(完整版)模拟电子技术基础-知识点总结
- 格式:doc
- 大小:449.09 KB
- 文档页数:15
模拟电子技术基础复习要点一、常用半导体器件1.半导体二极管(1)掌握二极管具有单向导电的特性。
用电位的方法来判断二极管是否导通,即,哪个二极管的阳极电位最高,或哪个二极管的阴极电位最低,哪个二极管就优先导通。
(2)注意:理想二极管导通之后相当短路,截止后相当开路。
(3)掌握二极管的动态电阻小,静态电阻大的概念(直流通路恒压源,交流通路小电阻)。
交流的时候把二极管当成一个交流的小电阻,用静态工作点和公式求二极管的电阻值(4)熟悉二极管的应用(开关、钳位、隔离、保护、整流、限幅)作业:1.32. 半导体稳压管(1)掌握稳压管工作在反向击穿区的特点只要不超过稳压管的最大功率,电流越大越好(2)掌握稳压管与一电阻串联时,在电路中起的稳压作用。
(3)掌握稳压管的动态电阻小,静态电阻大的概念。
(3)熟悉稳压管的应用(稳压、限幅)作业:1.5 , 1.63. 晶体三极管(1)熟悉晶体管的电流放大原理(重点掌握Ic=βIb )(2)掌握NPN 型三极管的输出特性曲线。
晶体管有三个级,必然就有BE 间的输入,CE 间的输出,所以有两组特性曲线。
iB 和Ube 之间的关系,但是保证Uce 是一个恒定值iC 和Uce 之间的关系,保证Ib 是一个恒定值关于NPN 型管子:管子处于何种状态要根据电压之间的关系来确定。
主要是饱和区和截止区之间的区别(3)掌握三极管的放大、饱和与截止条件。
(4)理解CEO CBO I I 和的定义及其对晶体管集电极电流的影响。
作业:1.9,1.12 ,共射交流放大倍数β,共基交流放大倍数α≈14. 场效应管(1)能够从转移特性曲线和输出特性曲线识别场效应管类型。
(2)掌握结型场效应管(N沟道)的转移特性和输出特性的意义。
(3)掌握绝缘栅N沟道增强型MOS的转移特性和输出特性的意义。
(4)掌握电流方程,1.4.4 式和1.4.5式作业:1.14结型场效应MOS。
模拟电⼦技术重要知识点整理模拟电⼦技术重要知识点整理第⼀章绪论1.掌握放⼤电路的主要性能指标都包括哪些。
2.根据增益,放⼤电路有哪些分类。
并且会根据输出输⼊关系判断是哪类放⼤电路,会求增益。
第⼆章运算放⼤器1.集成运放适⽤于放⼤何种信号?2.会判断理想集成运放两个输⼊端的虚短、虚断关系。
如:在运算电路中,集成运放的反相输⼊端是否均为虚地。
3.运放组成的运算电路⼀般均引⼊负反馈。
4.当集成运放⼯作在⾮线性区时,输出电压不是⾼电平,就是低电平。
5.在运算电路中,集成运放的反相输⼊端不是均为虚地。
6.理解同相放⼤电路、反相放⼤电路、求和放⼤电路等,会根据⼀个输出输⼊关系表达式判断何种电路能够实现这⼀功能。
7.会根据虚短、虚断分析含有理想运放的放⼤电路。
第三章⼆极管及其基本电路1.按导电性能的优劣可将物质分为导体、半导体、绝缘体三类,导电性能良好的⼀类物质称为导体,⼏乎不导电的物质称为绝缘体,导电性能介于中间的称为半导体。
2.在纯净的单晶硅或单晶锗中,掺⼊微量的五价或三价元素所得的掺杂半导体是什么,其多数载流⼦和少数载流⼦是是什么,⼜称为什么半导体。
3.半导体⼆极管由⼀个PN结做成,管⼼两侧各接上电极引线,并以管壳封装加固⽽成。
4.半导体⼆极管可分为哪两种类型,其适⽤范围是什么。
5.⼆极管最主要的特性是什么。
6.PN结加电压时,空间电荷区的变化情况。
7.杂质半导体中少数载流⼦浓度只与温度有关。
8.掺杂半导体中多数载流⼦主要来源于掺杂。
9.结构完整完全纯净的半导体晶体称为本征半导体。
10.当掺⼊三价元素的密度⼤于五价元素的密度时,可将N型转型为P型;当掺⼊五价元素的密度⼤于三价元素的密度时,可将P型转型为N型。
11.温度升⾼后,⼆极管的反向电流将增⼤。
12.在常温下,硅⼆极管的开启电压约为0.3V,锗⼆极管的开启电压约为0.1V。
13.硅⼆极管的正向压降和锗管的正向压降分别是多少。
14.PN结的电容效应是哪两种电容的综合反映。
1、半导体:导电性能介于导体和绝缘体之间的物质。
特性:热敏性、光敏性、掺杂性。
2、本征半导体:完全纯净的具有晶体结构完整的半导体。
3、在纯净半导体中掺入三价杂质元素,形成P型半导体,空穴为多子,电子为少子。
4、在纯净半导体中掺入五价杂质元素,形成N型半导体,电子为多子、空穴为少子。
5、二极管的正向电流是由多数载流子的扩散运动形成的,而反向电流则是由少子的漂移运动形成的。
6、硅管Uo n和Ube:0.5V和0.7V ;锗管约为0.1V和0.3V。
7、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。
(压降为0.7V,)②加反向电压时截止,相当断开。
③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。
8、二极管主要用途:开关、整流、稳压、限幅、继流、检波、隔离(门电路)等。
9、三极管的三个区:放大区、截止区、饱和区。
三种状态:工作状态、截止状态、饱和状态,放大时在放大状态,开关时在截止、饱和状态。
三个极:基极B、发射极E和集电极C。
二个结:即发射结和集电结。
饱和时:两个结都正偏;截止时:两个结都反偏;放大时:发射结正偏,集电结反偏。
三极管具有电流电压放大作用.其电流放大倍数β=I C / I B (或I C=β I B)和开关作用.10、当输入信号I i很微弱时,三极管可用H参数模型代替(也叫微变电路等效电路)。
11、失真有三种情况:⑴截止失真原因I B、I C太小,Q点过低,使输出波形正半周失真。
调小R B,以增大I B、I C,使Q点上移。
⑵饱和失真原因I B、I C太大,Q点过高,使输出波形负半周失真。
调大R B,以减小I B、I C,使Q点下移。
⑶信号源U S过大而引起输出的正负波形都失真,消除办法是调小信号源。
1、放大电路有共射、共集、共基三种基本组态。
(固定偏置电路、分压式偏置电路的输入输出公共端是发射极,故称共发射极电路)。
共射电路的输出电压U0与输入电压U I反相,所以又称反相器。
完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。
2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。
3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。
三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。
2.共集电极放大电路---具有电压跟随和电流跟随的作用。
3.共基极放大电路---具有电压放大的作用,输入电阻较低。
4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。
四.三极管的应用1.放大器---将弱信号放大为较强的信号。
2.开关---控制大电流的通断。
3.振荡器---产生高频信号。
4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。
模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。
2.半导体具有光敏、热敏和掺杂特性。
3.本征半导体是纯净的具有单晶体结构的半导体。
4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。
5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。
根据掺杂元素的不同,可分为P型半导体和N型半导体。
6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。
7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。
8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。
二.半导体二极管半导体二极管是由PN结组成的单向导电器件。
1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。
2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。
3.分析半导体二极管的方法包括图解分析法和等效电路法等。
三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。
模拟电路基础知识点总结一、电路基本概念1. 电路电路是由电子元件(如电源、电阻、电容、电感等)连接在一起形成的电子装置。
通过这些元件可以实现电能的输送、控制和转换,从而完成各种电子设备和系统的功能。
2. 电流、电压和电阻电流是电子在导体中流动的载体,是电荷的移动速度,通常用符号I表示,单位是安培(A)。
电压是电源推动电荷流动的力量,通常用符号U表示,单位是伏特(V)。
电阻是导体对电流的阻碍,通常用符号R表示,单位是欧姆(Ω)。
3. 串联电路、并联电路和混联电路串联电路是将电子元件连接在同一电路中,依次排列,电流只有一条通路可走。
并联电路是将电子元件连接在同一电路中,相互平行排列,电流可有多条通路走。
混联电路是将电子元件混合连接在同一电路中,既有串联又有并联的特点。
二、基本电路元件1. 电源电源为电路提供驱动力,可以是直流电源或交流电源,根据需要分别选择。
2. 电阻电阻是电路中常用的元件,可以用来控制电流大小,限制电流大小,分压和分流等。
3. 电容电容是储存电荷的元件,可以用来实现一些信号处理和滤波的功能,在交流电路中有重要作用。
4. 电感电感是导体绕制的线圈,可以将电能转换为磁能,反之亦然,对交流信号传输有重要作用。
5. 二极管二极管是一种电子元件,可以将电流限制在一个方向上流动,常用于整流、开关和光电转换等应用。
6. 晶体管晶体管是一种半导体元件,可以放大电流信号,控制电流开关等,是集成电路中最基本的元件之一。
三、基本电路分析1. 基尔霍夫定律基尔霍夫定律是用来分析串联电路和并联电路中电压和电流的分布情况的定律,包括基尔霍夫电流定律和基尔霍夫电压定律。
2. 电压分压和电流分流电压分压和电流分流是串联电路和并联电路中常见的分析方法,可以通过这些方法来实现电路中电压和电流的控制。
3. 戴维南定理和戴维南等效电路戴维南定理是用来分析电路中电阻和电压之间的关系,戴维南等效电路是用来替代一些复杂电路,简化分析过程的方法。
模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模电知识点总结一、基本概念1. 电路元件:模拟电子技术的基本元件包括电阻、电容、电感、二极管、晶体管等。
其中,电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于整流、开关等,晶体管用于放大、开关等。
2. 信号:在模拟电子技术中,信号是指随时间或空间变化的电压或电流。
常见的信号形式有直流信号、交流信号、脉冲信号等。
3. 放大器:放大器是模拟电子技术中的重要元件,用于放大输入信号的幅度。
常见的放大器有运放放大器、晶体管放大器等。
4. 滤波器:滤波器是用于选择特定频率范围内的信号,常用于滤除噪声、提取特定频率成分等。
5. 调制解调:调制是将基带信号调制到载波上,解调是将载波信号解调还原为基带信号。
调制解调技术是模拟电子技术中的重要应用之一。
二、基本电路1. 电阻电路:电阻是最基本的电路元件之一,常用于限制电流、调节电压和波形、分压等。
常见的电阻电路包括电压分压电路、电流分压电路、电阻网络等。
2. 电容电路:电容是能存储电荷的元件,常用于滤波、积分、微分等。
常见的电容电路包括RC电路、LC电路、多级滤波器等。
3. 电感电路:电感是储存能量的元件,常用于振荡器、磁耦合放大器等。
常见的电感电路包括RLC电路、振荡电路、滤波器等。
4. 滤波器电路:滤波器是用于选择特定频率范围内的信号的电路,常用于滤除杂散信号、提取特定频率成分等。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器、陷波滤波器等。
5. 放大器电路:放大器是用于放大电压、电流信号的电路,常用于信号调理、传感器信号放大、运算放大器电路等。
常见的放大器电路包括运算放大器电路、放大器电路、多级放大器电路等。
6. 混频器电路:混频器是用于将两路信号进行混频得到中频信号的电路,常用于调频收音机、超外差接收机等。
常见的混频器电路包括倍频器电路、调频接收机电路、超外差接收机电路等。
7. 调制解调电路:调制解调电路是用于调制解调信号的电路,常用于调制解调的通信系统、调幅收音机、调频收音机等。
模电复试基本知识点总结模拟电子技术(简称模拟电子技术或模电)是电子科学中的一个重要领域,其研究对象是模拟信号的获取、处理和传输。
模拟电子技术在通信、计算机、医疗、工业控制和电子消费品等领域都有着广泛的应用。
模拟电子技术复试是电子信息类专业研究生入学时的一项测试,其目的是验证考生的专业基础知识水平和综合分析问题的能力。
模电类研究生复试主要考察的内容包括模电基础知识、电子线路设计能力、信号处理与滤波、放大电路设计、反馈电路设计、运算放大器、振荡电路、电源与稳压、模电实验与应用等。
下面就模拟电子技术复试的基本知识点做一个总结。
一、模电基础知识1. 电子电路电子电路是利用电子元件(如二极管、晶体管、集成电路等)搭建的可以完成某种电子功能的电路系统,是电子技术的核心。
在模电复试中,通常考察考生对电子电路的基本原理和分析能力,例如使用基尔霍夫定律分析电路,计算电路稳态和暂态响应等。
2. 电子元件在电子电路中,常用的电子元件包括二极管、晶体管、场效应管、继电器等。
考生需要了解不同电子元件的工作原理、特性和应用场景。
3. 电子器件特性电路中的电子器件,如二极管、晶体管等,都有其特定的工作特性,例如电压-电流特性曲线、频率响应、非线性失真等。
了解电子器件特性对于电路设计和分析非常重要。
4. 信号与系统信号与系统是模拟电子技术的基础,考生需要了解信号的分类、信号的时域和频域分析、系统的传递函数和频率响应等内容。
二、电子线路设计1. 放大电路设计在模拟电子技术中,放大电路是最基本的电子线路之一。
放大电路的设计考察考生对放大电路的基本原理、放大倍数、频率特性等有深入的理解和应用能力。
2. 滤波电路设计滤波电路是用于信号的分离和处理,对于模电的复试来说,考生要掌握各种滤波电路的设计原理、种类和特性,并能灵活应用于实际问题。
3. 反馈电路设计反馈电路是电子系统中的重要组成部分,其设计不仅直接影响了电路的稳定性和性能,还可以使得整个系统的性能有较大的提高。
清华模电知识点总结一、模电基础知识1. 模电的基本概念模拟电子技术(模电)是研究模拟信号的获取、处理和传输的一门学科,其主要研究对象是模拟电路。
模电课程主要从放大器、滤波器、运算放大器等方面展开理论教学和实验研究,使学生能够了解模拟电路的基本原理和设计方法。
2. 模电的基本原理模电的基本原理包括模电电路中的放大器、运算放大器、滤波器等部分的原理和设计方法。
学生需要掌握这些基本原理,才能够进行模电电路的分析与设计。
3. 模电电路的分析与设计模电电路的分析与设计是模电课程的重点内容,学生需要学习如何分析和设计各种模电电路,包括放大器、滤波器、运算放大器等。
通过理论学习和实验实践,使学生能够掌握如何分析和设计模电电路。
二、模电课程的教学内容1. 放大器放大器是模电课程的核心内容之一,学生需要学习放大器的基本原理、分类、设计方法以及实际应用。
清华大学的模电课程会重点讲解放大器的基本原理和设计方法,使学生能够掌握放大器的分析与设计技术。
2. 运算放大器运算放大器是模电电路中的重要组成部分,也是模电课程的重要内容。
学生需要学习运算放大器的基本原理、特点、应用以及在模电电路中的设计方法。
清华大学的模电课程会给予学生相应的理论与实践教学,使学生能够全面了解并掌握运算放大器的相关知识和技术。
3. 滤波器滤波器是模电电路中的另一个重要组成部分,也是模电课程的一大学习内容。
学生需要学习滤波器的基本原理、分类、设计方法以及在模电电路中的应用。
清华大学的模电课程会重点讲解滤波器的相关知识和技术,使学生能够掌握滤波器的分析与设计技术。
4. 模电实验模电实验是模电课程的重要组成部分,学生需要通过实验操作来加深对模电电路原理的理解和掌握相应的实验技术。
清华大学的模电课程注重实验的设计和操作,使学生能够在实践中掌握模电技术并培养动手实践能力。
三、模电课程的教学特点1. 理论与实践相结合清华大学的模电课程注重理论与实践相结合,旨在培养学生的动手实践能力和创新精神。
电子技术模拟电路知识点总结一、模拟电路基础概念模拟电路处理的是连续变化的信号,与数字电路处理的离散信号不同。
在模拟电路中,电压和电流可以在一定范围内取任意值。
这是理解模拟电路的关键起点。
二、半导体器件1、二极管二极管是最简单的半导体器件之一,具有单向导电性。
当正向偏置时,电流容易通过;反向偏置时,电流极小。
二极管常用于整流电路,将交流转换为直流。
2、三极管三极管分为 NPN 型和 PNP 型。
它具有放大电流的作用,通过控制基极电流,可以实现对集电极电流的控制。
三极管在放大电路中应用广泛。
3、场效应管场效应管分为结型和绝缘栅型。
它是电压控制型器件,输入电阻高,噪声小,常用于集成电路中。
三、基本放大电路1、共射放大电路共射放大电路具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。
2、共集放大电路共集放大电路又称射极跟随器,电压放大倍数接近 1,但输入电阻高,输出电阻小,具有良好的跟随特性。
3、共基放大电路共基放大电路具有较高的频率响应和较好的高频特性。
四、集成运算放大器集成运算放大器是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。
1、理想运算放大器特性具有“虚短”和“虚断”的特点。
“虚短”指两输入端电位近似相等,“虚断”指两输入端电流近似为零。
2、运算放大器的应用包括比例运算电路、加法运算电路、减法运算电路、积分运算电路和微分运算电路等。
五、反馈电路反馈可以改善放大器的性能。
1、正反馈和负反馈正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会用到。
负反馈能稳定放大倍数、改善频率特性等。
2、四种反馈组态电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈,它们对电路性能的影响各不相同。
六、功率放大电路功率放大电路的主要任务是向负载提供足够大的功率。
1、甲类、乙类和甲乙类功率放大电路甲类功放效率低,但失真小;乙类功放效率高,但存在交越失真;甲乙类功放则是介于两者之间。
模电知识点总结pdf手写模电知识点总结PDF手写一、引言模拟电子技术(模电)作为电子工程中的一个重要分支领域,是电子技术中的基础知识之一。
它主要研究电子电路中的模拟信号的处理与传输,包括模拟电路的设计、分析与测试等内容。
对于学习和掌握模电知识,一个全面的知识点总结是必不可少的。
本文将结合PDF手写的方式,对模电知识点进行总结,具体内容如下。
二、基本概念与基础知识1.模拟电路与数字电路的区别:模拟电路处理的是连续的模拟信号,数字电路处理的是离散的数字信号。
2.模拟电路的基本组成:电源、信号处理元件(如电容、电感、二极管等)、放大器、滤波器等。
3.基本电路元件的特性:电阻、电容、电感的特性参数及相关计算方法。
4.电路分析方法:基尔霍夫定律、戴维南定理、超节点定理、等效电路等。
三、放大器设计与分析1.放大器的基本概念:放大器用于增大信号的幅度,常见的放大器有共射极放大器、共集极放大器、共基极放大器等。
2.放大器的频率特性:通频带、增益带宽积、低频响应、高频响应等。
3.放大器参数的计算方法:增益、输入阻抗、输出阻抗等。
4.放大器的稳定性分析:极点与零点分布、稳定性判据、稳定性设计等。
四、滤波器设计与分析1.滤波器的基本概念:滤波器用于对信号进行滤波,常见的滤波器有低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
2.滤波器的频率响应特性:频率响应曲线、通频带、阻带、滤波器的增益等。
3.滤波器的设计方法:积分法、微分法、频率转换法、电流増强法等。
4.滤波器的实际应用:音频滤波器、图像滤波器、通信系统中的滤波器等。
五、运算放大器1.运算放大器的基本概念与模型:运算放大器的输入端、输出端、电源端及运算放大器的非理想性。
2.运算放大器的基本运算电路:比较电路、求和电路、积分电路、微分电路等。
3.运算放大器的常用应用电路:反馈放大器、积分放大器、微分放大器等。
4.运算放大器的理想运算:虚短法、虚断法、理想运算法、实际运算法等方法。
模拟电子技术复习资料总结第一章半导体二极管一。
半导体的基础知识1.半导体——-导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2。
特性—-—光敏、热敏和掺杂特性。
3.本征半导体————纯净的具有单晶体结构的半导体。
4。
两种载流子-—--带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体——-—在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴).6.杂质半导体的特性*载流子的浓度—-—多子浓度决定于杂质浓度,少子浓度与温度有关.*体电阻——-通常把杂质半导体自身的电阻称为体电阻。
*转型—-—通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7.PN结*PN结的接触电位差——-硅材料约为0。
6~0。
8V,锗材料约为0。
2~0.3V.*PN结的单向导电性---正偏导通,反偏截止.8。
PN结的伏安特性二。
半导体二极管*单向导电性—---—-正向导通,反向截止。
*二极管伏安特性-——-同PN结。
*正向导通压降——--——硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压--—-—-硅管0。
5V,锗管0。
1V。
3.分析方法--—-—-将二极管断开,分析二极管两端电位的高低:若V阳>V阴(正偏),二极管导通(短路);若V阳<V阴(反偏),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2)等效电路法➢直流等效电路法*总的解题手段-———将二极管断开,分析二极管两端电位的高低:若V阳〉V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性—--正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模电知识点总结模拟电子技术(模电)是电子工程中的重要学科之一,它涉及到电子系统的设计、分析和应用等方面。
在学习模电的过程中,有一些重要的知识点需要掌握,并加以总结和理解。
本文将对几个常见的模电知识点进行梳理和总结,以便于读者更好地学习和应用模电相关知识。
一、放大器放大器是模电中非常重要的一部分,它用于增强电信号的幅度。
常见的放大器有晶体管放大器和运算放大器等。
晶体管放大器是利用晶体管的特性来放大信号,可以将微弱的电信号放大为更大的电信号。
而运算放大器是一种专门用于具有高电压增益和大动态范围的信号放大器。
掌握放大器的工作原理和应用场景,对于模电的学习和实际应用是非常重要的。
二、滤波器滤波器是一种将不同频率的信号进行分离或滤除的电路。
在模电中,滤波器的应用非常广泛,常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
低通滤波器可以通过将高频信号滤除,保留低频信号,常用于去除噪声和保护电路。
而高通滤波器则可以滤除低频信号,保留高频信号。
通过掌握滤波器的基本原理和特性,可以更好地分析和设计电子系统中的滤波器电路。
三、振荡器振荡器是一种能够产生连续或间歇的周期性波形的电路。
在模电中,振荡器被广泛应用于时钟信号的产生、载波信号的生成等方面。
常见的振荡器有正弦波振荡器、方波振荡器和脉冲振荡器等。
正弦波振荡器可以产生正弦波信号,其基本元件为电感和电容等。
方波振荡器则可以产生方波信号,广泛应用于数字电路中。
了解振荡器的工作原理和设计方法,有助于读者理解和应用振荡器电路。
四、功率放大器功率放大器是一种能够放大电信号功率的电路。
在实际应用中,功率放大器被广泛应用于音频放大、射频放大等方面。
常见的功率放大器有A类放大器、B类放大器和C类放大器等。
A类放大器是一种效率较低但线性度较好的放大器。
而B类放大器具有较高的效率,但会产生失真。
C类放大器则具有更高的效率,但也会引入更多的失真。
掌握功率放大器的特性和设计方法,对于音频和射频电路的设计非常重要。
模拟电子技术基础-知识点总结-(最新版-已修订)
模拟电子技术基础知识是指使用有限的模拟电信号表征的知识,用于建立模拟电子系
统的原理和基本技术。
基础理论是研究模拟电子系统的基础,有助于专业工作者更好地理解、设计和应用这类系统。
模拟电子技术基础以电子技术作为核心,具备以下特点:
1、以信号源、电路、仪器学等做出反应为基础,注重反应的物理特性,探讨信号可
以如何传播、处理和控制,以及电子元件的功能与作用;
2、侧重探究电子系统的工作原理,掌握其组成的基本元件及其工作原理,熟悉其参
数的确定及其表达方法与测量;
3、认识和掌握电子设备调节原理和方法,懂得如何修改电子设备以及采用综合技术
来改善其性能;
4、参数优化:根据电路设计要求,选择合适的电路结构,确定部件参数,优化系统
性能,提供充分的有关信息;
5、系统设计与模拟:根据客户要求,将电子系统的不同部件结构组合起来,通过模
拟设计、调节和优化,使其性能达到最优;
6、工具硬件和软件调试:根据电子原理图和程序,熟悉工具硬件和软件的调试技术,熟练掌握编程技术和系统调试技术。
模拟电子技术可以很好地提高系统的性能,并为用户带来更多便利。
然而,要达到理
想的效果,必须熟悉模拟电子技术基础知识,才能根据具体实践需要和环境,通过相关技
术合理应用,使模拟电子技术发挥出最大威力。
模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子 ----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
第二章三极管及其基本放大电路一. 三极管的结构、类型及特点1.类型---分为NPN和PNP两种。
2.特点---基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触面积较小;集电区掺杂浓度较高,与基区接触面积较大。
二. 三极管的工作原理1. 三极管的三种基本组态2. 三极管内各极电流的分配* 共发射极电流放大系数 (表明三极管是电流控制器件式子称为穿透电流。
3. 共射电路的特性曲线*输入特性曲线---同二极管。
* 输出特性曲线(饱和管压降,用U CES表示放大区---发射结正偏,集电结反偏。
截止区---发射结反偏,集电结反偏。
4. 温度影响温度升高,输入特性曲线向左移动。
温度升高I CBO、I CEO、I C以及β均增加。
三. 低频小信号等效模型(简化)h---输出端交流短路时的输入电阻,ie常用r be表示;h---输出端交流短路时的正向电流传输比,fe常用β表示;四. 基本放大电路组成及其原则1. VT、V CC、R b、R c 、C1、C2的作用。
2.组成原则----能放大、不失真、能传输。
五. 放大电路的图解分析法1. 直流通路与静态分析*概念---直流电流通的回路。
*画法---电容视为开路。
*作用---确定静态工作点*直流负载线---由V CC=I C R C+U CE确定的直线。
*电路参数对静态工作点的影响1)改变R b:Q点将沿直流负载线上下移动。
2)改变R c:Q点在I BQ所在的那条输出特性曲线上移动。
3)改变V CC:直流负载线平移,Q点发生移动。
2. 交流通路与动态分析*概念---交流电流流通的回路*画法---电容视为短路,理想直流电压源视为短路。
*作用---分析信号被放大的过程。
*交流负载线--- 连接Q点和V CC’点V CC’= U CEQ+I CQ R L’的直线。
3. 静态工作点与非线性失真(1)截止失真*产生原因---Q点设置过低*失真现象---NPN管削顶,PNP管削底。
*消除方法---减小R b,提高Q。
(2)饱和失真*产生原因---Q点设置过高*失真现象---NPN管削底,PNP管削顶。
*消除方法---增大R b、减小R c、增大V CC 。
4. 放大器的动态范围(1)U opp---是指放大器最大不失真输出电压的峰峰值。
(2)范围*当(U CEQ-U CES)>(V CC’ - U CEQ)时,受截止失真限制,U OPP=2U OMAX=2I CQ R L’。
*当(U CEQ-U CES)<(V CC’ - U CEQ)时,受饱和失真限制,U OPP=2U OMAX=2 (U CEQ-U)。
CES*当(U CEQ-U CES)=(V CC’ - U CEQ),放大器将有最大的不失真输出电压。
六. 放大电路的等效电路法1.静态分析(1)静态工作点的近似估算(2)Q点在放大区的条件欲使Q点不进入饱和区,应满足R B>βRc。
放大电路的动态分析2.* 放大倍数* 输入电阻* 输出电阻七.分压式稳定工作点共射放大电路的等效电路法1.静态分析2.动态分析*电压放大倍数在R e两端并一电解电容C e后输入电阻在R e两端并一电解电容C e后* 输出电阻八. 共集电极基本放大电路1.静态分析2.动态分析* 电压放大倍数* 输入电阻* 输出电阻3. 电路特点* 电压放大倍数为正,且略小于1,称为射极跟随器,简称射随器。
* 输入电阻高,输出电阻低。
第三章场效应管及其基本放大电路一. 结型场效应管( JFET )1.结构示意图和电路符号2. 输出特性曲线(可变电阻区、放大区、截止区、击穿区)转移特性曲线U----- 截止电压P二. 绝缘栅型场效应管(MOSFET)分为增强型(EMOS)和耗尽型(DMOS)两种。
结构示意图和电路符号2. 特性曲线*N-EMOS的输出特性曲线* N-EMOS的转移特性曲线式中,I DO是U GS=2U T时所对应的i D值。
* N-DMOS的输出特性曲线注意:u GS可正、可零、可负。
转移特性曲线上i D=0处的值是夹断电压U P,此曲线表示式与结型场效应管一致。
三. 场效应管的主要参数1.漏极饱和电流I DSS2.夹断电压U p3.开启电压U T4.直流输入电阻R GS5.低频跨导g m (表明场效应管是电压控制器件)四. 场效应管的小信号等效模型E-MOS 的跨导g m ---五. 共源极基本放大电路1.自偏压式偏置放大电路* 静态分析动态分析若带有C s,则2.分压式偏置放大电路* 静态分析* 动态分析若源极带有C s,则六.共漏极基本放大电路* 静态分析或* 动态分析第五章功率放大电路一. 功率放大电路的三种工作状态1.甲类工作状态导通角为360o,I CQ大,管耗大,效率低。
2.乙类工作状态I≈0,导通角为180o,效率高,失真大。
CQ3.甲乙类工作状态导通角为180o~360o,效率较高,失真较大。
二. 乙类功放电路的指标估算1. 工作状态➢任意状态:U om≈U im➢尽限状态:U om=V CC-U CES➢理想状态:U om≈V CC2. 输出功率3. 直流电源提供的平均功率4. 管耗P c1m=0.2P om5.效率理想时为78.5%三. 甲乙类互补对称功率放大电路1.问题的提出在两管交替时出现波形失真——交越失真(本质上是截止失真)。
2. 解决办法➢甲乙类双电源互补对称功率放大器OCL----利用二极管、三极管和电阻上的压降产生偏置电压。
动态指标按乙类状态估算。
➢甲乙类单电源互补对称功率放大器OTL----电容C2上静态电压为V CC/2,并且取代了OCL功放中的负电源-V CC。
动态指标按乙类状态估算,只是用V CC/2代替。
四. 复合管的组成及特点1.前一个管子c-e极跨接在后一个管子的b-c极间。
2.类型取决于第一只管子的类型。
3.β=β1·β 2第六章集成运算放大电路一. 集成运放电路的基本组成1.输入级----采用差放电路,以减小零漂。
2.中间级----多采用共射(或共源)放大电路,以提高放大倍数。
3.输出级----多采用互补对称电路以提高带负载能力。
4.偏置电路----多采用电流源电路,为各级提供合适的静态电流。
二. 长尾差放电路的原理与特点1. 抑制零点漂移的过程----当T↑→i C1、i C2↑→i E1、i E2 ↑→u E↑→u BE1、u BE2↓→i B1、i B2↓→i C1、i↓。
C2R e对温度漂移及各种共模信号有强烈的抑制作用,被称为“共模反馈电阻”。
2静态分析1) 计算差放电路I C设U B≈0,则U E=-0.7V,得2) 计算差放电路U CE•双端输出时••单端输出时(设VT1集电极接R L)对于VT1:对于VT2:3. 动态分析1)差模电压放大倍数•双端输出••单端输出时从VT1单端输出:从VT2单端输出:2)差模输入电阻3)差模输出电阻•双端输出:•单端输出:三. 集成运放的电压传输特性当u I在+U im与-U im之间,运放工作在线性区域:四. 理想集成运放的参数及分析方法1. 理想集成运放的参数特征* 开环电压放大倍数A od→∞;* 差模输入电阻R id→∞;* 输出电阻R o→0;* 共模抑制比K CMR→∞;2. 理想集成运放的分析方法1) 运放工作在线性区:* 电路特征——引入负反馈* 电路特点——“虚短”和“虚断”:“虚短” ---“虚断” ---2) 运放工作在非线性区* 电路特征——开环或引入正反馈* 电路特点——输出电压的两种饱和状态:当u+>u-时,u o=+U om当u+<u-时,u o=-U om两输入端的输入电流为零:i=i-=0+第七章放大电路中的反馈一.反馈概念的建立*开环放大倍数---A*闭环放大倍数---Af*反馈深度---1+AF*环路增益---AF:1.当AF>0时,Af下降,这种反馈称为负反馈。
2.当AF=0时,表明反馈效果为零。
3.当AF<0时,Af升高,这种反馈称为正反馈。
4.当AF=-1时,Af→∞。
放大器处于“自激振荡”状态。
二.反馈的形式和判断1. 反馈的范围----本级或级间。
2. 反馈的性质----交流、直流或交直流。
直流通路中存在反馈则为直流反馈,交流通路中存在反馈则为交流反馈,交、直流通路中都存在反馈则为交、直流反馈。
3. 反馈的取样----电压反馈:反馈量取样于输出电压;具有稳定输出电压的作用。
(输出短路时反馈消失)电流反馈:反馈量取样于输出电流。
具有稳定输出电流的作用。
(输出短路时反馈不消失)4. 反馈的方式-----并联反馈:反馈量与原输入量在输入电路中以电流形式相叠加。