统计学第五版课后题答案Word版
- 格式:docx
- 大小:1.15 MB
- 文档页数:72
统计学(第五版)课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
第一章导论1.1(1)数值型变量。
(2)分类变量。
(3)离散型变量。
(4)顺序变量。
(5)分类变量。
1.2(1)总体是该市所有职工家庭的集合;样本是抽中的2000个职工家庭的集合。
(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的2000个职工家庭的年人均收入。
1.3(1)总体是所有IT从业者的集合。
(2)数值型变量。
(3)分类变量。
(4)截面数据。
1.4(1)总体是所有在网上购物的消费者的集合。
(2)分类变量。
(3)参数是所有在网上购物者的月平均花费。
(4)参数(5)推断统计方法。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关的原始信息已经存在,是由别人调查和实验得来的,并会被我们利用的资料称为“二手资料”。
使用二手资料时需要注意:资料的原始搜集人、搜集资料的目的、搜集资料的途径、搜集资料的时间,要注意数据的定义、含义、计算口径和计算方法,避免错用、误用、滥用。
在引用二手资料时,要注明数据来源。
2.比较概率抽样和非概率抽样的特点,举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
概率抽样是指抽样时按一定概率以随机原则抽取样本。
每个单位被抽中的概率已知或可以计算,当用样本对总体目标量进行估计时,要考虑到每个单位样本被抽中的概率,概率抽样的技术含量和成本都比较高。
如果调查的目的在于掌握和研究总体的数量特征,得到总体参数的置信区间,就使用概率抽样。
非概率抽样是指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。
非概率抽样操作简单、实效快、成本低,而且对于抽样中的专业技术要求不是很高。
它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。
非概率抽样也适合市场调查中的概念测试。
3.调查中搜集数据的方法主要有自填式、面方式、电话式,除此之外,还有那些搜集数据的方法?实验式、观察式等。
第8章思考题8.1假设检验和参数估计有什么相同点和不同点?答:参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,然而推断的角度不同。
参数估计讨论的是用样本统计量估计总体参数的方法,总体参数μ在估计前是未知的。
而在参数假设检验中,则是先对μ的值提出一个假设,然后利用样本信息去检验这个假设是否成立。
8.2什么是假设检验中的显著性水平?统计显著是什么意思?答:显著性水平是一个统计专有名词,在假设检验中,它的含义是当原假设正确时却被拒绝的概率和风险。
统计显著等价拒绝H0,指求出的值落在小概率的区间上,一般是落在0.05或比0.05更小的显著水平上。
8.3什么是假设检验中的两类错误?答:假设检验的结果可能是错误的,所犯的错误有两种类型,一类错误是原假设H0为真却被我们拒绝了,犯这种错误的概率用α表示,所以也称α错误或弃真错误;另一类错误是原假设为伪我们却没有拒绝,犯这种错误的概论用β表示,所以也称β错误或取伪错误。
8.4两类错误之间存在什么样的数量关系?答:在假设检验中,α与β是此消彼长的关系。
如果减小α错误,就会增大犯β错误的机会,若减小β错误,也会增大犯α错误的机会。
8.5解释假设检验中的P值答:P值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。
(它的大小取决于三个因素,一个是样本数据与原假设之间的差异,一个是样本量,再一个是被假设参数的总体分布。
)8.6显著性水平与P值有何区别答:显著性水平是原假设为真时,拒绝原假设的概率,是一个概率值,被称为抽样分布的拒绝域,大小由研究者事先确定,一般为0.05。
而P只是原假设为真时所得到的样本观察结果或更极端结果出现的概率,被称为观察到的(或实测的)显著性水平8.7假设检验依据的基本原理是什么?答:假设检验依据的基本原理是“小概率原理”,即发生概率很小的随机事件在一次试验中是几乎不可能发生的。
根据这一原理,可以作出是否拒绝原假设的决定。
统计学第五版课后题答案李金昌第1章绪论 1 .试述数据、数据库、数据库系统、数据库管理系统的概念。
答:( l )数据( Data ) :叙述事物的符号记录称作数据。
数据的种类存有数字、文字、图形、图像、声音、正文等。
数据与其语义就是不可分的。
解析在现代计算机系统中数据的概念就是广义的。
早期的计算机系统主要用作科学计算,处置的数据就是整数、实数、浮点数等传统数学中的数据。
现代计算机能够存储和处置的对象十分广为,则表示这些对象的数据也越来越繁杂。
数据与其语义就是不可分的。
500 这个数字可以表示一件物品的价格是 500 元,也可以表示一个学术会议参加的人数有 500 人,还可以表示一袋奶粉重 500 克。
( 2 )数据库( DataBase ,缩写 DB ) :数据库就是长期储存在计算机内的、存有非政府的、可以共享资源的数据子集。
数据库中的数据按一定的数据模型非政府、叙述和储存,具备较小的冗余度、较低的数据独立性和易扩展性,并可向各种用户共享资源。
( 3 )数据库系统( DataBas 。
Sytem ,缩写 DBS ) :数据库系统就是所指在计算机系统中导入数据库后的系统形成,通常由数据库、数据库管理系统(及其开发工具)、应用领域系统、数据库管理员形成。
解析数据库系统和数据库就是两个概念。
数据库系统就是一个人一机系统,数据库就是数据库系统的一个组成部分。
但是在日常工作中人们常常把数据库系统缩写为数据库。
期望读者能从人们讲话或文章的上下文中区分“数据库系统”和“数据库”,不要引发混为一谈。
( 4 )数据库管理系统( DataBase Management sytem ,简称 DBMs ) :数据库管理系统是位于用户与操作系统之间的一层数据管理软件,用于科学地组织和存储数据、高效地获取和维护数据。
DBMS 的主要功能包含数据定义功能、数据压低功能、数据库的运转管理功能、数据库的创建和保护功能。
解析 DBMS 就是一个大型的繁杂的软件系统,就是计算机中的基础软件。
统计学(第五版)贾俊平课后思考题答案(完整版)整理by__kiss-ahuang第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics汽车销售数量N Valid 10Missing 0 Mean 9.60 Median 10.00 Mode 10 Std. Deviation 4.169 Percentiles 25 6.2550 10.0075 12.504.2 随机抽取25个网络用户,得到他们的年龄数据如下:19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:1、排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄从频数看出,众数Mo 有两个:19、23;从累计频数看,中位数Me=23。
(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25 和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差; Mean=24.00;Std. Deviation=6.652 (4)计算偏态系数和峰态系数: Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
为分组情况下的直方图:为分组情况下的概率密度曲线:分组:1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K=+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄(Binned)分组后的均值与方差:分组后的直方图:4.6 在某地区抽取120家企业,按利润额进行分组,结果如下:要求:(1)计算120家企业利润额的平均数和标准差。
第四章统计数据得概括性度量4.1 一家汽车零售店得10名销售人员5月份销售得汽车数量(单位:台)排序后如下: 24710101012121415要求:(1) 计墀汽车销售量得众数、中住数与平均数. (2) 根据定艾公式计算四分位数。
(3) 计算销售童得标准差. (4) 说明汽车销隹量分布得特^|1。
解:Statistics汽车销tt 数ftNValid 10Missing0 Mean9. 60Median10. 00Mode10Sid 、 Deviation4. 169P crcendles25 6. 255010. 007512. 50单位:周岁19 15 29 25 24 23 21 38 22 18 30 20 19 19 16 23 27 22 34 24 4120311723要求;(1)计舞众数、中位数:排序形成单变童分值得频数分布与累计频数分布:网络用户得年龄Kean =9. e 514 Dev, =L 169X =102.5 £ 7.5 £0 12-« 154.2 随机拙取25个网络用户•得到她们得年龄数据如下;HiftosraaS从频数瞧出,众数Mo有两个:19、23;从累计频数瞧,中位数Me=23.(2)根据定爻公式计算四分位数。
01位置=25/4=6、25,因此01=19.03位置=3X25/4=8、75,因此03=27,或者,由于25与27都只有一个, 因此Q3也可等于25+0、75X2=26、5。
(3)计舞平均数与标准差;Mean=24、00; Std、Dev i at i ori=6、652(4)计舞偏态系数与峰态系数:Skewnessh、080:Kurtosis=0> 773(5)对网民年龄得分布特征进行综合分析:分布•均值=24、标准差=6、652、呈右偏分布•如需瞧清楚分布形态,需要进行分组.为分组情况下得直方图;KK用户的年K为分组情况下得槪率密度曲线:分组: k 确定组数;K = l +里凹= l + li凹=11.398ig(2)2s 确定纽•瞪:组距=( 3s 分组频数表网络用户得年龄(Binned)Frequency Percent Cumulative Frequency Cumulative PercentValid<=15 / 4、0 / 4、016-20 8 32、0 9 36、0 21-259 36. 0 IS 72、026-30 3 12. 0 21 84、031-35 2 8、0 23 92、0 36-40 1 4、0 24 96、041 + 1 4、0 25100. 0Total25100、0Mean23、 3000 Sld> Deviation 7. 0237?V^iance 49. 333 Skewness }、163 KunosisI. 302分组后得直方图;L>-lg2 + 0.30103 取 k"最大值-最小值)m 组数=(41-15)^6=4. 3,取5M *1U U A » U » n 丛 3 :s ■«用户»年》3233010.00 II» :&»» 30.05 非.00 10 00&中値4.3某银行为缩短顾客到银行办理业务等待得吋间。
4.2(1)众数:19;23中位数:23 平均数:24(2)四分位数:Q L 位置=425=6.25.所以Q L =19+0.25^0=19 Q U 位置=475=18.75,所以Q U =25+2^0.75=26.5(3)标准差:6.65 (4)峰度0.77,偏度1.08 4.3(1)茎叶图Frequency Stem & Leaf 1.00 5. 5 3.00 6. 678 5.00 7. 13488 (2) 平均数:7,标准差0.71 (3)第一种方式的离散系数x s v s ==2.797.1=0.28 第二种方式的离散系数xs v s ==771.0=0.10 所以,第二种排队方式等待时间更集中。
(4)选择第二种,因为平均等待的时间短,而且等待时间的集中程度高 4.5.甲企业总平均成本nf Mx ki ii∑==1=3406600=19.41(元) 乙企业总平均成本nf Mx ki ii∑==1=(元)29.183426255=所以甲企业的总平均成本比乙企业的高,原因是甲企业高成本的产品B 生产的产量比乙企业多,所以把总平均成本提高了。
4.6计算数据如表:利润总额的平均数nf Mx ki ii∑==1=(万元)67.42612051200= 利润总额标准差()nx x f *2∑-=σ= (万元)99.1151201614666==σ 峰态系数6479.03352.23)99.115(120851087441643)(4414—=-=-⨯=--=∑=ns f x MK ki ii偏态系数313)(ns f x MSK ki ii∑=-==2057.0)99.115(120)67.426(3513=⨯-∑=i iif M4.8对于不同的总体的差异程度的比较采用标准差系数,计算如下:%3.8605===x s v s 男; %10505===x s v s 女 (1)女生的体重差异大,因为离散系数大;(2)以磅为单位,男生的平均体重为132.6磅,标准差为11.05磅;女生的平均体重为110.5磅,标准差为11.05磅%33.86.13205.11===x s v s 男%105.11005.11===x s v s 女 (3)156065=-=-=s x x z i i ,所以大约有68%的人体重在55kg~65kg 之间;(4)255040=-=-=s x x z i i ,所以大约有95%的女生体重在40kg~60kg 之间。
统计学第五版课后练答案(7-8章)(总11页)-本页仅作为预览文档封面,使用时请删除本页-第七章 参数估计(1)x σ==(2)2x z α∆= 1.96=某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x σ==(2)在95%的置信水平下,求估计误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=×=(3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:22x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(,)22x z x z αα⎛-+ ⎝=104560±=(,) 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭或2,s x N n μ⎛⎫⎪⎝⎭置信区间为:22x z x z αα⎛-+ ⎝= (1)构建μ的90%的置信区间。
2z α=0.05z =,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(,)(2)构建μ的95%的置信区间。
2z α=0.025z =,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(,) (3)构建μ的99%的置信区间。
2z α=0.005z =,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(,)(1)2x z α±=25 1.96±=(,) (2)2x z α±=119.6 2.326±=(,)(3)2x z α±=3.419 1.645±=(,)(1)2x z α±=8900 1.96±=(,)(2)2x z α±=8900 1.96±=(,)(3)2x z α±=8900 1.645±=(,) (4)2x z α±=8900 2.58±=(,)某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36解:(1)样本均值x =,样本标准差s=1α-=,t=2z α=0.05z =,2x z α±=3.32 1.645±=(,)1α-=,t=2z α=0.025z =,2x zα±3.32 1.96±=(,)1α-=,t=2z α=0.005z =,2x z α±3.32 2.76±(,)x t α±=10 2.365±某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是: 10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
《统计学原理(第五版)》计算题解答第三章 综合指标1. 见教材P4042. %86.1227025232018=+++=产量计划完成相对数发3. %85.101%108%110%%(%)===计划为上年的实际为上年的计划完成程度指标劳动生产率计划超额1.85%完成4. %22.102%90%92(%)(%)(%)===计划完成数实际完成数计划完成程度指标 一季度产品单位成本未完成计划,实际单位成本比计划规定数高2.22%5. %105%103% %%(%) 计划为上年的计划为上年的实际为上年的计划完成程度指标=∴=1.94% %94.101103%105%% 即计划规定比上年增长计划为上年的解得:== 6. 见教材P405 7. 见教材P405 8)/(2502500625000)/(2702500675000亩千克亩千克乙甲======∑∑∑∑f xf X xm m X在相同的耕地自然条件下,乙村的单产均高于甲村,故乙村的生产经营管理工作做得好。
但由于甲村的平原地所占比重大,山地所占比重小,乙村则相反,由于权数的作用,使得甲村的总平均单产高于乙村。
%.ffx X 9103=⋅=∑∑平均计划完成程度10. 见教材P40611. %74.94963.09222.09574.03=⨯⨯=G X)亩/283.3( 8.25275 251332562600275 组为30027530026002f d m f 1m S 2fX e M L 千克中位数所在=+=⨯-+=-∴==∑⋅--∑+=⎪⎪⎪⎭⎫⎝⎛)亩/(5.942 45.91275 25119)-(13384)-(133275d X M 84133211L 0千克=+=⨯++=⋅+=-∆+∆∆之间—在亩千克之间—在亩千克—众数所在组为325300Q )/(82.31282.12300 450460034f 3 2511938946003300250225Q )/(03.24203.17225 15046004f 25691034600225)300275(3311∴=+==⨯=⨯-⨯+=∴=+===⨯-+=∑∑Q Q (2)R=500-150=350(千克/亩))亩/41.84(60025102.14ff x x A.D.千克==∑∑-=(3))/(55.5225102.2250.1444-4.5642 252)600229(6002738.5d 2f )f d A -x (f f 2)d A -x (σ)/278(287.525600229A d f )f d Ax (x)亩/277.96(600166775fxf x 亩千克亩千克或千克=⨯=⨯=⨯--=⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∑∑-∑∑==+⨯-=+⋅∑∑-===∑∑=“标准差”不要求用组距数列的简捷法计算(4) 根据以上计算,294.5千克/亩>283.3千克/亩>277.96千克/亩,故资料分布为左偏(即下偏)。
第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数:()l g 25l g ()1.3981115.64l g (2)l g 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取5 3、分组频数表网络用户的年龄 (Binned)分组后的直方图:客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括和分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象和实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
第一章导论1.1(1)数值型变量。
(2)分类变量。
(3)离散型变量。
(4)顺序变量。
(5)分类变量。
1.2(1)总体是该市所有职工家庭的集合;样本是抽中的2000个职工家庭的集合。
(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的2000个职工家庭的年人均收入。
1.3(1)总体是所有IT从业者的集合。
(2)数值型变量。
(3)分类变量。
(4)截面数据。
1.4(1)总体是所有在网上购物的消费者的集合。
(2)分类变量。
(3)参数是所有在网上购物者的月平均花费。
(4)参数(5)推断统计方法。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关的原始信息已经存在,是由别人调查和实验得来的,并会被我们利用的资料称为“二手资料”。
使用二手资料时需要注意:资料的原始搜集人、搜集资料的目的、搜集资料的途径、搜集资料的时间,要注意数据的定义、含义、计算口径和计算方法,避免错用、误用、滥用。
在引用二手资料时,要注明数据来源。
2.比较概率抽样和非概率抽样的特点,举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
概率抽样是指抽样时按一定概率以随机原则抽取样本。
每个单位被抽中的概率已知或可以计算,当用样本对总体目标量进行估计时,要考虑到每个单位样本被抽中的概率,概率抽样的技术含量和成本都比较高。
如果调查的目的在于掌握和研究总体的数量特征,得到总体参数的置信区间,就使用概率抽样。
非概率抽样是指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。
非概率抽样操作简单、实效快、成本低,而且对于抽样中的专业技术要求不是很高。
它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。
非概率抽样也适合市场调查中的概念测试。
3.调查中搜集数据的方法主要有自填式、面方式、电话式,除此之外,还有那些搜集数据的方法?实验式、观察式等。
统计学第五版(贾俊平)课后题答案第4章 数据的归纳性气宇(1)众数:100=M 。
中位数:5.5211021=+=+=n 中位数位置,1021010=+=e M 。
平均数:6.91096101514421==++++==∑= nxx ni i。
(2)5.24104===n Q L 位置 ,5.5274=+=LQ 。
5.7410343=⨯==n Q U 位置,1221212=+=U Q 。
(3)2.494.156110)6.915()6.914()6.94()6.92(1)(222212==--+-++-+-=--=∑= n x xs ni i(4)由于平均数小于中位数和众数,所以汽车销售量为左偏散布。
(1)从表中数据能够看出,年龄出现频数最多的是19和23,所以有两个众数,即190=M 和230=M 。
将原始数据排序后,计算的中位数的位置为:13212521=+=+=n 中位数位置,第13个位置上的数值为23,所以中位数23=e M 。
(2)25.64254===n Q L 位置,19)1919(25.019=-⨯+=L Q 。
75.184253=⨯=位置U Q ,56.252-7257.052=⨯+=)(U Q 。
(3)平均数242560025231715191==++++==∑= n xx ni i。
65.61251062125)2423()2417()2415()2419(1)(222212=-=--+-++-+-=--=∑= n x xs ni i(4)偏态系数:()08.165.6)225)(125(242533=⨯---=∑i x SK 。
峰态系数:[]77.065.6)325)(225)(125()125()24(3)24()125(254224=⨯-------+=∑∑i i x x K 。
(5)分析:从众数、中位数和平均数来看,网民年龄在23~24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大不同。
第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23 要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
第一章导论1.1(1)数值型变量。
(2)分类变量。
(3)离散型变量。
(4)顺序变量。
(5)分类变量。
1.2(1)总体是该市所有职工家庭的集合;样本是抽中的2000个职工家庭的集合。
(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的2000个职工家庭的年人均收入。
1.3(1)总体是所有IT从业者的集合。
(2)数值型变量。
(3)分类变量。
(4)截面数据。
1.4(1)总体是所有在网上购物的消费者的集合。
(2)分类变量。
(3)参数是所有在网上购物者的月平均花费。
(4)参数(5)推断统计方法。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关的原始信息已经存在,是由别人调查和实验得来的,并会被我们利用的资料称为“二手资料”。
使用二手资料时需要注意:资料的原始搜集人、搜集资料的目的、搜集资料的途径、搜集资料的时间,要注意数据的定义、含义、计算口径和计算方法,避免错用、误用、滥用。
在引用二手资料时,要注明数据来源。
2.比较概率抽样和非概率抽样的特点,举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
概率抽样是指抽样时按一定概率以随机原则抽取样本。
每个单位被抽中的概率已知或可以计算,当用样本对总体目标量进行估计时,要考虑到每个单位样本被抽中的概率,概率抽样的技术含量和成本都比较高。
如果调查的目的在于掌握和研究总体的数量特征,得到总体参数的置信区间,就使用概率抽样。
非概率抽样是指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。
非概率抽样操作简单、实效快、成本低,而且对于抽样中的专业技术要求不是很高。
它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。
非概率抽样也适合市场调查中的概念测试。
3.调查中搜集数据的方法主要有自填式、面方式、电话式,除此之外,还有那些搜集数据的方法?实验式、观察式等。
4. 自填式、面方式、电话式调查个有什么利弊?自填式优点:调查组织者管理容易,成本低,可以进行较大规模调查,对被调查者可以刻选择方便时间答卷,减少回答敏感问题的压力。
缺点:返回率低,调查时间长,在数据搜集过程中遇到问题不能及时调整。
面谈式优点:回答率高,数据质量高,在数据搜集过程中遇到问题可以及时调整可以充分发挥调查员的作用。
缺点:成本比较高,对调查过程的质量控制有一定难度。
对于敏感问题,被访者会有压力。
电话式优点:速度快,对调查员比较安全,对访问过程的控制比较容易,缺点:实施地区有限,调查时间不宜过长,问卷要简单,被访者不愿回答时,不宜劝服。
5.请举出(或设计)几个实验数据的例子。
不同饲料对牲畜增重有无影响,新旧技术的机器对组装同一产品所需时间的影响。
6.你认为应当如何控制调查中的回答误差?对于理解误差,要注意表述中的措辞,学习一定的心里学知识。
对于记忆误差,尽量缩短所涉及问题的时间范围。
对于有意识误差,调查人员要想法打消被调查者得思想顾虑,调查人员要遵守职业道德,为被调查者保密,尽量避免敏感问题。
7.怎样减少无回答?请通过一个例子,说明你所考虑到的减少无回答的具体措施。
对于随机误差,可以通过增加样本容量来控制。
对于系统误差,做好预防,在调查前做好各方面的准备工作,尽量把无回答率降到最低程度。
无回答出现后,分析武回答产生的原因,采取补救措施。
比如要收回一百份,就要做好一百二十份或一百三十份问卷的准备,当被调查者不愿意回答时,可以通过一定的方法劝服被访者,还可以通过馈赠小礼品等的方式提高回收率。
第三章数据的图表搜集一、思考题3.1数据的预处理包括哪些内容?答:审核、筛选、排序等。
3.2分类数据和顺序数据的整理和显示方法各有哪些?答:分类数据在整理时候先列出所分的类别,计算各组的频数、频率,得到频数分布表,如果是两个或两个以上变量可以制作交叉表。
对于分类数据可以绘制条形图、帕累托图、饼图、环形图等。
根据不同的资料或者目的选择不同的图。
对于顺序数据,可以计算各种的频数、频率,以及累计频数、累计频率。
可根据需要绘制条形图、饼图、环形图等。
3.3数值型数据的分组方法有哪些?简述组距分组的步骤。
答:单变量值分组和组距分组。
其中组距分组:第一步,确定组数,组数多少由数据的多少和特点等决定,一般5~15组;第二步,确定各组组距,宜取5或10的倍数;第三步,根据分组整理出频数分布表,注意遵循“不重不漏”和“上限不在内”的原则。
3.4直方图和条形图有何区别?答:1,条形图使用图形的长度表示各类别频数的多少,其宽度固定,直方图用面积表示各组频数,矩形的高度表示每一组的频数或频率,宽度表示组距,高度与宽度都有意义;2直方图各矩形连续排列,条形图分开排列;3条形图主要展示分类数据,直方图主要展示数值型数据。
3.5绘制线图应注意问题?答:时间在横轴,观测值绘在纵轴。
一般是长宽比例10:7的长方形,纵轴下端一般从0开始,数据与0距离过大的话用折断符号折断。
3.6饼图和环形图的不同?答:饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总体的数据系列,其图形中间有个“空洞”,每个样本或总体的数据系类为一个环。
3.7茎叶图比直方图的优势,他们各自的应用场合?答:茎叶图既能给出数据的分布情况,又能给出每一个原始数据,即保留了原始数据的信息。
在应用方面,直方图通常适用于大批量数据,茎叶图适用于小批量数据。
3.8鉴别图标优劣的准则?答:P65明确有答案,我就不写了。
3.9制作统计表应注意的问题?答:1,合理安排统计表结构;2表头一般包括表号,总标题和表中数据的单位等内容;3表中的上下两条横线一般用粗线,中间的其他用细线,两端开口,数字右对齐,不要有空白格;4在使用统计表时,必要时可在下方加注释,注明数据来源。
二、练习题3.1答:(1)表中数据属于顺序数据。
(2)用Excel制作一张频数分布表。
(3)绘制一张条形图,反映评价等级的分布。
(4)绘制评价等级的帕累托图。
3.2 某行业管理局所属40个企业2002年的产品销售收入数据如下: 152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135125 117 108 105 110 107 137 120 136 117 108 97 88123115119138112146113126要求:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。
1、确定组数:lg40lg() 1.60206111 6.32nK=+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷组数=(152-87)÷6=10.83,取103、分组频数表(2)按规定,销售收入在125万元以上为先进企业,115~125万元为良好企业,105~115 万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
3.3 某百货公司连续40天的商品销售额如下:单位:万元41 25 29 47 38 34 30 38 43 4046 36 45 37 37 36 45 43 33 4435 28 46 34 30 37 44 26 38 4442 36 37 37 49 39 42 32 36 35要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
答:1、确定组数:lg() 1.60206111 6.32lg(2)lg 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取5 3、分组频数表(根据实际资料,调整成分5个组)4、直方图3.4 利用下面的数据构建茎叶图和箱线图。
57 29 29 36 31 23 47 23 28 28 35 51 39 18 46 18 26 50 29 33 21 46 41 52 28 21 43194220答:茎叶图Frequency Stem & Leaf3.00 1 . 889 5.00 2 . 01133 7.00 2 . 6888999 2.00 3 . 133.00 3 . 5693.00 4 . 1233.00 4 . 6673.00 5 . 0121.00 5 . 7 箱线图3.5答:频数分布表直方图从直方图看,数据的分布呈左偏分布。
3.6答 :频数分布表lg 100lg()2111 6.64n K =+=+=+=,取k=72、确定组距:组距=( 最大值 - 最小值)÷ 组数=(61-40)÷7=3,取33、分组频数表(根据实际资料,调整成分5个组)从直方图看,数据的分布呈双峰分布。
3.7频数分布表从直方图看,数据的分布呈左偏分布 3.8(1)数值型数据 (2)频数分布表lg() 1.77815111 6.91lg(2)lg 20.30103n K =+=+=+=,取k=72、确定组距:组距=( 最大值 - 最小值)÷ 组数=(9+25)÷7=4.86,取5从直方图看,数据的分布呈左偏分布。
3.9自学考试人员年龄分布集中在20-24之间,分布图呈右偏。
3.103.113.12 (1)复式条形图(2)甲班成绩分布图近似正态分布,分布较均衡;乙班成绩分布图右偏。
(3)根据雷达图,两班成绩分布不相似。
3.133.14第四章习题答案4.1数据排列:2,4,7,10,10,10,12,12,14,15(1)众数:10;中位数:10 平均数:9.6 (2)四分位数:410所以2=5.5430,所以21412+(3)标准差:4.17(4)峰度—0.25,偏度—0.69 4.2(1)众数:19;23中位数:23 平均数:24(2)四分位数:425所以475,所以(3)标准差:6.65 (4)峰度0.77,偏度1.08 4.3(1)茎叶图略(2) 平均数:7,标准差0.71 (3xs ==2.7=0.28 第二种方式的离散系数xs ==7=0.10 所以,第二种排队方式等待时间更集中。
(4)选择第二种,因为平均等待的时间短,而且等待时间的集中程度高 4.4 (1)平均数:274.1,中位数:272.5 (2)Q 位置430所以Q =258+0.25^3=258.75U 490,所以U (3)日销售额的标准差:21.17 4.5.甲企业总平均成本nf Mx i ii∑==1=340=19.41(元) 乙企业总平均成本nf Mx i ii∑==1=(元)29.18342= 所以甲企业的总平均成本比乙企业的高,原因是甲企业高成本的产品B 生产的产量比乙企业多,所以把总平均成本提高了。