算法分析与设计实验指导书
- 格式:doc
- 大小:37.00 KB
- 文档页数:6
算法设计与分析实验指导书. . .. . .算法设计与分析实验指导书东北大学软件学院2012年.. .专业. .目录算法设计与分析 (1)实验指导书 (1)前言 (3)实验要求 (4)实验1 分治法的应用(2学时) (5)1.实验目的 (5)2.实验类型 (5)3.预习要求 (5)4.实验基本要求 (5)5.实验基本步骤 (7)实验2动态规划(2学时) (9)1.实验目的 (9)2.实验类型 (9)3.预习要求 (9)4.实验基本要求 (9)5.实验基本步骤 (10)实验3 回溯法(4学时) (12)1.实验目的 (12)2.实验类型 (12)3.预习要求 (12)4.实验基本要求 (12)5.实验基本步骤 (13)前言《算法设计与分析》是一门面向设计,处于计算机科学与技术学科核心地位的教育课程。
通过对计算机算法系统的学习,使学生理解和掌握计算机算法的通用设计方法,培养对算法的计算复杂性正确分析的能力,为独立设计算法和对算法进行复杂性分析奠定基础。
要求掌握算法复杂度分析、分治法、动态规划法、贪心法、回溯法、分支限界法等算法的设计方法及其分析方法。
能将这些方法灵活的应用到相应的问题中,并且能够用C++实现所涉及的算法,并尽量做到低复杂度,高效率。
通过本课程的实验,使学生加深对课程容的理解,培养学生严密的思维能力,运用所学知识结合具体问题设计适用的算法的能力;培养学生良好的设计风格,激励学生创造新算法和改进旧算法的愿望和热情。
希望同学们能够充分利用实验条件,认真完成实验,从实验中得到应有的锻炼和培养。
希望同学们在使用本实验指导书及进行实验的过程中,能够帮助我们不断地发现问题,并提出建议,使《算法设计与分析》课程成为对大家有益的课程。
实验要求《算法设计与分析》课程实验的目的是为了使学生在课堂学习的同时,通过一系列的实验,使学生加深理解和更好地掌握《算法设计与分析》课程教学大纲要求的容。
在《算法设计与分析》的课程实验过程中,要求学生做到:(1)仔细观察调试程序过程中出现的各种问题,记录主要问题,做出必要说明和分析。
计算机科学与技术学院算法分析与设计实验指导书2011年8月于洪编写2015年9月周应华修订目录实验一分治策略排序 (3)实验二减治策略查找顺序表 (5)实验三动态规划求解0/1背包问题 (8)实验四贪心算法求解最短路径问题 (10)附录1 关于文件的操作 (12)附录2 关于如何统计运算时间 (13)实验一分治策略排序实验目的1)以排序问题为例,掌握分治法的基本设计策略;2)熟练掌握合并排序算法的实现;3)熟练掌握快速排序算法的实现;4) 理解常见的算法经验分析方法。
实验环境计算机、C语言程序设计环境实验学时2学时实验内容与步骤1.准备实验数据要求:编写一个函数data-generate,生成2000个在区间[1,10000]上的随机整数,并将这些数输出到外部文件data.txt中。
这些数作为本算法实验的输入数据。
2.实现合并排序算法要求:实现mergesort算法。
输入:待排数据文件data.txt;输出:有序数据文件resultsMS.txt(注:建议将此排好序的数据作为实验二的算法输入);程序运行时间TimeMS。
合并排序算法(类C语言):/* 数组A[] 中包含待排元素;array B[] is a work array */TopDownMergeSort(A[], B[], n){TopDownSplitMerge(A, 0, n, B);}// iBegin is inclusive; iEnd is exclusive (即:A[iEnd]不是待排元素)TopDownSplitMerge(A[], iBegin, iEnd, B[]){if(iEnd - iBegin < 2) // 如果只有1个待排元素,返回。
return;// recursively split runs into two halves until run size == 1,// then merge themiMiddle = (iEnd + iBegin) / 2; // 划分TopDownSplitMerge(A, iBegin, iMiddle, B);TopDownSplitMerge(A, iMiddle, iEnd, B);TopDownMerge(A, iBegin, iMiddle, iEnd, B); // 合并;元素放到数组B中。
实验一串匹配程序设计(2学时)一、实验目的(1). 熟练掌握串匹配的含义(2). 掌握BF算法匹配的过程并编程实现(3). 熟悉C++编译环境的基本操作二、实验内容给定两个字符串S和T,用BF算法,在主串S中查找字串T,输出结果,输出时要求有文字说明。
请编写程序。
三、实验要求(1)、熟悉C++编译环境的基本操作(2)、考虑各种可能的情况(匹配成功或不成功)(3)、写出完整的程序四、实验结果实验二排序问题程序设计(2学时)一、实验目的(1). 掌握选择排序和起泡排序的基本思想(2). 掌握两种排序方法的具体实现过程(3). 在掌握的基础上编程实现两种排序方法二、实验内容输入一个待排序的序列,分别用选择排序和起泡排序两种排序方法将其变换成有序的序列,输出结果,输出时要求有文字说明。
请编写程序。
三、实验要求(1)、熟悉C++编译环境的基本操作(2)、考虑各种可能的情况(序列本身已是有序序列,序列不是有序序列)(3)、写出完整程序四、实验结果实验三数字旋转方阵程序设计(2学时)一、实验目的(1). 掌握分治法的设计思想(2). 掌握数字旋转方阵的具体实现过程(3). 熟练掌握二维数组的使用方法(4). 在掌握的基础上编程实现数字旋转方阵的实现过程二、实验内容给出一个初始数据,在此数据的基础上由外层向里层填写数据,完成一个数字旋转方阵,输出结果,输出时要求有文字说明。
请编写程序。
三、实验要求(1)、熟悉C++编译环境的基本操作(2)、考虑各种可能的情况(方阵有一层,两层或更多层)(3)、写出完整程序四、实验结果实验四排序中分治法的程序设计(2学时)一、实验目的(1). 掌握归并排序和快速排序的划分方法(2). 掌握归并排序和快速排序的具体分治策略(3). 在掌握的基础上编程两种排序方法的实现过程二、实验内容给出一个初始序列,分别用归并排序和快速排序两种分治法将所给序列变换为有序序列,输出结果,输出时要求有文字说明。
<<算法设计与分析>>实验指导书实验一、回溯法一、实验目的掌握回溯法求解问题的思想,学会利用其原理求解相关问题。
二、实验内容及要求1、八皇后问题八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。
该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。
1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
要求对用C实现的回溯法进行验证,并使其能扩展到任意的皇后数的情况,同时对源程序给出详细的注释。
三、实验步骤1. 理解算法思想和问题要求;2. 编程实现题目要求;3. 上机输入和调试自己所编的程序;4. 验证分析实验结果;5. 整理出实验报告。
四、实验源代码1、八皇后问题(回溯法实现)#define QUEENNO 8#define MAXNO 32#include <stdio.h>#include <stdlib.h>int X[MAXNO];char D[MAXNO][MAXNO];int count=0;void initiate(int n);void nqueen(int n);void display(int n);main(){int queenno=QUEENNO;initiate(queenno);nqueen(queenno);printf("共有%d个解,解已经保存在D盘文件result.txt中\n",count); }void initiate(int n){int i;for(i=0;i<n;i++)X[i]=-1;return;}void nqueen(int n){ int k;X[0]=0;k=0;while(k>=0){X[k]++;while(X[k]<=n&&!place(k)){X[k]++;}if(X[k]<=n){ if(k==n-1) display(n);else {k++;X[k]=0;}}else{ k--;}}}int place(int k){int i;i=0;while(i<k){if((X[i]==X[k])||(abs(X[i]-X[k])==abs(i-k)))return 0;i++;}return 1;}void display(int n){FILE *fw;int i,j;count++;fw=fopen("D:\\result.txt","a");for(i=0;i<n;i++)for(j=0;j<n;j++)D[i][j]='o';for(i=0;i<n;i++)D[i][X[i]-1]='*';fprintf(fw,"%d\n",count);fprintf(fw,"-------------------------\n");for(i=0;i<n;i++)for(j=0;j<n;j++){if(j==n-1)fprintf(fw,"%c \n",D[i][j]);else fprintf(fw,"%c ",D[i][j]); }fprintf(fw,"-------------------------\n");fclose(fw);return;}实验二:分治法(2学时)问题陈述:对所给元素存储于数组中和存储于链表中两中情况,写出自然合并排序算法.解题思路:将待排序元素分成大小大相同的两个集合,分别对两个集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合.自然排序是通过一次扫描待排元素中自然排好序的子数组,再进行子数组的合并排序.程序代码:#include <iostream.h>const int N=100;void ScanTarget(int target[], int n, int head[], int tail[]);int CountHead(int head[]);void MergeSort(int a[], int head[], int tail[], int m);void MergePass(int x[], int y[], int s, int a[], int b[], int m);void Merge(int c[], int d[], int l, int m, int r);void main(){char a;do{int target[N],head[N],tail[N];int i=0,n,m;for(; i<N; i++){head[i]=-1;tail[i]=-1;}cout<<"请输入要排序的总数:"<<endl;cin>>n;cout<<"请输入要排序的数列:" <<endl;for(i=0; i<n; i++)cin>>target[i];ScanTarget(target,n,head,tail);m=CountHead(head);MergeSort(target,head,tail,m);cout<<"排序后:"<<endl;for(i=0; i<n; i++)cout<<target[i]<<" ";cout<<endl;cout<<"是否继续(y/n):"<<endl;cin>>a;}while(a!='n' && a!='N');}void ScanTarget(int target[], int n, int head[], int tail[])//扫描待排数组;{int i,j=0,k=0;head[k]=0;k++;for(i=1;i<n;i++){if(target[i-1]>target[i]){tail[j++]=i-1;head[k++]=i;}}tail[j]=n-1;}int CountHead(int head[])//求长度;{int i(0);while(head[i]!=-1){i++;}return i;}void MergeSort(int a[], int head[], int tail[], int m){int b[N];int s=1;while(s<m){MergePass(a,b,s,head,tail,m);s+=s;MergePass(b,a,s,head,tail,m);s+=s;}}void MergePass(int x[], int y[], int s, int a[], int b[], int m){int i=0;while(i <= m-2*s){Merge(x,y,a[i],b[i+s-1],b[i+2*s-1]);i=i+2*s;}if(i+s < m){Merge(x,y,a[i],b[i+s-1],b[m-1]);}else{for(int j=i; j<m; j++)for(int k=a[j]; k<=b[j]; k++)y[k]=x[k];}}void Merge(int c[], int d[], int l, int m, int r){int i,j,k;i=l;j=m+1;k=l;while((i<=m) && (j<=r)){if( c[i] <= c[j] )d[k++]=c[i++];else d[k++]=c[j++];}if( i>m ){for(int q=j; q<=r; q++)d[k++]=c[q];}else{for(int q=i; q<=m; q++)d[k++]=c[q];}}时间复杂度:通常情况下用自然合并排序所需要的合并次数较少。
《算法分析与设计》实验指导与报告书实验目录实验1 求最大公约数 (1)实验2 斐波那契数列 (3)实验3 最近对问题 (6)实验4 堆排序 (7)实验5 霍纳法则和二进制幂 (8)实验6 字符串匹配问题 (9)实验7 Warshall算法和Floyd算法 (10)实验8 最优二叉查找树 (11)实验9 Huffman编码* (12)实验10 求解非线性方程* (13)实验11 投资问题* (14)注:(1)实验4和实验5为变治法应用,二选一;(2)实验7和实验8为动态规划法应用,二选一;(3)带*号的实验为选做实验,根据课时及学生实验完成情况机动安排。
实验1 求最大公约数{c = a;a = b;b = c;}while(a % b != 0){c = a % b;a = b;b = c;}printf("%d", b);return 0;}连续整数检测算法最大公约数算法:#include <stdio.h>int main(){int a,b,t;printf("Please input two integers: ");scanf("%d %d",&a,&b);if(a<b)t=a;elset=b;while(t>=1){if((a%t==0)&&(b%t==0))break;t--;}printf("%d",t);return 0;}相减循环:#include<stdio.h>int main(){int m,n;printf("Please input two integers: ");scanf("%d%d",&m,&n);while(m!=n)if(m>n) m=m-n;else n=n-m;printf("%d",m);return 0;}教师评分实验2 斐波那契数列实验目的(1)求斐波那契数列;(2)区分递归和递推思想。
《算法分析与设计》实验指导.实验一锦标赛问题[实验目的]1.基本掌握分治算法的原理.2.掌握递归算法及递归程序的设计.3.能用程序设计语言求解锦标赛等问题的算法.[预习要求]1.认真阅读数据结构教材和算法设计教材,了解分治算法原理;2.设计用分治算法求解背包问题的数据结构与程序代码.[实验题]【问题描述】设有n=2k个运动员要进行网球循环赛。
现要设计一个满足以下要求的比赛日程表:(1)每个选手必须与其他n-1个选手各赛一次;(2)每个选手一天只能参赛一次;(3)循环赛在n-1天内结束。
请按此要求将比赛日程表设计成有n行和n-1列的一个表。
在表中的第i行,第j列处填入第i个选手在第j天所遇到的选手。
其中1≤i≤n,1≤j≤n-1。
[实验提示]我们可以按分治策略将所有的选手分为两半,则n个选手的比赛日程表可以通过n/2个选手的比赛日程表来决定。
递归地用这种一分为二的策略对选手进行划分,直到只剩下两个选手时,比赛日程表的制定就变得很简单。
这时只要让这两个选手进行比赛就可以了。
1 2 3 4 5 6 71 2 3 4 5 6 7 82 1 43 6 7 8 53 4 1 2 7 8 5 61 2 3 4 3 2 1 8 5 6 71 2 3 4 5 6 7 8 1 4 3 21 2 1 4 3 6 5 8 7 2 1 4 31 2 3 4 1 2 7 8 5 6 3 2 1 42 1 43 2 1 8 7 6 54 3 2 1(1)(2)(3)图1 2个、4个和8个选手的比赛日程表图1所列出的正方形表(3)是8个选手的比赛日程表。
其中左上角与左下角的两小块分别为选手1至选手4和选手5至选手8前3天的比赛日程。
据此,将左上角小块中的所有数字按其相对位置抄到右下角,又将左下角小块中的所有数字按其相对位置抄到右上角,这样我们就分别安排好了选手1至选手4和选手5至选手8在后4天的比赛日程。
依此思想容易将这个比赛日程表推广到具有任意多个选手的情形。
《算法设计与分析》实验指导书《算法设计与分析》实验指导书本文档主要用于《算法设计与分析》课程的实验指导。
《算法设计与分析》旨在教会学生处理各种问题的方法,通过实验,使学生能够把所学的方法用于具体的问题,并对所用算法进行比较分析,从而提高学生分析问题、解决问题的能力。
通过该课程的实验,使学生对课堂中所讲述的内容有一个直观的认识,更好地掌握所学的知识,培养学生的实际动手能力,加强学生创新思维能力的培养。
本课程设计了7个设计型实验。
实验内容包括用分治法、动态规划、贪心法、回溯法以及分支限界法求解问题。
一、实验内容安排二、实验基本要求实验前要求学生一定要先了解实验目的、内容、要求以及注意事项,要求学生熟悉实验对象,设计并编写相应的算法。
学生应独立完成所布置实验内容,编写代码,运行程序,记录结果并撰写实验报告。
三、实验报告要求实验结束后,应及时整理出实验报告,实验报告提交书面文档。
四、考核方式理论考试(60%)+实验(30%)+作业(10%)五、实验内容与指导实验一快速排序问题1.实验目的(1) 用分治法求解该问题。
2.实验环境PC机,要求安装Eclipse软件或VC++软件供学生实验。
3.实验内容有n个无序的数值数据,现要求将其排列成一个有序的序列。
4. 实验步骤(1) 输入实现该问题的源代码;(2) 输入测试数据,验证代码的正确性。
5.实验要求(1)做好实验预习,熟悉本实验中所使用的开发环境。
(2)写出实验报告①实验目的②实验内容③出错信息及处理方法④实验结果实验二最少硬币问题1.实验目的(1) 用动态规划求解该问题。
2.实验环境PC机,要求安装Eclipse软件或VC++软件供学生实验。
3.实验内容有n种不同面值的硬币,各硬币面值存于数组T[1:n];现用这些面值的钱来找钱;各面值的个数存在数组Num[1:n]中。
对于给定的1≤n≤10,硬币面值数组、各面值的个数及钱数m,0<=m<=2001,设计一个算法,计算找钱m的最少硬币数。
《算法分析与设计》实验指导本书是为配合《算法分析与设计实验教学大纲》而编写的上机指导,其目的是使学生消化理论知识,加深讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使用学生对算法的分析与设计有更深刻的认识。
上机实验一般应包括以下几个步骤:1、准备好上机所需的程序,手编程序应书写整齐,并经人工检查无误后才能上机。
2、上机输入和调试自己所编的程序。
一人一组,独立上机调试,上机时出现的问题,最好独立解决。
3、上机结束后,整理出实验报告。
实验报告应包括:题目,程序清单,运行结果,对运行情况所作的分析。
本书共分阶段4个实验,每个实验有基本题和提高题。
基本题必须完成,提高题根据自己实际情况进行取舍。
题目不限定如下题目,可根据自己兴趣爱好做一些与实验内容相关的其它题目,如动态规划法中的图象压缩,回溯法中的人机对弈等。
其具体内容如下:实验一分治与递归(4学时)基本题一:基本递归算法一一、实验目的与要求1、熟悉C/C++语言的集成开发环境;2、通过本实验加深对递归过程的理解;二、实验内容掌握递归算法的概念和基本思想,分析结果能够用递归方法实现整数的划分。
三、实验题:任意输入一个整数,输出结果能够用递归方法实现整数的划分。
四、四实验步骤1、理解算法思想和问题要求;2、编程实现题目要求;3、上机输入和调试自己所编写的程序;4、验证分析实验结果;5、整理实验报告。
基本题二:棋盘覆盖问题一、实验目的与要求1、掌握棋盘覆盖问题的算法;2、初步掌握分治算法。
二、实验题目棋盘覆盖问题在一个2k*2k方格组成的棋盘中,恰有一个方格与其它方格不同,称该方格为一个特殊棋盘。
在棋盘覆盖问题中,要用图标4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。
提高题一:二分搜索一、实验目的与要求1、熟悉二分搜索算法;2、初步掌握分治算法。
二、实验题1、高a【0:n-1】是一个已排好的数组。
《算法设计与分析课程设计》指导书《算法设计与分析课程设计》实习指导书一、课程设计目的本课程设计是在学生学习《算法设计与分析》课程后,进行的一次针对具体问题进行算法设计与分析的综合训练,其目的在于加深算法设计分析的理解,掌握算法分析设计方法。
二、算法设计与分析课程设计要求1.学生必须仔细阅读《算法设计与分析课程设计》实习方案,认真主动完成课设的要求。
有问题及时主动通过各种方式与教师联系沟通。
2.学生要发挥自主学习的能力,充分利用时间,安排好课程设计的时间计划,并在课程设计过程中不断检测自己的计划完成情况,及时向教师汇报。
3.课程设计按照教学要求需要一周(5天)时间完成。
三、实验所用仪器及实验环境PC机,Codeblocks软件环境。
四、实习基本内容本次课程设计要求在(一)、(二)、(三)、(四)组中每组选择至少一个题目完成。
(一)分治策略1、输油管道问题【题目描述】某石油公司计划建造一条由西向东的主输油管道,该管道要穿过一个有n口油井的油田。
从每口油田都要有一条输油管道沿最短路径(或南或北)与主管道相连。
如果给定n口油井的位置,即它们的x坐标(东西向)和y坐标(南北向),应如何确定主管道的最优位置,即使各油井到主管道之间的输油管长度总和最小的位置?【输入】第一行是一个整数n,表示油井数量(1-1000之间),接下来n行是油井的位置,每行两个整数x和y。
【输出】各油井到主管道之间的输油管道最小长度总和。
【输入样例】51 22 21 33 -23 3【输出样例】62、船的价值问题描述:大橙子最近在玩《艦これ》,因此大橙子收集了很多很多的船(这里我们假设大橙子氪了很多金,开了无数个船位)。
去除掉重复的船之后,还剩下N(1≤N≤1,000,000)种不同的船。
每一艘船有一个稀有值,任意两艘船的稀有值都不相同,稀有值越小的船越稀有,价值也就越高。
Nettle现在通过大建又造出了一艘船,他想知道这艘船是不是重复的。
《算法设计与分析》实验指导书实验一递归与分治1、实验目的(1)掌握设计有效算法的分治策略;(2)通过合并排序和快速排序两个示例学习分治策略设计技巧。
2、实验要求(1)熟练掌握分治法的基本思想及其应用实现;(2)理解所给出的算法,并对其加以改进。
3、实验内容(1)分治法基本思想如果原问题可分割成k个子问题,1<k≤n ,且这些子问题都可解,并可利用这些子问题的解求出原问题的解。
由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
(2)分治法--算法设计模式如下:Divide-and-Conquer(P)1) if |P|≤n02) then return(ADHOC(P))3) 将P分解为较小的子问题P1 ,P2 ,...,Pk4) for i←1 to k5) 5. do yi ← Divide-and-Conquer(Pi) △递归解决Pi6) 6. T ← MERGE(y1,y2,...,yk)△合并子问题7) return(T)4、实验方法1)合并排序:将待排序元素分成个数大致相同的2个子集合,分别对2个子集合进行排序,最终将排好序的子集合并成为所要求的排序集合。
2)快速排序:对于输入的子序列L[p..r],如果规模足够小则直接进行排序,否则分三步处理:①分解(Divide):将输入的序列L[p..r]划分成两个非空子序列L[p..q]和L[q+1..r],使L[p..q]中任一元素的值不大于L[q+1..r]中任一元素的值。
②递归求解(Conquer):通过递归调用快速排序算法分别对L[p..q]和L[q+1..r]进行排序。
③合并(Merge):由于对分解出的两个子序列的排序是就地进行的,所以在L[p..q]和L[q+1..r]都排好序后不需要执行任何计算L[p..r]就已排好序。
《算法设计与分析》实验指导书曹严元计算机与信息科学学院2007年5月目录实验一递归算法与非递归算法 (2)实验二分治算法 ................................................... 错误!未定义书签。
实验三贪心算法 (3)实验四动态规划 (2)实验五回溯法 (3)实验六分枝—限界算法 (4)实验七课程设计 (4)实验一递归与分治算法实验目的1.了解并掌握递归的概念,掌握递归算法的基本思想;2.掌握分治法的基本思想方法;3.了解适用于用递归与分治求解的问题类型,并能设计相应递归与分治算法;4.掌握递归与分治算法复杂性分析方法,比较同一个问题的递归算法与循环迭代算法的效率。
实验二动态规划实验目的1.掌握动态规划的基本思想方法;2.了解适用于用动态规划方法求解的问题类型,并能设计相应动态规划算法;3.掌握动态规划算法复杂性分析方法。
实验三贪心算法实验目的1.掌握贪心法的基本思想方法;2.了解适用于用贪心法求解的问题类型,并能设计相应贪心法算法;3.掌握贪心算法复杂性分析方法分析问题复杂性。
实验五回溯法实验目的1.掌握回溯法的基本思想方法;2.了解适用于用回溯法求解的问题类型,并能设计相应回溯法算法;3.掌握回溯法算法复杂性分析方法,分析问题复杂性。
实验六 分枝—限界算法实验目的1. 掌握分枝—限界的基本思想方法;2. 了解适用于用分枝—限界方法求解的问题类型,并能设计相应动态规划算法;3. 掌握分枝—限界算法复杂性分析方法,分析问题复杂性。
实验七 课程设计实验目的1. 在已学的算法基本设计方法的基础上,理解算法设计的基本思想方法;2. 掌握对写出的算法的复杂性分析的方法,理解算法效率的重要性;3. 能运用所学的基本算法设计方法对问题设计相应算法,分析其效率,并建立对算法进行改进,提高效率的思想意识。
预习与实验要求1. 预习实验指导书及教材的有关内容,回顾所学过的算法的基本思想;2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯;3. 认真听讲,服从安排,独立思考并完成实验。
算法分析与设计本书是为配合《计算机算法分析与设计》而编写的上机指导,其目的是使学生消化理论知识,加深对讲授内容的理解,增强算法分析与设计实践动手能力。
上机实验注意事项如下:(1)课前认真做好预习,准备好实验工具,熟悉实验流程和手段。
(3)课中根据实验指导书,结合课本实例进行编程实验。
实验时,一人一组,独立上机调试,上机时出现疑问,可以举手询问实验指导老师,或者与周边同学小声讨论,鼓励独立解决问题。
(4)课后按时按质按量整理出实验报告。
实验报告应独立完成,拒绝抄袭。
实验内容覆盖:递归与分治策略、动态规划、贪心算法、回溯法、分支限界法等。
实验一递归与分治策略一.实验目的与要求(1)理解和掌握递归与分治策略的基本原理。
(2)理解课本中的示例代码。
(3)调试代码通过。
二.递归与分治的基本思想(1)递归与分治方法。
递归与分治方法的基本思想是:将一个难以解决的大问题,分割成一些规模较小的、相同的子问题,以便各个击破,分而治之。
(2)递归。
递归问题分析时,要把握如下两个要素:●递归出口。
●递归公式。
其中:●递归出口给出了最简单情况下问题的解。
●递归公式则给出了一般意义下大问题(原问题)和小问题(子问题)之间的递归关系。
通过递归公式,一个难以解决的大问题会随着递归不断分解为多个小问题,小问题继续递归变为更小的小问题,直到最后到达递归出口得到解。
三.实验代码分析和说明本部分实验,需完成“棋盘覆盖”(课本P20)和“快速排序”(课本P22)两个问题。
3.1棋盘覆盖1. 棋盘覆盖问题的思路:(1)首先,将原始的棋盘覆盖问题看作最初的大问题。
(2)然后,将棋盘的行、列一分为二,从而将原始的大棋盘分为四个同样大小的小棋盘。
(3)接着,采用P21的图2-5中合适的L型骨牌,覆盖原始大棋盘的中心位置,将四个同样大小的小棋盘都转化为特殊棋盘。
(4)最后,对四个特殊小棋盘进行递归处理即可。
以上步骤(2)和步骤(3)合起来,完成了将大问题划分为小问题的过程,特别需要注意的是:小问题必须要和大问题相同或相似,否则无法递归。
算法设计与分析课程设计实验指导书一、运动员比赛日程表设有n=2k个运动员要进行网球比赛。
设计一个满足以下要求的比赛日程表:●每个选手必须与其它n-1个选手各赛一次●每个选手一天只能赛一次●循环赛一共进行n-1天1、运用分治策略,该问题的递归算法描述如下,根据算法编制程序并上机通过。
输入:运动员人数n(假定n恰好为2的i次方)输出:比赛日程表A[1..n,1..n]1. for i←1 to n //设置运动员编号2. A[i,1]←i3. end for4. Calendar(0,n) //位移为0,运动员人数为n。
过程Calendar(v, k) //v表示位移(v=起始行-1),k表示运动员人数。
1. if k=2 then //运动员人数为2个2. A[v+2,2]←A[v+1,1] //处理右下角3. A[v+1,2]←A[v+2,1]//处理右上角4. else5. Calendar(v,k/2) //假设已制定了v+1至v+k/2运动员循环赛日程表6. Calendar(v+k/2,k/2) //假设已制定了v+k/2+1至v+k运动员循环赛日程表7. comment:将2个k/2人组的解,组合成1个k人组的解。
8. for i←1 to k/29. for j←1 to k/210. A[v+i+k/2,j+k/2]←A[v+i,j] //沿对角线处理右下角11. end for12. end for13. for i←k/2+1 to k14. for j←1 to k/215. A[v+i-k/2,j+k/2]←A[v+i,j] //沿对角线处理右上角16. end for17. end for18. end if2、编制该问题的非递归算法,上机通过。
将如上文件保存在命名为“学号+姓名+实验一”的文件夹中并上传到指定的服务器。
二、最长公共子序列运用动态规划法最长公共子序列问题,给出最优值并输出最优解。
《算法分析与设计》实验指导书
《算法分析与设计》课程是计算机专业的一门必修课程。
开设算法分析与设计实验,目的就是为了使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。
《算法分析与设计》课程实验的目的:是为了使学生在课程学习的同时,通过实验环境中的实际操作,对部分算法的具体应用有一个初步的了解,使学生加深了解和更好地掌握《算法分析与设计》课程教学大纲要求的内容。
《算法分析与设计》课程实验的注意事项:在《算法分析与设计》的课程实验过程中,要求学生做到:
(1)预习实验指导书有关部分,认真做好实验内容的准备,就实验可能出
现的情况提前作出思考和分析。
(2)认真书写实验报告。
实验报告包括实验目的和要求,实验情况及其分
析。
(3)遵守机房纪律,服从辅导教师指挥,爱护实验设备。
(4)实验课程不迟到。
如有事不能出席,所缺实验一般不补。
《算法分析与设计》课程实验的验收:实验的验收将分为两个部分。
第一部分是上机操作,包括检查程序运行和即时提问。
第二部分是提交电子的实验报告。
实验一算法实现一
一、实验目的与要求
熟悉C/C++语言的集成开发环境;
通过本实验加深对分治法、贪心算法的理解。
二、实验内容:
掌握分治法、贪心算法的概念和基本思想,并结合具体的问题学习如何用相应策略进行求解的方法。
三、实验题
1. 【伪造硬币问题】给你一个装有n个硬币的袋子。
n个硬币中有一个是伪造的。
你的
任务是找出这个伪造的硬币。
为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。
试用分治法的思想写出解决问题的算法,并计算其时间复杂度。
2.【找零钱问题】一个小孩买了价值为33美分的糖,并将1美元的钱交给售货员。
售
货员希望用数目最少的硬币找给小孩。
假设提供了数目有限的面值为25美分、10美分、5美分、及1美分的硬币。
给出一种找零钱的贪心算法。
a)实验步骤
理解算法思想和问题要求;
编程实现题目要求;
上机输入和调试自己所编的程序;
验证分析实验结果;
整理出实验报告。
四、实验程序
五、实验结果
六、实验分析
1本实验运用分治算法。
可将硬币分成N堆来进行实验
若分成两堆算法思想如下
步骤一、令x等于n.
步骤二、若x为偶数,
则将袋子中的硬币一分为二,即各x/2个放仪器上比较两组硬币的重量,那组较轻伪造的硬币就在该组。
若n等于2,则结束,因为已经找出伪造硬币。
否则,令n=n/2,执行步骤一。
否则,
取出一个硬币后,再把剩下的x-1个硬币进行分组,每组(x-1)/2个硬币;并放在仪器上比较两组的重量,若两组一样重,则刚才拿出来的硬币为伪造的;否则,伪造的硬币在较轻的那一组。
若n等于2,则结束,因为已经找出伪造硬币。
否则,令n=(x-1)/2,执行步骤一。
时间复杂度。
因为以上算法应用的是二分法的思想,每次比较排除1/2的真硬币。
所以其时间复杂度为O(n)。
分成三堆思想
/*总体思想:将所有的硬币分成三堆,通过比较三堆的质量找出与其他两组不同的一组,伪造的硬币一定在这一组中。
写程序时还须注意硬币号
所以一共有三种可能性:
1.硬币刚好能分成三堆,即硬币的数目能被3整除。
这样只需要比较哪堆硬币质量和其他的两组质量不一样,不一样的那组是有伪造硬币的那组。
2.硬币的数目被3整除余1。
再将这一种情况分成两种情况考虑:
a.三组硬币质量相等,则剩下的硬币是伪造的。
b.三组硬币质量不等,则情况与1一致。
3.硬币数目被3整除余2。
也将这一种情况分成两种情况考虑:
a.三组硬币质量相等,则伪造的硬币一定在剩下的两个硬币当中。
从三组硬币中任意取出一个与剩下的两个硬币比较质量,则质量与其他两个不相等的硬币是伪造的。
b.三组硬币质量不等,则情况与1一致。
*/
实验程序如下
#include <iostream>
#include <>
using namespace std;
void findTheCoin(int a[], int n ,int num);
2M
找零钱问题】一个小孩买了价值为33美分的糖,并将1美元的钱交给售货员。
售货员希望用数目最少的硬币找给小孩。
假设提供了数目有限的面值为25美分、10美分、5美分、及1美分的硬币。
给出一种找零钱的贪心算法。
对于给定的数额,用面值25、10、5、2、1的硬币找零,要求所用硬币总数最少。
实现,算法如下:
#include <iostream>
#include <>
using namespace std;
int main()
{
int a,b25,b10,b5,b2,b1;
cout <<"请输入要找的零钱:"<<endl;
cin>>a;
b25=(a/25);
b10=(a%25)/10;
b5=(a%25)%10/5;
b2=(a%25)%10%5/2;
b1=(a%25)%10%5%2;
cout<<"需要以下几枚零钱:"<<endl;
if(b25!=0)
cout<<"25分的"<<b25<<"枚"<<endl;
if(b10!=0)
cout<<"10分的"<<b10<<"枚"<<endl;
if(b5!=0)
cout<<"5分的"<<b5<<"枚"<<endl;
if(b2!=0)
cout<<"2fende"<<b2<<"mei"<<endl;
if(b1!=0)
cout <<"1分的"<<b1<<"枚"<< endl;
return(0);
}
实验二算法实现二一、实验目的与要求
熟悉C/C++语言的集成开发环境;
通过本实验加深对贪心算法、动态规划和回溯算法的理解。
二、实验内容:
掌握贪心算法、动态规划和回溯算法的概念和基本思想,分析并掌握"0-1"背包问题的三种算法,并分析其优缺点。
三、实验题
1."0-1"背包问题的贪心算法
2."0-1"背包问题的动态规划算法
3."0-1"背包问题的回溯算法
四、实验步骤
理解算法思想和问题要求;
编程实现题目要求;
上机输入和调试自己所编的程序;
验证分析实验结果;
整理出实验报告。
五、实验程序
六、实验结果
七、实验分析。