
2.支撑杆件的稳定性计算:钢支撑结构中的支撑杆件需要满足一定的稳定性要求,包括弯曲强度、屈曲稳定性和抗扭稳定性等方面的计算。
3.连墙件的选择与计算:在钢支撑结构中,如果需要两个或多个支撑壁之间进行连接,则需要使用连墙件。
连墙件的选择和计算需要考虑其承受的弯曲强度和抗剪强度等。
4.土壁和桩身的稳定性计算:在钢板桩和钢管桩的设计中,需要对土壁和桩身的稳定性进行计算,包括土壁的滑移和失稳以及桩身的稳定性等。
5.锚杆的计算:在锚杆墙的设计中,需要对锚杆的承载力和稳定性进行计算。
三、基坑支护结构计算的基本步骤基坑支护结构的计算一般包括以下几个基本步骤:1.确定基坑的尺寸和形状,确定基坑周围的土质和地下水情况。
2.根据基坑的具体情况,选择适当的支护方案和支撑结构类型。
3.进行基坑支护结构的初步设计,包括确定支护结构的布置形式、支距和锚固长度等参数。
4.对支撑结构进行受力分析,计算支护结构受到的土压力、地下水压力和附加荷载等。
基坑工程计算书(复核\15米)1.内力计算主动土压力系数:Ka=tan 2(45°-ϕi/2) 被动土压力系数:Kp=tan 2(45°+ϕi/2)计算时,不考虑支护桩体与土体的摩擦作用,且不对主、被动土压力系数进行调整,仅作为安全储备处理。
计算所得土压力系数表如表2-1所示:表1-1主动土压力计算:由于分层土体前三层性能相差不大,ϕ、C 值取各层土的,按其厚度加权平均。
1) 现分三层土○1、○2、○3计算 ○1号土层为原土层1、2、3层土;1 1.30.8 1.711.511 1.511.60.8 1.7 1.5ϕ⨯+⨯+⨯==++ 130.88 1.711 1.58.13()0.8 1.7 1.5c kPa ⨯+⨯+⨯==++ ○2土层为原4号层土019.1ϕ=,241.3()c kPa =○3土层为原5号层土028ϕ=,25()c kPa =02111.6tan (45)0.6652ka =-= 020219.1tan (45)0.5072ka =-=02328tan (45)0.3612ka =-= 020111.6tan (45) 1.502kp =+=02219.1tan (45) 1.972kp =+= 020328tan (45) 2.782kp =+=○1号土层顶部1200.66528.130.04()a k e kPa =⨯-⨯=○1号土层底部()11180.8 1.7 1.520247.92()a d e ka c kPa =⨯+++-=⎡⎤⎣⎦○2土层顶部()22180.8 1.7 1.520212.17()a e ka c kPa =⨯+++-=-⎡⎤⎣⎦○2土层水位处()221842019227.1()a s e ka c kPa =⨯++⨯-=○2土层底部()()()222184201922 6.46 6.467.1 1.9729.07()a d w e ka c ka kPa γ=⨯++⨯----⎡⎤⎣⎦=+=○3土层顶部()3318420192190.420.40.40.36146.12()a e ka c kPa =⨯++⨯+⨯-⨯⨯=○3土层基坑底部()3318420192190.4 1.6518248.43()a j e ka c kPa =⨯++⨯+⨯+⨯-=被动土压力计算基坑顶部22516.67()p e c kPa ==⨯=支护桩底部32 6.9518 2.7825364.65()pd p e h kp c kPa γ=+=⨯⨯+⨯='3218 2.26 2.7825129.76()pd p e h kp c kPa γ=+=⨯⨯+⨯=设定弯矩零点以上各土层压力合力及作用点距离的计算18.31ha m = 214117.643ha m=⨯+= 32 1.26 4.31 5.153ha m =⨯+= 41 1.1415 6.4 4.69 4.293ha m =⨯+--= 51 1.65 2.26 3.0852ha m=⨯+= 61 1.65 2.26 2.813ha m =⨯+= 71 2.26 1.132ha m=⨯=814.69 2.3452ha m=⨯= 12 2.26 1.513hp m =⨯= 21 2.26 1.132hp m =⨯= 32 4.69 3.133hp m=⨯=414.69 2.342hp m=⨯= 10.0440.16(/)a E kN m =⨯= 2447.92/295.84(/)a E kN m =⨯= 3 1.2612.17/27.67(/)a E kN m =-⨯=- 4 1.148.92/2 5.08(/)a E kN m =⨯= 5 1.6546.1276.1(/)a E kN m =⨯= 6 1.65 2.31/2 1.91(/)a E kN m =⨯= 748.43 2.26/254.73(/)a E kN m =⨯= 848.43 4.69/2113.57(/)a E kN m =⨯=()1129.7616.67 2.26/2127.79(/)p E kN m =-⨯= 216.67 2.2637.67(/)p E kN m =⨯=()3 4.69364.65129.76550.82(/)2p E kN m =-⨯=4129.76 4.69608.57(/)p E kN m =⨯=本工程设计按施工顺序开挖时:1) 第一层支护开挖至第二层支护标高时: 通过计算得右图按11a k p ke e =计算基坑底面以下支护结构设定弯矩零点位置至坑底面的距离0.65c h m=111a ac p pcc T ch E h E T h h -=+∑∑解得:146.13/c T kN m=所以设计值:'111.25 1.2546.13/57.7/c c T T kN m kN m==⨯=2) 开挖至设计基坑标高时:按11a k p ke e =计算基坑底面以下支护结构设定弯矩零点位置至坑底面的距离1.60c h m=112a ac p pcc T ch E h E T h h -=+∑∑解得:2104.54/c T kN m=所以设计值:'221.25 1.25104.54/130.68/c c T T kN m kN m==⨯=2、整体稳定验算整体稳定采用瑞典分条法计算:1)按比例绘出该支护结构截面图,如图所示,垂直界面方向取1m 计算。
基坑土压力计算方法(附带公式计算方法)概述土压力是作用在围护结构上的荷载、土压力的计算步棋是基坑工程设计的第一步也是关键的一步。
土压力计算假说理论主要有朗肯理论和库伦理论,称为古典土压力理论。
它们都是按极限平衡条件导出的。
奇数库伦理论假设土的黏聚力为零,其优点是考虑了栅栏与好处十体间的摩擦力作用,并能考虑地面及墙壁为倾斜面墙面的情况;其缺点是对于黏性要木必须采用等代摩擦角,即取黏聚力c=0而相应增大土的内所摩擦角φ值,对于层状土尚要简化等代为均质土才能计算。
此外,当有地下水,特别是有渗流梯度时,库伦理论是不适用的。
而朗肯理论则不论砂土或者黏性土,均质土或层状土均可适用于,也适用于有地下水及渗流负面效应的情况。
它假设发射塔为水平,墙面为竖直,基本符合基坑工程情况。
因此,公司目前通常采用朗肯理论计算基坑围护工程中的土压力。
土压力应根据不同类型泥岩土层、排水条件分别采用以下方法计算。
(1)对淤泥、淤泥质土,应采用土的重度不排水试验强度主要指标和饱和固结按水土合算计算土压力;(2)对砂土,应改用有效应力强度指标和土的有效重度按水土分算原则计算土压力;(3)对粉性土、黏性土等,宜采用有效强度指标和土的有效重度按水土分算原则计算。
有工程经验时,也可采用三轴固结不排水试验总应力强度指标按水土合算原则计算土压力。
3.1.2水土压力合算不考虑地下水示范作用时,按朗肯土双重压力理论,由式(3-1a)计算主动土财务压力和式(3-1b)计算被动土压力。
3.1.5附加荷载引起的附加侧压力在实际工程中,很有可能会遇到基坑开挖附近有相邻建筑浅条件基础的情况,需要考虑邻近基底荷载的影响。
而且,在实际施工过程中会,很难避免在基坑边出现临时荷载,比如各种建筑材料、施工器具、施工机械、车辆、人员等。
因此,需要需要考虑附加荷载引起的附加侧压力。
附加侧压力一般采用简化的算法近似计算。
最常用的荷载亦布或局部均布的荷载作用。
对均布和局部均布荷载作用在支护结构上的侧压力,可按图3-3所示的方法计算。
基坑支护设计计算1基坑支护设计的主要容 2设计计算根据地质条件的土层参数如图所示,根据设计要求,基坑开挖深度暂定为9m,按规设定桩长为16.8m ,桩直径设定为0.8m ,嵌固深度站定为7.8m,插入全风化岩3.0m 。
2.1水平荷载的计算按照超载作用下水土压力计算的方法,根据朗肯土压力计算理论计算土的侧向压力,计算时不考虑支护桩与土体的摩擦作用。
地下水以上的土体不考虑水的作用,地下水以下的土层根据土层的性质差异需考虑地下水的作用。
土层水平荷载计算依据《建筑基坑支护技术规程》JGJ 120-99 1.计算依据和计算公式主动土压力系数:)245(tan 2iai K ϕ-= 被动土压力系数:)245(tan 2ipi K ϕ+︒=(1)支护结构水平荷载标准值e ajk 按下列规定计算:1)对于碎石土及沙土:a)当计算点深度位于地下水位以上时: ai ik ai ajk ajk K C K e 2-=σ b)当计算点深度位于地下水位以下时:w ai wa wa j wa j ai ik ai ajk ajk K h m h z K C K e γησ])()[(2---+-= 式中ai K —第i 层土的主动土压力系数;ajk σ—作用于深度z j 处的竖向应力标准值;C ik —三轴实验确定的第i 层土固结不排水(快)剪粘聚 力标准值;z j —计算点深度;m j —计算参数,当h z j 时,取z j ,当h z j ≥时,取h ; h wa —基坑外侧水位深度;wa η—计算系数,当h h wa ≤时,取1,当h h wa 时,取零; w γ—水的重度。
2)对于粉土及粘性土: ai ik ai ajk ajk K C K e 2-=σ(2)基坑外侧竖向应力标准值ajk σ按下列规定计算: ok rk ajk σσσ+=(3)计算点深度z j 处自重应力竖向应力rk σ 1)计算点位于基坑开挖面以上时: j mj rk z γσ=式中mj γ—深度z j 以上土的加权平均天然重度。
基坑支护中的土压力计算基坑支护是建筑施工中的一项重要工作,用于保证基坑的安全稳定。
而土压力计算则是基坑支护设计中不可或缺的一部分。
本文将详细介绍基坑支护中土压力计算的相关内容,包括土压力的基本概念、计算方法、相关公式和常见问题等。
一、土压力的基本概念在基坑支护设计中,土压力是指土体对基坑围护结构施加的力。
基坑周围的土体受到自身重力的作用,会产生与围护结构接触的垂直和水平方向的土压力。
垂直方向的土压力称为垂直土压力,水平方向的土压力称为水平土压力。
二、土压力的计算方法土压力的计算方法主要有斯图文斯公式、库仑土压力公式和宾库森公式等。
根据具体情况和设计要求,可以选择不同的计算方法。
1. 斯图文斯公式斯图文斯公式是基于弹性力学理论的土压力计算方法。
根据斯图文斯公式,垂直土压力的计算公式如下:σv = γ・H其中,σv为垂直土压力,γ为土体的单位体积重量,H为基坑的深度。
水平土压力的计算公式如下:σh = K・σv其中,σh为水平土压力,K为土压力系数,根据具体情况选择不同的系数值。
2. 库仑土压力公式库仑土压力公式是基于土体内摩擦角的计算方法。
根据库仑土压力公式,垂直土压力和水平土压力的计算公式分别如下:σv = γ・H・(1±sinφ)σh = K・σv其中,φ为土体的内摩擦角,根据实际情况确定正负号。
3. 宾库森公式宾库森公式是基于等效矩形法的土压力计算方法。
根据宾库森公式,垂直土压力和水平土压力的计算公式如下:σv = γ・H・(K0+Ka)σh = K・σv其中,K0为水平方向的土压力系数,Ka为垂直方向的附加土压力系数。
三、相关公式和常见问题在实际的土压力计算中,还可以根据具体情况使用一些相关的公式和方法。
比如,在基坑支护中常用的还有阻力土压力和摩擦土压力的计算方法。
此外,基坑支护中的土压力计算还涉及到一些常见问题,比如基坑深度的确定、土体参数的取值等。
对于这些问题,需要结合实际情况和工程要求进行合理的判断和计算。
基坑支护设计计算——土压力基坑支护设计计算是基坑工程中非常重要的一项工作,主要是为了保证基坑支护结构在施工过程中能够承受土体的作用力,确保基坑的稳定性和安全性。
其中土压力是基坑支护设计计算的核心要素之一、本文将从土体压力的产生机理、土压力的计算方法以及影响土压力的因素等方面进行综述。
土压力的产生机理是由于土体受到重力作用下的应力状态所引起的。
在基坑支护工程中,土体压力的计算一般分为两个阶段,即开挖阶段和支护阶段。
在开挖阶段,土体受到开挖活动力的作用,会引起土体的变形和应力的重新分布。
在此过程中,土体的应力状态会发生改变,从而导致土压力的产生。
在支护阶段,通过设置支撑结构,可以减小土体的变形和应力的重新分布,从而降低土压力。
土压力的计算方法主要有一维克努森土压力理论、二维克努森土压力理论和三维克努森土压力理论。
一维克努森土压力理论适用于开挖深度较小、土体较均匀且无水平变化的情况;二维克努森土压力理论适用于土体具有较大的水平变化时;三维克努森土压力理论适用于基坑边缘存在较大土体水平变化的情况。
在实际工程中,通常根据具体情况选择合适的土压力计算方法。
影响土压力的因素有很多,主要包括土体的性质、基坑的几何形状、土压力的分布、土体的应变特性等。
土体的性质包括土体的密实度、土体的粘聚力、土体的内摩擦角等,不同的土体性质会导致不同的土压力。
基坑的几何形状主要包括基坑的开挖深度、基坑的开挖斜率、基坑的水平变化等,这些因素会影响土体的应力状态和土压力的分布。
土压力的分布是指土压力随深度的变化规律,通常可以通过进行地表测量和数值模拟计算来获得。
土体的应变特性是指土体的压缩性、剪切性等特性,不同的应变特性会导致不同的土压力。
综上所述,基坑支护设计计算中的土压力是一个复杂的问题,涉及到土体力学和结构力学等多学科的知识。
准确计算土压力,对于基坑支护结构的设计和施工至关重要,可以确保基坑的稳定性和安全性。
对于工程师来说,选择合适的土压力计算方法,考虑好各种因素对土压力的影响,是进行基坑支护设计计算的关键。
关于受力的说明:1. 只计算土层自重的受力,换言之,在基坑附近深度范围(10m)以内不能过重物(如车辆)也不能堆载挖的土或施工材料等。
2. 因为没有具体施工勘探点的地质报告(请注意确认地裂缝位置的影响),所用数据采用3.2.2 区域地质构造的数据估算,黏土埋深较大,故不计算土的自立性对工程的影响,此处可以认为计算结果偏保守。
3. 计算采用水土合算法,因为地质报告没有给出含水量或土的干重,相关数据估算,水位较高,计算结果偏保守。
三、总体施工方案钢板桩主要作用是为了支护边坡防止土塌方,起到支护边坡的作用,同时具有一定的封闭性能,可有效减小基坑渗水。
根据本工程基坑开挖深度及地质情况,拟采用拉森钢板桩,单根长度为15.0m。
钢板桩支护位置较承台外轮廓线外放1.5m,以保证施工承台时工人有足够的操作空间。
在钢板桩支护帷幕顶部设置一道工字钢围檩,围檩采用,四角位置设置。
钢板桩支护布置见下图。
根据地质勘探报告,开挖范围土层重度约为18KN/m³,内摩擦角20°,(没=20KN/㎡(综合考虑施找到,也可能是20度)开挖深度10.0m,地面荷载取q工车辆及材料、物资堆放等),横撑支点距地面距离1,4,7,10m。
(1)计算作用在板桩上的土压力强度①土压力系数主动土压力系数:Ka=tan2(45°-φ/2)=tan2(45°-28°/2)=0.36被动土压力系数:Kp= tan2(45°+φ/2)=tan2(45°+28°/2)=2.77主动土压力系数:Ka=tan2(45°-φ/2)=tan2(45°-20°/2)=0.49被动土压力系数:Kp= tan2(45°+φ/2)=tan2(45°+20°/2)=2.04取最不利的数据20度(查到陕西这边一般为14~25之间)②主动土压力最大压强开挖深度10.0m Eah=γhKa=18×10.0×0.49=88.2KN/㎡均布荷载 Eaq=qKa=20×0.49=9.8KN/㎡主动土压力最大压强 Pa=Eah+Eaq=88.2+9.8=98.0 KN/㎡=tan(45°+φ/2)×1.5=2.5myq(2)计算板桩墙上土压力强度等于零的点距离挖土面的距离y值,在y处板桩墙前的被动土压力等于板桩墙后的主动土压力:y=Pa/γ(K·Kp-Ka)=98.0/18×(1.4×2.04-0.49)=2.28m(3)按简支梁计算等值梁的两支点反力ΣMc=0 主动土压力强度Pa与深度h成正比,沿墙高压力成三角形,主动土压力Ea作用点位于离墙底2/3h,即:①第一部分主动土压力力矩 1/2Eahh=0.5×88.2×10=441.0KN/m其作用点为2/3h=2/3×10-1=5.67m作用点的力为 p1=441.0*5.67=2500.47KN②第二部分主动土压力 Eaqh=7.2×(10-1)=64.8KN/m矩形其作用点为h/2处 1/2h=0.5×(10-1)=4.5m作用点的力为p2=64.8×4.5=291.6KN③第三部分主动土压力Ea=pah=33.12×2.28=75.5136KN/m主动土压力Ea作用点位于离墙底2/3h,即1/3h=1/3×2.28+1=1.76m作用点的力为p3=75.5136×1.76=132.88KN④计算P0P0×5×(3.3+1)=2500.47+291.6+132.88P0=135.95KN(4)计算板桩最小入土深度t0t0=135.95/18×(1.4×2.04-0.49)=3.14mt=t0+y=3.14+2.28=5.42m板桩总长L=h+t=10+5.42=15.42m,取18m。
基坑支护设计计算1基坑支护设计的主要内容 2设计计算根据地质条件的土层参数如图所示,根据设计要求,基坑开挖深度暂定为9m,按规范设定桩长为16.8m ,桩直径设定为0.8m ,嵌固深度站定为7.8m,插入全风化岩3.0m 。
2.1水平荷载的计算按照超载作用下水土压力计算的方法,根据朗肯土压力计算理论计算土的侧向压力,计算时不考虑支护桩与土体的摩擦作用。
地下水以上的土体不考虑水的作用,地下水以下的土层根据土层的性质差异需考虑地下水的作用。
土层水平荷载计算依据《建筑基坑支护技术规程》JGJ 120-99 1.计算依据和计算公式主动土压力系数:)245(tan 2iai K ϕ-= 被动土压力系数:)245(tan 2ipi K ϕ+︒=(1)支护结构水平荷载标准值e ajk 按下列规定计算:1)对于碎石土及沙土:a)当计算点深度位于地下水位以上时: ai ik ai ajk ajk K C K e 2-=σ b)当计算点深度位于地下水位以下时:w ai wa wa j wa j ai ik ai ajk ajk K h m h z K C K e γησ])()[(2---+-= 式中ai K —第i 层土的主动土压力系数;ajk σ—作用于深度z j 处的竖向应力标准值;C ik —三轴实验确定的第i 层土固结不排水(快)剪粘聚 力标准值;z j —计算点深度;m j —计算参数,当h z j 时,取z j ,当h z j ≥时,取h ; h wa —基坑外侧水位深度;wa η—计算系数,当h h wa ≤时,取1,当h h wa 时,取零; w γ—水的重度。
2)对于粉土及粘性土: ai ik ai ajk ajk K C K e 2-=σ(2)基坑外侧竖向应力标准值ajk σ按下列规定计算: ok rk ajk σσσ+=(3)计算点深度z j 处自重应力竖向应力rk σ 1)计算点位于基坑开挖面以上时: j mj rk z γσ=式中mj γ—深度z j 以上土的加权平均天然重度。
2)计算点位于基坑开挖面以上时: h mh rk γσ=式中mh γ—开挖面以上土的加权平均天然重度。
(4)第i 层土的主动土压力系数K ai 应按下式计算 )245(tan 2ikai K ϕ-=式中ik ϕ—三轴实验确定的第i 层土固结不排水(快)剪摩擦角标准值。
(5)第i 层土的土压力合力Ea 按下式计算 h i aik aik ai S h e e E )'(21+=式中aik e '—第i 层土土层顶部的水平荷载标准值; aik e —第i 层土土层底部的水平荷载标准值; h i —第i 层土的厚度; S h —锚杆的水平间距。
2.2各层土的水平荷载计算(1)人工填土层(3.6m )839.0,7.0,100,8,/5.19111121=====a a a K K KP C m KN ϕγ 基坑外侧竖向应力标准值: 201/20'm KN q ok rk k a ==+=σσσ2/2.906.35.1920'1111101m KN h h q k a ok rk k a =⨯+=+=+=+=γσγσσσ水平荷载标准值:21111/576.0839.0827.0202'm KN K C K e a a aok k a =⨯⨯-⨯=-=σ水平合力:m KN h e e E k a k a a /27.1046.3)35.57576.0(21)'(211111=⨯+=⨯+= 水平荷载作用点离该土层底端的距离: m e e e e h Z k a aok k a aok 212.135.57576.035.57576.02.36.32.31111=++⨯=++=(2)淤泥质土层(0.9m )916.0,84.0,50,7,/0.18222222=====a a a K K KP C m KN ϕγ基坑外侧竖向应力标准值:212/2.90'm KN k a k a ==σσ2012/4.1069.00.182.90m KN q k a ok rk k a =⨯+=+=+=σσσσ水平荷载标准值:222222/94.62916.07284.02.902''m KN K C K e a a k a k a =⨯⨯-⨯=-=σ 222222/55.76916.07284.04.1062m KN K C K e a a k a k a =⨯⨯-⨯=-=σ水平荷载:22212/75.699.0)55.7694.62(21)'(21m KN h e e E k a k a a =⨯+=⨯+=水平荷载作用点离该土层底端的距离:m k ea k a e k ea k a e h Z 435.055.7694.6255.7694.62239.021'21'2.322=++⨯⨯=++=(3)粉质粘土层(2.2m )676.0,588.0,15,23,/193303323=====a a a K K KP C m KN ϕγ 基坑外侧竖向应力标准值: 223/4.106'm KN k a k a ==σσ233203/2.1482.2194.106m KN h k a k rk k a =⨯+=+=+=γσσσσ 水平荷载标准值:233333/28.27767.0232588.04.1062''m KN K C K e a a k a k a =⨯⨯-⨯=-=σ 2/86.51767.0232588.02.148233333m KN K C K e a a k a k a =⨯⨯-⨯=-=σ水平荷载:m KN h e k e E k a a a /05.872.2)86.5128.27(21)'(213333=⨯+=⨯+= 水平荷载作用点离该土层底端的距离: m e e e e h Z k a k a k a k a 986.086.5128.2786.5128.27232.2''23333333=++⨯⋅=++⋅=(4)可塑粉质粘土层残积可塑粉质粘土层(2.8m )分成两部分(开挖面以上2.3m 和开挖面以下0.5m )1)按照规范:基坑开挖位于地下水位对于粉土及粘土:jmj rk qrk ajk aiik ai aik Z K C K e γσσσσ=+=-2mj γ深度Z j 以上土的加权平均天然重度:2)767.0,588.0,15,25,/184404442=====a a K K KPa C m KM ϕγ基坑外侧竖向应力标准值:244304234/6.1893.2182.148/2.148'mKN h m KN k a k rk k a k a k a =⨯+=+=+===γσσσσσσ水平荷载标准值:244444244444/01.71767.0252588.06.1892/79.48767.0252588.02.1482''mKN K C K e m KN K C K k e a a k a k a a a k a a =⨯⨯-⨯=-==⨯⨯-⨯=-=σσ水平荷载:m KN h e e E k a k a a /77.1373.2)01.7179.48(21)'(214444=⨯+=⨯+= 水平荷载作用点离改土层底端的距离: m e e e e h Z k a k a k a k a 079.101.7179.4801.7179.482.33.2''2.3444444=++⨯=++=4.2.3 水平抗力计算基坑底面以下水平抗力计算的土层为:第4层土(可塑粉质粘土层0.5m )、第五层土(硬塑粉质粘土层4.3m )、第6层土(全风化岩层0.3m )。
计算依据和计算公式:土层水平抗力计算依据《建筑基坑支护技术规程》JGJ120-99 (1)基坑内侧水平抗力标准值pjk e 按下列规定计算:1)对于碎石土及砂土,基坑内侧水平抗力标准值按下列规定计算:w pi wp j ai ik ai pjk pjk K h z K C K e γσ)1)((2--++=式中pjk σ——作用于基坑底面以下深度Z j 处的竖向应力标准值 K pi ——第i 层 土的被动土压力系数。
2)对于粉土及粘性土,基坑内侧水平抗压力标准值按下列规定计算:pi ik pi pjk pjk K C K e 2-=σ(2)作用与基坑地面以下深度Z j 处的竖向应力标准值ajk σ按下式计算:j mj pjk z γσ=式中mj γ——深度Z j 以上土的加权平均天然重度。
(3)第i 层土的被动土压力系数Kpi 应按下式计算 )245(tan 02ikpi K ϕ+=(4)第i 层土的水平抗压力E p 为: h i pik pik pi s h e e E )'(21+=式中e ’pik ——第i 层土土层顶部的水平抗力标准值; e pik ——第i 层土土层底部的水平抗力标准值;h i ——第i 层土的厚度; S h ——预应力锚索的水平距离。
4.2.4 各层水平抗力计算 (1)可塑粉质粘土层302.1,695.1,25,/18,5.0444244=====p p a k k k K K KP C m KN m h γ 作用于基坑底面以下深度z j 处的竖向应力标准值: 244424/95.018,/0'm KN h m KN k k pk pk =⨯===γσσ 水平抗力标准值:244444244444/4.80302.1252695.192/10.65302.1252695.102''mKN K C K e m KN K C K e p k p k p k p p k p k p k p =⨯⨯+⨯=+==⨯⨯+⨯=+=σσ水平抗力:m KN h e e E k p p p /38.365.0)4.8010.65(21)'(214445=⨯+=+= 水平抗力离该土层底端的距离:m e e e e h Z k p k p k p k p k k 241.04.8010.654.8010.652.35.0''2.3444445=++⨯=++=(2)硬塑粉质粘土层375.1,891.1,180,35,/20,3.4555555======p p k a k k k K K KP C m KN m h ϕγ作用于基坑底面以下深度z j 处的竖向应力标准值:255525/953.4209,/95.018'm KN h m KN k k k p k p =⨯+===⨯=γσσ水平抗力标准值:255555255555/12.251375.1262891.1952/52.88375.1262891.192''mKN K C K e m KN K C K e p k p k p k p p k p k p k p =⨯⨯+⨯=+==⨯⨯+⨯=+=σσ水平抗力:m KN h e e E k p p p /23.7303.4)12.25152.88(21)'(215555=⨯+=+=水平抗力离该土层底端的距离:m e e e e h Z k p k p k p k p k k 807.112.25152.8812.25152.882.33.4''2.3555555=++⨯=++=(3)全风化岩层568.1,458.2,25,45,/5.20,366066266======p p k a k k k K K KP C m KN m h ϕγ作用于基坑底面以下深度z j 处的竖向应力标准值:26656256/5.15635.2095/95'mKN h m KN k k k a k p k a k p =⨯+=+===γσσσσ水平抗力标准值:266666266666/8.525568.1452458.25.1562/63.374568.1452458.2952''mKN K C K e m KN K C K e p k p k p k p p k p k p k p =⨯⨯+⨯=+==⨯⨯+⨯=+=σσ水平抗力:m KN h e e E k p p p /65.13500.3)8.52563.374(21)'(216666=⨯+=+=水平抗力离该土层底端的距离;m e e e e h Z k p k p k p k p k k944.08.52563.3748.52563.3742.32''2.3666666=++⨯=++= 由以上计算步骤可得K12的水平荷载、水平抗力如下图所示 4.2.5支点力计算(1)计算基坑底面以下支护结构设定弯矩零点位置至基坑底面的距离:基坑底面水平荷载标准值:m KN e a /38.73= 由k p k a e e 11=可得:71.01=65.1+(80.4-65.1)/0.51c h ⨯ 求得;m h c 193.01= (2)计算支点力T c1:计算设定弯矩零点以上基坑外侧各土层水平荷载标准值的合力之和∑Eac :其中,设定弯矩零点位置以上第4层土的水平荷载mKN he e E a c a c a /77.1373.2)01.7179.48(5.0)'(5.044=⨯+=⨯+=其作用点离设定弯矩零点的距离:KNE mh a c a 7.13193.001.71168.101.7179.4801.7179.482.3193.03.244=⨯==++⨯+=① 合力之和∑ac E :5.412'44321=++++=∑a a c a a a acE E E E E E各土层水平荷载距离设定弯矩零点的距离为:m z h h ac 805.6193.9111=+-=按上述计算方法可得:m h h m h m h a a c a c a 09655.0,272.1,479.3,128.55432====合力∑ac E 作用点至设定弯矩零点的距离:m E h E h E h E h E h E h aca a a a c a a c a a c a a ac 75.35544332211=++++=∑② 设定弯矩零点位置以上基坑内侧各土层水平抗力标准值的∑pcE:设定弯矩零点以上的水平抗力包含第四层土。