2014-2015数值分析考试试题卷
- 格式:doc
- 大小:330.23 KB
- 文档页数:7
中北大学数值分析课程考试试题(课程名称须与教学任务书相同)2014/2015 学年第1 学期试题类别 A 命题期望值70拟题日期2014.12.12 拟题教师课程编号教师编号1120048基层教学组织负责人课程结束时间2014.11.28 印刷份数使用班级2014级研究生备注:(1)试题要求用B5纸由计算机打印,并将其电子稿于课程结束后上传至考务管理系统内。
(2)试题类别指A卷或B卷。
2014/2015 学年 第 1 学期末考试试题(A 卷)课程名称 数值分析1使用班级: 2014级研究生一、填空题(每空2分,共30分)1. 用1457ˆe536=作为常数e (自然对数的底)的近似值具有 位有效数字,用355ˆπ113=作为圆周率π的近似值的绝对误差限可取为 ;用ˆπˆe u= 作为πe u =的近似值 具有 位有效数字;2. 已知求解某线性方程组的Jacobi 迭代公式为(k+1)(k)(k)123(k+1)(k)(k)213(k+1)(k)(k)3120.10.27.20.10.28.3,1,2,0.20.28.4x x x x x x k x x x ⎧=++⎪=++=⎨⎪=++⎩ 记其迭代矩阵为J G ,则J ∞=G ,又设该线性方程组的解为*x ,取初始解向量为()T(0)0,0,0=x,则(1)=x ,(20)*∞-≤x x ;3. 方程e 0xx +=的根*x ≈ (要求至少具有7位有效数字);4. 用割线法求解方程ln 20x x --=的迭代公式为;若取初始值03x =,14x =,则由该公式产生的迭代序列的收敛速度的阶至少是 。
5. 取权函数()x ρ=[-1,1]上计算函数()1f x =与()221g x x =-的内积(),f g =;6. 设()()10.5,01,(1)2f f f -===,二阶差商[]1,0,1f -= ;7. 设()f x 在区间[,]a b 上具有连续的二阶导数,取等距节点(),0,1,,k x a kh k n =+= ,b ah n-=,则近似计算积分()d b a I f x x =⎰的复化梯形公式的截断误差T R = ;该公式具有 次代数精度;8.求解常微分方程初值问题()()00,,y f t y t t T y t y'=≤≤⎧⎪⎨=⎪⎩的Euler折线法的计算公式为;它是一个阶方法。
..数值分析试题集(试卷一)一( 10 分)已知 x 1* 1.3409 ,x 2* 1.0125 都是由四舍五入产生的近似值, 判断 x 1*x 2* 及 x 1* x 2*有几位有效数字。
二( 10 分)由下表求插值多项式x 01 2 y2 34 y1- 1三( 15 分)设 f ( x)C 4 [a,b] , H ( x )是满足下列条件的三次多项式H (a) f (a) , H (b) f (b) , H (c)f (c) , H (c) f (c)( a c b )求 f (x)H ( x) ,并证明之。
12四( 15 分)计算13 dx ,10 2。
x五( 15 分)在 [0,2]上取 x 0 0 , x 1 1 , x 22 ,用二种方法构造求积公式,并给出其公式的代数精度。
六( 10 分)证明改进的尢拉法的精度是 2 阶的。
七( 10 分)对模型 yy , 0 ,讨论改进的尢拉法的稳定性。
八( 15分)求方程 x 34x 2 7x 1 0 在 -1.2 附近的近似值,10 3。
-----------------------------------------------------------------------------------------------------------------------------(试卷二)一填空( 4*2 分)1 {k ( x) } k 0 是区间 [0, 1]上的权函数为( x) x 2 的最高项系数为 1 的正交多项式族,其中10 (x)1,则x0 ( x) dx ------------------- , 1 ( x) ------------------。
2 12 A,则 A1 4----------- ,( A) ----------------- 。
a 1 2 时, A 可作 LU 分解。
3 设 A,当 a 满足条件 ---------------- 14..4 设非线性方程 f ( x) (x33x23x1)( x 3) 0 ,其根 x1* 3 , x2*1,则求 x1* 的近似值时,二阶局部收敛的牛顿迭代公式是--------------------------- 。
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
一、单项选择题(每小题3分,共15分)1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。
A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+=C .2323x x -+= D .230.5 1.5x x -=-单项选择题答案1.A2.D3.D4.C5.B二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根。
5. 取步长0.1h =,用欧拉法解初值问题()211yy yx y ⎧'=+⎪⎨⎪=⎩的计算公式 .填空题答案1. 9和292.()()0101f x f x x x --3. 18 4. ()()120f f < 5. ()1200.11.1,0,1,210.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪=⎪⎩得 分 评卷人三、计算题(每题15分,共60分)1. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.计算题1.答案1. 解[]0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---()12x L x -=-所以分段线性插值函数为()10.50.80.3x x L x x x ⎧-∈⎪=⎨-⎪⎩()1.50.8L =2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X(保留小数点后五位数字).计算题2.答案1.解 原方程组同解变形为 1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间的近似根 (1)请指出为什么初值应取2?(2)请用牛顿法求出近似根,精确到0.0001.计算题3.答案4. 写出梯形公式和辛卜生公式,并用来分别计算积分1011dx x +⎰.计算题4.答案确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明题答案一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。
一、填空题(每空2分,共20分)1、解非线性方程阿西吧的f(x)=0的牛顿迭代法具有_______收敛2、迭代过程(k=1,2,…)收敛的充要条件是___3、已知数 e=2.718281828...,取阿西吧的近似值 x=2.7182,那麽x具有的有效数字是___4、高斯--塞尔德迭代法解阿西吧的线性方程组的迭代格式中求阿西吧的______________5、通过四个互异节点的插值多项式p(x),只要满足_______,则p(x)是不超过二次的多项式6、对于n+1个节点的插值求积公式至少具有___次代数精度.7、插值型求积公式的求积系数之和___8、 ,为使A可分解为A=LL T, 其中L为对角线元素为正的下三角形,a的取值范围_9、若则矩阵A的谱半径(A)=___10、解常微分方程初值问题的梯形格式是___阶方法二、计算题(每小题15分,共60分)1、用列主元消去法解线性方程组2、已知y=f(x)的数据如下x 0 2 3f(x) 1 3 2求二次插值多项式及f(2.5)3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过。
4、欧拉预报--校正公式求解初值问题取步长k=0.1,计算y(0.1),y(0.2)的近似值,小数点后保留5位.三、证明题(20分每题 10分)1、明定积分近似计算的抛物线公式具有三次代数精度2、若,证明用梯形公式计算积分所得结果比准确值大,并说明这个结论的几何意义。
参考答案:一、填空题1、局部平方收敛2、< 13、 44、5、三阶均差为06、n7、b-a8、9、 1 10、二阶方法二、计算题1、2、3、≈1.25992 (精确到,即保留小数点后5位)4、y(0.2)≈0.01903三、证明题1、证明:当=1时,公式左边:公式右边:左边==右边当=x时左边:右边:左边==右边当时左边:右边:左边==右边当时左边:右边:左边==右边当时左边:右边:故具有三次代数精度A卷一、填空题(本大题共8小题,每小题3分,共9×3=27分)1、要使11的近似值的相对误差不超过0.1%,应取______________有效数字。
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
山东科技大学2008-2009学年第一学期《数值分析》考试一、设x =9.1234, y =10.486均具有5位有效数字。
试分析x - y和x3 y啲绝对误差限和相对误差限。
二、求一条拟合3点A(0,1), B(1,3),C(2,2)的直线。
三、设n _ 2为正整数,c为正数,记x*二n.c1) 说明不能用下面的迭代格式1 _nx k 1 = cx k ,k =Q1,2:= = " =求x*的近似值。
2) 构造一个可以求x*的迭代格式,证明所构造迭代格式的收敛性,并指出收敛阶数四、给定线性方程组_4 -1 0卩1 一2〕-1 a 1 x2 = 64」]X3」:2J】0 1其中a为非零常数。
1) 写出Jacobi迭代格式与Gauss-Seidel迭代格式并分析其收敛性。
2) 分析a在什么范围取值时以上迭代格式收敛。
五、做一个5次多项式H (x)使得H(1) =3,H (2) = —1, H(4) =3,H'(1) =2, H'(2) =1, H *(2) =2,六、求f (x) =x2在区间0,1上的一次最佳一致逼近多项式。
七、给定积分公式:1f(x)d x :Af (-1) Bf (0) f (1)■ -41) 试确定求积系数A,B,C,使其具有尽可能高的代数精度,并指出其代数精度。
2) 试判断该求积公式是否为高斯型求积公式,并说明理由。
3) ................................................................................................ 将区间-1,作n等分,并记h=2,X j =-1 ih,i =0,1,............................................................ ,n,利用该求积公式n 构造一个复化求积公式。
数值分析A 试题2007.1第一部分:填空题10⨯51.设3112A ⎛⎫= ⎪⎝⎭,则A ∞=___________ 2()cond A =___________2.将4111A ⎛⎫= ⎪⎝⎭分解成TA LL =,则对角元为正的下三角阵L =___________,请用线性最小二乘拟合方法确定拟合函数()bx f x ae =中的参数:a = ___________ b =___________4.方程13cos 2044x x π--=在[0,1]上有 个根,若初值取00.95x =,迭代方法113cos 244k k x x π+=-的收敛阶是5.解方程2210x x -+=的Newton 迭代方法为___________,其收敛阶为___________6。
设()s x = 3232323,[0,1]31,[1,2]ax x x x x x bx x +-+∈--+∈为三次样条函数,则a = ___________ b =___________ 7。
要想求积公式:1121()(()f x dx A f f x -≈+⎰的代数精度尽可能高,参数1A = ___________ 2x =___________此时其代数精度为:___________8.用线性多步法2121(0.50.5)n n n n n y y h f f f ++++-=-+来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,该方法的局部截断误差为___________,设,0,f y μμ=〈其绝对稳定性空间是___________9。
用线性多步法2121()n n n n n y ay by h f f ++++-+=-来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,希望该方法的阶尽可能高,那么a = ___________ b =___________,此时该方法是几阶的:___________10。
2014---2015学年度第二学期《数学分析2》A 试卷一. 1.若f 2... .二. 1.若2.A.()x f 在[]b a ,上一定不可积;B.()x f 在[]b a ,上一定可积,但是()()⎰⎰≠ba ba dx x g dx x f ;C.()x f 在[]b a ,上一定可积,并且()()⎰⎰=b ab a dx x g dx x f ;D.()x f 在[]b a ,上的可积性不能确定.3.级数()∑∞=--+12111n n n nA.发散B.绝对收敛C.条件收敛D.不确定 4.设∑n u 为任一项级数,则下列说法正确的是() A.若0lim =∞→n n u ,则级数∑nu 一定收敛;B.若1lim1<=+∞→ρnn n u u ,则级数∑n u 一定收敛;1.1.⎰+02.∑∞=1!n n n n 3.()nnn nn21211+-∑∞= 五.判别在数集D 上的一致收敛性(每小题5分,共10分)1.()()+∞∞-===,,2,1,sin D n nnxx f n2.(][)∞+⋃-∞-=∑,22,2D xn n六.已知一圆柱体的的半径为R ,经过圆柱下底圆直径线并保持与底圆面030角向斜上方切割,求从圆柱体上切下的这块立体的体积。
(本题满10分) 七.将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力。
(本题满分10分)八.证明:函数()∑=3cos nnxx f 在()∞+∞-,上连续,且有连续的导函数.(本题满分9分)2014---2015学年度第二学期《数学分析2》B 卷•答案一、 1.?2.?3.?4.?5.?6.?7.?二=tdt t tt cos sin 2sin cos ⎰=⎰tdt t sin 2-----------------------------------4分 =2cos 2sin t t t C -++=C ----------------5分四.判别敛散性(每小题5分,共10分)1.dx xx ⎰-121arctan解:()241arctan lim1arctan 1lim 012211π=+=---→-→xx xx x x x -------3分且121<=p ,∴由柯西判别法知, 瑕积分dx xx ⎰-121arctan 收敛-------------------------5分2.()∑∞=2ln ln 1n nn解:ln lim n ∞→ 有五.1.f n 又f n 从而故知该函数列在D 上一致收敛.-------------------------5分 2.]1,1[,3sin 2-=∑D x nn解:因当D x ∈时,()nn n n x x u ⎪⎭⎫⎝⎛≤=323sin 2--------------2分而正项级数∑⎪⎭⎫⎝⎛n32收敛,-----------------------------4分由优级数判别法知,该函数列在D 上一致收敛.-------------5分 3.()()∑+∞∞-=+-,,12D nx n解:易知,级数()∑-n1的部分和序列{}n S 一致有界,---2分 而对()n x x V D x n +=∈∀21,是单调的,又由于 ()()∞→→≤+=∈∀n nn x x V D x n 011,2,------------------4分六.(⎰=12V π=76π七.dW ==1250πν=12250π(千焦)-----------------------------------10分 八.设()() 2,1=n x u n 是],[b a 上的单调函数,证明:若()∑a u n 与()∑b u n 都绝对收敛,则()∑x u n 在],[b a 上绝对且一致收敛.(本题满分9分) 证明:()() 2,1=n x u n 是],[b a 上的单调函数,所以有()()()b u a u x u n n n +≤------------------------------4分又由()∑a u n 与()∑b u n 都绝对收敛,所以()()[]∑+b u a u n n 收敛,--------------------------------------7分 由优级数判别法知:()∑x u n在],[b a 上绝对且一致收敛.--------------------------------2013---2014学年度第二学期《数学分析2》A试卷一.5.若6.若an=7.若8.二.1.A⎰101dxxB⎰∞+11dxxC⎰+∞sin xdx D⎰-1131dxx2.级数∑∞=1nna收敛是∑∞=1nna部分和有界的()A必要条件B充分条件C充分必要条件D无关条件3.正项级数∑n u收敛的充要条件是()A.0lim =∞→n n u B.数列{}n u 单调有界C.部分和数列{}n s 有上界D.1lim1<=+∞→ρnn n u n4.设a a a nn n =+∞→1lim则幂级数()1>∑b x a bn n 的收敛半径R=()A.aB.ba 1C.a 1D.ba 11⎪⎭⎫ ⎝⎛5.6..A.三.2.3.-⎰114.四.(16分)判别下列反常积分和级数的敛散性. 1.⎰+∞+-1324332x x dx ;2.dx x x ⎰++1)1ln(113.∑∞=-21ln n nn n; 4.∑∞=1!n n n nn e 五、判别函数序列或函数项级数在所给范围上的一致收敛性(每题5分,共10分)1.),(;,2,1,)(42∞-∞∈=+=-x n n x x f n2.nn n n 1)1(21∑∞=-+;+∞⋃-∞-=∈,5.05.0,D x 六.1.7π(2.七已知f2013---2014学年度第二学期《数学分析2》B 试卷一、 1.对任何可导函数()x f 而言,()()C x f dx x f +='⎰成立。
数值分析试卷及答案**注意:以下是一份数值分析试卷及答案,试卷和答案分别按照题目和解答的格式排版,以确保整洁美观,语句通顺。
**---数值分析试卷一、选择题(每题2分,共20分)1. 数值分析是研究如何用计算机处理数值计算问题的一门学科。
以下哪个选项不是数值分析的应用领域?A. 金融风险评估B. 天气预测C. 数据挖掘D. 图像处理2. 在数值计算中,稳定性是指算法对于输入数据的微小扰动具有较好的性质。
以下哪个算法是稳定的?A. 高斯消元法B. 牛顿迭代法C. 不动点迭代法D. 雅可比迭代法二、填空题(每题3分,共30分)1. 下面关于插值多项式的说法中,不正确的是:一般情况下,插值多项式的次数等于插值点的个数减1。
2. 线性方程组中,如果系数矩阵A是奇异的,则该方程组可能无解或有无穷多解。
......三、解答题(共50分)1. 请给出用割线法求解非线性方程 f(x) = 0 的迭代格式,并选择合适的初始值进行计算。
解:割线法的迭代公式为:x_(k+1) = x_k - f(x_k) * (x_k - x_(k-1)) / (f(x_k) - f(x_(k-1)))选择初始值 x0 = 1,x1 = 2 进行计算:迭代1次得到:x2 = x1 - f(x1) * (x1 - x0) / (f(x1) - f(x0))迭代2次得到:x3 = x2 - f(x2) * (x2 - x1) / (f(x2) - f(x1))继续迭代直至满足精度要求。
2. 对于一个给定的线性方程组,高斯消元法可以用来求解其解空间中的向量。
请简要描述高斯消元法的基本思想并给出求解步骤。
高斯消元法的基本思想是通过一系列的行变换将线性方程组化为上三角形式,然后再通过回代求解方程组的未知数。
求解步骤如下:步骤1:将方程组表示为增广矩阵形式,即将系数矩阵和常数向量连接在一起。
步骤2:从第一行开始,选取第一个非零元素作为主元,然后通过行变换将其它行的该列元素消去。
(首页)专业班级:学号:姓名:教务处试卷编号:备注:1、试卷背面为演草区(不准用自带草纸)装订线大连海事大学 2014-2015学年工程硕士《数值分析》试卷专业班级:学号:姓名:教务处试卷编号:备注:1、试卷背面为演草区(不准用自带草纸)装订线四.填空题(10道题,每题2分,共计20分)1. X=(7,-3,1,-5),则X 的1-范数‖X ‖1= ; 2-范数‖X ‖2= ;∞-范数‖X ‖∞= ;2. 对给定矩阵A,计算A 的1-范数为‖A ‖1= ; A 的∞-范数为‖A ‖∞= 。
3. 对给定矩阵A, 对A 做LU 分解;L= ;U= ;利用LU 分解可计算矩阵A 的行列式 det (A )= . 填空2-3题中 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122111221A 4. 变步长梯形求积公式为+=-21k k T T , 变步长Simpson 求积公式S k = 五.算法与计算题(45分 )1.给定节点x 0=1,x 1=2,x 2=3,x 3=4及其函数值.求 (1) 均差表(结果用截尾法保留4位小数) 错1个数扣 1 分,共6分(2)Newton 插值多项式P 3(x). (9分)第2页专业班级:学号:姓名:教务处试卷编号:备注:1、试卷背面为演草区(不准用自带草纸)装订线(3) 请用写出Newton插值算法 (15分)2.求解方程组(15分)10 -1 2 0 x1 14-1 11 -1 3 x2 62 -1 10 -1 x3 =190 3 -1 8 x4 22(1)写出Jacobi迭代方法的迭代矩阵(5分)(2)写出Gauss-seidel迭代方法的迭代矩阵(5分)(3)用高斯消去法求该方程组的解(5分)。
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
课程名称数值分析拟题老师签名教研室主任签名适应班级研2015 2015 至2016 学年一学期考试(A)卷《数值分析》考试试卷(A )参考答案(研2015级)一、判断题(18分)1(⨯),2(⨯),3(⨯),4(√),5(√),6(√)二、填空题(20分)1. 4,2. 112311214013⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭A , 3. 404.01,4. 3, 5. 0.25三、同解变换为1231231234275322361++=⎧⎪-+-=⎨⎪-+=-⎩x x x x x x x x x (4分)GS 迭代格式为(1)()()711123424(1)(1)()321213555(1)(1)(1)111312632++++++⎧=--⎪=++⎨⎪=--+⎩k k k k k k k k k x x x x x x x x x , ,2,1,0=k (4分)其中)0(1x ,)0(2x ,)0(3x 为初值;变换后的系数矩阵为严格对角占优矩阵,所以GS 迭代格式收敛。
(2分)四、对1(0,1)Tb =,计算111(1,1), 1,1),T T b b e u -=-=- (4分)1110012, 010TH I uu Q H ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭, (4分)110112.021TQAQ⎛⎫ ⎪ ⎪= ⎪⎝⎭(2分)五、1) Newton 迭代公式为01ln 2(1ln )3,,(0,1,).111k k k k k k k kx x x x x x x k x x +--+==-==-- (4分) 2) 令()ln 2,f x x x =-- 则 /1()10f x x=->, 故()f x 在[2,4]上有唯一的根. (4分) 3) 根据牛顿法收敛的充分条件可验证, 略. (4分)六、()220.50.51p x x x =++, (2分) ()()()321(2)H x p x ax x x =+--,()23(0.5)(2),H x x a x x '=++- 3(1)10.5.H a '=⇒= (3分)()3230.5 1.5 1.H x x x x ∴=-++ (3分) ()()()()()()24310124!=---R x f x x x ξ. (2分)七、x x f sin )(=,1)(0=x ϕ,x x =)(1ϕ,则 2),(2000πϕϕπ⎰==dx ,⎰===20201108),(),(ππϕϕϕϕxdx ,⎰==120321124),(ππϕϕdx x ,⎰==2001sin ),(πϕxdx f ,⎰==2011sin ),(πϕxdx x f ,法方程为 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛1124882*1*0322c c ππππ, 解得 1145.013242*0≈⎪⎭⎫ ⎝⎛-=ππc ,6643.041963*1≈⎪⎭⎫ ⎝⎛-=ππc , (6分)故最佳平方逼近元素为 x x p 6643.01145.0)(*+=(02x π≤≤), (2分)最佳平方逼近误差()()1***010,,0.00664k k k f f c f c c πδφ==-=--≈∑. (2分)八、1)梯形公式()[()()],2bab af x dx f a f b -≈+⎰112211[] 2.1835,2xe dx e e ≈+≈⎰(3分)又134121221max ()max (1)8.1548,x x x f x e f x x ≤≤≤≤⎛⎫''''=+=≈ ⎪⎝⎭截断误差1121max ()0.6796.12x R f x ≤≤''≤≈ (5分)2)Simpson 公式()()4(),62bab a a b f x dx f a f f b -⎡+⎤⎛⎫≈++ ⎪⎢⎥⎝⎭⎣⎦⎰11121.5211[4] 2.0263,6xe dx e e e ≈++≈⎰(8分)又1(4)876512121123624max ()max (1)198.4346xx x fx e f x xx x ≤≤≤≤⎛⎫''=+++=≈ ⎪⎝⎭截断误差(4)2121max ()0.068902880x R f x ≤≤≤≈(10分)。
数值分析试题一、 填空题(2 0×2′)1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是(B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
x 0 0.5 1 1.5 2 2.5 y =f (x )-2-1.75-10.2524.2511. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
模拟试卷(一)一、填空题(每小题3分,共30分)y f (X y)5.解初始值问题的改进的Euler 方法是 ________ 阶方法;y(X o ) y o5x-| 3X 2 0.1x 3 36 .求解线性代数方程组2x , 6X 2 0.7X 3 2的高斯一塞德尔迭代公式为X 1 2X 2 3.5x 3 1若取 X (0) (1. 1.1).则 X ⑴ ______________7.求方程Xf (X)根的牛顿迭代格式是 _______________ .&丨o (x). h(x).L . l n (X)是以整数点X o . X 1.L . X n .为节点的Lagrange 插值基函数,则nxj j (X k )= ----------------- .k 09.解方程组Ax b 的简单迭代格式X (k 1} Bx (k) g 收敛的充要条件是 ___________________ .10 .设f (-1)1. f (0)0. f (1) 1. f (2)5 ,则f (x)的三次牛顿插值多项式为 ___________________ ,其误差估计式为 _________________________ .二、综合题(每题10分,共60分)1. 求一次数不超过 4次的多项式p(x)满足:p(1) 15,p(1) 20 , p (1) 30p(2) 57 , p(2) 72.112.构造代数精度最高的形式为 °xf(x)dx A )f (3)Af(1)的求积公式,并求出1 5 232.设A2 1 0 , x 41422,贝V A =——.,X 广 ----------- 3.已知y=f(x)的均差14flX 0.X 1.X 2]— , flX 1.X 2.X 3]3^5 , flX 2.X 3.X 4]39115,8Hx o .X 2.X 3]- 3,那么均差 f [X 4,X 2, X 3]=4.已知n=4时Newton — Cotes 求积公式的系数分别是:C 04)-,C i (4)9016C (4) .C 2 451有3个不同节点的高斯求积公式的代数精度是次的.(差商)其代数精度.x k x k 13.用Newt on 法求方程x In x 2在区间(2,)内的根,要求 --------------- ----- 10X k25.用矩阵的直接三角分解法解方程组1 02 0X15 0 1 0 1 X 2 3 1 2 4 3 X 317 . 0 1 03 X 476试用数值积分法建立求解初值问题y f (: x ,y)的如下数值求解公式y(0) y o1 32 1 ⑷10. -x x -x, f ()( )(x 1)x(x 1)(x 2)/24( 1,2)6 6二、综合题y n 1y n 1hi (fn1 4fnf n 1),其中f i f (x, %), i n 1, n, n 1.三、证明题(10分) 设对任意的x ,函数f (x)的导数f (x)都存在且0f (x) M ,对于满足0 —的任意,迭代格式X k 1 X k f (xj 均收敛于f (x) 0的根x *.M参考答案一、填空题91, 16 1. 5 ; 2. 8, 9 ; 3.; 4.1545才1)(3 3x 2k) 0.1x 3k))/5 6. x 2k1)(2 2x (k1) 0.7x 3k))/6 , x 3k1)(1 才1) 2x 2k ")*2/75.(0.02 , 0.22, 0.1543)7. x k 1X kX k f(X k ) . 8 1 f (X k )'X j . 9.(B) 1.p(x) 1520( x 1) 15(x 1)2 7(x 1)3 (x 1)3(x 2) 5 4x 3x 2 2x 3 x 4其他方法: 设 p(x) 15 20(x 1) 15(x 1)2 7(x 1)3 (x 1)3(ax b)令 p(2)57 , p (2)72,求出 a 和 b.2•取f(x) 1,x ,令公式准确成立,得:5•解设1 02 0 11 020 1 0 1 l 21 1u22u 23 u 24 1 2 4 3l31 l321u33u340 1 0 3l 41l42 l 43 1u 44由矩阵乘法可求出U jj 和l ij1 1A 。
太原科技大学硕士研究生2014/2015学年第1学期《数值分析》课程试卷一、填空题(每空4分,共32分)1、设⎪⎩⎪⎨⎧≤≤-++<≤+=21,13210,)(2323x x bx x x x x x s 是以0,1,2为节点三次样条函数,则b=__-2___ 2、解线性方程组1231231238892688x x x x x x x x x -++=-⎧⎪-+=⎨⎪-+-=⎩ 的Jacobi 迭代格式(分量形式)为⎪⎩⎪⎨⎧+--=++-=++=+++)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1882/)96(88k k k k k k k k k x x x x x x x x x ,其相应的迭代矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-0812/102/9810。
3、方程03=-a x 的牛顿法的迭代格式为__3123kk k kx a x x x +-=-__________,其收敛的阶为 2 。
4、已知数x 的近似值0.937具有三位有效数字,则x 的相对误差限是310534.0-⨯解:x 1≈0.937, 311021)(-⨯≤x ε 33111110(x )2(x )0.53410x 0.937r εε--⨯=≤=⨯5、用列主元高斯消去法解线性方程组⎪⎩⎪⎨⎧=--=++=++2333220221321321x x x x x x x x 作第1次消元后的第2,3个方程分别为⎩⎨⎧=+--=-5.35.125.15.03232x x x x6、设⎪⎪⎭⎫⎝⎛-=3211A ,则=∞)(A Cond __4____.二、(本题满分15分)证明方程350x x --=在区间[1,2]有唯一实根,构造一种收敛的迭代格式1(),0,1,2,k k x x k φ+==使对任何初值0x ∈[1,2]都收敛,并说明收敛理由和收敛的阶。
解:(1)证明方程350x x --=在区间[1,2]有唯一实根.------5分设3()5f x x x =--,(1)(2)50f f =-<,而且2'()310f x x =->,所以3()5f x x x =--在区间[1,2]有唯一实根。
(2)构造迭代格式1(),0,1,2,k k x x k φ+==----------5分改写原方程为等价方程x =10,1,2,k x k +==…(3)说明收敛理由------4分由于()x ϕ=1<()x ϕ<2,而且'()x ϕ=2/3(5)/31/31x -+<<,故对0x ∈[1,2]都收敛。
(4)说明收敛的阶。
------1分'()a ϕ=2/3(5)/30a -+≠,故为线性收敛。
或者说收敛的阶为1.三、(本题满分15分)构造过节点(2,17),(0,1),(1,2),(2,19)-的牛顿差商表,并选取合适的节点分别构造二次、三次牛顿插值多项式)(),(32x P x P 以计算2(0.9)P 和3(0.9)p 。
--------------------- 5分把(2)17f -=,(2,0)8f -=-,(2,0,1)3f -=代入二阶牛顿插值多项式2001001201()()[,]()[,,]()()P x f x f x x x x f x x x x x x x =+-+--得:2()178(2)3(2)p x x x x =-+++----------------------------------------------4分故 2(0.9)178(0.92)3(0.92)0.9 1.63p =-+++=----------------------------1分 由三阶牛顿插值多项式:320123012()()[,,,]()()()p x p x f x x x x x x x x x x =+---将01232,0,1,2x x x x =-===和01235[,,,]4f x x x x =代入上式,得: 35178(2)3(2)4()(2)(1)x x x p x x x x -+++=++--------------------------------------4分故3250.924(0.9)(0.9)()(0.90)(0.91) 1.30p p +=+--≈-------------------------------1分四、(本题满分15分)设],[)(4b a C x f ∈,⎰--++-≈bab f a f a b b f a f a b dx x f )]()([12)()]()([2)(''2求上述求积公式的代数精度,并利用求积公式给出计算⎰b adx x f )(的一个复化求积公式。
考查知识点:根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。
解:1)(=x f 时,左边=a b -=右边; ----------------------1x x f =)(时,左边=)(2122a b -=右边2)(x x f =时,左边=)(3133a b -=右边;3)(x x f =时,左边=)(4144a b -=右边4)(x x f =时,左边=≠-)(5155a b 右边;故而所给求积公式具有3次代数精度。
------------------22)将],[b a 作n 等分,记.0,,n i ih a x nab h i ≤≤+=-=-----------------------1分∑⎰⎰-=+=11,)()(n i x x bai idx x f dx x f ------------------------------1分而,)]()([12)]()([2)(11''21⎰+++-++≈i ix x i i i i x f x f h x f x f h dx x f --------------------2分由此可得复化公式21''110()[()()][()()]212n bi i i i ai hh f x dx f x f x f x f x -++=⎧≈++-⎨⎩∑⎰)=21''10[()())][()()]212n i i i h h f x f x f a f b -+=+-∑+----------------4五、(本题满分13分)应用数值积分的有关理论建立常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy的Adams 二步显式公式:()()1113,,2n n n n n n hy y f x y f x y +--=+-⎡⎤⎣⎦ 证明:记,,0i b ah x a ib i n n -==+≤≤-----------------------------1分将原方程两边在区间[]1,n n x x +上积分得()()()()11,n nx n n x y x y x f x y x dx ++=+⎰-----------------------------------3分以1,n n x x +为插值节点作()(),f x y x 的一次插值多项式,()()()()()111111,,n nn n n n n n n nx x x x L x f x y x f x y x x x x x -------=+--,-----------3分代入前式,()()()()()()()()()()()()11111111111,,,3,,2n nn n nnx n n x x x n nn n n n n x x n n n nn n n n n y x y x f x y x dxx x x x y x f x y x dx f x y x dx x x x x hy x f x y f x y ++++-------≈+--=++--=+-⎡⎤⎣⎦⎰⎰⎰-------------------------------------6分将()n y x 用n y 代替,将≈换成=,则命题得证。
六、(本题满分10分)(从下列两题中选择一道题完成)1、]1,1[,)(-=在x x f 求关于}x ,x {1,42span =φ的最佳平方逼近多项式。
解: 内积⎰-=11,)()(,dx x g x f g f )(记240,121,x x φφφ===,,利用内积定义有2),(1100⎰-==dx ϕϕ,-------------------------0.5分32),(11210⎰-==dx x ϕϕ,52),(11420⎰-==dx x ϕϕ,52),(11411⎰-==dx x ϕϕ,72),(11621⎰-==dx x ϕϕ,92),(11822⎰-==dx x ϕϕ,1),(110==⎰-dx x f ϕ,-------------------------------1分21),(1121==⎰-dx x x f ϕ,------------------------------1分31),(1142==⎰-dx x x f ϕ-----------------------------1分法方程为:0122212351222235712223579c c c ⎛⎫⎛⎫ ⎪⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎪⎝⎭⎝⎭-------------------------------3分 0120.1171875,c 1.640625,c -0.8203125c ===得到f(x)的最佳平方逼多项式为24()0.1171875 1.640625x -0.8203125x p x =+-----------1分2、使电流i 通过Ω2的电阻,用伏特表测量电阻两端的电压V ,得到如下数据:试用最小二乘法建立电流i 与电压V 之间的经验公式。
解:(1)确定)(i V ϕ=的形式。
将表中给出的数据点描绘在坐标纸上,可以看出这些点位于一条直线的附近,故可选择线性函数来拟合这组实验数据,即取 bi a V +=(2)建立法方程组。
1112141618110A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,---------------------------263131221A A T ⎛⎫= ⎪⎝⎭,------------------------261.7442.4A y T ⎛⎫= ⎪⎝⎭--------------------------------2法方程:A Ac A y T T = ----------------3分⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛4.4427.6122131316b a(3)求经验公式解所得法方程组得0.2156164, 2.0320548a b =-=故所求经验公式为:0.2156164 2.03205479V i =-+--------------1分。