2016年历年安徽省数学中考真题及答案
- 格式:docx
- 大小:2.54 MB
- 文档页数:13
2016年安徽省中考数学试题及答案解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2B.2C.±2D.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.2016年3月份我农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.方程=3的解是()A.﹣B.C.﹣4D.46.2014年我财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12E x≥12A.18户B.20户C.22户D.24户8.如图,△ABC中,AD是中线,BC=8,△B=△DAC,则线段AC的长为()A.4B.4C.6D.49.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.如图,Rt△ABC中,AB△BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足△PAB=△PBC,则线段CP长的最小值为()A.B.2C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是.12.因式分解:a3﹣a=.13.如图,已知△O的半径为2,A为△O外一点,过点A作△O的一条切线AB,切点是B,AO的延长线交△O于点C,若△BAC=30°,则劣弧的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列结论:①△EBG=45°;②△DEF△△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.16.解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得△CAB=90°,△DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得△DEB=60°,求C、D两点间的距离.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且△MON为钝角,现以线段OA,OB为斜边向△MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE△△EDQ;(2)延长PC,QD交于点R.①如图1,若△MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB△△PEQ,求△MON大小和的值.2016年中考数学答案解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2B.2C.±2D.【考点】绝对值.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.3.2016年3月份我农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.5.方程=3的解是()A.﹣B.C.﹣4D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.6.2014年我财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【考点】列代数式.【分析】根据2013年我财政收入和2014年我财政收入比2013年增长8.9%,求出2014年我财政收入,再根据出2015年比2014年增长9.5%,2015年我财政收为b亿元,即可得出a、b之间的关系式.【解答】解:△2013年我财政收入为a亿元,2014年我财政收入比2013年增长8.9%,△2014年我财政收入为a(1+8.9%)亿元,△2015年比2014年增长9.5%,2015年我财政收为b亿元,△2015年我财政收为b=a(1+8.9%)(1+9.5%);故选C.7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12E x≥12A.18户B.20户C.22户D.24户【考点】扇形统计图.【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.8.如图,△ABC中,AD是中线,BC=8,△B=△DAC,则线段AC的长为()A.4B.4C.6D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA△△CAD,得出=,求出AC即可.【解答】解:△BC=8,△CD=4,在△CBA和△CAD中,△△B=△DAC,△C=△C,△△CBA△△CAD,△=,△AC2=CD•BC=4×8=32,△AC=4;故选B.9.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.【考点】函数的图象.【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.如图,Rt△ABC中,AB△BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足△PAB=△PBC,则线段CP长的最小值为()A.B.2C.D.【考点】点与圆的位置关系;圆周角定理.【分析】首先证明点P在以AB为直径的△O上,连接OC与△O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:△△ABC=90°,△△ABP+△PBC=90°,△△PAB=△PBC,△△BAP+△ABP=90°,△△APB=90°,△点P在以AB为直径的△O上,连接OC交△O于点P,此时PC最小,在RT△BCO中,△△OBC=90°,BC=4,OB=3,△OC==5,△PC=OC=OP=5﹣3=2.△PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是x≥3.【考点】解一元一次不等式.【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥312.因式分解:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)13.如图,已知△O的半径为2,A为△O外一点,过点A作△O的一条切线AB,切点是B,AO的延长线交△O于点C,若△BAC=30°,则劣弧的长为.【考点】切线的性质;弧长的计算.【分析】根据已知条件求出圆心角△BOC的大小,然后利用弧长公式即可解决问题.【解答】解:△AB是△O切线,△AB△OB,△△ABO=90°,△△A=30°,△△AOB=90°﹣△A=60°,△△BOC=120°,△的长为=.故答案为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列结论:①△EBG=45°;②△DEF△△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【考点】相似形综合题.【分析】由折叠性质得△1=△2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得△3=△4,BH=BA=6,AG=HG,易得△2+△3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF 中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于△A=△D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:△△BCE沿BE折叠,点C恰落在边AD上的点F处,△△1=△2,CE=FE,BF=BC=10,在Rt△ABF中,△AB=6,BF=10,△AF==8,△DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,△DE2+DF2=EF2,△(6﹣x)2+22=x2,解得x=,△ED=,△△ABG沿BG折叠,点A恰落在线段BF上的点H处,△△3=△4,BH=BA=6,AG=HG,△△2+△3=△ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,△GH2+HF2=GF2,△y2+42=(8﹣y)2,解得y=3,△AG=GH=3,GF=5,△△A=△D,==,=,△≠,△△ABG与△DEF不相似,所以②错误;△S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,△S△ABG=S△FGH,所以③正确;△AG+DF=3+2=5,而GF=5,△AG+DF=GF,所以④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2016)0++tan45°=1﹣2+1=0.16.解方程:x2﹣2x=4.【考点】解一元二次方程-配方法;零指数幂.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1△(x﹣1)2=5△x=1±△x1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【考点】作图-平移变换.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:1+3+5+…+(2n ﹣1)+( 2n+1 )+(2n ﹣1)+…+5+3+1= 2n 2+2n+1 .【考点】规律型:图形的变化类.【分析】(1)根据1+3+5+7=16可得出16=42;设第n 幅图中球的个数为a n ,列出部分a n 的值,根据数据的变化找出变化规律“a n ﹣1=1+3+5+…+(2n ﹣1)=n 2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n 行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n 幅图中球的个数为a n ,观察,发现规律:a 1=1+3=22,a 2=1+3+5=32,a 3=1+3+5+7=42,…,△a n ﹣1=1+3+5+…+(2n ﹣1)=n 2.故答案为:42;n 2.(2)观察图形发现:图中黑球可分三部分,1到n 行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n ﹣1)+[2(n+1)﹣1]+(2n ﹣1)+…+5+3+1,=1+3+5+…+(2n ﹣1)+(2n+1)+(2n ﹣1)+…+5+3+1,=a n ﹣1+(2n+1)+a n ﹣1,=n 2+2n+1+n 2,=2n 2+2n+1.故答案为:2n+1;2n 2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得△CAB=90°,△DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得△DEB=60°,求C、D两点间的距离.【考点】两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,△△DEB=60°,△DAB=30°,△△ADE=△DEB﹣△DAB=30°,△△ADE为等腰三角形,△DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,△DF△AF,△△DFB=90°,△AC△DF,由已知l1△l2,△CD△AF,△四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,△y=.OA==5,△OA=OB,△OB=5,△点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:△y=2x﹣5.(2)△点M在一次函数y=2x﹣5上,△设点M的坐标为(x,2x﹣5),△MB=MC,△解得:x=2.5,△点M的坐标为(2.5,0).六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【考点】列表法与树状图法;算术平方根.【分析】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE△AD,CF△x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S 的最大值,以及此时x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE△AD,CF△x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,△S关于x的函数表达式为S=﹣x2+8x(2<x<6),△S=﹣x2+8x=﹣(x﹣4)2+16,△当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且△MON为钝角,现以线段OA,OB为斜边向△MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE△△EDQ;(2)延长PC,QD交于点R.①如图1,若△MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB△△PEQ,求△MON大小和的值.【考点】相似形综合题.【分析】(1)根据三角形中位线的性质得到DE=OC,△OC,CE=OD,CE△OD,推出四边形ODEC是平行四边形,于是得到△OCE=△ODE,根据等腰直角三角形的定义得到△PCO=△QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到△ARC=△ORC,△ORQ=△BRO,根据四边形的内角和得到△CRD=30°,即可得到结论;②由(1)得,EQ=EP,△DEQ=△CPE,推出△PEQ=△ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=△PEQ=90°,根据四边形的内角和得到△MON=135°,求得△APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:△点C、D、E分别是OA,OB,AB的中点,△DE=OC,△OC,CE=OD,CE△OD,△四边形ODEC是平行四边形,△△OCE=△ODE,△△OAP,△OBQ是等腰直角三角形,△△PCO=△QDO=90°,△△PCE=△PCO+△OCE=△QDO=△ODQ=△EDQ,△PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,△△PCE△△EDQ;(2)①如图2,连接RO,△PR与QR分别是OA,OB的垂直平分线,△AP=OR=RB,△△ARC=△ORC,△ORQ=△BRO,△△RCO=△RDO=90°,△COD=150°,△△CRD=30°,△△ARB=60°,△△ARB是等边三角形;②由(1)得,EQ=EP,△DEQ=△CPE,△△PEQ=△CED﹣△CEP﹣△DEQ=△ACE﹣△CEP﹣△CPE=△ACE﹣△RCE=△ACR=90°,△△PEQ是等腰直角三角形,△△ARB△△PEQ,△△ARB=△PEQ=90°,△△OCR=△ODR=90°,△CRD=△ARB=45°,△△MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且△APB=90°,△AB=2PE=2×PQ=PQ,△=.。
2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)﹣2的绝对值是()A.﹣2 B.2C.±2D.2.(4分)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.(4分)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为( )A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.(4分)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C. D.5.(4分)方程=3的解是()A.﹣B. C.﹣4 D.46.(4分)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( )组别月用水量x(单位:吨)A0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12 Ex≥12A.18户B.20户C.22户D.24户8.(4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( )A.4B.4C.6D.49.(4分)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )A.B.C. D.10.(4分)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)不等式x﹣2≥1的解集是.12.(5分)因式分解:a3﹣a=.13.(5分)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.(5分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:(﹣2016)0++tan45°.16.(8分)解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(8分)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+( )+(2n﹣1)+…+5+3+1= .五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB 上),测得∠DEB=60°,求C、D两点间的距离.20.(10分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.(12分)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.(12分)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.(14分)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MO N的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•安徽)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.(4分)(2016•安徽)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.3.(4分)(2016•安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.4.(4分)(2016•安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是( )A. B. C.D.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.5.(4分)(2016•安徽)方程=3的解是( )A.﹣ B.C.﹣4 D.4【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.6.(4分)(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.7.(4分)(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B 3≤x<6C6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.8.(4分)(2016•安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4B.4C.6 D.4【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.9.(4分)(2016•安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B. C.D.【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.(4分)(2016•安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为( )A. B.2C. D.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016•安徽)不等式x﹣2≥1的解集是x≥3 .【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥312.(5分)(2016•安徽)因式分解:a3﹣a=a(a+1)(a﹣1) .【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)13.(5分)(2016•安徽)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.【分析】根据已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题.【解答】解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.14.(5分)(2016•安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△AB G=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出A F=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016•安徽)计算:(﹣2016)0++tan45°.【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2016)0++tan45°=1﹣2+1=0.16.(8分)(2016•安徽)解方程:x2﹣2x=4.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2016•安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC. (1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(8分)(2016•安徽)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+(2n+1 )+(2n﹣1)+…+5+3+1= 2n2+2n+1 .【分析】(1)根据1+3+5+7=16可得出16=42;设第n幅图中球的个数为an,列出部分a n的值,根据数据的变化找出变化规律“an﹣1=1+3+5+…+(2n﹣1)=n2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴an﹣1=1+3+5+…+(2n﹣1)=n2.故答案为:42;n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,=an﹣1+(2n+1)+a n﹣1,=n2+2n+1+n2,=2n2+2n+1.故答案为:2n+1;2n2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016•安徽)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.(10分)(2016•安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).六、(本大题满分12分)21.(12分)(2016•安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【分析】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.(12分)(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S 关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.(14分)(2016•安徽)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.【分析】(1)根据三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC 是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=∠PEQ=90°,根据四边形的内角和得到∠MON=135°,求得∠APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,DE∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO+∠EDO=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AR=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.。
2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.方程=3的解是()A.﹣B.C.﹣4 D.46.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.49.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是.12.因式分解:a3﹣a=.13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.16.解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB 与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【考点】绝对值.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.3.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107 B.83.62×106 C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.5.方程=3的解是()A.﹣B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.6.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【考点】列代数式.【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户【考点】扇形统计图.【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.9.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.【考点】函数的图象.【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.【考点】点与圆的位置关系;圆周角定理.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是x≥3.【考点】解一元一次不等式.【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥312.因式分解:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.【考点】切线的性质;弧长的计算.【分析】根据已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题.【解答】解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【考点】相似形综合题.【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2016)0++tan45°=1﹣2+1=0.16.解方程:x2﹣2x=4.【考点】解一元二次方程-配方法;零指数幂.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB 与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【考点】作图-平移变换.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:1+3+5+…+(2n ﹣1)+( 2n+1 )+(2n ﹣1)+…+5+3+1= 2n 2+2n+1 .【考点】规律型:图形的变化类.【分析】(1)根据1+3+5+7=16可得出16=42;设第n 幅图中球的个数为a n ,列出部分a n 的值,根据数据的变化找出变化规律“a n ﹣1=1+3+5+…+(2n ﹣1)=n 2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n 行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n 幅图中球的个数为a n ,观察,发现规律:a 1=1+3=22,a 2=1+3+5=32,a 3=1+3+5+7=42,…,∴a n ﹣1=1+3+5+…+(2n ﹣1)=n 2.故答案为:42;n 2.(2)观察图形发现:图中黑球可分三部分,1到n 行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n ﹣1)+[2(n+1)﹣1]+(2n ﹣1)+…+5+3+1,=1+3+5+…+(2n ﹣1)+(2n+1)+(2n ﹣1)+…+5+3+1,=a n ﹣1+(2n+1)+a n ﹣1,=n 2+2n+1+n 2,=2n 2+2n+1.故答案为:2n+1;2n 2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l 1与l 2相互平行,A 、B 是l 1上的两点,C 、D 是l 2上的两点,某人在点A 处测得∠CAB=90°,∠DAB=30°,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得∠DEB=60°,求C 、D 两点间的距离.【考点】两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF 为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【考点】列表法与树状图法;算术平方根.【分析】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.【考点】相似形综合题.【分析】(1)根据三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=∠PEQ=90°,根据四边形的内角和得到∠MON=135°,求得∠APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AP=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.2016年6月25日。
安徽省2016年初中毕业学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】2-的绝对值是:2,故选B.【提示】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【考点】绝对值2.【答案】C【解析】10280a a a a ÷≠=(),故选C.【提示】直接利用同底数幂的除法运算法则化简求出答案.【考点】同底数幂的除法,负整数指数幂3.【答案】A【解析】783628362 00008.36210==⨯万,故选A.【提示】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数4.【答案】C【解析】圆柱的主(正)视图为矩形,故选C.【提示】根据三视图的定义求解.【考点】简单几何体的三视图5.【答案】D【解析】去分母得:2133x x +=-,解得:4x =,经检验4x =是分式方程的解,故选D.【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【考点】分式方程的解6.【答案】C【解析】∵2013年我省财政收入为a 亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为(18.9%)a +亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b 亿元,∴2015年我省财政收为(18.9%)(19.5%)b a =++;故选C.【提示】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b 亿元,即可得出a 、b 之间的关系式.【考点】列代数式7.【答案】D 【解析】根据题意,参与调查的户数为:648010%35%30%5%=+++(户),其中B 组用户数占被调查户数的百分比为:110%35%30%5%20%----=,则所有参与调查的用户中月用水量在6吨以下的共有:8010%20%24⨯+=()(户),故选D. 【提示】根据除B 组以外参与调查的用户共64户及A 、C 、D 、E 四组的百分率可得参与调查的总户数及B 组的百分率,将总户数乘以月用水量在6吨以下(A 、B 两组)的百分率可得答案.【考点】扇形统计图8.【答案】B【解析】∵8BC =,∴4CD =,在△CBA 和△CAD 中,∵B DAC C C ∠=∠∠=∠,,∴CBA CAD △∽△, ∴AC CD BC AC=, ∴2•4832AC CD BC ==⨯=,∴AC = B.【提示】根据AD 是中线,得出4CD =,再根据AAS 证出CBA CAD ∆∆∽,得出AC CD BC AC =,求出AC 即可.【考点】相似三角形的判定与性质9.【答案】A【解析】解:由题意,甲走了1小时到了B 地,在B 地休息了半个小时,2小时正好走到C 地,乙走了53小时到了C 地,在C 地休息了13小时.由此可知正确的图象是A ,故选A.【提示】分别求出甲乙两人到达C 地的时间,再结合已知条件即可解决问题.【考点】函数的图象10.【答案】B【解答】∵90ABC ∠=︒,∴90ABP PBC ∠+∠=︒,∵PAB PBC ∠=∠,∴90BAP ABP ∠+∠=︒,∴90APB ∠=︒,∴点P 在以AB 为直径的⊙O 上,连接OC 交⊙O 于点P ,此时PC 最小,在R t △BCO 中,∵9043OBC BC OB ∠=︒==,,,∴5OC ,∴532PC OC OP ====﹣. ∴PC 最小值为2,故选B .【提示】首先证明点P 在以AB 为直径的⊙O 上,连接OC 与⊙O 交于点P ,此时PC 最小,利用勾股定理求出OC 即可解决问题.【考点】点与圆的位置关系,圆周角定理二、填空题11.【答案】3x ≥【解析】不等式21x≥﹣ 解得:3x ≥故答案为:3x ≥【提示】不等式移项合并,即可确定出解集.【考点】解一元一次不等式12.【答案】(1)(1)a a a +-【解析】原式2(1)(1)(1)a a a a a ==+--,故答案为:(1)(1)a a a +-【提示】原式提取a ,再利用平方差公式分解即可.【考点】提公因式法与公式法的综合运用13.【答案】43π 【解析】∵AB 是⊙O 切线,∴AB OB ⊥,∴90ABO ∠=︒,∵30A ∠=︒,∴9060AOB A ∠=︒∠=︒﹣, ∴120BOC ∠=︒,∴BC 的长为120241803ππ=,故答案为43π.【提示】根据已知条件求出圆心角∠BOC 的大小,然后利用弧长公式即可解决问题.【考点】切线的性质,弧长的计算14.【答案】①③④【解析】∵△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,∴12∠=∠,10CE FE BF BC ===,,在R t △A BF 中,∵610AB BF ==,,∴8AF ,∴1082DF AD AF =-=-=,设EF x =,则6CE x DE CD CE x ==-=-,,在Rt △DEF 中,∵222DE DF EF +=,∴22262x x -+=(),解得103x =, ∴83ED =, ∵△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,∴346BH BA AG HG ∠=∠===,,,∴2345ABC ∠+∠=∠=︒,所以①正确;1064HF BF BH =-=-=,设AG y =,则8GH y GF y ==-,,在Rt △HGF 中,∵222GH HF GF +=,∴22248y y +=-(),解得3y =,∴35AG GH GF ===,, ∵6133842AB AG A D DE DF ∠=∠=÷==,,, ∴AB AG DE DF≠, ∴△ABG 与△DE F 不相似,所以②错误; ∵16392ABG S ∆==,1134622FGH GH S HF ==⨯⨯= ∴32ABG FGH S S ∆∆=,所以③正确; ∵325AG DF +=+=,而5GF =,∴AG DF GF +=,所以④正确.故答案为①③④.【考点】相似形综合题三、解答题15.【答案】020********tan ︒=-+=(-)【提示】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【考点】实数的运算,零指数幂,特殊角的三角函数值16.【答案】配方22141x x +=+﹣∴215x =(﹣)∴1x =∴1211x x ==【提示】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【考点】解一元二次方程-配方法,零指数幂17.【答案】(1)点D 以及四边形ABCD 另两条边如图所示.(2)得到的四边形A′B′C′D ′如图所示.【提示】(1)画出点B 关于直线AC 的对称点D 即可解决问题.(2)将四边形ABCD 各个点向下平移5个单位即可得到四边形A′B′C′D′.【考点】作图平移变换18.【答案】(1)21357164+++==,设第n 幅图中球的个数为a n ,观察,发现规律:222123132135313574a a a =+==++==+++=,,,…,∴2113521n a n n =+++⋯+=﹣(﹣). 故答案为:24;2n .(2)观察图形发现:图中黑球可分三部分,1到n 行,第n +1行,n +2行到2n +1行,即:11222135(21)[2(1)1](21)531135(21)(21)(21)531(21)21221n n n n n n n n a n a n n n n n +++⋯+++++⋯+++=+++⋯+++++⋯+++=+++=+++=++﹣﹣﹣﹣﹣﹣﹣故答案为:21n +;2221n n ++.【提示】(1)根据135716+++=可得出2164=;设第n 幅图中球的个数为n a ,列出部分n a 的值,根据数据的变化找出变化规律2113521n a n n =+++⋯+=﹣(﹣),依此规律即可解决问题; (2)观察(1)可将(2)图中得黑球分三部分,1到n 行,第1n +行,2n +行到21n +行,再结合(1)的规律即可得出结论.【考点】规律型:图形的变化类19.【答案】过点D 作1l 的垂线,垂足为F ,∵6030DEB DAB ∠=︒∠=︒,,∴30ADE DEBDAB ∠=∠∠=︒﹣, ∴△ADE 为等腰三角形,∴20DE AE ==.在Rt △DEF 中,1•6020102EF DE cos =︒=⨯= ∵DF AF ⊥,∴90DFB ∠=︒,∴AC ∥DF.由已知1l ∥2l ,∴CD ∥AF .∴四边形ACDF 为矩形,30CD AF AE EF ==+=.答:C 、D 两点间的距离为30m.【提示】直接利用等腰三角形的判定与性质得出20DE AE ==,进而求出EF 的长,再得出四边形ACDF 为矩形,则CD AF AE EF ==+求出答案.【考点】两点间的距离20.【答案】(1)把点A (4,3)代入函数a y x =得:3412a =⨯=, ∴12y x=.5OA ==,∵OA OB =,∴5OB =.∴点B 的坐标为(0,5)-.把B (05)-,,A (4,3)代入y kx b =+得:543b k b =-⎧⎨+=⎩解得:25k b =⎧⎨=-⎩ ∴25y x =-.(2)∵点M 在一次函数25y x =-上,∴设点M 的坐标为(,25)x x -,∵MB MC ==解得:52x =,∴点M 的坐标为5(,0)2.【提示】(1)利用待定系数法即可解答;(2)设点M 的坐标为(,25)x x -,根据MB MC =答.【考点】反比例函数与一次函数的交点问题21.【答案】(1)画树状图:共有16种等可能的结果数,它们是:11,14,17,18,41,44,47,48,71,74,77,78,81,84,87,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率63168P == 【提示】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【考点】列表法与树状图法;算术平方根.22.【答案】(1)将A (2,4)与B (6,0)代入2y ax bx =+, 得4243660a b a b +=⎧⎨+=⎩,解得:123a b ⎧=-⎪⎨⎪=⎩; (2)如图,过A 作x 轴的垂直,垂足为D (2,0),连接CD ,过C 作CE AD ⊥,CF x ⊥轴,垂足分别为E ,F ,11•24422OAD S OD AD ∆==⨯⨯=; 11•422422ACD S AD CE x x ∆==⨯⨯-=-(); 2211•43622BCD S BD CF x x x x ∆==⨯⨯+=-+(-), 则2242468OAD ACD BCD S S S S xx x x x ∆∆∆=++=+-+=-+﹣. ∴S 关于x 的函数表达式为2826S x x x =-+(<<),∵228(x 4)16S x x =-+=--+.∴当4x =时,四边形OACB 的面积S 有最大值,最大值为16.【提示】(1)把A 与B 坐标代入二次函数解析式求出a 与b 的值即可;(2)如图,过A 作x 轴的垂直,垂足为D (2,0),连接CD ,过C 作CE AD ⊥,CF x ⊥轴,垂足分别为E ,F ,分别表示出三角形OAD ,三角形ACD ,以及三角形BCD 的面积,之和即为S ,确定出S 关于x 的函数解析式,并求出x 的范围,利用二次函数性质即可确定出S 的最大值,以及此时x 的值.【考点】待定系数法求二次函数解析式,二次函数的最值23.【答案】(1)证明:∵点C 、D 、E 分别是OA ,OB ,AB 的中点,∴DE OC CE OD ==,,CE ∥OD∴四边形ODEC 是平行四边形,∴OCE ODE ∠=∠.∵△OAP ,△OBQ 是等腰直角三角形,∴90PCO QDO ∠=∠=︒.∴PCE PCO OCE QDO ODQ EDQ ∠=∠+∠=∠=∠=∠. ∵1122PC AO OC ED CE OD OB DQ ======, 在△PCE 与△EDQ 中,PC DE PCE EDQ CE DQ =⎧⎪∠=∠⎨⎪=⎩∴PCE EDQ ∆∆≌.(2)①如图2,连接RO ,∵PR 与QR 分别是OA ,OB 的垂直平分线,∴AP OR RB ==,∴ARC ORC ORQ BRO ∠=∠∠=∠,.∵90150RCO RDO COD ∠=∠=︒∠=︒,,∴30CRD ∠=︒,∴60ARB ∠=︒.∴△ARB 是等边三角形.②由(1)得,EQ EP DEQ CPE =∠=∠,,∴90PEQ CED CEP DEQ ACE CEP CPE ACE RCE ACR ∠=∠-∠-∠=∠-∠-∠=∠-∠=∠=︒, ∴△PEQ 是等腰直角三角形.∵ARB PEQ ∆∆∽,∴90ARB PEQ ∠=∠=︒,∴9045OCR ODR CRD ARB ∠=∠=︒∠=∠=︒,.∴135MON ∠=︒.此时P ,O ,B 在一条直线上,△P AB 为直角三角形,且90APB ∠=︒.∴22AB PE ===,∴AB PQ=【考点】相似形综合题。
2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)﹣2的绝对值是()A.﹣2B.2C.±2D.2.(4分)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.(4分)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108 4.(4分)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.(4分)方程=3的解是()A.﹣B.C.﹣4D.46.(4分)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12E x≥12A.18户B.20户C.22户D.24户8.(4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4B.4C.6D.49.(4分)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.(4分)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.2C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)不等式x﹣2≥1的解集是.12.(5分)因式分解:a3﹣a=.13.(5分)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.(5分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:(﹣2016)0++tan45°.16.(8分)解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(8分)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.(10分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.(12分)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.(12分)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.(14分)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB 为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)﹣2的绝对值是()A.﹣2B.2C.±2D.解:﹣2的绝对值是2.故选B.2.(4分)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8解:a10÷a2(a≠0)=a8.故选C.3.(4分)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108解:8362万=8362 0000=8.362×107,故选A.4.(4分)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.解:圆柱的主(正)视图为矩形.故选C.5.(4分)方程=3的解是()A.﹣B.C.﹣4D.4解:去分母得2x+1=3x﹣3,解得x=4,经检验x=4是分式方程的解,故选D.6.(4分)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.7.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12E x≥12A.18户B.20户C.22户D.24户解:根据题意,参与调查的户数为=80(户),其中B组用户数占被调查户数的百分比为1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选D.8.(4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4B.4C.6D.4解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.9.(4分)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.(4分)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.2C.D.解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB(直角三角形斜边中线等于斜边一半),∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)不等式x﹣2≥1的解集是x≥3.解:不等式x﹣2≥1,解得x≥3,故答案为x≥312.(5分)因式分解:a3﹣a=a(a+1)(a﹣1).解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为a(a+1)(a﹣1)13.(5分)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.14.(5分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:(﹣2016)0++tan45°.解:(﹣2016)0++tan45°=1﹣2+1=0.16.(8分)解方程:x2﹣2x=4.解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(8分)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=2n2+2n+1.解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴a n﹣1=1+3+5+…+(2n﹣1)=n2.故答案为42;n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,=a n﹣1+(2n+1)+a n﹣1,=n2+2n+1+n2,=2n2+2n+1.故答案为2n+1;2n2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.(10分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.解:(1)把点A(4,3)代入函数y=得a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得解得∴y=2x﹣5.(2)方法一:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得x=2.5,∴点M的坐标为(2.5,0).方法二:∵B(0,﹣5)、C(0,5),∴BC=10,∴BC的中垂线为直线y=0,当y=0时,2x﹣5=0,即x=2.5,∴点M的坐标为(2.5,0).六、(本大题满分12分)21.(12分)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.解:(1)画树状图:共有16种等可能的结果数,它们是11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.(12分)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得;(2)如图,过A作x轴的垂线,垂足为D(2,0),连接CD、CB,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.(14分)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB 为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,DE∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO+∠EDO=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AR=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△P AB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.。
安徽省 2016 年初中毕业学业考试数学答案分析第Ⅰ 卷一、选择题1.【答案】 B【分析】2的绝对值是:2,应选 B.【提示】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,从而得出答案. 【考点】绝对值2.【答案】 C【分析】 a 10 20) a8,应选 C.a( a【提示】直接利用同底数幂的除法运算法例化简求出答案.【考点】同底数幂的除法,负整数指数幂3.【答案】 A【分析】 8362万 8362 0000 107,应选A.【提示】科学记数法的表示形式为 a 10n的形式,此中 1 a <10 ,n为整数.确立n的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数同样. 当原数绝对值1时,n是正数;当原数的绝对值 1 时,n是负数.【考点】科学记数法—表示较大的数4.【答案】 C【分析】圆柱的主(正)视图为矩形,应选 C.【提示】依据三视图的定义求解.【考点】简单几何体的三视图5.【答案】 D【分析】去分母得: 2 x 1 3x 3 ,解得: x 4 ,经查验 x 4 是分式方程的解,应选 D.【提示】分式方程去分母转变为整式方程,求出整式方程的解获得x 的值,经查验即可获得分式方程的解.【考点】分式方程的解6.【答案】 C【分析】∵ 2013 年我省财政收入为 a 亿元, 2014 年我省财政收入比 2013 年增加 8.9%,∴ 2014 年我省财政收入为 a(1 8.9%) 亿元,∵2015年比2014 年增加9.5%,2015 年我省财政收为 b 亿元,∴ 2015 年我省财政收为 b a(1 8.9%)(1 9.5%) ;应选 C.【提示】依据2013 年我省财政收入和2014 年我省财政收入比2013 年增加 8.9%,求出 2014 年我省财政收入,再依据出2015 年比 2014 年增加9.5%, 2015 年我省财政收为 b 亿元,即可得出a、b 之间的关系式 . 【考点】列代数式7.【答案】 D【分析】依据题意,参加检查的户数为:64 80 (户),此中B组用户数占被检查户10% 35% 30% 5%数的百分比为: 1 10% 35% 30% 5% 20% ,则全部参加检查的用户中月用水量在 6 吨以下的共有:80 (10% 20%) 24 (户),应选 D.【提示】依据除 B 组之外参加检查的用户共64 户及 A、C、D、E 四组的百分率可得参加检查的总户数及B组的百分率,将总户数乘以月用水量在 6 吨以下( A、B 两组)的百分率可得答案 .【考点】扇形统计图8.【答案】 B【分析】∵ BC 8 ,∴ CD 4,在△ CBA 和△ CAD 中,∵ B DAC, C C ,∴△ CBA∽△ CAD ,∴AC CD,BC AC∴ AC2CD ?BC 4 8 32,∴AC 4 2,应选 B.【提示】依据 AD 是中线,得出CD4,再依据AAS证出CBA∽CAD ,得出AC CD,求出AC即可. BC AC【考点】相像三角形的判断与性质9.【答案】 A【分析】解:由题意,甲走了 1 小时到了 B 地,在 B 地歇息了半个小时, 2 小时正好走到 C 地,乙走了5小3时到了 C 地,在 C 地歇息了1小时 .由此可知正确的图象是 A ,应选 A. 3【提示】分别求出甲乙两人抵达 C 地的时间,再联合已知条件即可解决问题. 【考点】函数的图象10.【答案】 B【解答】∵ABC 90 ,∴ABPPBC 90 ,∵PAB PBC ,∴BAPABP 90 ,∴APB 90 ,∴点 P 在以 AB 为直径的⊙O 上,连结OC 交⊙ O 于点 P,此时 PC 最小,在 Rt△BCO 中,∵OBC 90 ,BC 4,OB 3 ,,∴ OCBO2 BC2 5∴PC OC OP 5﹣3 2.∴PC 最小值为 2,应选 B.【提示】第一证明点 P 在以 AB 为直径的⊙ O 上,连结 OC 与⊙ O 交于点 P,此时 PC 最小,利用勾股定理求出OC 即可解决问题 .【考点】点与圆的地点关系,圆周角定理二、填空题11.【答案】x 3【分析】不等式x﹣2 1解得: x 3故答案为:x 3【提示】不等式移项归并,即可确立出解集.【考点】解一元一次不等式12.【答案】a( a1)(a1)【分析】原式a(a21) a( a 1)(a 1) ,故答案为:a( a 1)(a1)【提示】原式提取a,再利用平方差公式分解即可.【考点】提公因式法与公式法的综合运用13.【答案】43【分析】∵ AB 是⊙ O 切线,∴ AB OB ,∴ ABO 90 ,∵A30,∴ AOB 90﹣ A 60 ,∴ BOC 120 , ∴ BC 的长为120 2 4,故答案为 4.1803 3【提示】依据已知条件求出圆心角∠BOC 的大小,而后利用弧长公式即可解决问题 .【考点】切线的性质,弧长的计算14.【答案】①③④【分析】∵△ BCE 沿 BE 折叠,点 C 恰落在边 AD 上的点 F 处,∴ 12,CEFE , BF BC 10,在 Rt △ABF 中,∵ AB 6,BF 10 , ∴AF 102 62 8 ,∴ DF AD AF 10 8 2 , 设EFx,则CEx ,DE CD CE 6 x,在 Rt △DEF 中,∵ DE 2 DF2EF 2, ∴22210,(6x )2x ,解得 x3∴ ED 8,3∵△ ABG 沿 BG 折叠,点 A 恰落在线段 BF 上的点 H 处, ∴ 3 4, BH BA 6, AG HG , ∴ 23ABC45 ,因此①正确; HF BF BH 106 4,设 AGy ,则 GHy , GF 8y ,在 Rt △HGF 中,∵ GH 2HF 2GF 2,∴ y 24 2(8 23 ,y ) ,解得 y∴ AG GH 3, GF 5 , ∵AAB6 3 1 AG3D ,8 , ,DE4 DF2∴AB AG ,DE DF∴△ ABG 与△ DE F 不相像,因此②错误;∵S ABG1 6 3 9,S FGH1GH HF1346222∴ S ABG3S FGH ,因此③正确;2∵ AGDF3 2 5,而 GF 5 ,∴ AG DF GF ,因此④正确 .故答案为①③④ .【考点】相像形综合题三、解答题15. 03 8 tan45 1 2 1 0【答案】(- 2016)【提示】直接利用特别角的三角函数值以及立方根的性质分别化简求出答案.【考点】实数的运算,零指数幂,特别角的三角函数值16.【答案】配方 x 2﹣2 x 1 4 12∴(﹣x1) 5∴ x 1 5∴ x 1 1 5, x 2 1﹣ 5【提示】在方程的左右两边同时加前一次项系数一半的平方,左侧就是完整平方式,右侧就是常数,而后利用平方根的定义即可求解【考点】解一元二次方程-配方法,零指数幂(2)获得的四边形A′B′C′如D图所示.【提示】(1)画出点 B 对于直线 AC 的对称点 D 即可解决问题 .(2)将四边形 ABCD 各个点向下平移 5 个单位即可获得四边形A′B′C′.D′【考点】作图平移变换18.【答案】(1 ) 1 3 5 7 16 42,设第 n 幅图中球的个数为a n,察看,发现规律: a1 1 3 22,a2 1 3 5 32, a3 1 3 5742,,∴a n﹣1 1 3 5 (﹣)n2 .2n 1故答案为:42; n2 .( 2)察看图形发现:图中黑球可分三部分, 1 到 n 行,第 n+1 行, n+2 行到 2n+1 行,即:1 3 5﹣﹣﹣5 3 1 (2 n 1) [2( n 1) 1] (2 n 1)1 3 5﹣(2 n 1)﹣5 3 1 (2 n 1) (2 n 1)a n﹣1 (2 n 1) a n﹣1n2 2n 1 n22n2 2n 1故答案为:2n 1;2n2 2n 1.【提示】( 1)依据1 3 5 7 16 可得出16 42;设第 n 幅图中球的个数为a n,列出部分a n的值,依据数据的变化找出变化规律a n﹣1 1 3 5 (﹣) 2,依此规律即可解决问题;2n 1 n( 2)察看( 1)可将( 2)图中得黑球分三部分, 1 到 n 行,第n 1行,n 2行到2n 1 行,再联合(1)的规律即可得出结论 .【考点】规律型:图形的变化类19.【答案】过点 D 作l1的垂线,垂足为F,∵DEB 60 , DAB 30 ,∴ADE DEB﹣ DAB 30 ,∴△ ADE 为等腰三角形,∴DE AE 20 .在 Rt△DEF 中,1EF DE? 60 20 10cos 2∵ DF AF ,∴DFB 90 ,∴AC∥DF.由已知 l1 ∥ l2,∴CD∥AF.∴四边形ACDF 为矩形,CD AF AE EF 30.答: C、D 两点间的距离为30m.【提示】直接利用等腰三角形的判断与性质得出DE AE 20 ,从而求出EF的长,再得出四边形ACDF 为矩形,则 CD AF AE EF 求出答案.【考点】两点间的距离20.【答案】(1)把点 A (4,3) a得: a 3 4 12 ,代入函数 yx∴ y 12. xOA 32 42 5,∵OA OB,∴ OB 5.∴点 B 的坐标为(0, 5) .把 B (0,5),A (4,3) 代入 yb 5 kx b 得:b 34kk 2解得:b 5∴y 2 x 5 .(2)∵点 M 在一次函数y 2x 5上,∴设点 M 的坐标为( x,2 x 5),∵ MB MC ,∴x2 (2x 5 5)2 x2 (2x 5 5)2 5解得: x,25∴点 M 的坐标为 (,0) .【提示】( 1)利用待定系数法即可解答;( 2)设点 M 的坐标为 ( x,2 x 5) ,依据 MBMC ,获得x 2 (2x 5 5)2 x 2 (2x 5 5)2 ,即可解答 .【考点】反比率函数与一次函数的交点问题21.【答案】(1)画树状图:共有 16 种等可能的结果数,它们是: 11, 14, 17, 18, 41, 44, 47, 48, 71, 74, 77, 78, 81, 84, 87,88 ;(2)算术平方根大于 4 且小于 7 的结果数为 6,因此算术平方根大于 4 且小于 76 3 的概率 P816【提示】( 1)利用树状图展现全部 16 种等可能的结果数,而后把它们分别写出来;( 2)利用算术平方根的定义找出大于 16 小于 49 的数,而后依据概率公式求解 .【考点】列表法与树状图法;算术平方根.22.【答案】(1)将 A (2,4) 与 B (6,0) 代入 yax 2 bx ,4a 2b 4a12得6b0 ,解得:;36ab 32 A作 x 轴的垂直, 垂足为 D (2,0) ,连结 CD ,过 C 作 CE AD ,CFx 轴 ,垂足分别为 E( )如图,过 ,F ,S OAD1OD ?AD 1 2 4 4;2 2SACD1AD ?CE 1 4 ( x 2) 2x 4;2 2S BCD1BD ?CF 1 4 ( - x 2 3x ) x 2 6x ,2 2则S S OADSACDSBCD4 2x ﹣4 x 26x x 2 8x .∴ S 对于 x 的函数表达式为 Sx 28(x2< x < 6),∵ S x 2 8x(x4) 2 16 .∴当 x4 时,四边形 OACB 的面积 S 有最大值,最大值为16.【提示】( 1)把 A 与 B 坐标代入二次函数分析式求出 a 与 b 的值即可;( 2)如图,过 A 作 x 轴的垂直, 垂足为 D (2,0) ,连结 CD ,过 C 作 CE AD ,CF x 轴 ,垂足分别为 E ,F ,分别表示出三角形OAD ,三角形 ACD ,以及三角形 BCD 的面积,之和即为 S ,确立出 S 对于 x 的函数分析式,并求出 x 的范围,利用二次函数性质即可确立出 S 的最大值,以及此时 x 的值 .【考点】待定系数法求二次函数分析式,二次函数的最值23.【答案】(1)证明:∵点 C 、 D 、 E 分别是 OA ,OB ,AB 的中点, ∴ DEOC ,CE OD ,CE ∥ OD∴四边形 ODEC 是平行四边形,∴ OCE ODE .∵△ OAP ,△ OBQ 是等腰直角三角形,∴ PCOQDO 90 . ∴ PCEPCO OCE QDOODQEDQ .∵ PC1AO OCED , CE OD1OB DQ 22PC DE在△ PCE 与△ EDQ 中,PCE EDQCEDQ∴ PCE ≌ EDQ .( 2)①如图 2,连结 RO ,∵ PR 与 QR 分别是 OA ,OB 的垂直均分线,∴AP OR RB ,∴ ARCORC , ORQ BRO .∵ RCORDO 90 , COD150 ,∴ CRD 30 ,∴ ARB60 .∴△ ARB 是等边三角形 .②由( 1)得, EQ EP , DEQ CPE ,∴ PEQCEDCEPDEQACECEP CPEACERCEACR90 ,∴ △PEQ 是等腰直角三角形 .∵ ARB ∽ PEQ ,∴ARB PEQ 90 ,∴ OCRODR 90 , CRD ARB 45 .∴MON 135 .此时 P, O,B 在一条直线上,△PAB 为直角三角形,且APB 90 .∴2 ABAB 2PE 2 2 PQ 2PQ ,∴2 .PQ 【考点】相像形综合题。
2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分) 1.(4分)(2016•安徽)﹣2的绝对值是( ) A .﹣2 B .2C .±2D .2.(4分)(2016•安徽)计算a 10÷a 2(a ≠0)的结果是( )A .a 5B .a ﹣5 C .a 8 D .a ﹣8 3.(4分)(2016•安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为( )A .8.362×107B .83.62×106C .0.8362×108D .8.362×108 4.(4分)(2016•安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是( )A .B .C .D .5.(4分)(2016•安徽)方程=3的解是( ) A .﹣ B .C .﹣4D .46.(4分)(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a 亿元和b 亿元,则a 、b 之间满足的关系式为( )A .b=a (1+8.9%+9.5%)B .b=a (1+8.9%×9.5%)C .b=a (1+8.9%)(1+9.5%)D .b=a (1+8.9%)2(1+9.5%)7.(4分)(2016•安徽)自来水公司调查了若干用户的月用水量x (单位:吨),按月用水量将用户分成A 、B 、C 、D 、E 五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以A .18户B .20户C .22户D .24户 8.(4分)(2016•安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC ,则线段AC 的长为( )A .4B .4C .6D .4 9.(4分)(2016•安徽)一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米,甲、乙两名长跑爱好者同时从点A 出发,甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C ,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (小时)函数关系的图象是( )A.B.C.D.10.(4分)(2016•安徽)如图,Rt△ABC 中,AB⊥BC,AB=6,BC=4,P是△ABC 内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016•安徽)不等式x﹣2≥1的解集是.12.(5分)(2016•安徽)因式分解:a3﹣a=.13.(5分)(2016•安徽)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O 的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.(5分)(2016•安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG 折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016•安徽)计算:(﹣2016)0++tan45°.16.(8分)(2016•安徽)解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2016•安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(8分)(2016•安徽)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016•安徽)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.(10分)(2016•安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.(12分)(2016•安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率. 七、(本大题满分12分) 22.(12分)(2016•安徽)如图,二次函数y=ax 2+bx 的图象经过点A (2,4)与B (6,0).(1)求a ,b 的值;(2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x (2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.八、(本大题满分14分) 23.(14分)(2016•安徽)如图1,A ,B 分别在射线OA ,ON 上,且∠MON 为钝角,现以线段OA ,OB 为斜边向∠MON 的外侧作等腰直角三角形,分别是△OAP ,△OBQ ,点C ,D ,E 分别是OA ,OB ,AB 的中点. (1)求证:△PCE ≌△EDQ ; (2)延长PC ,QD 交于点R . ①如图1,若∠MON=150°,求证:△ABR 为等边三角形;②如图3,若△ARB ∽△PEQ ,求∠MON 大小和的值.2016年安徽省中考数学试卷参考答案一、选择题1.B2.C3.A4.C5.D6.C7.D8.B9.A10.B二、填空题11.x≥312.a(a+1)(a﹣1)13..14.解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、15.(﹣2016)0++tan45°=1﹣2+1=0.16.解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.四、17.解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.2n+1;2n2+2n+1.五、19.解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).六、21.解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率= =.七、22.解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、23.(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AP=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.。
2016年安徽省初中毕业学业考试数学试题(含答案全解全析)(满分:150分时间:120分钟)第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.-2的绝对值是( )A.-2B.2C.±2D.122.计算a10÷a2(a≠0)的结果是( )A.a5B.a-5C.a8D.a-83.2016年3月份我省农产品实现出口额8 362万美元.其中8 362 万用科学记数法表示为( )A.8.362×107B.83.62×106C.0.836 2×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是( )5.方程2x+1x-1=3的解是( )A.-45B.45C.-4D.46.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%.若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式是( )A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( )组别月用水量x (单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( )A.4B.4√2C.6D.4√39.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米.甲、乙两名长跑爱好者同时从点A出发.甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C.下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4.P是△ABC内部的一个动点,且满足∠PAB=∠PBC.则线段CP长的最小值为( )A.32B.2 C.8√1313D.12√1313第Ⅱ卷(非选择题,共110分)二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x-2≥1的解集是.12.因式分解:a3-a= .13.如图,已知☉O的半径为2,A为☉O外一点.过点A作☉O的一条切线AB,切点是B.AO的延长线交☉O于点C.若∠BAC=30°,则劣弧BC⏜的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10.点E在CD上,将△BCE沿BE折叠,点C恰落在边AD 上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处.有下列结论:S△FGH;④AG+DF=FG.①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)3+tan 45°.15.计算:(-2 016)0+√-816.解方程:x2-2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A'B'C'D'.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n-1)+( )+(2n-1)+…+5+3+1= .五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点.某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.的图象在第一象限交于点A(4,3),与y轴的20.如图,一次函数y=kx+b的图象分别与反比例函数y=ax负半轴交于点B,且OA=OB.的表达式;(1)求函数y=kx+b和y=ax(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC.求此时点M的坐标.六、(本题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1) 写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本题满分14分)23.如图1,A,B分别在射线OM,ON上,且∠MON为钝角.现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;的值.②如图3,若△ARB∽△PEQ,求∠MON的大小和ABPQ答案全解全析:一、选择题1.B 因为一个负数的绝对值它的相反数,所以-2的绝对值是2,故选B.评析本题考查了绝对值,属容易题.2.C a10÷a2=a10-2=a8,故选C.3.A 8 362万=83 620 000=8.362×107,故选A.4.C 圆柱的主(正)视图为矩形,故选C.5.D 去分母得,2x+1=3x-3,∴x=4,经检验,x=4是原方程的根,故选D.评析本题考查了分式方程的解法,不要遗漏检验的步骤,属容易题.6.C 依题意得,2014年我省财政收入为a(1+8.9%)亿元,2015年我省财政收入为a(1+8.9%)(1+9.5%)亿元,∴b=a(1+8.9%)(1+9.5%),故选C.7.D 由题意得月用水量在6吨以下的占1-35%-30%-5%=30%,所有参与调查的用户共有64÷(10%+35%+30%+5%)=80(户),所以所有参与调查的用户中月用水量在6吨以下的共有80×30%=24(户).故选D.8.B 由AD是中线可得DC=12BC=4.∵∠B=∠DAC,∠C=∠C,∴△ADC∽△BAC,∴AC BC =DCAC,∴AC2=BC·DC=8×4=32,∴AC=4√2,故选B.评析本题考查了相似三角形的判定与性质,及三角形的中线,属容易题.9.A 甲从A到C共用时间为15÷15+0.5+5÷10=2(小时),乙从A到C共用时间为20÷12=53(小时),且甲在B点休息0.5小时,所以A中图象正确.10.B ∵∠PAB=∠PBC,∠PBC+∠ABP=90°,∴∠PAB+∠ABP=90°,∴∠P=90°.设AB的中点为O,则P在以AB为直径的圆上.当点O,P,C三点共线时,线段CP最短,∵OB=12AB=3,BC=4,∴OC=√32+42=5,又OP=12AB=3,∴线段CP长的最小值为5-3=2,故选B.二、填空题11.答案x≥3解析x-2≥1,∴x≥3.评析本题考查了不等式的解法,属容易题.12.答案a(a+1)(a-1)解析a3-a=a(a2-1)=a(a+1)(a-1).评析本题考查了因式分解,属容易题.13.答案4π3解析如图,连接OB,∵AB切☉O于B,∴∠ABO=90°,∵∠BAC=30°,∴∠BOC=30°+90°=120°, 又☉O的半径为2,∴劣弧BC ⏜的长为120×π×2180=4π3.评析 本题考查了圆的切线的性质,三角形的外角和及弧长的计算,属中等难度题.14.答案 ①③④解析 ∵∠ABG=∠HBG,∠FBE=∠CBE,∠ABC=90°,∴∠EBG=45°,①正确;∵AB=6,BF=BC=10,∴AF=8,∴FD=AD-AF=10-8=2,设DE=x,则EF=CE=6-x,在Rt △DEF 中,∵DF 2+DE 2=EF 2,∴22+x 2=(6-x)2,∴x=83, 即DE=83,∴EF=103, ∵BH=AB=6,∴HF=BF-BH=10-6=4,又易知Rt △DEF ∽Rt △HFG,∴ED HF =EF GF ,即834=103GF ,∴GF=5,∴AG=3,若△DEF ∽△ABG,则DE AB =DF AG ,但836≠23,故②不正确; ∵BH=6,HF=4,∴S △BGH =32S △FGH ,∵△ABG ≌△HBG,∴S△ABG=32S△FGH,③正确; ∵△FHG∽△EDF,∴FG EF =HF DE,∴FG103=483,∴FG=5,∴AG+DF=5,∴AG+DF=FG,④正确.三、15.解析原式=1-2+1=0.(8分)16.解析两边都加上1,得x2-2x+1=5,即(x-1)2=5,(4分)所以x-1=±√5,所以原方程的解是x1=1+√5,x2=1-√5.(8分) 四、17.解析(1)点D及四边形ABCD另两条边如图所示.(4分) (2)得到的四边形A'B'C'D'如图所示.(8分)18.解析(1)42;n2.(2)2n+1;2n2+2n+1.(每空2分)五、19.解析如图,过D作l1的垂线,垂足为F.∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB-∠DAB=30°,∴△ADE 为等腰三角形,∴DE=AE=20(米).(3分)在Rt △DEF 中,EF=DE ·cos 60°=20×12=10(米).(6分)∵DF ⊥AF,∴∠DFB=90°,∴AC ∥DF,已知l 1∥l 2,∴CD ∥AF,∴四边形ACDF 为矩形.∴CD=AF=AE+EF=30(米).答:C 、D 两点间的距离为30米.(10分)20.解析 (1)将A(4,3)代入y=a x ,得3=a 4,∴a=12.(2分) OA=√42+32=5.由于OA=OB 且B 在y 轴负半轴上,所以B(0,-5),将A(4,3)、B(0,-5)代入y=kx+b,得{3=4k +b ,-5=b .解得{k =2,b =-5.故所求函数表达式分别为y=2x-5和 y=12x .(6分)(2)因为MB=MC,所以点M 在线段BC 的中垂线上,即x 轴上.又因为点M 在一次函数的图象上,所以M 为一次函数图象与x 轴的交点.令2x-5=0,解得x=52. 所以,此时点M 的坐标为(52,0).(10分)六、21.解析 (1)按规定得到所有可能的两位数为11,14,17,18,41,44,47,48,71,74,77,78,81,84,87,88.(6分)(2)这些两位数共有16个,其中算术平方根大于4且小于7的共有6个,分别为17,18,41,44,47,48. 则所求概率P=616=38.(12分)七、22.解析 (1)将A(2,4)与B(6,0)代入y=ax 2+bx,得{4a +2b =4,36a +6b =0,解得{a =-12,b =3.(5分) (2)如图,过A 作x 轴的垂线,垂足为D(2,0),连接CD,过C 作CE ⊥AD,CF ⊥x 轴,垂足分别为E,F.二次函数表达式为y=-12x 2+3x.S △OAD =12OD ·AD=12×2×4=4,S △ACD =12AD ·CE=12×4×(x-2)=2x-4, S △BCD =12BD ·CF=12×4×(-12x 2+3x)=-x 2+6x,(8分)则S=S △OAD +S △ACD +S △BCD =4+(2x-4)+(-x 2+6x)=-x 2+8x.所以S 关于x 的函数表达式为S=-x 2+8x(2<x<6).(10分)因为S=-(x-4)2+16,所以当x=4时,四边形OACB 的面积S 取最大值,最大值为16.(12分)八、23.解析 (1)证明:∵点C,D,E 分别是OA,OB,AB 的中点,∴DE OC,CE OD.∴四边形ODEC 为平行四边形.∴∠OCE=∠ODE.又∵△OAP,△OBQ 都是等腰直角三角形,∴∠PCO=∠QDO=90°.∴∠PCE=∠PCO+∠OCE=∠QDO+∠ODE=∠EDQ.又∵PC=12AO=CO=ED,CE=OD=12OB=DQ,∴△PCE ≌△EDQ.(5分)(2)①证明:如图,连接OR.∵PR 与QR 分别为线段OA 与OB 的中垂线,∴AR=OR=BR,∠ARC=∠ORC,∠ORD=∠BRD.在四边形OCRD 中,∠OCR=∠ODR=90°,∠MON=150°,∴∠CRD=30°.∴∠ARB=∠ARO+∠BRO=2∠CRO+2∠ORD=2∠CRD=60°.∴△ABR 为等边三角形.(9分)②如图,由(1)知EQ=PE,∠DEQ=∠CPE.又∵AO ∥ED,∴∠CED=∠ACE.∴∠PEQ=∠CED-∠CEP-∠DEQ=∠ACE-∠CEP-∠CPE=∠ACE-∠RCE=∠ACR=90°, 即△PEQ 为等腰直角三角形.由于△ARB ∽△PEQ,所以∠ARB=90°.于是在四边形OCRD 中,∠OCR=∠ODR=90°,∠CRD=12∠ARB=45°,∴∠MON=135°. 此时P,O,B 在一条直线上,△PAB 为直角三角形且∠APB 为直角,所以AB=2PE=2×√22PQ=√2PQ,则AB PQ =√2.(14分)【以上各题其他解法正确可参照赋分!】。
2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D2.计算a10÷a2(a≠0)的结果是()A.a5 B.a﹣5 C.a8 D.a﹣83.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107 B.83.62×106 C.0.8362×108 D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()ACD5的解是()AC.﹣4 D.46.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%) B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5% D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()A.18户 B.20户 C.22户 D.24户8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B..6 D.9.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()AB.2 CD二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是.12.因式分解:a3﹣a= .13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0°.16.解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1= .五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.如图,一次函数y=kx+b的图象分别与反比例函数A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON2015年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分) 1、在―4,2,―1, 3这四个数中,比是―2小的数是( ) A 、―4 B 、2 C 、―1 D 、3 2、计算8×2的结果是( )A 、10B 、4C 、 6D 、43、移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A 、1.62×104B .1.62×106C .1.62×108D .0.162×1094、下列几何体中,俯视图是矩形的是( )5、与1+5最接近的整数是( )A 、4B 、3C 、2D 、16、我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x ,则下列方程正确的是( )A .1.4(1+x )=4.5B .1.4(1+2x )=4.5C .1.4(1+x )2=4.5 D .1.4(1+x )+1.4(1+x )2=4.57、某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:..A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分8、在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30° C .∠ADE =1 2∠ADC D .∠ADE = 13∠ADC 9、如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .2 5B .3 5C .5D .610、如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c的图象可能是( )二、填空题(本大题共4小题,每小题5分,满分20分) 11、-64的立方根是12. 如图,点A 、B 、C 在半径为9的⊙O 上,AB ⌒的长为π2,则∠ACB 的大小是13.按一定规律排列的一列数: 21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜想x 、y 、z 满足的关系式是 .14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则 1 a + 1b=1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8. 其中正确的是 (把所有正确结论的序号都选上). 三.(本大题共2小题,每小题8分,满分16分)15、先化简,再求值:⎝ ⎛⎭⎪⎫a 2a ―1 +1 1―a · 1 a ,其中a =- 1 2.【解】16、解不等式: x 3>1- x -36.【解】四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△AEBCFD G H第9题图AOCB 第12题图A 2B 2C 2,使A 2B 2=C 2B 2.18. 如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 的高度(3=1.7).五、(本大题共2小题,每小题10分,满分20分)19. A 、B 、C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将球随机地传给B 、C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人. (1)求两次传球后,球恰在B 手中的概率;(2)求三次传球后,球恰在A 手中的概率.20. 在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .(1)如图1,当PQ ∥AB 时,求PQ 的长度;(2)如图2,当点P 在BC 上移动时,求PQ 长的最大值六、(本题满分12分)21. 如图,已知反比例函数y = k1x 与一次函数y =k2x +b 的图象交于点A(1,8)、B(-4,m).(1)求k1、k2、b 的值; (2)求△AOB 的面积;(3)若M(x1,y1)、N(x2,y2)是比例函数y = k1x 图象上的两点,且x1<x2,y1<y2,指出点M 、N 各位于哪个象限,并简要说明理由.七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为x m ,矩形区域ABCD 的面积为y m 2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 为何值时,y 有最大值?最大值是多少?八、(本题满分14分)23. 如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC . (1)求证:AD =BC ; (2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求 ADEF的值.AB Cl第17题图第22题图2014年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(﹣2)×3的结果是()2.x2•x3=()3.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()4.下列四个多项式中,能因式分解的是()5.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()6.设n为正整数,且n<<n+1,则n的值为()7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()8.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()9.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()10.如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()二、填空题(本大题共4小题,每小题5分,满分20分)11.据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为.12.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= .13.方程=3的解是x= .14.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣|﹣3|﹣(﹣π)0+2013.16.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4× 2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点). (1)将△ABC 向上平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)请画一个格点△A 2B 2C 2,使△A 2B 2C 2∽△ABC ,且相似比不为1.18.如图,在同一平面内,两条平行高速公路l 1和l 2间有一条“Z ”型道路连通,其中AB 段与高速公路l 1成30°角,长为20km ;BC 段与AB 、CD 段都垂直,长为10km ,CD 段长为30km ,求两高速公路间的距离(结果保留根号).五、(本大题共2小题,每小题10分,满分20分)19.如图,在⊙O 中,半径OC 与弦AB 垂直,垂足为E ,以OC 为直径的圆与弦AB 的一个交点为F ,D 是CF 延长线与⊙O 的交点.若OE=4,OF=6,求⊙O 的半径和CD 的长.20.2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元. (1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?六、(本题满分12分)21.如图,管中放置着三根同样的绳子AA 1、BB 1、CC 1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A 、B 、C 三个绳头中随机选两个打一个结,再从右端A 1、B 1、C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.七、(本题满分12分)22.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”. (1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数y 1=2x 2﹣4mx+2m 2+1和y 2=ax 2+bx+5,其中y 1的图象经过点A (1,1),若y 1+y 2与y 1为“同簇二次函数”,求函数y 2的表达式,并求出当0≤x ≤3时,y 2的最大值.八、(本题满分14分)23.如图1,正六边形ABCDEF 的边长为a ,P 是BC 边上一动点,过P 作PM ∥AB 交AF 于M ,作PN ∥CD 交DE 于N . (1)①∠MPN= ; ②求证:PM+PN=3a ;(2)如图2,点O 是AD 的中点,连接OM 、ON ,求证:OM=ON ;(3)如图3,点O 是AD 的中点,OG 平分∠MON ,判断四边形OMGN 是否为特殊四边形?并说明理由.安徽省2013年中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分) 1.﹣2的倒数是( )A 、﹣B 、C 、2D 、﹣22.用科学记数法表示537万正确的是( ) A 、5.37×10 B 、45.37×105C 、5.37×106D 、5.37×1073.如图所示的几何体为圆台,其主(正)视图正确的是( )A B C D 4.下列运算正确的是( )A.235x y xy +=B.23555m m m ⋅=C.222()a b a b -=-D.236m m m ⋅= 5.已知不等式组,其解集在数轴上表示正确的是( ) A 、 B 、C 、D 、6.如图,AB ∥CD ,∠A+∠E=75°,则∠C 为( ) A 、60° B 、65° C 、75° D 、80°7.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( ) A 、438(1+x )2=389 B 、389(1+x )2=438 C 、389(1+2x )2=438 D 、438(1+2x )2=389 8.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( )A 、B 、C 、D 、9.图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是( ) A 、当x=3时,EC <EM B 、y=9时,EC >EMC 、当x 增大时,EC •CF 的值增大D 、当y 增大时,BE •DF 的值不变10.如图,点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中,不正确的是( )三、填空题(本大题4小题,每小题5分,满分20分) 11、12在实数范围内有意义,则x 的取值范围是 .13、14、因式分解2x y y -=15、如图P 为平行四边形ABCD 边AD 上的一点,E,F分别为PB,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为12,,S S S ,若2S =,则12S S += .第14题图16、在矩形ABCD 中,AB=1,BC=2,将该纸片折叠成一个平面图形,折痕EF 不经过A 点(E,F 是该矩形边界上的点),折叠后点A 落在点A ’处,给出以下判断:①当四边形A ’CDF 为正方形时,;②当时,四边形A ’CDF 为正方形;③当BA ’CD 为等腰梯形;④当四边形BA ’CD 为等腰梯形时,;其中正确的是 .(把所有正确结论的序号都填在横线上)三、(本大题共两小题,每小题8分,满分16分) 15、计算:22sin 30(1)|2︒+--16、已知二次函数的顶点坐标为(1,1)-,且经过原点(0,0),求该函数的解析式。
2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•安徽)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.(4分)(2016•安徽)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.(4分)(2016•安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.(4分)(2016•安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.(4分)(2016•安徽)方程=3的解是()A.﹣B.C.﹣4 D.46.(4分)(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.(4分)(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有A.18户B.20户C.22户D.24户8.(4分)(2016•安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.4 B.4C.6 D.49.(4分)(2016•安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.(4分)(2016•安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016•安徽)不等式x﹣2≥1的解集是.12.(5分)(2016•安徽)因式分解:a3﹣a=.13.(5分)(2016•安徽)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.(5分)(2016•安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016•安徽)计算:(﹣2016)0++tan45°.16.(8分)(2016•安徽)解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2016•安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(8分)(2016•安徽)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016•安徽)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D 是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.(10分)(2016•安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.六、(本大题满分12分)21.(12分)(2016•安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.(12分)(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.(14分)(2016•安徽)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•安徽)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【考点】绝对值.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(4分)(2016•安徽)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.【点评】此题主要考查了同底数幂的除法运算法则,正确掌握相关法则是解题关键.3.(4分)(2016•安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2016•安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.【点评】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图.5.(4分)(2016•安徽)方程=3的解是()A.﹣B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.【点评】此题考查了分式方程的解,求出分式方程的解是解本题的关键.6.(4分)(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【考点】列代数式.【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.【点评】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.7.(4分)(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有A.18户B.20户C.22户D.24户【考点】扇形统计图.【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.【点评】本题主要考查了扇形统计图,解题的关键是能识图,理解各部分百分率同总数之间的关系.8.(4分)(2016•安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.【点评】此题考查了相似三角形的判断与性质,关键是根据AA证出△CBA∽△CAD,是一道基础题.9.(4分)(2016•安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.【考点】函数的图象.【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C 地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.【点评】本题考查函数图象、路程.速度、时间之间的关系,解题的关键是理解题意求出两人到达C地的时间,属于中考常考题型.10.(4分)(2016•安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.【考点】点与圆的位置关系;圆周角定理.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.【点评】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P 位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016•安徽)不等式x﹣2≥1的解集是x≥3.【考点】解一元一次不等式.【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥3【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.12.(5分)(2016•安徽)因式分解:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)【点评】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2016•安徽)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.【考点】切线的性质;弧长的计算.【分析】根据已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题.【解答】解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.【点评】本题考查切线的性质、弧长公式、直角三角形两锐角互余等知识,解题的关键是记住弧长公式,求出圆心角是关键,属于中考常考题型.14.(5分)(2016•安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【考点】相似形综合题.【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.【点评】本题考查了相似形综合题:熟练掌握折叠和矩形的性质、相似三角形的判定方法;会运用勾股定理计算线段的长.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016•安徽)计算:(﹣2016)0++tan45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2016)0++tan45°=1﹣2+1=0.【点评】此题主要考查了实数运算,正确利用相关性质化简各数是解题关键.16.(8分)(2016•安徽)解方程:x2﹣2x=4.【考点】解一元二次方程-配方法;零指数幂.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.【点评】在实数运算中要注意运算顺序,在解一元二次方程时要注意选择适宜的解题方法.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2016•安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【考点】作图-平移变换.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.【点评】本题考查平移变换、轴对称的性质,解题的关键是理解轴对称的意义,图形的平移实际是点在平移,属于基础题,中考常考题型.18.(8分)(2016•安徽)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=2n2+2n+1.【考点】规律型:图形的变化类.【分析】(1)根据1+3+5+7=16可得出16=42;设第n幅图中球的个数为a n,列出部分a n的值,根据数据的变化找出变化规律“a n﹣1=1+3+5+…+(2n﹣1)=n2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴a n﹣1=1+3+5+…+(2n﹣1)=n2.故答案为:42;n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,=a n﹣1+(2n+1)+a n﹣1,=n2+2n+1+n2,=2n2+2n+1.故答案为:2n+1;2n2+2n+1.【点评】本题考查了规律型中图形的变化类,解题的关键是根据图中小球数量的变化找出变化规律“a n﹣1=1+3+5+…+(2n﹣1)=n2”.本题属于中档题,难度不大,解决该题型题目时,罗列出部分图中球的数量,根据数值的变化找出变化规律是关键.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016•安徽)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D 是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.【考点】两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.【点评】此题主要考查了两点之间的距离以及等腰三角形的判定与性质以及锐角三角函数关系,得出EF的长是解题关键.20.(10分)(2016•安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【点评】本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.六、(本大题满分12分)21.(12分)(2016•安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【考点】列表法与树状图法;算术平方根.【分析】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或B的概率.七、(本大题满分12分)22.(12分)(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,S△OAD=OD•A D=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.【点评】此题考查了待定系数法求二次函数解析式,以及二次函数的最值,熟练掌握二次函数的性质是解本题的关键.八、(本大题满分14分)23.(14分)(2016•安徽)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.【考点】相似形综合题.【分析】(1)根据三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=∠PEQ=90°,根据四边形的内角和得到∠MON=135°,求得∠APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,DE∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO+∠EDO=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ 中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AR=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ ,∴=.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,等边三角形的判定和性质,线段垂直平分线的性质,熟练掌握等腰直角三角形的性质是解题的关键.第21页(共21页)。
1.【答案】B. 【解析】试题分析:根据绝对值的性质可得-2的绝对值是2,故答案选B. 考点:绝对值. 2.【答案】C.考点:同底数幂的除法. 3.【答案】A. 【解析】试题分析:科学计数法是指:a ×n10,且101 a ,n 为原数的整数位数减一.8362万=83620000=8.362×107.故答案选A. 考点:科学计数法.4.【答案】C.【解析】试题分析:几何体的主视图是从正面看到的图形,圆柱从正面看是一个矩形,故答案选C. 考点:几何体的三视图.5.【答案】D.考点:解方式方程.6.【答案】C.【解析】试题分析:由题意可得2014年的财政收入为a(1+8.9%),2015年的财政收入为a(1+8.9%)(1+9.5%),所以b=a(1+8.9%)(1+9.5%),故答案选C.考点:列代数式.7.【答案】D.考点:扇形统计图;用样本估计总体.8.【答案】B. 【解析】试题分析:已知AD 是直线,BC=8,所以CD=4,又因∠B=∠DAC,∠C 为公共角,可得△ACD ∽Rt △BCA ,根据相似三角形的性质可得AC CD BC AC =,即ACAC 48=,解得AC=42,故答案选B.考点:相似三角形的判定及性质.9.【答案】A. 【解析】试题分析:由题意可知,甲图中休息半个小时,可排除选项B 、D,由题意可以计算出乙35小时到达终点,甲1小时到达B 处,休息半小时后再用半个小时到达终点,符合要求的选项只有A ,故答案选A. 考点:函数图像.10【答案】B.考点:最短距离问题.11.【答案】x ≥3. 【解析】试题分析:解不等式可得x ≥3. 考点:解不等式. 12.【答案】a (a+1)(a-1). 【解析】试题分析:先提公因式a 后再利用平方差公式分解即可,即原式=a (a 2-1)=a (a+1)(a-1). 考点:因式分解. 13.【答案】34.考点:切线的性质;弧长公式. 14.【答案】①③④. 【解析】试题分析:由折叠的性质可得BC=BF=10,CE=EF,AB=BH=8,AG=GH,∠CBE=∠FBE,∠ABG=∠HBG,因∠CBE+∠FBE+∠ABG+∠HBG=90°,所以∠HBG+∠FBE=40°,即∠EBG=45°,故①正确;在Rt △ABF 中,由勾股定理求得AF=8,所以DF=AD-AF=2,在Rt △DEF 中,设CE=EF=x,则DE=6-x ,由勾股定理得22262x x =-+)(,解得x=310,即CE=EF=310,DE=38;在Rt △GHF 中,设AG=GH=y,则GF=8-y ,HF=10-6=4,由勾股定理得222)8(4y y -=+,解得y=3,即GF=5;因∠A=∠D=90°,DFAGDE AB ≠,所以△DEF 与△ABG 不相似,故②错误;因9632121=⨯⨯=⋅=∆AB AG S ABG ,6432121=⨯⨯=⋅=∆HF GH S FGH ,所以ABG S ∆=FGH S ∆23,故③正确;因AG+DF=FG=5,所以④正确.故正确答案为①③④.考点:四边形综合题.15.【答案】0.考点:零指数幂;立方根;特殊角的三角函数值. 16.【答案】51,5121-+==x x . 【解析】试题分析:用配方法解方程即可.试题解析:考点:一元二次方程的解法.17.【答案】(1)详见解析;(2)详见解析.考点:轴对称作图;平移变换作图.18.【答案】(1)24,2n ;(2)2n+1,1222++n n .【解析】试题分析:(1)观察图形,得出规律,即可得答案;(2)中间这个数为2n-1+2=2n+1;由(1)的规律可得,原式=2n +2n+1+2n =1222++n n .试题解析:(1)24,2n ;(2)中间这个数为2n-1+2=2n+1;由(1)的规律可得,原式=2n +2n+1+2n =1222++n n .考点:规律探究题.19.【答案】30米.考点:解直角三角形的应用.20.【答案】(1)x y 12,y=2x-5;(2)(25,0).考点:待定系数法求函数解析式.21.【答案】(1)11、14、17、18、41、44、47、48、71、74、77、78、81、84、87、88;(2)83. 【解析】试题分析:(1)按顺序直接列举出所有的两位数即可;(2)找出这16个数中算术平方根大于4且小于7的两位数的个数,根据概率公式即可求得答案. 试题解析:考点:用列举法求概率. 22.【答案】(1)21-=a ,b=3;(2))62(82 x x x S +-=,16.试题解析:考点:二次函数的综合题.23.【答案】(1)详见解析;(2)①详见解析;②135°,2.(2)①连接OR,由已知可得PR、RQ分别是线段OA、OB的垂直平分线,根据线段垂直平分线的性质可得RA=RO=RB,∠ARC=∠ORC,∠ORD=∠BRQ,在四边形RCOD中,根据四边形的内角和为360°可求得∠PRQ=30°,所以∠ARB=2∠PRQ=60°,再由AR=RB 即可判定△ABR为等边三角形;②由(1)得EQ=PE,∠DEQ=∠CPE,由四边形CODE是平行四边形可得∠CED=∠COD=∠ACE,所以∠PEQ=∠CED-∠CEP-∠DEQ=∠ACE-∠CEP-1∠CPE=∠ACE-∠ACR=90°,由△ARB∽△PEQ可得∠ARB=90°,由(2)可得∠PRQ=2∠ARB=45°,在四边形RCOD 中,根据四边形的内角和为360°可求得∠MON=135°,由此可得P 、O 、B 三点共线,△APB 为直角三角形,根据直角三角形斜边的中线等于斜边的一半可得AB=2PE,在Rt △PEC 中,由勾股定理可得PE=22PQ,所以22222=⨯==PQPQ PQPE PQ AB . 试题解析:考点:三角形与四边形的综合题.。