相互独立事件的概率
- 格式:doc
- 大小:229.00 KB
- 文档页数:6
概率计算的独立性概率计算的独立性是概率论的一个重要概念,指的是在某些条件下,两个或多个事件的发生与其他事件无关。
它在数学、统计学、经济学和其他领域都有广泛的应用。
在这篇文章中,我们将探讨概率计算的独立性的含义、性质以及它在现实生活中的应用。
首先,让我们来了解概率计算的独立性的含义。
简而言之,当两个或多个事件的发生与其他事件无关时,我们称它们是相互独立的。
数学上,我们可以用以下公式来表示独立事件的概率:P(A∩B) = P(A) ×P(B)。
其中,P(A∩B)表示事件A和事件B同时发生的概率,P(A)和P(B)分别表示事件A和事件B单独发生的概率。
独立性的性质有以下几点。
首先,如果事件A和事件B是独立的,那么它们的补事件(即不发生的事件)也是独立的。
其次,任意多个事件的并集也是独立的,即若事件A1到An互相独立,则它们的并集也是独立的。
最后,如果事件A和事件B是独立的,并且事件C与事件A、B互不相交,那么事件C与事件A、B的并集也是独立的。
概率计算的独立性在实际生活中有许多应用。
其中之一是赌博和博弈论。
在赌博中,计算独立事件的概率可以帮助人们制定合理的下注策略,从而增加获胜的机会。
例如,在掷硬币的游戏中,每次掷硬币的结果都是相互独立的。
所以,如果我们知道正面和反面出现的概率都是50%,那么我们可以根据这个信息来计算获胜的概率。
另一个应用是市场调查和统计学。
在市场调查中,人们经常需要根据样本数据来预测总体的情况。
如果样本数据是随机且相互独立的,那么我们可以使用概率计算的独立性来进行推断。
例如,如果我们想预测一个城市的人口中男性和女性的比例,我们可以使用随机抽样方法来获取样本数据。
如果抽样过程中每个人都是相互独立的,那么我们可以用这些数据来估计总体的情况。
此外,概率计算的独立性还可以在信号处理、通信系统和信息论中得到应用。
在这些领域,我们经常需要计算信号的传输概率。
如果信号是相互独立的,那么我们可以利用独立性的性质来简化计算过程。
概率与统计中的独立事件与条件概率概率与统计是一门研究事物发生概率和规律的学科,独立事件和条件概率是其中的两个重要概念。
独立事件指的是两个或多个事件之间互不影响,而条件概率则是在已知某个事件发生的前提下,另一个事件发生的概率。
以下将对概率与统计中的独立事件和条件概率进行详细阐述。
一、独立事件独立事件是指两个或多个事件之间没有相互影响的情况。
在概率与统计中,我们用P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。
如果两个事件A和B相互独立,那么事件A和B同时发生的概率就等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) × P(B)。
例如,假设有一枚公平的硬币,掷硬币的结果有两个可能性,正面和反面,分别记为事件A和事件B。
如果事件A表示掷硬币结果为正面的概率,事件B表示掷硬币结果为反面的概率,那么根据独立事件的定义,我们可以得到P(A∩B) = P(A) × P(B) = 1/2 × 1/2 = 1/4,即事件A和事件B同时发生的概率为1/4。
二、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率用P(A|B)表示,读作“在事件B发生的条件下,事件A发生的概率”。
条件概率的计算公式为P(A|B) = P(A∩B)/P(B)。
举例来说,假设有一批产品,其中10%的产品有缺陷,现在随机抽取一件产品,事件A表示这件产品有缺陷,事件B表示这件产品是某个特定品牌的产品。
如果已知这件产品是该品牌的产品,我们想要知道它有缺陷的概率,即求解P(A|B)。
根据条件概率的定义,我们可以通过计算P(A∩B)/P(B)来得到答案。
假设该品牌的产品有总体占比为20%,即P(B) = 0.2。
又已知有缺陷的产品占总体的10%,即P(A∩B) = 0.1,将这些数据代入条件概率的计算公式,我们可以得到P(A|B) = P(A∩B)/P(B) = 0.1/0.2 = 0.5。
互斥事件和独立事件的概率及条件概率【知识要点】1.一般地,设A、B为两个事件,若A、B不可能同时发生,则A、B 为.P(A∪B)=P(A)+P(B).2.一般地,设A、B为两个事件,且P(B|A)==条件概率具有以下性质:(1) ;(2)如果事件B和C是两个互斥事件,则P(B∪C|A)=.3.互相独立事件:事件A(或B)是否发生对事件B(或A)发生的没有影响,即P(B|A)=P(B),P(A|B)=P(A),这样的两个事件叫做相互独立事件.4.如果两个事件A与B相互独立,那么事件A与B,A与B,A与B也都是事件.5.设事件A发生的概率为p,则在n次独立重复试验中事件A发生k次的概率为.6.两个相互独立事件A、B同时发生的概率为P(A·B)=.【基础检测】1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.恰有1个白球与恰有2个白球B.至少有1个白球与都是白球C.至少有1个白球与至少有1个红球D.至少有1个白球与都是红球2.同时掷3枚均匀硬币,至少有2枚正面向上的概率为( )A.0.5 B.0.25 C.0.125 D.0.3753.甲、乙两位同学独立地解决一道数学试题,他们答对的概率分别是0.8和0.9,则甲、乙都答对的概率为.4.袋中有5个球,其中3个白球,2个黑球,现不放回的每次抽取一个球,则在第一次抽到白球的条件下,第二次抽到白球的概率为.5.一位学生每天骑车上学,从他家到学校共有5个交通岗.假设他在每个交通岗遇到红灯是相互独立的,且每次遇到红灯的概率为13,则他在上学途中恰好遇到3次红灯的概率为,他在上学途中至多遇到4次红灯的概率为.典例分析:例1.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入2只苍蝇(此时笼子里共有8只蝇子,其中6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只往外飞,直到2只苍蝇都飞出,再关闭小孔.(1)求笼内恰好剩下1只果蝇的概率;(2)求笼内至少剩下5只果蝇的概率;(3)求笼内至多剩下5只果蝇的概率.例2.甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人回答正确与否相互之间没有影响.(1)求甲队总分不低于2分的概率;(2)用A 表示“甲、乙两队总得分之和等于3”这一事件,B 表示“甲队总得分大于乙队总得分”这一事件,求P (AB ).离散型随机变量的分布列、期望与方差【知识要点】1.离散型随机变量的概念随着试验结果变化而变化的变量称为随机变量,通常用字母X、Y表示.如果对于随机变量可能取到的值,可以按一一列出,这样的变量就叫离散型随机变量.2.离散型随机变量的分布列(1)设离散型随机变量X可能取的值为x1,x2,…,x i,…,X取每一个值x i(i=1,2,…)的概率P(X=x i)=p i(i=1,2,…),则称下表为随机变量X的概率分布,简称X的①;②;(3)两点分布:(4)超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰好有X件次品,则事件{X=k}发生的概率为P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M,N∈N*,此时称分布列:(5)二项分布如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(ξ=k)=C k n p k·(1-p)n-k,其中k=0,1,2,…,n,此时称ξ服从二项分布,记为ξ~B(n,p),并称p为成功概率.3.离散型随机变量的期望与方差则称Eξ=为随机变量型随机变量取值的.把Dξ=叫做随机变量的方差,Dξ的算术平方根Dξ叫做随机变量ξ的,记作.随机变量的方差与标准差都反映了随机变量取值的.4.基本性质若η=aξ+b(a,b为常数),Eη=E(aξ+b)=;Dη=D(aξ+b)=;若ξ服从两点分布,则Eξ=,Dξ=,若X服从二项分布,即ξ~B(n,p),则Eξ=,Dξ=.【基础检测】1.口袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码,任取2个钢球;设X表示所取2球的号码之和,则X的所有可能的值的个数为( )A.25个B.10个C.7个D.6个2.设随机变量ξ的概率分布列为P(ξ=k)=ck+1,k=0,1,2,3,则c=.3.某批花生种子,每颗种子的发芽率为45,若每坎播下5颗花生种子,则每坎种子发芽颗数的平均值为颗,方差为.4.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=5.随机变量ξ的分布列为则Eξ=,=,=.6.有10张大小形状相同的卡片,其中8张标有数字2,2张标有数字5,从中随机抽取3张卡片,设3张卡片数字之和为X,求X的分布列、期望与方差.综合练习卷1.在区间[-π2,π2]上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A.13B.2πC.12D.232.设随机变量ξ的分布列为P (ξ=i )=a (13)i ,i =1,2,3,则a 的值为( )A .1 B.913 C.1113 D.27133.一份数学试卷由25个选择题构成,每个选择题有4个选项,其中有且仅有1个选项是正确的,每题选得正确得4分,不选或选错得0分,满分100分.小强选对任一题的概率为0.8,则他在这次考试中得分的期望为( )A .60分B .70分C .80分D .90分4.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次;则向上的数之积的数学期望是 .5.用三种不同的颜色给图中的3个矩形随机涂色,每个矩形只涂一种颜色,求: (1)3个矩形颜色都相同的概率为 ;(2)3个矩形颜色都不同的概率为 .6.某单位订阅《人民日报》的概率为0.6,订阅《参考消息》的概率为0.3,则它恰好订阅其中一份报纸的概率为 .7.(2011湖南)某商店试销某种商品20天,获得如下数据:品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至...3件,否则不进货...,将频率视为概率.(1)求当天商店不进货...的概率; (2)设X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望.8.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。
英文回答:The calculation of the probability for the simultaneous occurrence of two independent events A and B can be derived using the formula P(A and B) = P(A) * P(B), where P(A) represents the probability of event A transpiring, and P(B) symbolizes the probability of event B occurring. This formula operates under the assumption that the two events are independent, signifying that the manifestation of one event holds no influence over the manifestation of the other event. For instance, should the probability of event A occurring amount to 0.4, and the probability of event B occurring measure up to 0.3, then the likelihood of both A and B occurring concurrently would stand at 0.4 * 0.3 = 0.12.对两个独立事件A和B同时发生的概率的计算可以使用公式P(A和B)=P(A)×P(B)来推算,其中P(A)代表事件A发生的概率,而P(B)象征事件B发生的概率。
这一公式的运作假设是两个事件是独立的,表明一个事件的表现对另一个事件的表现没有影响。
相互独立事件同时发生的概率知识要点:1.对于事件A、B,如果事件A(或B)是否发生对事件B(或A)发生的概率没有影响,则称这样的两个事件为相互独立事件.2.相互独立事件的概率乘法公式:设事件A、B相互独立,把A、B同时发生的事件记为(A·B),则有P(A·B)=P(A)·P(B).上述公式可以推广如下:如果事件A1,A2,……,A n相互独立,那么这n个事件都发生的概率等于每个事件发生的概率的积.即P(A1·A2·……·A n)=P(A1)·P(A2)·……·P(A n).3.如果事件A在一次试验中发生的概率是P,那么它在n次独立重复试验中恰好发生k次的概率:P n(k)=P k(1-P)n-k.实际上,它就是二项展开式[(1-P)+P]n的第(k+1)项.要求:1.掌握相互独立事件的概率乘法公式,会用它计算一些事件的概率.2.掌握计算事件在n次独立重复试验中恰好发生k次的概率.典型题目例1.加工某种零件先后需经历三道工序,已知第一、二、三道工序的次品率分别为2%、3%、5%.假定各道工序互不影响,问加工出来的零件的次品率为多少?解:设A1、A2、A3分别表示三道工序得到次品的事件,由题设知,它们是相互独立的事件,而加工得到次品是指以上三个工序中至少有一个工序是次品,即次品事件A=.∴P(A)=0.02×0.97×0.95+0.98×0.03×0.95+0.98×0.97×0.05+0.02×0.03×0.95+0.02×0.97×0.05+0.98×0.03×0.05+0.02×0.03×0.05=0.09693.例2.某商人购进光盘甲、乙、丙三件,每件100盒,其中每件里面都有1盒盗版光盘.这个商人从这3件光盘里面各取出1盒光盘卖给了李四,求:(1)李四恰好买到1盒盗版光盘的概率;(2)李四至少买到1盒盗版光盘的概率.解:(1)记从甲、乙、丙三件光盘里面各取出1盒光盘,得到非盗版光盘的事件分别为A、B、C,则事件·B·C、A··C、A·B·是互斥的;事件、B、C,A 、、C,A、B、彼此之间又是相互独立的.所以P(·B·C+A··C+A·B·)=P(·B·C)+P(A··C)+P( A·B·)=P()·P(B)·P(C)+P(A)·P()·P(C)+P(A)·P(B)·P()=0.01×0.99×0.99+0.99×0.01×0.99+0.99×0.99×0.01≈0.03.(2)事件A、B、C的设法同第(1)小题.因为P(A·B·C)=P(A)·P(B)·P(C)=0.99×0.99×0.99=0.993,所以1-P(A·B·C)=1-0.993≈0.03.例3.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.8. 计算:(1)两人都击中目标的概率;(2)其中恰有1人击中目标的概率;(3)至少有一人击中目标的概率.分析:此题有三问,要依层次来解.解:(1)记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B.显然,“两人各射击一次,都击中目标”就是事件:A·B,又由于事件A与B相互独立,∴P(A·B)=P(A)·P(B)=0.8×0.8=0.64.(2)“两人各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A·),另一种是甲未击中乙击中(即·B),根据题意这两种情况在各射击一次时不可能同时发生,即事件A·与·B是互斥的,所以所求概率为:P=P( A·)+P(·B)=P(A)·P()+P()·P(B)=0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32.(3)解法1:“两人各射击一次,至少有一人击中目标”的概率为:P=P(A·B)+[P(A·)+P(·B)]=0.64+0.32=0.96.解法2:“两人都未击中目标”的概率是:P(·)=P()·P()=(1-0.8)×(1-0.8)=0.2×0.2=0.04.∴至少有一人击中目标的概率为:P=1-P(·)=1-0.04=0.96.点评:由(3)可见,充分利用(1)、(2)两问的结果解题很简单.但是(3)的解法2也告诉我们,即使是不会求(1)、(2),也可独立来解(3).在考试中要特别注意这一点.例4.某种大炮击中目标的概率是0.3,最少以多少门这样的大炮同时射击一次,就可以使击中目标的概率超过95%?解:设需要n门大炮同时射击一次,才能使击中目标的概率超过95%,n门大炮都击不中目标的概率为×0.30×0.7n=0.7n.至少有一门大炮击中目标的概率为1-0.7n.根据题意,得1-0.7n>0.95,即0.7n<0.05, nlg0.7<lg0.05,n>≈8.4.答:最少以9门这样的大炮同时射击一次,就可使击中目标的概率超过95%.例5.要制造一种机器零件,甲机床的废品率是0.04,乙机床的废品率是0.05,从它们制造的产品中,各任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中恰有一件废品的概率;(3)其中至多有一件废品的概率;(4)其中没有废品的概率;(5)其中都是废品的概率.分析:应先确定所应用的每一事件的概率,以便求解.解:依题意可知:显然,这两个机床的生产应当看作是相互独立的.设A=“从甲机床抽得的一件是废品”,B=“从乙机床抽得的一件是废品”.则P(A)=0.04, P()=0.96, P(B)=0.05, P()=0.95.由题意可知,A与B,与B,A与,与都是相互独立的.(1)“至少有一件废品”=A·B +·B+A·P(A·B +·B+A·)=1-P(·)=1-P()·P()=1-0.96×0.95=0.088.(2)“恰有一件废品”=·B+A·.P(·B+A·)=P(·B)+P(A·)=P()·P(B)+P(A)·P()=0.96×0.05+0.04×0.95=0.048+0.038=0.086.(3)“至多有一件废品”=A·+·B+·P(A·+·B+·)=P(A·)+P(·B)+P(·)=P(A)·P()+P()·P(B)+P()·P()=0.04×0.95+0.96×0.05+0.96×0.95=0.998.另外的解法是:“至多有一件废品不发生”=“两件都是废品”=A·BP(A·+·B+·)=1-P(A·B)=1-P(A)·P(B)=1-0.04×0.05=0.998.(4)“其中无废品”=“两件都是成品”=·P(·)=P()·P()=0.96×0.95=0.912.(5)“其中全是废品”=A·BP(A·B)=P(A)·P(B)=0.04×0.05=0.002.点评:本例有很强的综合性,学习中要注意认真体会加以理解掌握之.例6.已知射手甲命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是.问三人同时射击目标,目标被击中的概率是多少?解:设甲命中目标为事件A,乙命中目标为事件B,丙命中目标为事件C,则击中目标表示事件A、B、C中至少有一个发生.但应注意,A、B、C这三个事件并不是互斥的,因为目标可能同时被两人或三人击中,因此,可视目标被击中的事件的对立事件是目标未被击中,即三人都未击中目标,它可以表示为,而三人射击结果相互独立.所以P()=P()·P()·P()=[1-P(A)]·[1-P(B)]·[1-P(C)]=(1-)(1-)(1-)=.所以,目标被击中的概率是1-P()=1-.。
第七节 相互独立事件同时发生的概率一、基本知识概要:1.相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,那么称事件A ,B 为相互独立事件。
注: 如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也是相互独立的。
两个相互独立事件A 、B 同时发生的概率为:P (A ·B )=P (A )·P (B );如果事件A 1,A 2,…n A 彼此独立,则P (A 1·A 2·…n A )=P (A 1)·P (A 2)·…P (n A );2.事件的积:设事件A 、B 是两个事件,A 与B 同时发生的事件叫做事件的积,记作A ·B 。
(此概念可推广到有限多个的情形)3.独立重复试验(又叫贝努里试验):在同样的条件下重复地、各次之间相互独立地进行的一种试验。
n 次独立重复试验中事件A 恰好发生k 次的概率记为P n (k ),设在一次试验中事件A 发生的概率为P ,则P n (k )=k n k k n P P C --)1(。
二、重点难点: 对相互独立事件、独立重复试验的概念的理解及公式的运用是重点与难点。
三、思维方式: 分类讨论,逆向思维(即利用P (A )=1-P (A ))四、特别注意:1.事件A 与B(不一定互斥)中至少有一个发生的概率可按下式计算:P(A+B)=P(A)+P(B)-P(AB)。
特别地,当事件A 与B 互斥时,P(AB)=0,于是上式变为P(A+B)=P(A)+P(B)2.事件间的“互斥”与“相互独立”是两个不同的概念:两事件互斥是指两个事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一事件发生的概率没有影响.五、例题:例1.(2004年广州模拟题)某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张。
相互独立事件的概念相互独立事件是概率论中一个重要的概念,它描述了两个或多个事件之间的统计独立性。
在概率论中,事件的相互独立性是指事件A和事件B的发生与否互不影响或者说彼此独立,即事件A发生的概率与事件B发生的概率无关。
相互独立事件的概念可以通过以下性质进行说明:1. 乘法规则:两个独立事件同时发生的概率等于它们各自发生的概率的乘积。
设A和B是两个独立事件,则有P(A ∩ B) = P(A) × P(B)。
2. 加法规则:两个独立事件至少有一个发生的概率等于它们各自发生概率之和减去它们同时发生的概率。
设A和B是两个独立事件,则有P(A ∪ B) = P(A) + P(B) - P(A ∩ B)。
3. 依概率的性质:对于相互独立的事件A和B,事件A的发生概率与事件B的发生概率的比值等于事件A的发生概率与全样本空间的概率之比。
即P(A|B) = P(A) × P(B)。
4. 独立事件的补事件也是独立事件:如果事件A和事件B是独立事件,则事件A的补事件和事件B的补事件也是独立事件。
相互独立事件的概念在实际问题的解决中有着广泛的应用,例如:1. 投硬币的实验:投掷一枚硬币是一个相互独立的事件,每次投掷硬币都不会受前一次的投掷结果的影响。
2. 掷骰子的实验:掷一个骰子是一个相互独立的事件,每次掷骰子都不会受前一次的掷骰子结果的影响。
3. 独立抽样:在统计学中,独立抽样是指在一次抽样中,每次抽取的样本独立且与之前的抽样无关。
4. 检验流程的相互独立性:在某些工业生产过程中,不同的检验过程可能是相互独立的,即前一道工序的检验结果不会对后一道工序的检验结果产生影响。
相互独立事件的概念是概率论中的一个基础概念,它使得我们能够对复杂的概率问题进行简化和计算。
通过理解相互独立事件的性质和应用,我们可以更好地应用概率论解决各种实际问题。
条件概率及互相独立事件-高考数学知识点条件概率及互相独立事件一、条件概率
条件概率是一种带有附加条件的概率。
是指若事件A与事件B是相依事件,即事件A的概率随事件B是否发生而变化,同样,事件B的概率与随事件A是否发生而变化,则在事件A已发生的条件下,事件B出现的概率称为事件B的条件概率。
条件概率就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。
条件概率表示为P(A|B),读作“在 B 条件下 A 的概率”。
P(A|B)=P(AB)/P(B),P(B|A)=P(AB)/P(A)
二、独立事件
相互独立事件: 事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
三、热定预测
预测高考可能会对独立事件的概率、n次独立事件的概率、n次独立重复试验的概率、二项分布重点考察。
解答题仍会保持中等难度,分值约为10分。
条件概率与互相独立事件在高二的课程中就已经还是涉及。
独立互斥对立的公式独立事件是指两个或多个事件之间的发生不会互相影响。
互斥事件是指两个或多个事件之间的发生是互相排斥的,即一个事件发生时,其他事件就不可能发生。
对立事件是指两个事件之间的发生是互相对立的,即一个事件的发生排除了另一个事件的发生。
下面将讨论独立、互斥和对立事件之间的关系,并给出相应的公式。
1.独立事件的公式:设A和B是两个独立事件,它们的概率分别为P(A)和P(B),那么它们同时发生的概率为P(A∩B)=P(A)×P(B)。
独立事件的概率计算公式是基于事件之间相互独立的假设,即事件A 的发生与事件B的发生是没有关联的。
因此,独立事件的联合概率等于各自发生的概率的乘积。
2.互斥事件的公式:设A和B是两个互斥事件,它们的概率分别为P(A)和P(B),那么它们发生的概率为P(A∪B)=P(A)+P(B)。
互斥事件的概率计算公式是基于两个事件发生的排斥性假设,即事件A和事件B的发生是互不相容的。
因此,互斥事件的并集概率等于各自发生的概率的和。
3.对立事件的公式:设A和B是两个对立事件,它们的概率分别为P(A)和P(B),那么它们发生的概率为P(A∪B)=P(A)+P(B)-P(A∩B)。
对立事件的概率计算公式是基于事件之间的互斥和独立的关系。
由于对立事件的发生是互斥的,所以它们的交集概率为零,即P(A∩B)=0。
因此,对立事件的并集概率等于各自发生的概率的和。
需要注意的是,独立事件和互斥事件是两个不同的概念。
独立事件指的是两个事件之间的发生是相互独立的,即一个事件的发生与另一个事件的发生没有关联。
互斥事件指的是两个事件之间的发生是互相排斥的,即一个事件的发生排除了另一个事件的发生。
在实际问题中,我们需要根据具体的情况来判断事件之间的关系,并选择相应的概率计算公式进行求解。
通过运用独立、互斥和对立事件的公式,我们可以更好地理解和解决概率计算问题。
事件相互独立的公式
事件a(或b)是否发生对事件b(a)发生的概率没有影响,这样的两个事件叫做相互独立事件。
设a,b是两事件,如果满足等式p(a∩b)=p(ab)=p(a)p(b),则称事件a,b相互独立,简称a,b独立。
设a,b是试验e的两个事件,若p(a)\ue0,可以定义p(b∣a).一般,a的发生对b发生的概率是有影响的,所以条件概率p(b∣a)≠p(b),而只有当a的发生对b发生的概率没有影响的时候(即a与b相互独立)才有条件概率p(b∣a)=p(b)。
这时,由乘法定理p(a∩b)=p(b∣a)p(a)=p(a)p(b)。
因此设a,b就是两事件,如果满足用户等式子p(a∩b)=p(ab)=p(a)p(b),则表示事件a,b相互单一制,缩写a,b单一制.
注:
1、p(a∩b)就是p(ab)
2、若p(a)\ue0,p(b)\ue0则a,b相互独立与a,b互不相容不能同时成立,即独立必相容,互斥必联系.
难推展:设a,b,c就是三个事件,如果满足用户
p(ab)=p(a)p(b),p(bc)=p(b)p(c),p(ac)=p(a)p(c),p(abc)=p(a)p(b)p(c),则表示事件
a,b,c相互单一制
更一般的定义是,a1,a2,……,an是n(n≥2)个事件,如果对于其中任意2个,任意3个,…任意n个事件的积事件的概率,都等于各个事件概率之积,则称事件a1,a2,……,an 相互独立。
第79课 相互独立事件的概率●考试目标 主词填空1.如果事件A (或B )是否发生的对事件B (或A )发生的概率没有影响,那么这样的事件叫做相互独 立事件.相互独立事件A 和B 同时发生,记作A ·B,其概率由相互独立事件概率的乘法公式: P (A ·B)=P(A)·P(B).2.“互斥”事件A 与B ,要记住其判别的依据是A ∩B=;而“相互独立”事件A 与B ,是指它们中的任何一个发生与否对另一个事件发生的概率没有“影响”.3.如果在1次试验中,某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次 的概率.P n (k )=k n k k n P P C --)1(. ● 题型示例 点津归纳【例1】 甲、乙两人各进行一次射击,如果两人击中目标的概率是0.8.计算: (1)两人都击中目标的概率;(2)其中恰有1人击中目标的概率; (3)至少有1人击中目标的概率.【解前点津】 “两人都击中目标”是事件A ·B ;“恰有1人击中目标”是A ·A B 或·B ;“至少有1人击中目标”是A ·B 或A ·A B 或·B .【规范解答】 我们来记“甲射击一次击中目标”为事件A ,“乙射击一次击中目标”为事件B .(1)显然,“两人各射击一次,都击中目标”就是事件A ·B ,又由于事件A 与B 相互独立. ∴ P (A ·B )=P (A )·P (B )=0.8×0.8=0.64.(2)“两个各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A ·B ),另一种是甲未击中乙击中(即A ·B ),根据题意这两种情况在各射击一次时不可能同时发生,即事件A ·A B 与·B 是互斥的,所以所求概率为: P =)()()()()()(B P A P B P A P B A P B A P ∙+∙=∙+∙ =0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32.(3) “两人各射击一次,至少有一人击中目标”的概率为: P =P (A ·B)+[P (A ·A P B ()+·B)]=0.64+0.32=0.96.【解后归纳】 本题考查应用相互独立事件同时发生的概率的有关知识的正确应用.【例2】如图,电路由电池A 、B 、C 并联组成.电池A 、B 、C 损坏的概率分别是0.3、0.2、0.2,求电路断电的概率.【解前点津】 可规定A =“电池A 损坏”,B =“电池B 损坏”,C =“电池C 损坏”.这样,就有事件A 、B 、C 的概率,便于解题.【规范解答】 我们先规定下列事件的记号: A =“电池A 损坏”,P (A )=0.3;B =“电池B 损坏”,P (B )=0.2;C =“电池C 损坏”,P (C )=0.2.“电路断电”=“A 、B 、C 三个电池同时损坏”=A ·B ·C . 由实际意义知,A 、B 、C 、三个事件相互独立,于是P (电路断电) =P (A )·P (B )·P (C )=0.3×0.2×0.2=0.012.【解后归纳】 由此可见,由于采取并联,电路断电的概率比单独使用电池时下降了许多,解此类题时,有一个特点,就是不必考虑基本事件集,而是用事件之间的关系及概率的加法公式或乘法公式来计算概率就可以了. 【例3】某所气象预报站的预报准确率为80%.则它5次预报中恰有4次准确的概率约为多少?(保留两位有效数字)【解前点津】 可把问题看做是“5次独立重复试验中求事件A 恰好发生4次的概率”. 【规范解答】 把每次预报看作一次试验,“预报结果准确”看成事件A ,则P (A )=0.8.本题相当于在5次独立重复试验中求A 恰好发生4次的概率.因而,5次预报中恰有4次准确的概率为:P 5(4)=41.02.08.052.08.0)1(444545445≈⨯⨯=⨯⨯=-∙-C P P C 答:略.【解后归纳】 本题主要考查独立重复试验的概率的求法.【例4】 经抽检,某元件的次品率是0.3%,现将该元件按每100只装成一盒,试计算每盒中不含次品的概率.【解前点津】 100只元件装盒,可把每装进一只看成一次随机试验,将每次试验中放进次品看成事件A ,从而本题的实质是,求在100次独立重复试验中事件A 发生0次的概率.【规范解答】 将100只元件装一盒作为进行100次随机试验,并设每次试验中放进次品为事件A ,则依题意,P (A )=0.3%.所以,在100次独立重复试验中事件A 发生0次的概率是 P 100(0)=0100C ·(0.3%)0(1-0.3%)100-0 =0.7405=74%.即每100只元件装成一盒,每盒不含次品的概率为74%.【解后归纳】 解题的关键在于将问题转换为贝努里概率型问题,而这种转换的难点,往往是根据问题的特征,确定什么是该问题中的独立重复试验. ●对应训练 分阶提升一、基础夯实1.10件产品中有4件是次品,从这10件产品中任选2件,恰好是2件正品或2件次品的概率是 ( ) A.252 B.152 C.31 D.1572.设A 为一随机事件,则下列式子不正确的是 ( ) A.P (A ·A )=P (A )·P (A ) B.P (A ·A )=0 C.P (A +A )=P (A )+P (A ) D.P (A +A )=13.若A 与B 相互独立,且B 与C 也相互独立,则A 与C ( ) A.相互独立 B.相互对立 C.可能相互独立,也可能不相互独立 D.互斥4.10颗骰子同时掷出,共掷5次,至少有一次全部出现一个点的概率是 ( ) A. 510651⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛- B. 106651⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛- C.1 105611⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-- D. 1510611⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-- 5.在一条线路上并联着3个自动控制的常开开关,只要其中一个开关能够闭合,线路就能正常工作.如果在某段时间里三个开关能够闭合的概率分别为P 1、P 2、P 3,那么这段时间内线路正常工作的概率为 ( )A. P 1+P 2+P 3B.P 1P 2P 3C.3321P P P ++ D.1-(1-P 1)(1-P 2)(1-P 3)6.若甲以10发8中,乙以10发中6,丙以10发中7的命中率打靶,3人各射击1次,则3人 中只有1人命中的概率为 ( ) A.25021 B. 25047 C. 75042 D.2037.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一次,他们都中靶的概率为 ( ) A.53 B.43 C.2512 D.25148.一学生通过某种英语听力测试的概率为21,他连续测试2次,则恰有1次获得通过的概率为 ( )A.41 B.31 C.21 D. 34二、思维激活9.在某一试验中,事件A 出现的概率为P ,则在n 次试验中,A 出现k 的概率为 . 10.电子设备的某一部件由9个元件组成,其中任何一个元件损坏了,这个部件就不能工作.假定每个元件能使用3 000小时的概率为0.99,则这个部件能工作3 000小时的概率为 (结果保留两位有效数字).11.5名男生和2名女生排成一列,则男生甲排在中间,且2名女生排在男生甲左侧的概率是 . 三、能力提高12.1个产品要经过2道加工程序,第1道工序的次品率为3%,第二道工序次品率为2%,求产品的次品率.13.一批高梁种子,其发芽率是0.8,现每穴种3粒.问: (1)一穴中有两粒出芽的概率是多少? (2)一穴中小于3粒出芽的概率是多少?14.某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立). (1)求至少3人同时上网的概率;(2)至少几个人同时上网的概率小于0.3?15.如图,用A 、B 、C 三类不同元件连接成两个系统N 1、N 2,当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80、0.90、0.90分别求系统N 1、N 2正常工作的概率P 1、P 2.16.假设每一架飞机引擎在飞行中故障率为1-P ,且各引擎是否发生故障是独立的,如果有至少50%的引擎能正常运行,飞机就可以成功地飞行.问对于多大的P 而言,4引擎飞机比2引擎飞机更安全?第7课 相互独立事件的概率习题解答1.D ∵1572102426=+C C C ,∴选D.2.A 因为A 与A 是对立事件,显然不是相互独立事件,则P (A ·A )=P (A )·P (A )是错误的.3.C 相互独立没有传递性.4.D 10个骰子都出现一个点的概率为1061⎪⎭⎫⎝⎛,不都出现一个点的概率为1-(61)10,5次不都出现一个点的概率为[1-(61)10]5,5次至少有一次全都出现一个点的概率为1-[1-(61)10]5.5.D 在这段时间线路正常工作是“3个开关至少有一个能够闭合”,其对立事件是“三个开关均不能够闭合”,所求概率为:1-(1-P 1)(1-P 2)(1-P 3).6.B 记“甲命中”为事件A 、“乙命中”为事件B 、“丙命中”为事件C ,则“3人中只有1人命中”为事件A C B A C B A C B ++.因为C B A C 、B A 、C B 是互斥事件,且A 、B 、A 、B 、C 、C 均为相互独立事件,所以所求概率P =P (A )P ()()()()()()()()C P B P A P C P B P A P C P B ++. ∵P (A )=54,P (B )=53,P (C )=107,∴P (103)(,52)(,51)===C P B P A ,故 P =54×52×103+51×53×103+51×10752⨯=25047.7.D ∵54×107=2514,∴选D.8.C ∵21×21+21×21=21,∴选C.9.kn k k n P P C --)1(.10.0.91 因为各元件能否正常工作是相互独立的,所以所求概率P =0.999≈0.91. 11.351 ∵351774423=A A A .12.(1)P 3(2)=23C 0.82·0.2=0.384 . (2)所求概率P =1-33C 0.83×0.20=0.488.13.事件A 恰好发生k 次的概率为kn C P k (1-P )n-k ,事件A 发生偶数次的概率为0n C P 0(1-P )n +2n C P 2(1-P )n -2+ 4n C ·P (1-P )n -4+…+[(1-P )+P ]n=0n C (1-P )n P 0+1n C (1-P )n -1P +2n C ·(1-P )n -2·P 2+3n C (1-P )n -3P 3+… ①[(1-P )+(-P )]n =0n C (1-P )n (-P )n +1n C (1-P )n -1·(-P )+ 2n C (1-P )n -2(-P )2+3n C (1-P )n -3(-P )3+… ②①+②得 [(1-P )+P ]n +[(1-P )+(-P )]n =2[0n C (1-P )n P 0+0n C (1-P )n -2·P 2+…]. 所以0n C (1-P )n·P 0+2n C (1-P )n -2·P 2+…=21[1+(1-2P )n].故事件A 发生偶次的概率为2)21(1nP -+.14.(1)记“至少3人同时上网”为事件A ,则P (A )= 36C (0.5)6+46C (0.5)6+56C (0.5)6+66C =3221.(2)解:至少4人同时上网的概率为46C 0.56+56C 0.56+66C 0.56=3211>0.3.至少5人同时上网的概率为56C 0.56+66C 0.56=647<0.3.故至少5人同时上网的概率小于0.3.15.分别记元件A 、B 、C 正常工作为事件A 、B 、C ,P (A )=0.80,P (B )=0.90,P (C )=0.90. (1)因为事件A 、B 、C 相互独立,所以N 1正常工作的概率为P 1=P (ABC )=P (A )·P (B )·P (C ) =0.80×0.90×0.90=0.648.(2)解法一:N 2正常工作的概率P 2=P (A )·P (A+B )即P 2=P (A )[1-P ()C B ∙]=P (A )[1-P ()()C P B ]=0.80×[1-0.10×0.10]=0.80×0.99=0.792. (2)解法二:P 2=P (ABC )+P (A )()C AB P C B +=P (A )P (B )P (C )+P (A )P ()()()()()C P B P A P C P B + =0.8×0.9×0.9+0.8×0.1×0.9+0.8×0.9×0.1=0.792.点评:本题(2)P 2=P (A )P (B+C )≠P (A )[P (B )+P (C )],这是因为事件B 、C 不是互斥事件,在解题时,一定要弄清A +B 、A ·B 及公式P (A +B )=P (A )+P (B )、P (AB )=P (A )·P (B )的适用范围.否则易犯错误.例如“甲投篮命中率为0.8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?”该题是求事件的概率,容易求成和事件的概率.在审题时要注意关键词“至少、最多、同时”等真正含义,避免出现错误.16.飞机成功飞行的概率分别为:4引擎飞机为:24C P 2(1-P )2+34C P 3(1-P )+44C P 4=6P 2(1-P )2+4P 3(1-P )+P 4.2引擎飞机为:12C P (1-P )+22C P 2=2P (1-P )+P 2.要使4引擎飞机比2引擎飞机更安全,只要6P 2(1-P )2+4P 3(1-P )+P 4≥2P (1-P )+P 2,3P 3-8P 2+7P -2>0 所以3P -2>0,P>32.即当引擎不出故障的概率不小于32时,4引擎飞机比2引擎飞机更安全.。