2019年高考真题+高考模拟题专项版解析汇编 物理专题06 万有引力定律与航天-(原卷版)
- 格式:doc
- 大小:361.00 KB
- 文档页数:6
考纲定位本讲共4个考点,,两个一级考点, (1)第二宇宙速度和第三宇宙速度 (2)经典时空观和相对论时空观 两个二级考点(1)万有引力定律及其应用 (2)环绕速度可见考试多从二级考点命制试题,选择题居多,难度有波动变化。
必备知识1.在处理天体的运动问题时,通常把天体的运动看成是匀速圆周运动,其所需要的向心力由万有引力提供.其基本关系式为G Mm r 2=m v 2r =mω2r =m (2πT)2r =m (2πf )2r .在天体表面,忽略自转的情况下有G MmR2=mg .2.卫星的绕行速度v 、角速度ω、周期T 与轨道半径r 的关系 (1)由G Mm r 2=m v 2r ,得v =GMr,则r 越大,v 越小. (2)由G Mmr 2=mω2r ,得ω=GMr 3,则r 越大,ω越小. (3)由G Mm r 2=m 4π2T 2r ,得T =4π2r 3GM,则r 越大,T 越大. 3.卫星变轨(1)由低轨变高轨,需增大速度,稳定在高轨道上时速度比在低轨道小. (2)由高轨变低轨,需减小速度,稳定在低轨道上时速度比在高轨道大. 4.宇宙速度 (1)第一宇宙速度:推导过程为:由mg =mv 12R =GMmR 2得:v 1=GMR=gR =7.9 km/s.第一宇宙速度是人造地球卫星的最大环绕速度,也是人造地球卫星的最小发射速度. (2)第二宇宙速度:v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度. (3)第三宇宙速度:v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度.题型洞察一.题型研究一:行星或卫星的圆周运动(一)真题再现1.(2018·全国卷I ·T20) 2017年,人类第一次直接探测到来自双中子星合并的引力波。
根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km,绕二者连线上的某点每秒转动12圈。
万有引力定律与航天1.(2019·新课标全国Ⅰ卷)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。
在另一星球N 上用完全相同的弹簧,改用物体Q 完成同样的过程,其a –x 关系如图中虚线所示,假设两星球均为质量均匀分布的球体。
已知星球M 的半径是星球N 的3倍,则A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍 【答案】AC【解析】A 、由a –x 图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有:,变形式为:k a g x m =-,该图象的斜率为km-,纵轴截距为重力加速度g 。
根据图象的纵轴截距可知,两星球表面的重力加速度之比为:;又因为在某星球表面上的物体,所受重力和万有引力相等,即:,即该星球的质量2gR M G=。
又因为:343R M πρ=,联立得34g RG ρπ=。
故两星球的密度之比为:,故A 正确;B 、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg kx =,即:kxm g=;结合a –x 图象可知,当物体P 和物体Q 分别处于平衡位置时,弹簧的压缩量之比为:,故物体P 和物体Q 的质量之比为:,故B 错误;C 、物体P 和物体Q 分别处于各自的平衡位置(a =0)时,它们的动能最大;根据22v a x =,结合a –x 图象面积的物理意义可知:物体P 的最大速度满足,物体Q 的最大速度满足:2002Q v a x =,则两物体的最大动能之比:,C 正确;D 、物体P 和物体Q 分别在弹簧上做简谐运动,由平衡位置(a =0)可知,物体P 和Q 振动的振幅A 分别为0x 和02x ,即物体P 所在弹簧最大压缩量为20x ,物体Q 所在弹簧最大压缩量为40x ,则Q 下落过程中,弹簧最大压缩量时P 物体最大压缩量的2倍,D 错误;故本题选AC 。
专题06万有引力与航天(2010-2019)题型一、考查万有引力定律、万有引力提供物体重力的综合类问题1.(2019全国2)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆,在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图像是( )【考向】万有引力定律 【答案】D【解析】根据万有引力定律可得:2()GMmF R h =+ ,式中R 表示地球的半径、随着h 增大,F 在减小,故选项D 正确;2.(2018·北京卷)若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证( ) A. 地球吸引月球的力约为地球吸引苹果的力的1/602 B. 月球公转的加速度约为苹果落向地面加速度的1/602 C. 自由落体在月球表面的加速度约为地球表面的1/6 D. 苹果在月球表面受到的引力约为在地球表面的1/60 【考向】非绕行问题万有引力提供重力 【答案】B【解析】设月球的质量为M2地球的质量为M1苹果的质量为m ;地球的半径为r 月球受到的万有引力的大小为:2212)60(r M GM F =苹果受到的万有引力的大小为:21r mGM F =因月球和苹果的质量关系未知,所以A 选项无法比较;故A 错;设月球的公转加速大小为a1,苹果落地的加速度大小为a21221)60(ma r M GM = 221)(ma r mGM = 联立两式得:221601=a a 故B 对; 月球表面的重力加速度:222/r GM g =,地球表面的重力加速度:211r GM g =;r1、r2的大小关系未知;所以无法求得月地表面的重力加速度之比,故C 错;D 错;3.(2014全国2) 假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( )A. 0203g g g GT π-B. 0203g g g GT π-C. 23GTπ D 、g g GT 02.3πρ= 【考向】非绕行问题 【答案】B【解析】 在赤道:)(14222R T m mg R Mm G π+= 在北极上:)(202mg R Mm G = 密度)4(34),3(3R V V M πρ==表达式(2)可变形为: )5(20GR g M = (3)(4)、(5)联立:)6(43340320RG g R G R g V M ππρ=== (1)、(2)两式联立:)7(.4.4.4220220220T g g R R T g g R T m mg mg πππ-=⇒+=⇒+=将(7)式代入(6)式得:gg g GT -=002.3πρ。
专题05万有引力与航天一、单选题1(2023·山东·统考高考真题)牛顿认为物体落地是由于地球对物体的吸引,这种吸引力可能与天体间(如地球与月球)的引力具有相同的性质、且都满足F∝Mmr2。
已知地月之间的距离r大约是地球半径的60倍,地球表面的重力加速度为g,根据牛顿的猜想,月球绕地球公转的周期为()A.30πr gB.30πgr C.120πrg D.120πgr【答案】C【详解】设地球半径为R,由题知,地球表面的重力加速度为g,则有mg=G M地m R2月球绕地球公转有G M地m月r2=m月4π2T2r r=60R联立有T=120πr g故选C。
2(2023·北京·统考高考真题)2022年10月9日,我国综合性太阳探测卫星“夸父一号”成功发射,实现了对太阳探测的跨越式突破。
“夸父一号”卫星绕地球做匀速圆周运动,距地面高度约为720km,运行一圈所用时间约为100分钟。
如图所示,为了随时跟踪和观测太阳的活动,“夸父一号”在随地球绕太阳公转的过程中,需要其轨道平面始终与太阳保持固定的取向,使太阳光能照射到“夸父一号”,下列说法正确的是()A.“夸父一号”的运行轨道平面平均每天转动的角度约为1°B.“夸父一号”绕地球做圆周运动的速度大于7.9km/sC.“夸父一号”绕地球做圆周运动的向心加速度大于地球表面的重力加速度D.由题干信息,根据开普勒第三定律,可求出日地间平均距离【答案】A【详解】A.因为“夸父一号”轨道要始终保持要太阳光照射到,则在一年之内转动360°角,即轨道平面平均每天约转动1°,故A正确;B.第一宇宙速度是所有绕地球做圆周运动的卫星的最大环绕速度,则“夸父一号”的速度小于7.9km/s,故B错误;C.根据=maG Mmr2可知“夸父一号”绕地球做圆周运动的向心加速度小于地球表面的重力加速度,故C错误;D.“夸父一号”绕地球转动,地球绕太阳转动,中心天体不同,则根据题中信息不能求解地球与太阳的距离,故D错误。
2018普通高校招生考试试题汇编-万有引力定律22.(2018安徽).(14分) (1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a 的三次方与它的公转周期T 的二次方成正比,即32a k T=,k 是一个对所有行星都相同的常量。
将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k 的表达式。
已知引力常量为G ,太阳的质量为M 太。
(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。
经测定月地距离为3.84×108m ,月球绕地球运动的周期为2.36×106S ,试计算地球的质M 地。
(G=6.67×10-11Nm 2/kg 2,结果保留一位有效数字) 解析:(1)因行星绕太阳作匀速圆周运动,于是轨道的半长轴a 即为轨道半径r 。
根据万有引力定律和牛顿第二定律有222()m M Gm r r Tπ=行太行 ①于是有 3224r GM T π=太 ② 即 24Gk M π=太 ③ (2)在月地系统中,设月球绕地球运动的轨道半径为R ,周期为T ,由②式可得3224R G M T π=地 ④ 解得 M 地=6×1024kg ⑤(M 地=5×1024kg 也算对) 19.(2018全国卷1).我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。
如果按圆形轨道计算,并忽略卫星质量的变化,则在每次变轨完成后与变轨前相比,A .卫星动能增大,引力势能减小B .卫星动能增大,引力势能增大C .卫星动能减小,引力势能减小D .卫星动能减小,引力势能增大解析:周期变长,表明轨道半径变大,速度减小,动能减小,引力做负功故引力势能增大选D12.(2018海南).2019年4月10日,我国成功发射第8颗北斗导航卫星,建成以后北斗导航卫星系统将包含多可地球同步卫星,这有助于减少我国对GPS 导航系统的依赖,GPS 由运行周期为12小时的卫星群组成,设北斗星的同步卫星和GPS 导航的轨道半径分别为1R 和2R ,向心加速度分别为1a 和2a ,则12:R R。
2019年高考物理真题和模拟题分项汇编(含解析)专题目录专题01 ······物理常识单位制专题02 ······直线运动专题03 ······相互作用专题04 ······牛顿运动定律专题05 ······曲线运动专题06 ······万有引力与航天专题07 ······功和能专题08 ······动量专题09 ······静电场专题10 ······稳恒电流专题11 ······磁场专题12 ······电磁感应专题13 ······交流电专题14 ······原子结构、原子核和波粒二象性专题01 物理常识 单位制1.(2019·北京卷)国际单位制(缩写SI )定义了米(m )、秒(s )等7个基本单位,其他单位均可由物理关系导出。
例如,由m 和s 可以导出速度单位m·s –1。
历史上,曾用“米原器”定义米,用平均太阳日定义秒。
但是,以实物或其运动来定义基本单位会受到环境和测量方式等因素的影响,而采用物理常量来定义则可避免这种困扰。
高考专题-万有引力与航天1.题型特点关于万有引力定律及应用知识的考查,主要表现在两个方面:(1)天体质量和密度的计算:主要考查对万有引力定律、星球表面重力加速度的理解和计算.(2)人造卫星的运行及变轨:主要是结合圆周运动的规律、万有引力定律,考查卫星在轨道运行时线速度、角速度、周期的计算,考查卫星变轨运行时线速度、角速度、周期以及有关能量的变化.以天体问题为背景的信息题,更是受专家的青睐.高考中一般以选择题的形式呈现.2.命题趋势从命题趋势上看,对本部分内容的考查仍将延续与生产、生活以及航天科技相结合,形成新情景的物理题.1.(多选)(2015·新课标全国Ⅰ·21)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s2.则此探测器()A.在着陆前的瞬间,速度大小约为8.9 m/sB.悬停时受到的反冲作用力约为2×103 NC.从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度2.(2015·江苏单科·3)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕.“51 peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的120,该中心恒星与太阳的质量比约为( )A.110B .1C .5D .10 3.(2015·四川理综·5)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )A.火星的公转周期较小B .火星做圆周运动的加速度较小C .火星表面的重力加速度较大D .火星的第一宇宙速度较大4.(2015·安徽理综·24)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m 、B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .考题一 万有引力定律的理解1.(2015·安康二模)由中国科学院、中国工程院两院院士评出的2012年中国十大科技进展新闻,于2013年1月19日揭晓,“神九”载人飞船与“天宫一号”成功对接和“蛟龙”号下潜突破7 000米分别排在第一、第二.若地球半径为R ,把地球看做质量分布均匀的球体.“蛟龙”下潜深度为d ,天宫一号轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的加速度之比为( ) A.R -d R +hB.(R -d )2(R +h )2C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 2行星 半径/m 质量/kg 轨道半径/m 地球 6.4×106 6.0×1024 1.5×1011 火星3.4×1066.4×10232.3×10112.(2015·海南单科·6)若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7,已知该行星质量约为地球的7倍,地球的半径为R .由此可知,该行星的半径约为( ) A.12R B.72R C .2R D.72R 3.(2015·崇明模拟)理论上已经证明:质量分布均匀的球壳对壳内物体的万有引力为零.现假设地球是一半径为R 、质量分布均匀的实心球体,O 为球心,以O 为原点建立坐标轴Ox ,如图所示.一个质量一定的小物体(假设它能够在地球内部移动)在x 轴上各位置受到的引力大小用F 表示,则选项所示的四个F 随x 变化的关系图正确的是( )1.辨析下列说法的正误: 由F 万=G m 1m 2r2得①r →∞时,F 万=0( √ ) ②r →0时,F 万=∞( × ) 2.万有引力定律的适用条件:(1)可以看成质点的两个物体之间. (2)质量分布均匀的球体之间.(3)质量分布均匀的球体与球外质点之间.考题二 天体质量和密度的估算4.(2015·湖南五市十校5月模拟)如图3所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t 通过的弧长为l ,该弧长对应的圆心角为θ弧度.已知万有引力常量为G ,则月球的质量是( )A.l 2Gθ3tB.θ3Gl 2tC.l 3Gθt 2D.t 2Gθl3 5.(多选)(2015·淮安四模)木卫一是最靠近木星的卫星,丹麦天文学家罗迈最早在十七世纪通过对木卫一的观测测出了光速.如图所示,他测量了木卫一绕木星的运动周期T 和通过木星影区的时间t .若已知木星的半径R 和万有引力常量G ,T 远小于木星绕太阳的运行周期,根据以上条件可以求出( )A .木星的密度B .木卫一的密度C .木卫一绕木星运动的向心加速度大小D .木卫一表面的重力加速度大小6.(2015·安阳二模)嫦娥五号探测器由轨道器、返回器、着陆器等多个部分组成.探测器预计在2017年由长征五号运载火箭在中国文昌卫星发射中心发射升空,自动完成月面样品采集,并从月球起飞,返回地球,带回约2 kg 月球样品.某同学从网上得到一些信息,如表格中的数据所示.月球半径 R 0 月球表面的重力加速度 g 0 地球和月球的半径之比RR 0=4 地球表面和月球表面的重力加速度之比g g 0=6 请根据题意,判断地球和月球的密度之比为( ) A.23 B.32C .4D .6估算天体质量的两种方法:1.如果不考虑星球的自转,星球表面的物体所受重力等于星球对它的万有引力. mg =G Mm R 2 M =gR 2G2.利用绕行星运转的卫星,F 万提供向心力.G Mm r 2=m 4π2T 2·r M =4π2r 3GT 2 特例:若为近地面卫星r =R ρ=M V =3πGT2 考题三 卫星运行参量的分析7.(多选)(2015·天津·8)P 1、P 2为相距遥远的两颗行星,距各自表面相同高度处各有一颗卫星s 1、s 2做匀速圆周运动.图中纵坐标表示行星对周围空间各处物体的引力产生的加速度a ,横坐标表示物体到行星中心的距离r 的平方,两条曲线分别表示P 1、P 2周围的a 与r 2的反比关系,它们左端点横坐标相同.则( ) A .P 1的平均密度比P 2的大 B .P 1的“第一宇宙速度”比P 2的小 C .s 1的向心加速度比s 2的大 D .s 1的公转周期比s 2的大8.(2015·武汉四月调研)17世纪,英国天文学家哈雷跟踪过一颗慧星,他算出这颗彗星轨道的半长轴约等于地球公转半径的18倍,并预言这颗慧星将每隔一定的时间飞临地球,后来哈雷的预言得到证实,该慧星被命名为哈雷慧星.哈雷彗星围绕太阳公转的轨道是一个非常扁的椭圆,如图所示.从公元前240年起,哈雷彗星每次回归,中国均有记录,它最近一次回归的时间是1986年.从公元前240年至今,我国关于哈雷慧星回归记录的次数,最合理的是( ) A .24次 B .30次 C .124次D .319次9.(2015·襄阳模拟)我国志愿者王跃曾与俄罗斯志愿者一起进行“火星-500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的12,质量是地球质量的19.已知地球表面的重力加速度是g ,地球的半径为R ,忽略火星以及地球自转的影响,求: (1)火星表面的重力加速度g ′的大小;(2)王跃登陆火星后,经测量,发现火星上一昼夜的时间为t ,如果要发射一颗火星的同步卫星,它正常运行时距离火星表面将有多远?1.基本规律F 万=G Mm r 2=ma n =m v 2r =mω2·r =m 4π2T 2·r得:a n =GMr2,v =GMr,ω= GMr 3,T = 4π2r 3GMr 时(a n 、v 、ω),T 2.宇宙速度 (1)v Ⅰ=gR =GMR=7.9 km/s ①最小的发射速度.②(近地面)最大的环绕速度. (2)v Ⅱ=2v Ⅰ=11.2 km/s. (3)v Ⅲ=16.7 km/s.考题四 卫星变轨与对接10.(2015·扬州模拟)如图7所示,有一飞行器沿半径为r 的圆轨道1绕地球运动.该飞行器经过P 点时,启动推进器短时间向前喷气可使其变轨,2、3是与轨道1相切于P 点的可能轨道,则飞行器( ) A .变轨后将沿轨道2运动 B .相对于变轨前运行周期变长C .变轨前、后在两轨道上经P 点的速度大小相等D .变轨前、后在两轨道上经P 点的加速度大小相等11.(2015·黄冈八校第二次联考)美国宇航局的“信使”号水星探测器按计划将在2015年3月份陨落在水星表面.工程师找到了一种聪明的办法,能够使其寿命再延长一个月.这个办法就是通过向后释放推进系统中的高压氦气来提升轨道.如图所示,设释放氦气前,探测器在贴近水星表面的圆形轨道Ⅰ上做匀速圆周运动,释放氦气后探测器进入椭圆轨道Ⅱ上,忽略探测器在椭圆轨道上所受外界阻力.则下列说法正确的是( ) A .探测器在轨道Ⅱ上A 点运行速率小于在轨道Ⅱ上B 点速率 B .探测器在轨道Ⅱ上某点的速率可能等于在轨道Ⅰ上的速率 C .探测器在轨道Ⅱ上远离水星过程中,引力势能和动能都减少 D .探测器在轨道Ⅰ和轨道Ⅱ上A 点加速度大小不同1.变轨问题中,各物理量的变化(1)当v 增大时,所需向心力m v 2r 增大,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v =GMr知其运行速度要减小,但重力势能、机械能均增加.(2)当卫星的速度突然减小时,向心力m v 2r减小,即万有引力大于卫星所需的向心力,因此卫星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由v = GMr知运行速度将增大,但重力势能、机械能均减少. 2.规律总结(1)卫星变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v =GMr判断. (2)卫星绕过不同轨道上的同一点(切点)时,其加速度大小关系可用F =GMmr2=ma 比较得出.考题五 双星与多星问题12.(2015·上饶三模)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此圆周运动的周期为( ) A.nk T B.n 2k T C.n 3k 2T D.n 3kT 13.(2015·衡水高三下学期期中)宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为L ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,下列说法正确的是( )A .每颗星做圆周运动的角速度为3GmL 3B .每颗星做圆周运动的加速度与三星的质量无关C .若距离L 和每颗星的质量m 都变为原来的2倍,则周期变为原来的2倍D .若距离L 和每颗星的质量m 都变为原来的2倍,则线速度变为原来的4倍1.双星系统具有如下特点:(1)它们以相互间的万有引力来提供向心力.(2)它们共同绕它们连线上某点做圆周运动.(3)它们的周期、角速度相同.(4)r、a n、v与m成反比.2.N星系统(1)向心力由其他星对该星万有引力的合力提供.(力的矢量合成)(2)转动的星的T(ω)相等.注意:运算过程中的几何关系.专题综合练1.(2015·山东理综·15)如图1所示,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动.以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是() A.a2>a3>a1B.a2>a1>a3C.a3>a1>a2D.a3>a2>a12.(多选)(2015·揭阳质检)已知引力常量G、月球中心到地球中心的距离r和月球绕地球运行的周期T.仅利用这三个数据,可以估算的物理量有()A.地球的质量B .地球的密度C .地球的半径D .月球绕地球运行速度的大小3.(2015·泰安二模)设地球半径为R ,质量为m 的卫星在距地面R 高处做匀速圆周运动,地面的重力加速度为g ,则( ) A .卫星的线速度为gR2B .卫星的角速度为 g 4RC .卫星的加速度为g2D .卫星的周期为4πR g4.(2015·雅安三诊)2015年3月5日,国务院总理李克强在十二届全国人民代表大会上所作的政府工作报告中提到:“超级计算、探月工程、卫星应用等重大科研项目取得新突破”,并对我国航天事业2014年取得的发展进步给予了充分肯定.若已知地球半径为R 1,赤道上物体随地球自转的向心加速度为a 1,第一宇宙速度为v 1;地球同步卫星的轨道半径为R 2,向心加速度为a 2,运动速率为v 2,判断下列比值正确的是( ) A.a 1a 2=R 1R 2 B.a 1a 2=(R 1R 2)2 C.v 1v 2=R 1R 2D.v 1v 2= R 1R 25.(2015·龙岩市5月模拟)如图所示,一个质量均匀分布的星球,绕其中心轴PQ 自转,AB 与PQ 是互相垂直的直径.星球在A 点的重力加速度是P 点的90%,星球自转的周期为T ,万有引力常量为G ,则星球的密度为( ) A.0.3πGT 2 B.3πGT 2 C.10π3GT 2D.30πGT2 6.(多选)(2015·南通二模)据报道,一颗来自太阳系外的彗星于2014年10月20日擦火星而过.如图所示,设火星绕太阳在圆轨道上运动,运动半径为r ,周期为T ,该慧星在穿过太阳系时由于受到太阳的引力,轨道发生弯曲,彗星与火星在圆轨道的A 点“擦肩而过”.已知万有引力常量G ,则( ) A .可计算出太阳的质量B .可计算出彗星经过A 点时受到的引力C .可计算出彗星经过A 点的速度大小D .可确定慧星在A 点的速度大于火星绕太阳的速度7.(多选)(2015·绥化二模)我国研制的“嫦娥三号”月球探测器于2013年12月1日发射成功,并成功在月球表面实现软着陆.如图13所示,探测器首先被送到距离月球表面高度为H 的近月轨道做匀速圆周运动,之后在轨道上的A 点实施变轨,使探测器绕月球做椭圆运动,当运动到B 点时继续变轨,使探测器靠近月球表面,当其距离月球表面附近高度为h (h <5 m)时开始做自由落体运动,探测器携带的传感器测得自由落体运动时间为t ,已知月球半径为R ,万有引力常量为G .则下列说法正确的是( ) A .“嫦娥三号”的发射速度必须大于第一宇宙速度 B .探测器在近月圆轨道和椭圆轨道上的周期相等C .“嫦娥三号”在A 点变轨时,需减速才能从近月圆轨道进入椭圆轨道D .月球的平均密度为3h2πGRt 28.(2015·银川二模)我国第一颗绕月探测卫星——嫦娥一号于2007年10月24日成功发射.如图14所示,嫦娥一号进入地月转移轨道段后,关闭发动机,在万有引力作用下,嫦娥一号通过P 点时的运动速度最小.嫦娥一号到达月球附近后进入环月轨道段.若地球质量为M ,月球质量为m ,地心与月球中心距离为R ,嫦娥一号绕月球运动的轨道半径为r ,G 为万有引力常量,则下列说法正确的是( ) A .P 点距离地心的距离为MM +mRB .P 点距离地心的距离为MM +m RC .嫦娥一号绕月运动的线速度为 GMr D .嫦娥一号绕月运动的周期为2πRR Gm9.(多选)(2015·潍坊二模)2015年2月7日,木星发生“冲日”现象.“木星冲日”是指木星和太阳正好分处地球的两侧,三者成一条直线.木星和地球绕太阳公转的方向相同,公转轨迹都近似为圆.设木星公转半径为R 1,周期为T 1;地球公转半径为R 2,周期为T 2,下列说法正确的是( )A.T 1T 2=(R 1R 2)23B.T 1T 2=(R 1R 2)32 C .“木星冲日”这一天象的发生周期为2T 1T 2T 1-T 2D .“木星冲日”这一天象的发生周期为T 1T 2T 1-T 210.(2015·北京朝阳区4月模拟)第一宇宙速度又叫做环绕速度,第二宇宙速度又叫做逃逸速度.理论分析表明,逃逸速度是环绕速度的2倍,这个关系对其他天体也是成立的.有些恒星,在核聚变反应的燃料耗尽而“死亡”后,强大的引力把其中的物质紧紧地压在一起,它的质量非常大,半径又非常小,以致于任何物质和辐射进入其中都不能逃逸,甚至光也不能逃逸,这种天体被称为黑洞.已知光在真空中传播的速度为c ,太阳的半径为R ,太阳的逃逸速度为c 500.假定太阳能够收缩成半径为r 的黑洞,且认为质量不变,则Rr 应大于( )A .500B .500 2C .2.5×105D .5.0×10511.(多选)(2015·陕西西安交大附中四模)物体在万有引力场中具有的势能叫做引力势能.若取两物体相距无穷远时的引力势能为零,一个质量为m 0的质点距质量为M 0的引力中心为r 0时,其万有引力势能E p =-GM 0m 0r 0(式中G 为引力常量).一颗质量为m 的人造地球卫星以半径为r 1圆形轨道环绕地球飞行,已知地球的质量为M ,要使此卫星绕地球做匀速圆周运动的轨道半径增大为r 2,则在此过程中( ) A .卫星势能增加了GMm (1r 1-1r 2)B .卫星动能减少了GMm 3(1r 1-1r 2)C .卫星机械能增加了GMm 2(1r 1-1r 2)D .卫星上的发动机所消耗的最小能量为2GMm 3(1r 2-1r 1)12.(2015·合肥二质检)如图所示,P 是一颗地球同步卫星,已知地球半径为R ,地球表面处的重力加速度为g ,地球自转周期为T .(1)设地球同步卫星对地球的张角为2θ,求同步卫星的轨道半径r 和sin θ的值.(2)要使一颗地球同步卫星能覆盖赤道上A 、B 之间的区域,∠AOB =π3,则卫星可定位在轨道某段圆弧上,求该段圆弧的长度l (用r 和θ表示).答案精析专题4 万有引力与航天真题示例1.BD [在星球表面有GMm R 2=mg ,所以重力加速度g =GM R 2,地球表面g =GMR 2=9.8 m/s 2,则月球表面g ′=G 181M (13.7R )2=3.7×3.781×GM R 2≈16g ,则探测器重力G =mg ′=1 300×16×9.8N ≈2×103 N ,选项B 正确;探测器自由落体,末速度v =2g ′h ≈43×9.8 m /s ≠8.9 m/s ,选项A 错误;关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,所以机械能不守恒,选项C 错误;在近月轨道运动时万有引力提供向心力,有GM ′mR ′2=m v 2R ′,所以v =G 181M 13.7R = 3.7GM81R< GMR,即在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度,选项D 正确.]2.B [根据万有引力提供向心力,有G Mm r 2=m 4π2T 2r ,可得M =4π2r 3GT2,所以恒星质量与太阳质量之比为M 恒M 太=r 3行T 2地 r 3地T 2行=(120)3×(3654)2≈1,故选项B 正确.]3.B [由G Mm r 2=m 4π2T 2r =ma 知,T =2πr 3GM ,a =GMr2,轨道半径越大,公转周期越大,加速度越小,A 错误,B 正确;由G Mm R 2=mg 得g =G M R 2,g 地g 火=M 地M 火·⎝ ⎛⎭⎪⎫R 火R 地2≈2.6,火星表面的重力加速度较小,C 错误;由G MmR 2=m v 2R 得v =GM R ,v 地v 火= M 地M 火·R 火R 地≈2.2,火星的第一宇宙速度较小,D 错误.]4.(1)23G m 2a 2 (2)7G m 2a 2 (3)74a (4)πa 3Gm解析 (1)由万有引力定律,A 星体所受B 、C 星体引力大小为F BA =G m A m B r 2=G 2m 2a2=F CA方向如图所示则合力大小为F A =F BA ·cos 30°+F CA ·cos 30°=23G m 2a 2(2)同上,B 星体所受A 、C 星体引力大小分别为 F AB =G m A m B r 2=G 2m 2a 2F CB =G m C m B r 2=G m 2a 2方向如图由余弦定理得合力F B =F 2AB +F 2CB -2F AB ·F CB ·cos 120°=7G m 2a2 (3)由于m A =2m ,m B =m C =m通过分析可知,圆心O 在BC 的中垂线AD 的中点 则R C =⎝⎛⎭⎫34a 2+⎝⎛⎭⎫12a 2=74a (4)三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m (2πT )2R C可得T =πa 3Gm考题一 万有引力定律的理解1.C [令地球的密度为ρ,则在地球表面,重力和地球的的万有引力大小相等,有:g =G MR 2.由于地球的质量:M =ρ·43πR 3,所以重力加速度的表达式可写成:g =GM R 2=G ·ρ43πR 3R 2=43πGρR .质量分布均匀的球壳对壳内物体的引力为零,故在深度为d 的地球内部,受到地球的万有引力即为半径等于(R -d )的球体在其表面产生的万有引力,故“蛟龙”号所在处的重力加速度g ′=43πGρ(R -d ),所以有g ′g =R -d R .根据万有引力提供向心力G Mm(R +h )2=ma ,“天宫一号”的加速度为a =GM (R +h )2,所以a g =R 2(R +h )2所以g ′a =(R -d )(R +h )2R 3.]2.C [平抛运动在水平方向上为匀速直线运动,即x =v 0t ,在竖直方向上做自由落体运动,即h =12gt 2,所以x =v 02h g ,两种情况下,抛出的速率相同,高度相同,所以g 行g 地=x 2地x 2行=74,根据公式G Mm R 2=mg 可得R 2=GMg ,故R 行R 地=M 行M 地·g 地g 行=2,解得R 行=2R ,故C 正确.] 3.A [设地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:g =GMR 2.由于地球的质量为M =43πR 3·ρ,所以重力加速度的表达式可写成:g =4πGRρ3.根据题意有,质量分布均匀的球壳对壳内物体的万有引力为零,故在深度为(R -r )的地球内部,受到地球的万有引力即为半径等于r 的球体在其表面产生的万有引力,g ′=4πGρ3r ,当r <R 时,g 与r 成正比,当r >R 后,g 与r 的平方成反比.即质量一定的小物体受到的引力大小F 在地球内部与r 成正比,在外部与r 的平方成反比.]考题二 天体质量和密度的估算4.C [l =Rθ则R =l θ;v =lt“嫦娥三号”绕着月球做匀速圆周运动,F =GMmR 2=m v 2R .代入v 与R ,解之可得M =l 3Gθt2]5.AC [如图,通过木星影区的时间为t ,周期为T ,则:θ2π=tT ,解得:θ=t T ×2π,而R r =sin θ2=sin t πT ,解得:r =RsinπtT ,根据万有引力提供向心力:G Mm r 2=m 4π2T 2r ,解得:M =4π2r 3GT 2=4π2R 3GT 2sin 3πt T ,可求得中心天体的质量,木星的体积V =43πR 3,可得:ρ=MV=3πGT 2sin 3πt T ,故A 正确,B 错误;根据万有引力提供向心力:G Mm r 2=ma =m 4π2T2r ,解得:a =4π2r T 2=4π2RT 2sinπt T ,故C 正确;公式只能计算中心天体的物理量,故D 错误.]6.B [在地球表面,重力等于万有引力,故:mg =G MmR2解得:M =gR 2G .故密度:ρ=M V =gR 2G 43πR 3=3g4πGR同理,月球的密度:ρ0=3g 04πGR 0故地球和月球的密度之比:ρρ0=gR 0g 0R =6×14=32.]考题三 卫星运行参量的分析7.AC [由题图可知两行星半径相同,则体积相同,由a =G Mr 2可知P 1质量大于P 2,则P 1平均密度大于P 2,故A 正确;第一宇宙速度v =GMR,所以P 1的“第一宇宙速度”大于P 2,故B 错误;卫星的向心加速度为a =GM(R +h )2,所以s 1的向心加速度大于s 2,故C 正确;由GMm (R +h )2=m 4π2T 2(R +h )得T =4π2(R +h )3GM,故s 1的公转周期比s 2的小,故D 错误.] 8.B [设彗星的周期为T 1,地球的公转周期为T 2,由开普勒第三定律R 3T 2=k 得:T 1T 2= R 31R 32=183≈76, 可知哈雷彗星的周期大约为76年,240+198676≈29.所以最合理的次数是30次.故B 正确,A 、C 、D 错误.] 9.(1)49g (2) 3gR 2t 236π2-12R解析 (1)在地球表面,万有引力与重力相等,GMm 0R 2=m 0g对火星GM ′m 0R ′2=m 0g ′ 联立解得g ′=49g (2)火星的同步卫星做匀速圆周运动的向心力由火星的万有引力提供,且运行周期与火星自转周期相同.设卫星离火星表面的高度为h ,则GM ′m 0(R ′+h )2=m 0(2πt )2(R ′+h ) 解得:h =3gR 2t 236π2-12R考题四 卫星变轨与对接10.D [由于在P 点推进器向前喷气,故飞行器将做减速运动,由公式G mMr 2=m v 2r 可知,飞行器所需向心力减小,而在P 点万有引力保持不变,故飞行器将开始做近心运动,轨道半径减小.因为飞行器做近心运动,轨道半径减小,故变轨后将沿轨道3运动,故A 错误;根据开普勒行星运动定律知,卫星轨道半径减小,则周期减小,故B 错误;因为变轨过程是飞行器向前喷气过程,故是减速过程,所以变轨前后经过P 点的速度大小不相等,故C 错误;飞行器在P 点都是由万有引力产生加速度,因为在同一点P ,万有引力产生的加速度大小相等,故D 正确.]11.B [根据开普勒第二定律知探测器与水星的连线在相等时间内扫过的面积相同,则知A 点速率大于B 点速率,故A 错误;在圆轨道A 点实施变轨成椭圆轨道是做逐渐远离圆心的运动,要实现这个运动必须万有引力小于飞船所需向心力,所以应给飞船加速,故A 点在轨道Ⅱ上的速度大于在轨道Ⅰ上的速度GMr A,在轨道Ⅱ远地点速度最小为 GMr B,故探测器在轨道Ⅱ上某点的速率在这两数值之间,故可能等于在轨道Ⅰ上的速率GMr A,故B 正确;探测器在轨道Ⅱ上远离水星过程中,引力势能增加,动能减小,故C 错误;探测器在轨道Ⅰ和轨道Ⅱ上A 点所受的万有引力相同,根据F =ma 知加速度大小相同,故D 错误.]考题五 双星与多星问题12.D [两恒星之间的万有引力提供各自做圆周运动的向心力,则有Gm 1m 2L 2=m 1r 1(2πT)2,G m 1m 2L 2=m 2r 2(2πT )2,又L =r 1+r 2,M =m 1+m 2,联立以上各式可得T 2=4π2L 3GM ,故当两恒星总质量变为kM ,两星间距变为nL 时,圆周运动的周期T ′变为n 3kT .] 13.C [三星中其中两颗对另外一颗星的万有引力的合力来提供向心力,由于是等边三角形,所以每个角都是60°,根据万有引力提供向心力G m 2L 2×2cos 30°=mω2r ,其中r =L 3,得出ω=3Gm L 3,所以A 项错误;根据G m 2L 2×2cos 30°=ma n ,得出向心加速度的表达式a n = 3GmL 2,圆周运动的加速度与三星的质量有关,所以B 项错误;根据G m 2L 2×2cos 30°=m 4π2T 2r ,解出周期的表达式T =4π2L 33Gm,距离L 和每颗星的质量m 都变为原来的2倍,周期为T ′= 4π3(2L )33G (2m )=2T ,所以C 项正确;根据G m 2L 2×2cos 30°=m v 2r 得出v =GmL,若距离L 和每颗星的质量m 都变为原来的2倍,线速度不变,所以D 项错误.]专题综合练1.D [因空间站建在拉格朗日点,故其周期等于月球的周期,根据a =4π2T2r 可知,a 2>a 1,。
2019年高考物理试题万有引力定律与航天1.我国高分系列卫星的高分辨对地观察能力不断提高.今年5月9日发射的“高分五号”轨
道高度约为705km,之前已运行的“高分四号”轨道高度约为36000km,它们都绕地球做圆周运动.与“高分四号冶相比,下列物理量中“高分五号”较小的是()
A.周期
B.角速度
C.线速度
D.向心加速度
【来源】2018年全国普通高等学校招生统一考试物理(江苏卷)
【答案】A
拓展:本题考查人造卫星运动特点,解题时要注意两类轨道问题分析方法:一类是圆形轨道
问题,利用万有引力提供向心力,即求解;一类是椭圆形轨道问题,利用开普勒定律求解。
2.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证
A.地球吸引月球的力约为地球吸引苹果的力的1/602
B.月球公转的加速度约为苹果落向地面加速度的1/602
C.自由落体在月球表面的加速度约为地球表面的1/6
D.苹果在月球表面受到的引力约为在地球表面的1/60
【来源】2018年全国普通高等学校招生统一考试物理(北京卷)
【答案】B。
专题 万有引力定律与航天1.(2019·新课标全国Ⅰ卷)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。
在另一星球N 上用完全相同的弹簧,改用物体Q 完成同样的过程,其a –x 关系如图中虚线所示,假设两星球均为质量均匀分布的球体。
已知星球M 的半径是星球N 的3倍,则A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍【答案】AC【解析】A 、由a –x 图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有:,变形式为:k a g x m =-,该图象的斜率为k m-,纵轴截距为重力加速度g 。
根据图象的纵轴截距可知,两星球表面的重力加速度之比为:;又因为在某星球表面上的物体,所受重力和万有引力相等,即:,即该星球的质量2gR M G=。
又因为:343R M πρ=,联立得34g RG ρπ=。
故两星球的密度之比为:,故A 正确;B 、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg kx =,即:kx m g=;结合a –x 图象可知,当物体P 和物体Q 分别处于平衡位置时,弹簧的压缩量之比为:,故物体P 和物体Q 的质量之比为:,故B 错误;C 、物体P 和物体Q 分别处于各自的平衡位置(a =0)时,它们的动能最大;根据22v a x =,结合a –x 图象面积的物理意义可知:物体P 的最大速度满足,物体Q 的最大速度满足:2002Q v a x =,则两物体的最大动能之比:,C 正确;D 、物体P 和物体Q 分别在弹簧上做简谐运动,由平衡位置(a =0)可知,物体P 和Q 振动的振幅A 分别为0x 和02x ,即物体P 所在弹簧最大压缩量为20x ,物体Q 所在弹簧最大压缩量为40x ,则Q 下落过程中,弹簧最大压缩量时P 物体最大压缩量的2倍,D 错误;故本题选AC 。
专题06 万有引力定律与航天1.(2019·新课标全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x 间的关系如图中实线所示。
在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。
已知星球M的半径是星球N的3倍,则A.M与N的密度相等B.Q的质量是P的3倍C.Q下落过程中的最大动能是P的4倍D.Q下落过程中弹簧的最大压缩量是P的4倍【答案】AC【解析】A、由a–x图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有:,变形式为:ka g xm=-,该图象的斜率为km-,纵轴截距为重力加速度g。
根据图象的纵轴截距可知,两星球表面的重力加速度之比为:;又因为在某星球表面上的物体,所受重力和万有引力相等,即:,即该星球的质量2gRMG=。
又因为:343RMπρ=,联立得34gRGρπ=。
故两星球的密度之比为:,故A正确;B、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg kx=,即:kx m g=;结合a –x 图象可知,当物体P 和物体Q 分别处于平衡位置时,弹簧的压缩量之比为:,故物体P 和物体Q 的质量之比为:,故B 错误;C 、物体P 和物体Q 分别处于各自的平衡位置(a =0)时,它们的动能最大;根据22v ax =,结合a –x 图象面积的物理意义可知:物体P 的最大速度满足,物体Q 的最大速度满足:2002Q v a x =,则两物体的最大动能之比:,C 正确;D 、物体P 和物体Q 分别在弹簧上做简谐运动,由平衡位置(a =0)可知,物体P 和Q 振动的振幅A 分别为0x 和02x ,即物体P 所在弹簧最大压缩量为20x ,物体Q 所在弹簧最大压缩量为40x ,则Q 下落过程中,弹簧最大压缩量时P 物体最大压缩量的2倍,D错误;故本题选AC 。
专题04 万有引力和航天1.【2018·福建卷】若有一颗“宜居”行星,其质量为地球的p 倍,半径为地球的q 倍,则该行星卫星的环绕速度是地球卫星环绕速度的( ) A.pq 倍 B.p q 倍 C.qp 倍 D.3pq 倍2.【2018·江苏卷】已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( )A .3.5km/sB .5.0km/sC .17.7km/sD .35.2km/s3.【2018·天津卷】研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。
假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比 A .距地面的高度变大 B .向心加速度变大 B .线速度变大 D .角速度变大4.【2018·新课标全国卷Ⅱ】假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为:A. 0203g g g GT π-B. 0203g g g GT π- C. 23GT π D. 023g g GT πρ=5.【2018·浙江卷】长期以来“卡戎星(Charon )”被认为是冥王星唯一的卫星,它的公转轨道半径r 1=19600km ,公转周期T 1=6.39天。
2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r 2=48000km ,则它的公转周期T 2最接近于( ) A.15天B.25天C.35天D.45天6.【2018·广东卷】如图所示,飞行器P 绕某星球做匀速圆周运动。
星球相对飞行器的张角为θ。
下列说法正确的是:A.轨道半径越大,周期越长B.轨道半径越大,速度越大C.若测得周期和张角,可得到星球的平均密度D.若测得周期和轨道半径,可得到星球的平均密度7.【2018·安徽卷】在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律。
万有引力定律2019年高考真题汇编1.(2019全国Ⅰ卷第21题)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。
在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。
已知星球M的半径是星球N的3倍,则( )A. M与N的密度相等B. Q的质量是P的3倍C. Q下落过程中的最大动能是P的4倍D. Q下落过程中弹簧的最大压缩量是P的4倍2.(2019全国Ⅱ卷第14题)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆,在探测器“奔向”月球的过程中,用h表示探测器与地球表面的距离,F表示它所受的地球引力,能够描F随h变化关系的图像是( )A. B.C. D.3.(2019全国Ⅲ卷第15题)金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a金、a地、a火,它们沿轨道运行的速率分别为v金、v地、v火。
已知它们的轨道半径R金<R地<R火,由此可以判定( )A. a金>a地>a火B. a火>a地>a金C. v地>v火>v金D. v火>v地>v金4.(2019北京卷第6题)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。
该卫星( )A. 入轨后可以位于北京正上方B. 入轨后的速度大于第一宇宙速度C. 发射速度大于第二宇宙速度D. 若发射到近地圆轨道所需能量较少 5.(2019天津卷第1题)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。
已知月球的质量为M 、半径为R ,探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的( )A. B. 动能为2GMm RC. D. 向心加速度为2GM R 6.(2019江苏卷第4题)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( )A. 121,v v v >=B. 121,v v v >>C. 121,v v v <=D. 121,v v v <>7.(2019海南卷第4题)2019年5月,我国第45颗北斗卫星发射成功。
2019年高考物理试题分类解析 专题03万有引力与航天 1. 2019全国1卷16.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。
若某次实验中该发动机向后喷射的气体速度约为3 km/s ,产生的推力约为4.8×108 N ,则它在1 s 时间内喷射的气体质量约为A .1.6×102 kgB .1.6×103 kgC .1.6×105 kgD .1.6×106 kg 【答案】B【解析】动量定理v m F ∆=∆t ,所以vt F m ∆∆=代入数据得3106.1⨯=m kg. 2. 全国2卷14.2019年1月,我国嫦娥四号探测器成功在月球背面软着陆,在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图像是【答案】D【解析】万有引力定律2)(m h R GM F +=,h 越大,F 越小,非线性关系,所以D 正确。
3.全国3卷15.金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a 金、a 地、a 火,它们沿轨道运行的速率分别为v 金、v 地、v 火。
已知它们的轨道半径R 金<R 地<R 火,由此可以判定 A .a 金>a 地>a 火B .a 火>a 地>a 金C .v 地>v 火>v 金D .v 火>v 地>v 金 【答案】A 【解析】根据Rmv ma R GM 22m ==,得2R GM a =,因为R 金<R 地<R 火,所以a 金>a 地>a 火 ; 得RGM v =,因为R 金<R 地<R 火,所以v 金>v 地>v 火 ;只有A 正确。
4. 北京卷18.2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。
2019 高考物理试题分类汇编 - 万有引力与航天〔2018 上海〕 22B 、人造地球卫星做半径为r ,线速度大小为 v 的匀速圆周运动。
当其角速2度变成本来的 4 倍后,运动半径为 _________,线速度大小为 _________。
22B. 【考点】此题观察万有引力在天体运动中的应用22r ,由 vr 可知,【分析】 由可知,角速度变成本来的 4 倍后,半径变成G Mmm 2rr 222角速度变成本来的 4 倍后,线速度大小为2 v 。
2 【答案】 2r , 2 v〔2018 新课标〕 21 假设地球是一半径为 R. 质量分布平均的球体。
一矿井深度为d 。
质量分布平均的球壳对壳内物体的引力为零。
矿井底部和地面处的重力加快度大小之比为ddA 、1-RB 、 1+RC 、 R d2D 、2RRR d21【答案】 A在地球表面M,又43,因此M 4,由于球壳对球mg G 2 mMRg G 2 G RR 3R 3内物体的引力为零,因此在深为d 的矿井内,得MmgG 2 mR dM4,因此 gRdd。
g G2G R dg 1RRd3R〔2018 大纲卷〕 25. 一单摆在地面处的摇动周期与在某矿井底部摇动周期的比值为 k 。
设地球的半径为 R 。
假设地球的密度平均。
质量平均分布的球壳对壳内物体的引力为零,求矿井的深度 d 。
律的分析计算能力。
解:在地面处,单摆所受万有引力近似等于其重力,即Mm ,GmgR2单摆的在地面的摇动周期L T2g设地球密度为 ρ ,地球的体积 V4 R 3 , M V3综合以上四得得:3LTG R同理可知,矿井内单摆的周期3LT '( R d )G而单摆在地面处的摇动周期与矿井底部摇动周期之比T kT '解得: dR(1 k 2 )【参照答案】 dR(1 k 2 )〔 2018 广东〕 21. 如图 6 所示,飞船从轨道1 变轨至轨道 2。
假设飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相关于在轨道1 上,飞船在轨道2 上的A. 动能大B. 向心加快度大C. 运转周期长D. 角速度小【考点】万有引力定律【答案】 CD【分析】联合 GMm mv22R m(2 2 ,可判断飞R 2R m) RT船在 2 轨道上速度小,动能小,向心力小向心加快度小,周期长,角速度小,正确选项为CD【方法点拨】 谈论天体问题的基本方法: 把天体的运动看作是匀速圆周运动, 其所需向心力由万有引力供给。
(物理)物理万有引力与航天专项习题及答案解析一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大.【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=3.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度0v 竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求: (1)行星的半径R ;(2)小石子能上升的最大高度. 【答案】(1)GMR g= (2)202v h g =【解析】(1)对行星表面的某物体,有:2GMmmg R=- 得:GMR g=(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:2002v gh =-+得:202v h g=4.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL= 同理对星2M ,有:212222M M GM R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,; ()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.5.2019年4月20日22时41分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为r 的匀速圆周运动。
专题:万有引力定律与航天1.(2019·新课标全国Ⅰ卷)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。
在另一星球N 上用完全相同的弹簧,改用物体Q 完成同样的过程,其a –x 关系如图中虚线所示,假设两星球均为质量均匀分布的球体。
已知星球M 的半径是星球N 的3倍,则A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍【答案】AC【解析】A 、由a –x 图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有:,变形式为:k a g x m =-,该图象的斜率为k m-,纵轴截距为重力加速度g 。
根据图象的纵轴截距可知,两星球表面的重力加速度之比为:;又因为在某星球表面上的物体,所受重力和万有引力相等,即:,即该星球的质量2gR M G=。
又因为:343R M πρ=,联立得34g RG ρπ=。
故两星球的密度之比为:,故A 正确;B 、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg kx =,即:kx m g=;结合a –x 图象可知,当物体P 和物体Q 分别处于平衡位置时,弹簧的压缩量之比为:,故物体P 和物体Q的质量之比为:,故B 错误;C 、物体P 和物体Q 分别处于各自的平衡位置(a =0)时,它们的动能最大;根据22v ax =,结合a –x 图象面积的物理意义可知:物体P 的最大速度满足,物体Q 的最大速度满足:2002Q v a x =,则两物体的最大动能之比:,C 正确;D 、物体P 和物体Q 分别在弹簧上做简谐运动,由平衡位置(a =0)可知,物体P 和Q 振动的振幅A 分别为0x 和02x ,即物体P 所在弹簧最大压缩量为20x ,物体Q 所在弹簧最大压缩量为40x ,则Q 下落过程中,弹簧最大压缩量时P 物体最大压缩量的2倍,D 错误;故本题选AC 。
专题06 万有引力定律与航天1.(2019·新课标全国Ⅰ卷)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。
在另一星球N 上用完全相同的弹簧,改用物体Q 完成同样的过程,其a –x 关系如图中虚线所示,假设两星球均为质量均匀分布的球体。
已知星球M 的半径是星球N 的3倍,则A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍 【答案】AC【解析】A 、由a –x 图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有:,变形式为:k a g x m =-,该图象的斜率为km-,纵轴截距为重力加速度g 。
根据图象的纵轴截距可知,两星球表面的重力加速度之比为:;又因为在某星球表面上的物体,所受重力和万有引力相等,即:,即该星球的质量2gR M G=。
又因为:343R M πρ=,联立得34g RG ρπ=。
故两星球的密度之比为:,故A 正确;B 、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg kx =,即:kxm g=;结合a –x 图象可知,当物体P 和物体Q 分别处于平衡位置时,弹簧的压缩量之比为:,故物体P 和物体Q 的质量之比为:,故B 错误;C 、物体P 和物体Q分别处于各自的平衡位置(a =0)时,它们的动能最大;根据22v ax =,结合a –x 图象面积的物理意义可知:物体P 的最大速度满足,物体Q 的最大速度满足:2002Q v a x =,则两物体的最大动能之比:,C 正确;D 、物体P 和物体Q 分别在弹簧上做简谐运动,由平衡位置(a =0)可知,物体P 和Q 振动的振幅A 分别为0x 和02x ,即物体P 所在弹簧最大压缩量为20x ,物体Q 所在弹簧最大压缩量为40x ,则Q 下落过程中,弹簧最大压缩量时P 物体最大压缩量的2倍,D 错误;故本题选AC 。
专题06 万有引力定律与航天1.(2019·新课标全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。
在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。
已知星球M的半径是星球N的3倍,则
A.M与N的密度相等
B.Q的质量是P的3倍
C.Q下落过程中的最大动能是P的4倍
D.Q下落过程中弹簧的最大压缩量是P的4倍
2.(2019·新课标全国Ⅱ卷)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆,在探测器“奔向”月球的过程中,用h表示探测器与地球表面的距离,F表示它所受的地球引力,能够描述F随h变化关系的图像是
3.(2019·新课标全国Ⅲ卷)金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a金、a地、a火,它们沿轨道运行的速率分别为v金、v地、v火。
已知它们的轨道半径R金<R地<R火,由此可以判定
A.a金>a地>a火B.a火>a地>a金
C.v地>v火>v金D.v火>v地>v金
4.(2019·北京卷)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。
该卫星
A.入轨后可以位于北京正上方
B.入轨后的速度大于第一宇宙速度
C .发射速度大于第二宇宙速度
D .若发射到近地圆轨道所需能量较少
5.(2019·天津卷)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。
已知月球的质量为M 、半径为R ,探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的
A B .动能为2GMm R
C D .向心加速度为
2GM R 6.(2019·江苏卷)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G 。
则
A .121,v v v >
B .121,v v v >
C .121,v v v <
D .121,v v v <>7.(2019·浙江选考)20世纪人类最伟大的创举之一是开拓了太空的全新领域。
现有一艘远离星球在太空中直线飞行的宇宙飞船,为了测量自身质量,启动推进器,测出飞船在短时间Δt 内速度的改变为Δv ,和飞船受到的推力F (其它星球对它的引力可忽略)。
飞船在某次航行中,当它飞近一个孤立的星球时,飞船能以速度v ,在离星球的较高轨道上绕星球做周期为T 的匀速圆周运动。
已知星球的半径为R ,引力常量用G 表示。
则
宇宙飞船和星球的质量分别是
A.F v
t
∆
∆
,
2
v R
G
B.
F v
t
∆
∆
,
3
2π
v T
G
C.F t
v
∆
∆
,
2
v R
G
D.
F t
v
∆
∆
,
3
2π
v T
G
8.(2019·广东省汕尾市高三模拟)2018年11月1日,我国在西昌卫星发射中心用长征三号乙运载火箭成功发射第41颗北斗导航卫星。
这颗卫星属于地球静止轨道卫星(同步卫星)。
取地球半径为R=6.4×106 m,地球表面重力加速度g=9.8 m/s2。
下列说法正确的是A.该卫星到地面的高度约为7
4.210m
⨯
B.该卫星的线速度约为3.1km/s
C.该卫星发出的电磁波信号传播到地面经过时间约为1 s
D.该卫星做圆周运动的加速度小于月球绕地球做圆周运动的加速度
9.(2019·湖南省怀化市高三二模)2018年12月8日,嫦娥四号发射升空。
将实现人类历史上首次月球背面登月。
随着嫦娥奔月梦想的实现,我国不断刷新深空探测的中国高度。
嫦娥卫星整个飞行过程可分为三个轨道段:绕地飞行调相轨道段、地月转移轨道段、绕月飞行轨道段我们用如图所示的模型来简化描绘嫦娥卫星飞行过程,假设调相轨道和绕月轨道的半长轴分别为a、b,公转周期分别为T1、T2。
关于嫦娥卫星的飞行过程,下列说法正确的是
A.
33
22 12 a b T T
=
B.嫦娥卫星在地月转移轨道上运行的速度应大于11.2 km/s
C.从调相轨道切入到地月转移轨道时,卫星在P点必须减速
D.从地月转移轨道切入到绕月轨道时,卫星在Q点必须减速
10.(2019·四川省成都市高三三模)2019年初,《流浪地球》的热映激起了人们对天体运动的广泛关注。
木星的质量是地球的317.89倍,已知木星的一颗卫星甲的轨道半径和地球的卫星乙的轨道半径相同,且它们均做匀速圆周运动,则下列说法正确的是
A.卫星甲的周期可能大于卫星乙的周期
B.卫星甲的线速度可能小于卫星乙的线速度
C.卫星甲的向心加速度一定大于卫星乙的向心加速度
D.卫星甲所受的万有引力一定大于卫星乙所受的万有引力
11.(2019·北京市通州区高考物理二模)用传感器测量一物体的重力时,发现在赤道测得的读数与其在北极的读数相差大约3‰。
如图所示,如果认为地球是一个质量分布均匀的标准球体,下列说法正确的是
A.在北极处物体的向心力为万有引力的3‰
B.在北极处物体的重力为万有引力的3‰
C.在赤道处物体的向心力为万有引力的3‰
D.在赤道处物体的重力为万有引力的3‰
12.(2019·江苏省扬州中学高三模拟)2019年4月10日,天文学家召开全球新闻发布会,宣布首次直接拍摄到黑洞的照片如图所示。
黑洞是一种密度极大、引力极大的天体,以至于光都无法逃逸(光速为c)。
若黑洞的质量为M,半径为R,引力常量为G,其逃
逸速度公式为v'=v绕某黑洞做半径为r 的匀速圆周运动,则下列说法正确的有
A .2v r M G
B .M =Gv 2r
C .该黑洞的最大半径为
22GM c D .该黑洞的最小半径为2
2GM c 13.(2019·福建省泉州市高三质量检查)如图,虚线I 、Ⅱ、Ⅲ分别表示地球卫星的三条轨
道,其中轨道I 为与第一宇宙速度7.9 km/s 对应的近地环绕圆轨道,轨道Ⅱ为椭圆轨道,轨道Ⅲ为与第二宇宙速度11.2 km/s 对应的脱离轨道,a 、b 、c 三点分别位于三条轨道上,b 点为轨道Ⅱ的远地点,b 、c 点与地心的距离均为轨道I 半径的2倍,则
A .卫星在轨道Ⅱ的运行周期为轨道I 的2倍
B
.卫星经过a 点的速率为经过b 倍
C .卫星在a 点的加速度大小为在c 点的4倍
D .质量相同的卫星在b 点的机械能小于在c 点的机械能
14.(2019·东北三省四市高考二模)继“好奇”号之后,“洞察”号再次探访火星,使火星再次
成为人类最为关注的行星。
已知它的直径约是地球的一半,质量约为地球质量的1/10,表面积相当于地球陆地面积自转周期与地球十分接近,到太阳的距离约是日地距离的
1.5倍。
根据以上信息可知
A .火星表面的重力加速度约是地球的0.4倍
B .火星的第一宇宙速度约为地球的1.6倍
C .火星的同步卫星轨道半径约为地球的1倍
D .火星的公转周期约1.8年
15.(2019·山西省太原市第五中学高三模拟)已知某卫星在赤道上空轨道半径为r 1的圆形
轨道上绕地运行的周期为T ,卫星运动方向与地球自转方向相同,赤道上某城市的人每两天恰好三次看到卫星掠过其正上方。
假设某时刻,该卫星如图在A 点变轨进入椭圆轨道,近地点B 到地心距离为r 2。
设卫星由A 到B 运动的时间为t ,地球自转周期为T 0,不计空气阻力。
则
A .025
T T = B
.T = C .卫星在图中椭圆轨道由A 到B 时,机械能不变
D .卫星由图中A 点变轨进入椭圆轨道,机械能增大。