作业题讲解2-1(尺寸链、定位误差)讲解
- 格式:ppt
- 大小:1.27 MB
- 文档页数:69
尺寸链计算方法及案例详解计算机辅助公差设计1.确定产品的功能要求:首先需要明确产品的功能要求和性能指标,如尺寸精度、形状精度、位置精度等。
这些要求将成为确定公差的基础。
2.建立尺寸链:根据产品的设计和制造工艺,建立尺寸链,即确定产品各个尺寸之间的相互关系。
这可以通过绘制产品的尺寸和公差关系图来实现。
尺寸链图可采用包容模式或功用模式,用实线和虚线分别表示设计尺寸和公差。
3.评估公差传递路径:通过分析尺寸链图,评估不同尺寸之间的公差传递路径。
公差传递路径表示了如果一些尺寸的公差发生变化,它会如何影响其他尺寸。
这个过程通常可以通过计算公差传递系数来完成。
4.计算公差限制:根据产品的功能要求和公差传递路径,计算每个尺寸的公差限制。
公差限制是指一个尺寸的公差应该在什么范围内,才能保证产品的功能要求。
公差限制可以使用统计方法进行计算,如正态分布法或最大熵法。
5.优化公差分配:根据公差限制和产品的实际生产情况,对产品的公差分配方案进行优化。
这可以通过调整不同尺寸的公差范围来实现,以确保产品能够满足功能要求,并尽可能降低制造成本。
下面将通过一个案例来详细说明尺寸链计算方法的应用。
假设我们需要设计一个紧固件的尺寸链。
紧固件由两个部件组成:螺栓和螺母。
我们的目标是确定螺栓和螺母的公差范围,以确保它们能够正确地配合。
首先,我们需要确定紧固件的功能要求和性能指标。
假设紧固件的功能要求是能够承受一定的拉力,螺栓和螺母之间的配合要求是旋转配合。
接下来,我们可以建立尺寸链图。
假设螺栓的直径为d1,螺母的内径为d2,两者之间的配合间隙为g。
我们可以用实线表示设计尺寸,用虚线表示公差。
接着,我们需要评估公差传递路径。
在这个案例中,螺栓和螺母的配合是旋转配合,因此公差主要会影响配合间隙。
通过分析尺寸链图,我们可以看到,螺栓直径和螺母内径的公差都会影响配合间隙。
然后,我们可以计算公差限制。
假设螺栓直径和螺母内径的公差都符合正态分布。
尺寸链计算例题及习题在工程设计中,尺寸链是一种非常重要的计算方法,用于确定各个零部件之间的尺寸关系。
尺寸链计算旨在确保产品装配和功能的可靠性,减少设计误差,提高产品质量。
本文将介绍尺寸链计算的基本原理,并通过例题和习题来深入理解。
一、尺寸链计算的基本原理尺寸链计算是基于尺寸和公差的理论,通过将各个零部件的尺寸和公差进行数学运算,确定其装配尺寸和公差的合理范围。
尺寸链计算涉及以下几个重要概念:1. 基准尺寸:每个零部件都有一个基准尺寸,用于确定其相对位置和尺寸关系。
2. 公差:公差是指零部件尺寸的允许偏差范围。
公差可以分为上公差和下公差,上公差表示允许的最大偏差,下公差表示允许的最小偏差。
3. 拉链原理:尺寸链计算中经常使用拉链原理,即将所有零部件的尺寸和公差按照装配顺序进行连锁运算,以确定整个装配件的尺寸和公差。
二、例题解析下面通过一个例题来说明尺寸链计算的具体步骤。
差如下:A的基准尺寸为100,公差为±0.05;B的基准尺寸为50,公差为±0.03;C的基准尺寸为80,公差为±0.04。
装配件的要求是各个零部件之间的间隙不得大于0.1。
请计算整个装配件的装配尺寸和公差。
解题步骤如下:1. 确定装配件的基准尺寸。
根据拉链原理,装配件的基准尺寸等于各个零部件基准尺寸之和,即100+50+80=230。
2. 计算装配件的公差。
根据公差的加法原则,装配件的上公差等于各个零部件上公差之和,下公差等于各个零部件下公差之和。
上公差=0.05+0.03+0.04=0.12,下公差=0.05+0.03+0.04=0.12。
3. 检查装配件的装配间隙。
装配间隙等于装配件的上公差减去基准尺寸和下公差减去基准尺寸的差值的绝对值,即|0.12-230|+|-0.12-230|=0.12+0.12=0.24,小于要求的0.1,满足装配间隙要求。
根据以上计算,装配件的装配尺寸为230,公差为±0.12,满足设计要求。
机械设计基础掌握机械设计中的尺寸链中的误差与公差机械设计基础:掌握机械设计中的尺寸链中的误差与公差机械设计中,尺寸链是指设计中各个零件尺寸之间的关系链条。
在实际生产过程中,由于制造误差和装配误差的存在,不同零件之间的尺寸很难完全相同。
为了保证整个机械系统的性能和可靠性,尺寸链中的误差与公差的控制显得尤为重要。
一、尺寸链中的误差来源在机械设计中,尺寸链中的误差主要来自以下几个方面:1. 制造误差:制造误差是由生产过程中机器、设备、工艺、材料等的不完美导致的。
比如加工工具磨损、机床精度不高、材料强度不均匀等都会导致制造误差。
2. 装配误差:装配误差是指由于装配过程中操作人员的误差、装配工具的磨损或精度不高等因素导致的。
装配过程中,如果零件之间的配合间隙、相对位置等无法精确控制,就会产生装配误差。
3. 工作环境误差:工作环境误差是指由于外部环境的变化而引起的误差。
比如温度、湿度的变化会导致零件的尺寸发生变化,进而影响机械系统的性能。
二、尺寸链中的公差控制为了控制尺寸链中的误差,设计师需要合理确定公差。
公差是指在设计过程中为了保证装配的可实现性和产品的性能要求,允许零件尺寸与设计要求之间的最大偏离值。
公差的确定需要考虑以下几个方面:1. 功能要求:根据机械系统的功能需求,确定关键零件的精度等级,进而确定公差的大小。
2. 加工工艺:根据加工工艺和设备的精度限制,确定公差的控制范围。
不同的加工工艺对公差的控制能力有所差异。
3. 装配要求:根据零件的装配特点和配合要求,确定相邻零件之间的公差配合关系。
4. 经济性:在保证功能要求的前提下,尽量减少成本。
公差的控制也要考虑到经济性的因素。
三、尺寸链中的误差分析和控制策略在实际机械设计中,掌握尺寸链中的误差分析和控制策略是至关重要的。
1. 误差分析:通过数值模拟、实验测试等方法,分析各个因素对尺寸链中误差的贡献程度,找出主要影响因素,为误差控制提供依据。
2. 误差传递与累积:了解不同零件尺寸之间的传递关系,确定误差的传递途径,分析误差如何累积,帮助调整公差配合关系,减少误差的传递和累积。
尺寸链计算及公差分析简体一、尺寸链计算1.起始尺寸链:起始尺寸链是从产品装配的第一个操作开始的尺寸链关系。
起始尺寸链通常是由产品的主要定位和安装特征决定的。
2.传递尺寸链:传递尺寸链是在装配过程中零件之间传递尺寸关系的链条。
传递尺寸链可以通过装配顺序和功能要求来确定。
3.终止尺寸链:终止尺寸链是指产品装配的最后一个操作的尺寸链关系。
终止尺寸链通常是与产品的最终功能和外观要求相关的。
在进行尺寸链计算时,需要结合产品的功能要求和装配工艺要求,综合考虑零件之间的尺寸关系。
对于复杂的产品,可以采用图纸、CAD软件以及装配工艺规程等辅助工具进行计算。
二、公差分析公差分析是指确定产品各个零件的公差大小及零件之间的公差相互关系,以保证产品在装配过程中的功能要求和质量要求。
公差分析通常包括以下几个步骤:1.定义公差:根据产品的功能要求和质量要求,确定零件的公差。
公差可以分为两种类型:尺寸公差和形位公差。
尺寸公差是指零件的尺寸允许偏差的范围,包括上偏差和下偏差。
形位公差是指零件的形状和位置允许偏差的范围,包括平行度、圆度、垂直度等。
2.公差链分析:根据产品的装配要求和功能要求,确定零件之间的公差相互关系。
公差链分析可以通过数学模型和软件工具进行。
公差链分析的目的是找出公差传递路径和公差传递条件,以保证产品装配后的功能要求和质量要求。
3.公差配对:在确定了零件的公差和公差链关系后,需要进行公差配对。
公差配对是将合适的公差分配给零件,使得整体装配后的公差满足要求。
公差配对可以通过数学模型、统计方法和试装验证等方式进行。
4.公差控制:在产品设计阶段,需要控制公差的大小和分布。
公差控制是指通过调整零件的尺寸和形位公差,以满足产品的功能和质量要求。
公差控制可以通过优化设计、选择合适的加工工艺和装配工艺等方式进行。
尺寸链法解算零件定位误差分析发布时间:2022-05-07T03:33:42.355Z 来源:《科技新时代》2022年2期作者:陈嘉彬[导读] 为更为迅速地得出零件定位误差,为零件改进设计提供依据,可采用尺寸链公差法,对零件定位误差进行解算,通过构建尺寸链模型,借助特定公式算法计算得出零件定位误差。
基于此,本文首先简单阐述了公差尺寸链的构建方法,总结零件定位误差计算步骤,进一步结合多个实例展开针对性零件定位误差解算,以此了解尺寸链公差法的应用方式。
尺寸链法解算零件定位误差分析华域视觉科技(上海)有限公司 +陈嘉彬201800摘要:为更为迅速地得出零件定位误差,为零件改进设计提供依据,可采用尺寸链公差法,对零件定位误差进行解算,通过构建尺寸链模型,借助特定公式算法计算得出零件定位误差。
基于此,本文首先简单阐述了公差尺寸链的构建方法,总结零件定位误差计算步骤,进一步结合多个实例展开针对性零件定位误差解算,以此了解尺寸链公差法的应用方式。
关键词:尺寸链法;零件定位;误差分析引言:加工同一批工件时可能会遇见工序基准与定位精准无法重合的现象,或存在定位元件不符合基准的情况,导致零件在加工后无法实现精准尺寸。
若采用传统定位误差判定方法,需对多要素进行判定,分析基准变动方向,并通过叠加矢量的方式找出定位误差,该方法难度较大,容易在计算过程中出现偏差,此时可引进公差尺寸链法,通过构建模型确定定位误差尺寸链,并通过公式计算即可得出定位误差情况。
一、公差尺寸链的构建方法应用公差尺寸链法时,应结合零件工艺系统,从中选取一个固定不变的参考点,汽车等零件在加工时无论发生何种变化,该参考点仍保持不变,此时可将该参考点作为基准确定零件变化情况,对工序基准、参考基准的公差变化偏移参数进行计算,将该计算结果视为零件定位误差。
在公差尺寸链模型内,其内部存在的封闭环即为定位误差其他关联的公差量在尺寸链模型中作为组成环,在上述结构组合下,即可获得公差尺寸链,并使其以模型的方式呈现。
机械制造中的尺寸链与误差传递分析机械制造是一个非常精密的工艺过程,尺寸控制是其中至关重要的一环。
然而,在实际生产中,很难做到完全精准的尺寸控制。
由于各种原因,如材料性质、工艺条件、设备磨损等因素的影响,制造出来的产品尺寸往往存在误差。
因此,了解尺寸链与误差传递的分析方法是非常必要的。
一、尺寸链的定义与特点尺寸链是指在机械装配过程中,从最初的设计尺寸到最终产品形成的各个工序中,每个工序对尺寸的加工、加工偏差和装配误差累积传递的过程。
尺寸链的形成是多个加工环节中尺寸加工误差和加工偏差相互传递叠加的结果。
尺寸链的特点有以下几个方面:1. 累积传递性:尺寸链中每个环节的尺寸误差都会相互影响,并传递到下一个环节,最终累积为总体误差。
2. 敏感性:尺寸链中的每个环节的误差对总体误差的贡献程度是不同的,对敏感环节的控制更为重要。
3. 不可逆性:一旦误差传递,难以修正,因此需要在设计和加工环节中尽可能减小误差。
二、误差传递的分析方法误差传递的分析方法可以通过数学模型和实际测试相结合的方式进行。
下面介绍两种常用的方法:1. 数学模型法:通过建立误差传递的数学模型,根据几何关系和概率统计原理计算各个环节的误差传递值。
这种方法需要根据实际情况建立相应的模型,如链式模型、仿真模型等。
2. 实际测试法:通过测量实际零件的尺寸,分析其误差来源和传递规律。
可以使用测量仪器进行精确测量,并使用统计方法对数据进行处理和分析,得出误差传递的规律。
三、尺寸链与误差控制在机械制造过程中,尺寸链的存在不可避免,但是可以通过以下方法来控制误差的传递:1. 设计优化:在产品设计阶段,考虑尺寸链的传递规律,合理安排各个零部件之间的公差配合,降低误差传递的影响。
2. 工艺改进:通过优化工艺流程,提高加工和装配的精度,减小误差传递的机会。
3. 设备维护:定期维护设备,保证设备的精度和可靠性,避免设备磨损对尺寸误差的影响。
4. 控制环节管理:加强对敏感环节的控制,采取精确的测量方法和工艺控制手段,及时发现和纠正误差。
定位误差的尺寸链解法尺寸链解法是一种用于确定尺寸误差的测量技术,它有助于改善尺寸控制过程中的精度和准确性。
在实际测量中,尺寸误差是一个重要的指标,它能够反映测量精度,从而影响到最终产品的质量。
因此,使用尺寸链解法进行误差测量有助于提高产品质量,确保测量准确性。
尺寸链解法是一种多层联系式的测量技术,它能够把复杂的几何形状分解成一系列的单端链,每个链由一系列相关尺寸组成。
在实际应用中,通常使用两个链,第一个链叫做“基准链”,相当于一条虚线;第二个链是“测量链”,与基准链中的尺寸比较以获得尺寸误差。
尺寸链解法的实施过程主要有以下几个步骤:第一步,对物体进行解析,找出其几何尺寸;第二步,确定基准尺寸,建立基准链;第三步,采用下料机或数控机器将物体加工,建立测量链,并与基准链比较;第四步,根据比较结果,分析各个尺寸的误差,从而获得尺寸误差的具体数值。
尺寸链解法具有以下优点:(1)测量结果准确。
尺寸链解法能够以最小的误差精度分析物体的尺寸,从而有效提高产品的质量和精度。
(2)可以精细化测量。
尺寸链解法可以根据实际需要分解出大量的单端链,从而能够细化测量物体的各个尺寸,提高测量精度。
(3)测量过程可视化。
尺寸链解法在测量过程中可以实现可视化,即可以将物体的尺寸结构投影到特定的显示设备上,更容易理解并实现控制。
(4)测量效率高。
尺寸链解法不需要额外的测量装置,可以在不影响产品质量的情况下提高测量效率,减少测量时间,节省成本。
尽管尺寸链解法具有优点,但还有一些不足之处:(1)实施过程复杂。
由于尺寸链解法是一种多层联系式的测量技术,实施起来比较复杂,测量完成时间较长。
(2)测量误差较大。
由于尺寸链解法的测量误差有一定的范围,所以在某些特殊情况下,可能会出现较大的误差,影响到测量精度。
(3)计算量大。
尺寸链解法需要大量的运算,如果编制程序比较复杂,可能需要更多的资源来实现。
因此,当使用尺寸链解法测量误差时,应该根据被测物体的几何尺寸的特性,采取合理的设计方案,并采取相应的技术措施,以最大程度地减少测量误差,从而提高测量精度。
第8章尺寸链8.1 基本概念机械零件无论在设计或制造中,一个重要的问题就是如何保证产品的质量。
也就是说,设计一部机器,除了要正确选择材料,进行强度、刚度、运动精度计算外,还必须进行几何精度计算,合理地确定机器零件的尺寸、几何形状和相互位置公差,在满足产品设计预定技术要求的前提下,能使零件、机器获得经济地加工和顺利地装配。
为此,需对设计图样上要素与要素之间,零件与零件之间有相互尺寸、位置关系要求,且能构成首尾衔接、形成封闭形式的尺寸组加以分析,研究他们之间的变化;计算各个尺寸的极限偏差及公差;以便选择保证达到产品规定公差要求的设计方案与经济的工艺方法。
8.1.1 术语定义1. 尺寸链在机器装配或零件加工过程中,由相互连接的尺寸形成封闭的尺寸组,该尺寸组称为尺A0也就随之确定。
A0、A1、A2和A3形成尺寸链,如图8.1b所示,A0尺寸在零件图上是根据加工顺序来确定,在零件图上是不标注的。
a) b)图8.1 零件尺寸链图8.2a所示,车床主轴轴线与尾架顶尖轴线之间的高度差A0,尾架顶尖轴线高度A1、尾架底板高度A2和主轴轴线高度A3等设计尺寸相互连接成封闭的尺寸组,形成尺寸链,如图8.2b所示。
图8.2 装配尺寸链2. 环尺寸链中的每一个尺寸,都称为环。
如图8.1和图8.2中的A0、A1、A2和A3 ,都是环。
(1)封闭环尺寸链中在装配过程或加工过程最后自然形成的一环,它也是确保机器装配精度要求或零件加工质量的一环,封闭环加下角标“0”表示。
任何一个尺寸链中,只有一个封闭环。
如图8.1和图8.2所示的A0都是封闭环。
(2)组成环尺寸链中除封闭环以外的其他各环都称为组成环,如图8.1和图8.2中的A1、A2和A3。
组成环用拉丁字母A、B、C、……、或希腊字母α、β、γ等再加下角标“i”表示,序号i=1、2、3、…、m。
同一尺寸链的各组成环,一般用同一字母表示。
组成环按其对封闭环影响的不同,又分为增环与减环。
2、内外圆柱面、内圆锥面、顺圆弧、逆圆弧及外螺纹等表面组成,其中多个直径尺寸与轴向尺寸有较高的尺寸精度和表面粗糙度要求。
零件图尺寸标注完整,符合数控加工尺寸标注要求;轮廓描述清楚完整;零件材料为45钢,加工切削性能较好,无热处理和硬度要求。
24:所谓定位误差,是指由于工件定位造成的加工面相对工序基准的位置误差。
因为对一批工件来说,刀具经调整后位置是不动的,即被加工表面的位置相对于定位基准是不变的,所以定位误差就是工序基准在加工尺寸方向上的最大变动量。
这种只与工件定位有关的加工误差,称为定位误差,用△D表示。
定位误差:设计基准在工序尺寸方向上的最大位置变动量。
3、钻孔注意以下几点:1)钻头引向端面,不可用力太大,防止断钻头和偏孔。
2)钻深孔屑不易排出,要退钻排屑。
3)钻钢件材料,加注冷却液。
4)直径大于30的孔分二次三次钻出(减小阻力横刄)5)钻头将把孔钻穿时,固横刄不参加切削,阻力小易损坏钻头切削角。
要减小进刀量。
5、轴类,套类,轴套类,盘类,反正是回转体的东西,大部分都可以用车床加工。
6、对数控机床夹具的基本要求1.高精度数控机床精度很高,一般用于高精度加工。
对数控机床夹具也提出较高的定位安装精度要求和转位、对定精度要求。
2.快速装夹工件为适应高效、自动化加工的需要,数控机床夹具结构应适应快速装夹的需要,沈阳一机床厂以尽量减少工件装夹辅助时间,提高机床切削运转利用率。
为适应快速装夹的需要,夹具常采用液动、气动等快速反应夹紧动力。
对切削时间较长的工件夹紧,在夹具液压夹紧系统中附加储能器,以补偿内泄漏,防止可能造成的松夹现象。
若对自锁性要求较严格,则多采用快速螺旋夹紧机构,并利用高速风动扳手辅助安装。
为减少停机装夹时间,夹具可设置预装工位,也可利用机床的自动托盘交换装置,专门装卸工件。
对于柔性制造单元和自动线中的数控机床及加工中心,其夹具结构应注意为安装自动送料装置提供方便。
3.夹具应具有良好的敞开性数控机床加工为刀具自动进给加工。