2022年高考数学总复习:等差数列及其前n项和
- 格式:docx
- 大小:157.36 KB
- 文档页数:13
第六章 数 列第二讲 等差数列及其前n 项和1。
[2021嘉兴市高三测试]数列{a n }的前n 项和为S n ,且S n =n 2-n +a ,n ∈N *,则“a =0”是“数列{a 2n }为等差数列”的 ( ) A .充分不必要条件 B 。
必要不充分条件 C 。
充分必要条件 D 。
既不充分也不必要条件2。
[2021南昌市高三测试]已知S n 为等差数列{a n }的前n 项和,3a 3=5a 2,S 10 =100,则a 1= ( )A.1 B 。
2 C .3 D.43.[2021洛阳市统考]已知等差数列{a n }的前n 项和为S n ,S 4=7a 1,则a 5a 2=( )A .2B .3C .32D .534。
[2021江西红色七校联考]在等差数列{a n }中,若a 1+a 2+a 3=36,a 11+a 12+a 13=84,则a 5+a 9= ( )A 。
30B 。
35C 。
40 D.455。
[2021湖北省四地七校联考]在等差数列{a n }中,已知a 7>0,a 3+a 9<0,则数列{a n }的前n 项和S n 的最小值为 ( )A 。
S 4B 。
S 5C 。
S 6D .S 76.[2021陕西省部分学校摸底检测]数列{2a n +1}是等差数列,且a 1=1,a 3=-13,那么a 5=( )A 。
35B 。
—35C 。
5D .—57.[2021惠州市一调]《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466~485年间。
其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同,已知第一日织布5尺,30日共织布390尺,则该女子织布每日增加的尺数为()A。
47B.1629C。
815D。
16318.[2020湖北部分重点中学高三测试]已知等差数列{a n}满足4a3=3a2,则{a n}中一定为零的项是()A.a6B。
等差数列及其前n项和A级——基础达标1.(2021·陕西教学质量检测)在公差不为0的等差数列{a n}中,a1=1,a23=a4a6,则a2=()A.711B.511C.311D.111解析:选A设数列{a n}的公差为d(d≠0),则a n=1+(n-1)d,∴a2=1+d,a3=1+2d,a4=1+3d,a6=1+5d,∵a23=a4a6,∴(1+2d)2=(1+3d)(1+5d),解得d=-411(d=0舍去),∴a2=1+d=711,故选A.2.(2021·武汉市学习质量检测)已知数列{a n}满足a1=1,(a n+a n+1-1)2=4a n a n+1,且a n+1>a n(n∈N*),则数列{a n}的通项公式a n=()A.2n B.n2C.n+2 D.3n-2解析:选B因为a1=1,a n+1>a n,所以a n+1>a n.由(a n+a n+1-1)2=4a n a n+1得a n +1+a n-1=2a n a n+1,所以( a n+1-a n)2=1,所以a n+1-a n=1,所以数列{a n}是首项为1,公差为1的等差数列,所以a n=n,即a n=n2,故选B.3.(2021·北京市适应性测试)设{a n}是等差数列,且公差不为零,其前n项和为S n.则“∀n∈N*,S n+1>S n”是“{a n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A由∀n∈N*,S n+1>S n得a n+1=S n+1-S n>0,又数列{a n}是公差不为零的等差数列,因此公差d>0(若d<0,等差数列{a n}中从某项起以后各项均为负,这与a n+1>0矛盾),数列{a n}是递增数列,所以“∀n∈N*,S n+1>S n”是“{a n}为递增数列”的充分条件;反过来,由“{a n}为递增数列”不能得知“∀n∈N*,S n+1>S n”,如取a n=n-3,此时数列{a n}为递增数列,但a2=-1<0,即有S2<S1,因此“∀n∈N*,S n+1>S n”不是“{a n}为递增数列”的必要条件.综上所述,“∀n∈N*,S n+1>S n”是“{a n}为递增数列”的充分而不必要条件,故选A.4.在等差数列{a n}中,若a10a9<-1,且它的前n项和S n有最大值,则使S n>0成立的正整数n的最大值是()A.15 B.16C.17 D.18解析:选C∵等差数列{a n}的前n项和有最大值,∴等差数列{a n}为递减数列,又a10a9<-1,∴a9>0,a10<0,∴a9+a10<0,又S18=18(a1+a18)2=9(a9+a10)<0,S17=17(a1+a17)2=17a9>0,∴S n>0成立的正整数n的最大值是17.故选C.5.(多选)(2021·长沙市长郡中学高三模拟)已知数列{a n}的前n项和为S n,a1=1,a2=2,且对于任意n>1,n∈N*,满足S n+1+S n-1=2(S n+1),则()A.a9=17 B.a10=18C.S9=81 D.S10=91解析:选BD∵对于任意n>1,n∈N*,满足S n+1+S n-1=2(S n+1),∴S n+1-S n=S n-S n-1+2,∴a n+1-a n=2.∴数列{a n}在n≥2时是等差数列,公差为2.又a1=1,a2=2,则a9=2+7×2=16,a10=2+8×2=18,S9=1+8×2+8×72×2=73,S10=1+9×2+9×82×2=91.故选B 、D.6.(多选)(2021·石家庄二中高三一模)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则( )A .a n =-12n -1B .a n =⎩⎪⎨⎪⎧-1,n =1,1n -1-1n,n ≥2,n ∈N *C .数列⎩⎨⎧⎭⎬⎫1S n 为等差数列D.1S 1+1S 2+…+1S 100=-5 050 解析:选BCD S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1, 则S n +1-S n =S n S n +1, 整理得1S n +1-1S n =-1(常数),所以数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列.故C 正确;所以1S n =-1-(n -1)=-n ,故S n =-1n .所以当n ≥2时, a n =S n -S n -1=1n -1-1n (首项不符合通项), 故a n=⎩⎨⎧-1,n =1,1n -1-1n ,n ≥2,n ∈N *,故B 正确,A 错误;所以1S 1+1S 2+…+1S 100=-(1+2+3+…+100)=-5 050,故D 正确.7.若数列{a n }满足a 1=3,a n +1=a n +3(n ∈N *),则a 3= ,通项公式a n = . 解析:因为数列{a n }满足a 1=3,a n +1=a n +3(n ∈N *), 所以数列{a n }是首项a 1=3,公差d =a n +1-a n =3的等差数列, 所以a 3=a 1+2d =3+6=9, a n =a 1+(n -1)d =3+3(n -1)=3n .答案:9 3n8.已知数列{a n }与⎩⎨⎧⎭⎬⎫a 2n n 均为等差数列(n ∈N *),且a 1=2,则a 20= .解析:设a n =2+(n -1)d , 则a 2nn =[2+(n -1)d ]2n=d 2n 2+(4d -2d 2)n +(d -2)2n, 由于⎩⎨⎧⎭⎬⎫a 2n n 为等差数列,所以其通项是一个关于n 的一次函数, 所以(d -2)2=0,∴d =2. 所以a 20=2+(20-1)×2=40. 答案:409.若数列{a n }为等差数列,a n >0,前n 项和为S n ,且S 2n -1=2n -12n +1a 2n,则a 9的值是 .解析:因为S 2n -1=2n -12n +1a 2n ,所以(a 1+a 2n -1)×(2n -1)2=2n -12n +1a 2n ,即2a n ×(2n -1)2=2n -12n +1a 2n ,所以a n =12n +1a 2n ,又a n >0,所以a n =2n +1,所以a 9=19. 答案:1910.(2021·武汉市高三测试)等差数列{a n }中,已知S n 是其前n 项和,a 1=-9,S 99-S 77=2,则a n = ,S 10= .解析:设等差数列{a n }的公差为d , ∵S 99-S 77=2,∴9-12d -7-12d =2, ∴d =2,∵a 1=-9,∴a n =-9+2(n -1)=2n -11, S 10=10×(-9)+10×92×2=0.答案:2n -11 011.(2021·合肥第一次教学检测)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 4=4S 2.(1)求数列{a n }的通项公式;(2)若a m +a m +1+a m +2+…+a m +9=180(m ∈N *),求m 的值. 解:(1)设等差数列{a n }的公差为d ,由S 4=4S 2得,4a 1+6d =8a 1+4d ,整理得d =2a 1. 又a 1=1,∴d =2,∴a n =a 1+(n -1)d =2n -1(n ∈N *). (2)a m +a m +1+a m +2+…+a m +9=180可化为 10a m +45d =20m +80=180, 解得m =5.12.已知数列{a n }是等差数列,且a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根. (1)求数列{a n }的前n 项和S n ; (2)在(1)中,设b n =S n n +c,求证:当c =-12时,数列{b n }是等差数列.解:(1)∵a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根, ∴a 1=1,a 2=5,∴等差数列{a n }的公差为4, ∴S n =n ·1+n (n -1)2·4=2n 2-n .(2)证明:当c =-12时,b n =S nn +c =2n 2-n n -12=2n ,∴b n +1-b n =2(n +1)-2n =2,b 1=2.∴数列{b n }是以2为首项,2为公差的等差数列.B 级——综合应用13.(2021·湖北襄阳四中联考)已知数列{a n }为等差数列,a 1+a 2+a 3=165,a 2+a 3+a 4=156,{a n }的前n 项和为S n ,则使S n 达到最大值时n 的值是( )A .19B .20C .21D .22解析:选B 设等差数列{a n }的公差为d ,则(a 2+a 3+a 4)-(a 1+a 2+a 3)=3d =156-165=-9,所以d =-3.因为a 1+a 2+a 3=3a 1+3d =3a 1-9=165,所以a 1=58.所以a n =a 1+(n-1)d =58+(n -1)·(-3)=61-3n .令a n =61-3n >0,得n <613.因为n ∈N *,所以当n =20时,S n 达到最大值.故选B.14.(多选)(2021·商洛市高考模拟)我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则下列选项正确的有( )A .相邻两个节气晷长减少或增加的量为一尺B .春分和秋分两个节气的晷长相同C .立冬的晷长为一丈五寸D .立春的晷长比立秋的晷长短解析:选ABC 由题意可知夏至到冬至的晷长构成等差数列{a n },其中a 1=15寸,a 13=135寸,公差为d 寸,则135=15+12d ,解得d =10寸,同理可知由冬至到夏至的晷长构成等差数列{b n },首项b 1=135,末项b 13=15,公差d =-10(单位都为寸).故A 正确;∵春分的晷长为b 7,∴b 7=b 1+6d =135-60=75∵秋分的晷长为a 7,∴a 7=a 1+6d =15+60=75,故B 正确;∵立冬的晷长为a 10,∴a 10=a 1+9d =15+90=105,即立冬的晷长为一丈五寸,故C 正确;∵立春的晷长,立秋的晷长分别为b 4,a 4,∴a 4=a 1+3d =15+30=45,b 4=b 1+3d =135-30=105,∴b 4>a 4,故D 错误.故选A 、B 、C.15.记m =d 1a 1+d 2a 2+…+d n a n n ,若{d n }是等差数列,则称m 为数列{a n }的“d n 等差均值”;若{d n }是等比数列,则称m 为数列{a n }的“d n 等比均值”.已知数列{a n }的“2n -1等差均值”为2,数列{b n }的“3n-1等比均值”为3.记c n =2a n+k log 3b n ,数列{c n }的前n 项和为S n ,若对任意的正整数n 都有S n ≤S 6,求实数k 的取值范围.解:由题意得2=a 1+3a 2+…+(2n -1)a nn , 所以a 1+3a 2+…+(2n -1)a n =2n , 所以a 1+3a 2+…+(2n -3)a n -1 =2n -2(n ≥2,n ∈N *), 两式相减得a n =22n -1(n ≥2,n ∈N *). 当n =1时,a 1=2,符合上式, 所以a n =22n -1(n ∈N *). 又由题意得3=b 1+3b 2+…+3n -1b nn , 所以b 1+3b 2+…+3n -1b n =3n ,所以b 1+3b 2+…+3n -2b n -1=3n -3(n ≥2,n ∈N *), 两式相减得b n =32-n (n ≥2,n ∈N *). 当n =1时,b 1=3,符合上式, 所以b n =32-n (n ∈N *).因为c n =2a n+k log 3b n ,所以c n =(2-k )n +2k -1.因为对任意的正整数n 都有S n ≤S 6,所以⎩⎪⎨⎪⎧c 6≥0,c 7≤0,解得135≤k ≤114.C 级——迁移创新16.若函数f (x )=log 2(x -1)+2,数列{a n }是首项为2,公差为3的等差数列,则f (a n )+f (a n +1)2与f ⎝⎛⎭⎫a n +a n +12的大小关系是( )A .f (a n )+f (a n +1)2>f⎝⎛⎭⎫a n +a n +12B .f (a n )+f (a n +1)2<f⎝⎛⎭⎫a n +a n +12 C .f (a n )+f (a n +1)2=f ⎝⎛⎭⎫a n +a n +12D .不确定解析:选B 易知a n =2+3(n -1)=3n -1.作出函数f (x )=log 2(x -1)+2的图象,如图.由图象并结合函数的性质可知f (a n )+f (a n +1)2<f ⎝ ⎛⎭⎪⎫a n +a n +12.故选B.。
2022届高考数学一轮复习讲义__62_等差数列及其前n项和一轮复习讲义要点梳理忆一忆知识要点1.等差数列的定义如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母2.等差数列的通项公式如果等差数列{an}的首项为a1,公差为d,那么它的通项公式是an=a1+(n-1)d.3.等差中项a+b如果A=2,那么A叫做a与b的等差中项.d表示.要点梳理忆一忆知识要点4.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d,(n,m∈N 某).(2)若{an}为等差数列,且k+l=m+n,(k,l,m,n∈N某),则ak+al=am+an.(3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.(5)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,(k,m∈N某)是公差为md 的等差数列.要点梳理忆一忆知识要点5.等差数列的前n项和公式na1+an设等差数列{an}的公差为d,其前n项和Sn=或2nn-1Sn=na1+2d.6.等差数列的前n项和公式与函数的关系dd2Sn=n+a1-2n.2数列{an}是等差数列Sn=An2+Bn,(A、B为常数).7.等差数列的最值在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.要点梳理[难点正本疑点清源]1.等差数列的判定忆一忆知识要点(1)定义法:an-an-1=d(n≥2);(2)等差中项法:2an+1=an+an+2.2.等差数列与等差数列各项和的有关性质(1)am,am+k,am+2k,am+3k,仍是等差数列,公差为kd.(2)数列Sm,S2m-Sm,S3m-S2m,也是等差数列.(3)S2n-1=(2n-1)an.n(4)若n为偶数,则S偶-S奇=d.2若n为奇数,则S奇-S 偶=a中(中间项).等差数列的判定或证明31例1已知数列{an}中,a1=,an=2-(n≥2,n∈N某),数5an-11列{bn}满足bn=(n∈N某).an-1(1)求证:数列{bn}是等差数列;(2)求数列{an}中的最大项和最小项,并说明理由.(1)可利用定义证明bn-bn-1(n≥2)为常数来证明数列{bn}是等差数列.(2)通过{bn}是等差数列,求得{an}的通项,然后从函数的观点解决数列的最大项和最小项的问题.1(1)证明∵an=2-(n≥2,n∈N),bn=.an-1an-111∴n≥2时,bn-bn-1=-an-1an-1-111=-1an-1-12-a-1某n-1an-11=-=1.an-1-1an-1-115又b1==-.2a1-15∴数列{bn}是以-为首项,1为公差的等差数列.2712(2)解由(1)知,bn=n-,则an=1+b=1+,22n-7n2设函数f(某)=1+,2某-777易知f(某)在区间-∞,2和2,+∞内为减函数.∴当n=3时,an取得最小值-1;当n=4时,an取得最大值3.探究提高证明或判断一个数列为等差数列,通常有两种方法:(1)定义法:an+1-an=d;(2)等差中项法:2an+1=an+an+2.变式训练1Sn-1已知数列{an}的前n项和为Sn,且满足Sn=(n≥2),a12Sn-1+1=2.1(1)求证:S是等差数列;n(2)求an的表达式.Sn-1(1)证明方法一由Sn=,2Sn-1+112Sn-1+11得S==+2,Sn-1Sn-1n11∴S-=2,Sn-1n2为公差的等差数列.111∴S是以即为首项,以S12n方法二2Sn-1+1111∵当n≥2时,S-=-Sn-1Sn-1Sn-1n2Sn-1==2,Sn-1111∴S是以即为首项,以2为公差的等差数列.S12n113(2)解由(1)知S=+(n-1)某2=2n-,22n1∴Sn=,32n-211∴当n≥2时,an=Sn-Sn-1=-372n-2n-22-2=;372n-2n-22当n=1时,a1=2不适合an,2-2故an=372n-2n-22n=1n≥2.等差数列的基本量的计算例2设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0.(1)若S5=5,求S6及a1;(2)求d的取值范围.(1)由S5S6+15=0与S5=5可构建关于a1,d的方程组.(2)由S5S6+15=0可化为关于a1的一元二次方程,因为{an}存在,所以关于a1的一元二次方程有解.-15解(1)由题意知S6==-3,a6=S6-S5=-8.S55a1+10d=5,所以a1+5d=-8.解得a1=7,所以S6=-3,a1=7.(2)方法一∵S5S6+15=0,∴(5a1+10d)(6a1+15d)+15=0,2即2a1+9da1+10d2+1=0.因为关于a1的一元二次方程有解,所以Δ=81d2-8(10d2+1)=d2-8≥0,解得d≤-22或d≥22.方法二∵S5S6+15=0,∴(5a1+10d)(6a1+15d)+15=0,2即2a1+9da1+10d2+1=0.故(4a1+9d)2=d2-8.所以d2≥8.故d的取值范围为d≤-22或d≥22.探究提高(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.变式训练2(2022·福建)已知等差数列{an}中,a1=1,a3=-3.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=-35,求k的值.解(1)设等差数列{an}的公差为d,则an=a1+(n-1)d.由a1=1,a3=-3,可得1+2d=-3,解得d=-2.从而an=1+(n-1)某(-2)=3-2n.(2)由(1)可知an=3-2n,n[1+3-2n]所以Sn==2n-n2.2由Sk=-35,可得2k-k2=-35,即k2-2k-35=0,解得k=7或k=-5.又k∈N某,故k=7.等差数列的前n项和及综合应用例3(1)在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值;(2)已知数列{an}的通项公式是an=4n-25,求数列{|an|}的前n项和.(1)由a1=20及S10=S15可求得d,进而求得通项,由通项得到此数列前多少项为正,或利用Sn是关于n的二次函数,利用二次函数求最值的方法求解.(2)利用等差数列的性质,判断出数列从第几项开始变号.解方法一∵a1=20,S10=S15,10某915某145∴10某20+d=15某20+d,∴d=-.2235565∴an=20+(n-1)某-3=-n+.33∴a13=0,即当n≤12时,an>0,n≥14时,an<0,∴当n=12或13时,Sn取得最大值,且最大值为S13=S12=12某2012某115+某-3=130.25方法二同方法一求得d=-.3nn-152523125521255-=-n+n-+∴Sn=20n+·n=-.22666243∵n∈N某,∴当n=12或13时,Sn有最大值,且最大值为S12=S13=130.方法三5同方法一得d=-.3又由S10=S15得a11+a12+a13+a14+a15=0.∴5a13=0,即a13=0.∴当n=12或13时,Sn有最大值.且最大值为S12=S13=130.(2)∵an=4n-25,an+1=4(n+1)-25,∴an+1-an=4=d,又a1=4某1-25=-21.所以数列{an}是以-21为首项,以4为公差的递增的等差数列.①an=4n-25<0,令②an+1=4n+1-25≥0,11由①得n<6;由②得n≥5,所以n=6.44即数列{|an|}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列,而|a7|=a7=4某7-24=3.设{|an|}的前n项和为Tn,则21n+nn-1某-4n≤62Tn=n-6n-766+3n-6+某4n≥722-2n+23nn≤6,=22n-23n+132n≥7.。
等差数列及其前n 项和【考纲说明】1、理解等差数列的概念,学习等差数列的基本性质.2、探索并掌握等差数列的通项公式与前n 项和公式.3、体会等差数列与一次函数的关系.4、本部分在高考中占5-10分左右.【知识梳理】一、等差数列的相关概念1、等差数列的概念如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.通常用字母d 表示。
2、等差中项如果,,成等差数列,那么叫做与的等差中项.即:或a A b A a b 2ba A +=ba A +=2推广:-11122(2)2n n n n n n a a a n a a a +++=+≥⇔=+3、等差数列通项公式若等差数列的首项是,公差是,则.{}n a 1a d ()11n a a n d =+- 推广:,从而。
d m n a a m n )(-+=mn a a d mn --=4、等差数列的前项和公式n 等差数列的前项和的公式:①;②.n ()12n n n a a S +=()112n n n S na d -=+5、等差数列的通项公式与前n 项的和的关系( 数列的前n 项的和为).11,1,2n n n s n a s s n -=⎧=⎨-≥⎩{}n a 12n n s a a a =+++L 二、等差数列的性质1、等差数列与函数的关系 当公差时,0d ≠ (1)等差数列的通项公式是关于的一次函数,斜率11(1)n a a n d dn a d =+-=+-n 为;d (2)前和是关于的二次函数且常数项n 211(1)(222n n n d dS na d n a n -=+=+-n为0。
2、等差数列的增减性若公差,则为递增等差数列,若公差,则为递减等差数列,0d >0d < 若公差,则为常数列。
0d = 3、通项的关系当时,则有,m n p q +=+q p n m a a a a +=+ 特别地,当时,则有.2m n p +=2m n p a a a +=注:12132n n n a a a a a a --+=+=+=⋅⋅⋅4、常见的等差数列(1)若、为等差数列,则都为等差数列。
一、选择题1.设等差数列{a n }的前 n 项和为S n ,若S 3=9,S 5=20,则a 7+a 8+a 9=( ) A .63 B .45C .36D .27解析:由S 3=9,S 5=20,得d =1,a 1=2,∴a 7+a 8+a 9=3a 8=3(a 1+7d )=3×9=27. 答案:D2.设等差数列{a n }的前n 项和为S n ,若a 2+a 8=15-a 5,则S 9等于( ) A .18 B .36 C .45 D . 60解析:∵{a n }为等差数列,a 2+a 8=15-a 5∴3a 5=15,即a 5=5. ∴S 9=9a 1+a 92=9a 5=45.答案:C3.在等差数列{a n }中,a n <0,a 23+a 28+2a 3a 8=9,那么S 10等于( ) A .-9 B .-11 C .-13 D .-15解析:由a 23+a 28+2a 3a 8=9,得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10a 1+a 102=5(a 3+a 8)=5×(-3)=-15.答案:D4.一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差为( ) A .-2 B .-3 C .-4 D .-6解析:a n =23+(n -1)d ,由题意知,⎩⎪⎨⎪⎧a 6>0a 7<0,即⎩⎪⎨⎪⎧23+5d >023+6d <0,解得-235<d <-236,又d 为整数,所以d =-4. 答案:C5.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( )A .8B .7C .6D .5解析:依题意得S k +2-S k =a k +1+a k +2=2a 1+(2k +1)d =2(2k +1)+2=24,解得k =5. 答案:D6.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( ) A .0 B .3 C .8 D .11解析:因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12--210-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8,所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3. 答案:B 二、填空题7.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 解析:依题意得a 2+a 4+a 6+a 8=(a 2+a 8)+(a 4+a 6)=2(a 3+a 7)=74. 答案:748.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________. 解析:设{a n }的公差为d ,由S 9=S 4及a 1=1, 得9×1+9×82d =4×1+4×32d ,所以d =-16.又a k +a 4=0,所以[1+(k -1)×(-16)]+[1+(4-1)×(-16)]=0.即k =10. 答案:109.在等差数列{a n }中,a 1=2,a 2+a 5=13,则a 5+a 6+a 7=________. 解析:由a 1+a 6=a 2+a 5得a 6=11. 则a 5+a 6+a 7=3a 6=33. 答案:33 三、解答题10.已知等差数列{a n }的前n 项和为S n ,且满足:a 2+a 4=14,S 7=70. (1)求数列{a n }的通项公式;(2)设b n =2S n +48n,则数列{b n }的最小项是第几项?并求出该项的值.解:(1)设公差为d ,则有⎩⎪⎨⎪⎧2a 1+4d =147a 1+21d =70,即⎩⎪⎨⎪⎧a 1+2d =7,a 1+3d =10.解得⎩⎪⎨⎪⎧a 1=1,d =3..所以a n =3n -2.(2)S n =n2[1+(3n -2)]=3n 2-n2所以b n =3n 2-n +48n =3n +48n-1≥23n ·48n-1=23.当且仅当3n =48n,即n =4时取等号,故数列{b n }的最小项是第4项,该项的值为23.11.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.解:(1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5.所以a 6=-3-5=-8,所以⎩⎪⎨⎪⎧5a 1+10d =5a 1+5d =-8,解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9a 1d +10d 2+1=0. 两边同乘以8,得16a 21+72a 1d +80d 2+8=0, 化简得(4a 1+9d )2=d 2-8. 所以d 2≥8.故d 的取值范围为d ≤-22或d ≥2 2.12.已知S n 是数列{a n }的前n 项和,S n 满足关系式2S n =S n -1-(12)n -1+2(n ≥2,n 为正整数),a 1=12.(1)令b n =2na n ,求证数列{b n }是等差数列,并求数列{a n }的通项公式; (2)在(1)的条件下,求S n 的取值范围.解:(1)由2S n =S n -1-(12)n -1+2,得2S n +1=S n -(12)n +2,两式相减得2a n +1=a n +(12)n,上式两边同乘以2n得2n +1a n +1=2n a n +1,即b n +1=b n +1,所以b n +1-b n =1,故数列{b n }是等差数列,且公差为1,又因为b 1=2a 1=1,所以b n =1+(n -1)×1=n ,因此2na n =n ,从而a n =n ·(12)n .(2)由于2S n =S n -1-(12)n -1+2,所以2S n -S n -1=2-(12)n -1,即S n +a n =2-(12)n -1,S n =2-(12)n -1-a n ,而a n =n ·(12)n ,所以S n =2-(12)n -1-n ·(12)n =2-(n +2)·(12)n.所以S n +1=2-(n +3)·(12)n +1,且S n +1-S n =n +12n +1>0,所以S n ≥S 1=12,又因为在S n =2-(n +2)·(12)n中,(n +2)·(12)n>0,故S n <2,即S n 的取值范围是[12,2)。
第七章 第2讲[A 级 基础达标]1.若lg a ,lg b ,lg c 成等差数列,则( ) A .b =a +c2B .b 2=acC .2b =acD .2lg b =lg(a +c )【答案】B2.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10等于( ) A .172B .192C .10D .12 【答案】B3.(2020年郑州模拟)在等差数列{a n }中,a 2+a 10=0,a 6+a 8=-4,则a 100=( ) A .212 B .188 C .-212 D .-188 【答案】D4.(2020年淮南月考)已知等差数列{a n }的前n 项和为S n ,若S 10=10,S 20=60,则S 40=( )A .110B .150C .210D .280 【答案】D5.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( )A .47 尺B .1629 尺C .815尺D .1631 尺【答案】B 【解析】设该女子织布每天增加d 尺,由题意知S 30=30×5+30×292d =390,解得d =1629.故该女子织布每天增加1629尺.6.(2019年新课标Ⅲ)记S n 为等差数列{a n }的前n 项和,若a 1≠0,a 2=3a 1,则S 10S 5=________.【答案】4 【解析】设等差数列{a n }的公差为d ,由a 1≠0,a 2=3a 1可得d =2a 1,所以S 10S 5=10(a 1+a 10)5(a 1+a 5)=2(2a 1+9d )2a 1+4d =2(2a 1+18a 1)2a 1+8a 1=4. 7.(2019年江苏)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.【答案】16 【解析】设等差数列{a n }的首项为a 1,公差为d ,则⎩⎪⎨⎪⎧(a 1+d )(a 1+4d )+a 1+7d =0,9a 1+9×82d =27,解得⎩⎨⎧a 1=-5,d =2.所以S 8=8a 1+8×7d2=8×(-5)+56=16.8.(2021年南宁模拟)已知三个数成等差数列,它们的和为3,平方和为359,则这三个数的积为________.【答案】59【解析】设这三个数分别为a -d ,a ,a +d ,由已知条件得⎩⎪⎨⎪⎧ (a -d )+a +(a +d )=5,(a -d )2+a 2+(a +d )2=359,解得⎩⎪⎨⎪⎧a =1,d =±23.所以这三个数分别为13,1,53或53,1,13.故它们的积为59.9.(2019年庆阳期末)已知{a n }是等差数列,S n 是其前n 项和.已知a 1+a 3=16,S 4=28. (1)求数列{a n }的通项公式;(2)当n 取何值时S n 最大?并求出这个最大值.解:(1)设等差数列{a n }的公差为d ,因为a 1+a 3=16,S 4=28,所以2a 1+2d =16,4a 1+4×3d2=28, 联立解得a 1=10,d =-2. 所以a n =10-2(n -1)=12-2n . (2)令a n =12-2n ≥0,解得n ≤6. 所以n =5或6时,S n 取得最大值.S 6=6×(10+0)2=30.10.已知等差数列{a n }中,公差d >0,其前n 项和为S n ,且满足a 2a 3=45,a 1+a 4=14. (1)求数列{a n }的通项公式;(2)求f (n )=n4(a n -17)(n ∈N *)的最小值.解:(1)因为等差数列{a n }中,公差d >0,所以⎩⎨⎧ a 2a 3=45,a 1+a 4=a 2+a 3=14⇒⎩⎨⎧a 2=5,a 3=9⇒d =4,a 1=1⇒a n =4n -3. (2)因为a n =4n -3(n ∈N *),所以f (n )=14n (4n -3-17)=n 2-5n =⎝⎛⎭⎫n -522-254,所以当n =2或3时,f (n )取得最小值-6.[B 级 能力提升]11.(2020年六安月考)设S n 是等差数列{a n }的前n 项和,若a 7a 4=1413,则S 13S 7=( )A .2B .12C .1413D .1314【答案】A 【解析】因为S n 是等差数列{a n }的前n 项和,a 7a 4=1413,所以S 13S 7=132(a 1+a 13)72(a 1+a 7)=13a 77a 4=2. 12.(多选)(2020年泉州模拟)记S n 为等差数列{a n }的前n 项和.若a 1+3a 5=S 7,则以下结论一定正确的是( )A .a 4=0B .S n 的最大值为S 3C .S 1=S 6D .|a 3|<|a 5|【答案】AC 【解析】设等差数列{a n }的公差为d ,则a 1+3(a 1+4d )=7a 1+21d ,解得a 1=-3d ,所以a n =a 1+(n -1)d =(n -4)d ,所以a 4=0,故A 正确;因为S 6-S 1=5a 4=0,所以S 1=S 6,故C 正确;由于d 的正负不清楚,故S 3可能为最大值或最小值,故B 不正确;因为a 3+a 5=2a 4=0,所以a 3=-a 5,即|a 3|=|a 5|,故D 错误.13.(2020年丽水模拟)在等差数列{a n }中,a 1=-2 014,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 014=________.【答案】-2 014 【解析】等差数列{a n }中,a 1=-2 014,其前n 项和为S n ,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,首项为S 11=-2 014.因为S 1212-S 1010=2,公差为22=1,所以S 2 0142 014=-2 014+1×2 013=-1.所以S 2 014=-2 014.14.(一题两空)已知等差数列{a n }中,a 1=1,a 3=5,则公差d =________,a 5=________. 【答案】2 9 【解析】因为等差数列{a n }中,a 1=1,a 3=5,设公差d ,则a 3-a 1=2d =4,所以d =2,所以a 5=a 1+4d =9.15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3a 4=117,a 2+a 5=22. (1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解:(1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根. 又公差d >0,所以a 3<a 4. 所以a 3=9,a 4=13.所以⎩⎨⎧ a 1+2d =9,a 1+3d =13.所以⎩⎨⎧a 1=1,d =4.所以通项a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1. (3)由(2)知S n =2n 2-n , 所以b n =S nn +c =2n 2-n n +c.所以b 1=11+c ,b 2=62+c ,b 3=153+c.因为数列{b n }是等差数列,所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c. 所以2c 2+c =0.所以c =-12或c =0(舍去).经验证c =-12时,{b n }是等差数列,故c =-12.[C 级 创新突破]16.《九章算术》中有这样一段叙述:“今有良马与驽马发长安至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马.”现有如下说法:①驽马第九日走了九十三里路;②良马五日共走了一千零九十五里路;③良马和驽马相遇时,良马走了二十一日.则错误的说法个数为( )A .0个B .1个C .2个D .3个【答案】B 【解析】根据题意,良马走的路程可以看成一个首项a 1=193,公差d 1=13的等差数列,记其前n 项和为S n ;驽马走的路程可以看成一个首项b 1=97,公差为d 2=-0.5的等差数列,记其前n 项和为T n .依次分析3个说法:对于①,b 9=b 1+(9-1)×d 2=93,故①正确;对于②,S 5=5a 1+5×42×d 1=5×193+10×13=1 095,故②正确;对于③,设第n 天两马相遇,则有S n +T n ≥6 000,即na 1+n (n -1)2d 1+nb 1+n (n -1)2d 2≥6 000,变形可得5n 2+227n -4 800≥0,分析可得n 的最小值为16,故两马相遇时,良马走了16日,故③错误.综上,3个说法中只有1个错误.17.(2020年宿迁模拟)已知数列{a n }的前n 项和为S n ,把满足条件a n +1≤S n (n ∈N *)的所有数列{a n }构成的集合记为M .(1)若数列{a n }的通项为a n =12n ,则{a n }是否属于M?(2)若数列{a n }是等差数列,且{a n +n }∈M ,求a 1的取值范围;(3)若数列{a n }的各项均为正数,且{a n }∈M ,数列⎩⎨⎧⎭⎬⎫4n a n 中是否存在无穷多项依次成等差数列,若存在,给出一个数列{a n }的通项;若不存在,说明理由.解:(1)因为a n =12n ,所以S n =12×1-⎝⎛⎭⎫12n 1-12=1-⎝⎛⎭⎫12n .所以a n +1-S n =⎝⎛⎭⎫12n +1-1+⎝⎛⎭⎫12n =32×⎝⎛⎭⎫12n -1≤32×12-1=-14<0. 所以a n +1<S n ,即{a n }∈M .(2)设{a n }的公差为d ,因为{a n +n }∈M ,所以a n +1+n +1≤(a 1+1) +(a 2+2)+…+(a n +n )①, 当n =1时,a 2+2≤a 1+1,即d ≤-1. 由①得a 1+nd +n +1≤na 1+n (n -1)2·d +n (n +1)2, 整理得d +12n 2+⎝⎛⎭⎫a 1-32d -12n -a 1-1≥0. 因为上述不等式对一切n ∈N * 恒成立,所以必有d +12≥0,解得d ≥-1.又d ≤-1,所以d =-1.于是(a 1+1)n -a 1-1≥0,即(a 1+1)(n -1)≥0,所以a 1+1≥0,即a 1≥-1.(3)由a n +1≤S n 得S n +1=S n +a n +1≤2S n ,即S n +1S n≤2,所以S n S 1=S 2S 1×S 3S 2×…×S n S n -1≤2n -1,从而有S n ≤S 1×2n -1=a 1×2n -1.所以a n +1≤S n ≤a 1×2n -1,即a n ≤a 1×2n -2(n ≥3).又a 2≤S 1=a 1,即a 2≤a 1;a 3≤S 2=a 1+a 2≤2a 1,所以a n ≤a 1×2n -2(n ∈N *).所以4n a n ≥2n +2a 1(n ≥2).假设数列⎩⎨⎧⎭⎬⎫4n a n 中存在无穷多项依次成等差数列,不妨设该等差数列的第n 项为dn +b (b 为常数),则存在m ∈N *,m ≥n ,使得dn +b =4m a m ≥2m +2a 1≥2n +2a 1,即da 1n +ba 1≥2n +2.易知n ∈N *且n ≥2时,2n +2>n 2,所以da 1+ba 1>n 2,即n 2-da 1n -ba 1<0.由题意得,当n ≥2时,关于n 的不等式n 2-da 1n -ba 1<0有无穷多个正整数解,显然不成立,因此数列⎩⎨⎧⎭⎬⎫4n a n 中不存在无穷多项依次成等差数列.。
第六章 数 列第二节 等差数列及其前n 项和A 级·基础过关 |固根基|1.(2019届南昌市一模)已知{a n }为等差数列,若a 2=2a 3+1,a 4=2a 3+7,则a 5=( ) A .1 B .2 C .3D .6解析:选B 设等差数列{a n }的公差为d ,将题中两式相减可得2d =6,所以d =3,所以a 2=2(a 2+3)+1,解得a 2=-7,所以a 5=a 2+(5-2)d =-7+9=2,故选B .2.(2019届合肥市一检)已知正项等差数列{a n }的前n 项和为S n (n∈N *),a 5+a 7-a 26=0,则S 11的值为( )A .11B .12C .20D .22解析:选D 解法一:设等差数列的公差为d(d>0),由题意得(a 1+4d)+(a 1+6d)-(a 1+5d)2=0,即(a 1+5d)·(2-a 1-5d)=0,所以a 1+5d =0或a 1+5d =2.又{a n }为正项等差数列,所以a 1+5d>0,则a 1+5d =2,则S 11=11a 1+11×102d =11(a 1+5d)=11×2=22,故选D .解法二:因为{a n }为正项等差数列,所以由等差数列的性质,并结合a 5+a 7-a 26=0,得2a 6-a 26=0,所以a 6=2,所以S 11=11(a 1+a 11)2=11×2a 62=11a 6=22,故选D .3.(2019届贵阳市质量检测)在等差数列{a n }中,若a 1+a 9=8,则(a 2+a 8)2-a 5=( ) A .60 B .56 C .12D .4解析:选A 因为在等差数列{a n }中,a 1+a 9=a 2+a 8=2a 5=8,所以(a 2+a 8)2-a 5=64-4=60,故选A .4.(2019届广东七校第二次联考)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8解析:选D 解法一:设等差数列{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2,所以a n =-2n +17,由于a 8=-2×8+17=1>0,a 9=-2×9+17=-1<0,所以S n 取得最大值时n 的值是8,故选D .解法二:设等差数列{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2,则S n =15n +n (n -1)2×(-2)=-(n -8)2+64,所以当n =8时,S n 取得最大值,故选D .5.(2019届广州市第一次综合测试)设S n 是等差数列{a n }的前n 项和,若m 为大于1的正整数,且a m-1-a 2m +a m +1=1,S 2m -1=11,则m =( ) A .11 B .10 C .6D .5解析:选 C 由a m -1-a 2m +a m +1=1可得2a m -a 2m =1,即a 2m -2a m +1=0,解得a m =1.由S 2m -1=(a 1+a 2m -1)(2m -1)2=a m ×(2m -1)=11,得2m -1=11,解得m =6,故选C .6.(2019届桂林市、百色市、崇左市联考)设S n 为等差数列{a n }的前n 项和,若a 4a 3=34,则3S 5a 4=( )A .12B .15C .20D .25解析:选C 因为数列{a n }是等差数列,所以3S 5a 4=3×5a 3a 4=15a 3a 4.又a 4a 3=34,所以3S 5a 4=15a 3a 4=15×43=20.故选C .7.(2019届西安八校联考)设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足S n S n +1<0的正整数n 的值为( )A .10B .11C .12D .13解析:选C 由S 6>S 7>S 5,得S 7=S 6+a 7<S 6,S 7=S 5+a 6+a 7>S 5,所以a 7<0,a 6+a 7>0.所以S 13=13(a 1+a 13)2=13a 7<0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,所以S 12S 13<0,即满足S n S n +1<0的正整数n 的值为12,故选C .8.设S n 是公差不为0的等差数列{a n }的前n 项和,S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=( ) A .15 B .19 C .21D .30解析:选B 设等差数列{a n }的公差为d.由S 3=a 22得3a 2=a 22,所以a 2=0或a 2=3.由S 1,S 2,S 4成等比数列可得S 22=S 1·S 4,又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d ,所以(2a 2-d)2=(a 2-d)·(4a 2+2d),化简得3d 2=2a 2d ,又d≠0,所以a 2=3,d =2,所以a n =3+2(n -2)=2n -1,所以a 10=19.9.已知{a n }是等差数列,S n 是其前n 项和,若S k +10-S k =12k +10,则S 2k +10=( )A .1B .12C .15D .110解析:选 D 由题意知S k +10-S k =a k +1+a k +2+…+a k +10=a k +1+a k +102×10=12k +10,∴a k +1+a k +10=110(k +5),∴S 2k +10=a 1+a 2k +102×(2k +10)=a k +1+a k +102×(2k +10)=110.10.正项等差数列{a n }的前n 项和为S n ,已知a 1=1,a 3+a 7-a 25+15=0,且S n =45,则n =( ) A .8 B .9 C .10D .11解析:选B 因为{a n }是正项等差数列,a 3+a 7-a 25+15=0,所以a 25-2a 5-15=0,解得a 5=5(a 5=-3舍去).设{a n }的公差为d ,由a 5=a 1+4d =1+4d =5,解得d =1,所以S n =n[2a 1+(n -1)d]2=n[2+(n -1)]2=n (n +1)2=45,即n 2+n -90=(n +10)(n -9)=0,解得n =9(n =-10舍去),故选B .11.(2019年全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________.解析:解法一:设等差数列{a n }的公差为d ,则由题意,得⎩⎪⎨⎪⎧a 1+2d =5,a 1+6d =13,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以S 10=10×1+10×92×2=100. 解法二:由题意,得公差d =14(a 7-a 3)=2,所以a 4=a 3+d =7,所以S 10=10(a 1+a 10)2=5(a 4+a 7)=100.答案:10012.(2019年江苏卷)已知数列{a n }(n∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:解法一:设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d)(a 1+4d)+a 1+7d =a 21+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.解法二:设等差数列{a n }的公差为d.∵S 9=9(a 1+a 9)2=9a 5=27,∴a 5=3.又a 2a 5+a 8=0,则3(3-3d)+3+3d =0,解得d =2,则S 8=8(a 1+a 8)2=4(a 4+a 5)=4×(1+3)=16.答案:1613.(2019届广东七校第二次联考)已知数列{a n }满足a 1=1,a n +1=a n a n +1,且b n =1a n ,n∈N *.(1)求证:数列{b n }为等差数列;(2)设数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为T n ,求T n 的表达式. 解:(1)证明:因为b n =1a n ,且a n +1=a na n +1,所以b n +1=1a n +1=a n +1a n =1+1a n =1+b n ,故b n +1-b n =1. 又b 1=1a 1=1,所以数列{b n }是以1为首项,1为公差的等差数列. (2)由(1)知数列{b n }的通项公式为b n =n , 又b n =1a n ,所以a n =1b n =1n .故a n n +1=1n (n +1)=1n -1n +1, 所以T n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 14.(2019届南昌市二模)已知数列{a n }是公差不为零的等差数列,a 1=1,且存在实数λ满足2a n +1=λa n +4,n ∈N *.(1)求λ的值及通项公式a n ; (2)求数列{a 2n -n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d≠0, 由2a n +1=λa n +4(n∈N *), ① 得2a n =λa n -1+4(n∈N *,n≥2),②两式相减得,2d =λd,又d≠0,所以λ=2.将λ=2代入①可得2a n +1=2a n +4,即2d =4,所以d =2. 又a 1=1,所以a n =1+(n -1)×2=2n -1.(2)由(1)可得a 2n-n =2(2n -n)-1=2n +1-(2n +1),所以S n =(22+23+…+2n +1)-[3+5+…+(2n +1)]=4(1-2n)1-2-n (3+2n +1)2=2n +2-n 2-2n -4.B 级·素养提升 |练能力|15.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列,设首项a 1=4,则a 5=2,由等差数列的性质得a 2+a 4=a 1+a 5=6,所以第二尺与第四尺的重量之和为6斤.故选A .16.已知数列{a n }为等差数列,若a 21+a 210≤25恒成立,则a 1+3a 7的取值范围为( ) A .[-5,5] B .[-52,52] C .[-10,10]D .[-102,102]解析:选D 由数列{a n }为等差数列,可知a 1+3a 7=a 1+3(a 1+6d)=4a 1+18d =2(a 1+a 1+9d)=2(a 1+a 10).由基本不等式⎝ ⎛⎭⎪⎫a 1+a 1022≤a 21+a 2102得2|a 1+a 10|≤102,当且仅当a 1=a 10时取等号,所以a 1+3a 7的取值范围为[-102,102].17.(2019届江西红色七校第一次联考)已知数列{a n }为等差数列,若a 2+a 6+a 10=π2,则tan(a 3+a 9)的值为( )A .0B .33C .1D . 3解析:选D 因为数列{a n }是等差数列,所以a 2+a 6+a 10=3a 6=π2,所以a 6=π6,所以a 3+a 9=2a 6=π3,所以tan(a 3+a 9)=tan π3= 3.故选D . 18.(2019年全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.。
第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).1.思考辨析(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0且关于n 的二次函数.( ) 答案 (1)√ (2)√ (3)× (4)×解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是n 的二次函数.2.(2022·南宁一模)记S n 为等差数列{a n }的前n 项和,若a 1=1,S 3=92,则数列{a n }的通项公式a n =( )A.nB.n +12C.2n -1D.3n -12答案 B解析 设等差数列{a n }的公差为d ,则S 3=3a 1+3×22d =3+3d =92,解得d =12,∴a n =1+(n -1)×12=n +12.3.(2021·宝鸡二模)已知{a n }是等差数列,满足3(a 1+a 5)+2(a 3+a 6+a 9)=18,则该数列的前8项和为( )A.36B.24C.16D.12答案 D解析 由等差数列性质可得a 1+a 5=2a 3,a 3+a 6+a 9=3a 6,所以3×2a 3+2×3a 6=18,即a 3+a 6=3,所以S 8=8(a 1+a 8)2=8(a 3+a 6)2=12. 4.在等差数列{a n }中,若a 1+a 2=5,a 3+a 4=15,则a 5+a 6=( )A.10B.20C.25D.30答案 C解析 等差数列{a n }中,每相邻2项的和仍然构成等差数列,设其公差为d ,若a 1+a 2=5,a 3+a 4=15,则d =15-5=10,因此a 5+a 6=(a 3+a 4)+d =15+10=25.5.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面.答案 20解析 设物体经过t 秒降落到地面.物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列.所以4.90t +12t (t -1)×9.80=1 960,即4.90t 2=1 960,解得t =20.6.(易错题)在等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使数列{a n }的前n 项和S n 取最大值的正整数n 的值是________.答案 5或6解析 ∵|a 3|=|a 9|,∴|a 1+2d |=|a 1+8d |,可得a 1=-5d ,∴a 6=a 1+5d =0,且a 1>0,∴a 5>0,故S n 取最大值时n 的值为5或6.考点一 等差数列的基本运算1.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8nD.S n =12n 2-2n答案 A解析 设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n . 2.(2022·太原调研)已知等差数列{a n }的前n 项和为S n ,若S 8=a 8=8,则公差d =( )A.14B.12C.1D.2 答案 D解析 ∵S 8=a 8=8,∴a 1+a 2+…+a 8=a 8,∴S 7=7a 4=0,则a 4=0.∴d =a 8-a 48-4=2. 3.(2020·全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.答案 25解析 设等差数列{a n }的公差为d ,则a 2+a 6=2a 1+6d =2×(-2)+6d =2.解得d =1.所以S 10=10×(-2)+10×92×1=25.4.(2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 9=-a5.(1)若 a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.解 (1)设{a n }的公差为d .由S 9=-a 5可知9a 5=-a 5,所以a 5=0.因为a 3=4,所以d =a 5-a 32=0-42=-2,所以a n =a 3+(n -3)×(-2)=10-2n ,因此{a n }的通项公式为a n =10-2n .(2)由(1)得a 5=0,因为a 1>0,所以等差数列{a n }单调递减,即d <0,a 1=a 5-4d =-4d ,S n =n (n -9)d 2, a n =-4d +d (n -1)=dn -5d ,因为S n ≥a n ,所以nd (n -9)2≥dn -5d , 又因为d <0,所以1≤n ≤10.感悟提升 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.考点二 等差数列的判定与证明例1 (2021·全国甲卷)已知数列{a n }的各项均为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等差数列;②数列{S n }是等差数列;③a 2=3a 1.注:若选择不同的组合分别解答,则按第一个解答计分.解 ①③⇒②.已知{a n }是等差数列,a 2=3a 1.设数列{a n }的公差为d ,则a 2=3a 1=a 1+d ,得d =2a 1,所以S n =na 1+n (n -1)2d =n 2a 1. 因为数列{a n }的各项均为正数, 所以S n =n a 1, 所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列. ①②⇒③.已知{a n }是等差数列,{S n }是等差数列.设数列{a n }的公差为d ,则S n =na 1+n (n -1)2d =12n 2d +⎝ ⎛⎭⎪⎫a 1-d 2n . 因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数,则a1-d2=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{S n}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{S n}的公差为d,d>0,则S2-S1=4a1-a1=d,得a1=d2,所以S n=S1+(n -1)d=nd,所以S n=n2d2,所以n≥2时,a n=S n-S n-1=n2d2-(n-1)2d2=2d2n-d2,对n=1也适合,所以a n=2d2n-d2,所以a n+1-a n=2d2(n+1)-d2-(2d2n-d2)=2d2(常数),所以数列{a n}是等差数列.感悟提升 1.证明数列是等差数列的主要方法:(1)定义法:对于n≥2的任意自然数,验证a n-a n-1为同一常数.即作差法,将关于a n-1的a n代入a n-a n-1,再化简得到定值.(2)等差中项法:验证2a n-1=a n+a n-2(n≥3,n∈N*)都成立.2.判定一个数列是等差数列还常用到的结论:(1)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(2)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.问题的最终判定还是利用定义.训练1 (2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.(1)证明因为b n是数列{S n}的前n项积,所以n ≥2时,S n =b n b n -1, 代入2S n +1b n =2可得,2b n -1b n +1b n=2, 整理可得2b n -1+1=2b n ,即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32, 故{b n }是以32为首项,12为公差的等差数列.(2)解 由(1)可知,b n =32+12(n -1)=n +22,则2S n +2n +2=2,所以S n =n +2n +1, 当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1). 故a n =⎩⎪⎨⎪⎧32,n =1,-1n (n +1),n ≥2. 考点三 等差数列的性质及应用角度1 等差数列项的性质例2 (1)设S n 为等差数列{a n }的前n 项和,且4+a 5=a 6+a 4,则S 9等于( )A.72B.36C.18D.9 (2)在等差数列{a n }中,若a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A.10B.20C.40D.2+log 25答案 (1)B (2)B解析 (1)∵a 6+a 4=2a 5,∴a 5=4,∴S 9=9(a 1+a 9)2=9a 5=36. (2)由等差数列的性质知a 1+a 10=a 2+a 9=a 3+a 8=a 4+a 7=a 5+a 6=a 4,则2a 1···2a 10=2a 1+a 2+…+a 10=25(a 5+a 6)=25×4,所以log 2(2a 1·2a 2·…·2a 10)=log 225×4=20. 角度2 等差数列前n 项和的性质例3 (1)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15等于( )A.35B.42C.49D.63(2)(2020·全国Ⅱ卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3 699块B.3 474块C.3 402块D.3 339块答案 (1)B (2)C解析 (1)在等差数列{a n }中,S 5,S 10-S 5,S 15-S 10成等差数列,即7,14,S 15-21成等差数列,所以7+(S 15-21)=2×14,解得S 15=42.(2)设每一层有n 环,由题可知从内到外每环之间构成公差d =9,a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3 402(块).角度3 等差数列前n 项和的最值例4 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 法一 设公差为d .由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.故当n =7时,S n 最大.法二 易知S n =An 2+Bn 是关于n 的二次函数,由S 3=S 11,可知S n =An 2+Bn 的图象关于直线n =3+112=7对称. 由解法一可知A =-a 113<0,故当n =7时,S n 最大.法三 设公差为d .由解法一可知d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0, 解得6.5≤n ≤7.5,故当n =7时,S n 最大.法四 设公差为d .由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0, 又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.感悟提升 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .(3)依次k 项和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列.3.求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;(2)利用公差不为零的等差数列的前n 项和S n =An 2+Bn (A ,B 为常数,A ≠0)为二次函数,通过二次函数的性质求最值.训练2 (1)(2021·洛阳质检)记等差数列{a n }的前n 项和为S n ,若S 17=272,则a 3+a 9+a 15=( )A.24B.36C.48D.64(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 020,S 2 0202 020-S 2 0142 014=6,则S 2 023等于( )A.2 023B.-2 023C.4 046D.-4 046(3)设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是________. 答案 (1)C (2)C (3)121解析 (1)因为数列{a n }是等差数列,其前n 项和为S n ,所以S 17=272=a 1+a 172×17=2a 92×17=17a 9,∴a 9=16,所以a 3+a 9+a 15=3a 9=48.(2)∵⎩⎨⎧⎭⎬⎫S n n 为等差数列,设公差为d ′, 则S 2 020 2 020-S 2 0142 014=6d ′=6,∴d ′=1,首项为S 11=-2 020,∴S 2 0232 023=-2 020+(2 023-1)×1=2,∴S 2 023=2 023×2=4 046,故选C.(3)设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,∴22a 1+d =a 1+3a 1+3d ,把a 1=1代入求得d =2,∴a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2,∴S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎪⎫n +102n -12=⎣⎢⎡⎦⎥⎤12(2n -1)+2122n -12=14⎝ ⎛⎭⎪⎫1+212n -12≤121.∴S n +10a 2n 的最大值是121.1.在等差数列{a n }中,3a 5=2a 7,则此数列中一定为0的是() A.a 1 B.a 3 C.a 8 D.a 10答案 A解析 设{a n }的公差为d (d ≠0),∵3a 5=2a 7,∴3(a 1+4d )=2(a 1+6d ),得a 1=0.2.(2021·重庆二模)已知公差不为0的等差数列{a n }中,a 2+a 4=a 6,a 9=a 26,则a 10=( )A.52B.5C.10D.40答案 A解析 设公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d +a 1+3d =a 1+5d ,a 1+8d =(a 1+5d )2,由于d ≠0,故a 1=d =14,所以a 10=14+14×9=52.3.已知数列{a n }满足5an +1=25·5an ,且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)=() A.-3 B.3 C.-13 D.13答案 A解析 数列{a n }满足5an +1=25·5an ,∴a n +1=a n +2,即a n +1-a n =2,∴数列{a n }是等差数列,公差为2.∵a 2+a 4+a 6=9,∴3a 4=9,a 4=3.∴a 1+3×2=3,解得a 1=-3.∴a 5+a 7+a 9=3a 7=3×(-3+6×2)=27,则log 13(a 5+a 7+a 9)=log 1333=-3.故选A.4.(2022·太原一模)在数列{a n }中,a 1=3,a m +n =a m +a n (m ,n ∈N *),若a 1+a 2+a 3+…+a k =135,则k =( )A.10B.9C.8D.7 答案 B解析 令m =1,由a m +n =a m +a n 可得a n +1=a 1+a n ,所以a n +1-a n =3, 所以{a n }是首项为a 1=3,公差为3的等差数列,a n =3+3(n -1)=3n ,所以a 1+a 2+a 3+…+a k =k (a 1+a k )2=k (3+3k )2=135. 整理可得k 2+k -90=0,解得k =9或k =-10(舍).5.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A.65B.176C.183D.184答案 D解析 根据题意可知每个孩子所得棉花的斤数构成一个等差数列{a n },其中d =17,n =8,S 8=996.由等差数列前n 项和公式可得8a 1+8×72×17=996,解得a 1=65.由等差数列通项公式得a 8=65+(8-1)×17=184.则第八个孩子分得斤数为184.6.(2021·全国大联考)在等差数列{a n }中,若a 10a 9<-1,且它的前n 项和S n 有最大值,则使S n >0成立的正整数n 的最大值是( )A.15B.16C.17D.14答案 C解析 ∵等差数列{a n }的前n 项和有最大值,∴等差数列{a n }为递减数列, 又a 10a 9<-1,∴a 9>0,a 10<0, ∴a 9+a 10<0,又S 18=18(a 1+a 18)2=9(a 9+a 10)<0, 且S 17=17(a 1+a 17)2=17a 9>0. 故使得S n >0成立的正整数n 的最大值为17.7.设S n 为等差数列{a n }的前n 项和,若S 6=1,S 12=4,则S 18=________. 答案 9解析 在等差数列中,S 6,S 12-S 6,S 18-S 12成等差数列,∵S 6=1,S 12=4,∴1,3,S 18-4成公差为2的等差数列,即S 18-4=5,S 18=9.8.等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于________. 答案 3727解析 a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 9.(2021·西安一模)已知数列{a n }的前n 项和为S n ,满足a 1=32,a 2=2,2(S n +2+S n )=4S n +1+1,则数列{a n }的前16项和S 16=________.答案 84解析 将2(S n +2+S n )=4S n +1+1变形为(S n +2-S n +1)-(S n +1-S n )=12,即a n +2-a n+1=12,又a 1=32,a 2=2,∴a 2-a 1=12符合上式,∴{a n }是首项a 1=32,公差d =12的等差数列,∴S 16=16×32+16×152×12=84.10.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 2a 4=65,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)是否存在常数k ,使得数列{S n +kn }为等差数列?若存在,求出常数k ;若不存在,请说明理由.解 (1)设公差为d .∵{a n }为等差数列,∴a 1+a 5=a 2+a 4=18,又a 2a 4=65,∴a 2,a 4是方程x 2-18x +65=0的两个根,又公差d >0,∴a 2<a 4,∴a 2=5,a 4=13.∴⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1)知,S n =n +n (n -1)2×4=2n 2-n , 假设存在常数k ,使数列{S n +kn }为等差数列. 由S 1+k +S 3+3k =2S 2+2k , 得1+k +15+3k =26+2k ,解得k =1. ∴S n +kn =2n 2=2n ,当n ≥2时,2n -2(n -1)=2,为常数,∴数列{S n +kn }为等差数列.故存在常数k =1,使得数列{S n +kn }为等差数列. 11.设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a 2n 和a n 的等差中项.(1)证明:数列{a n }为等差数列;(2)若b n =-n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值.(1)证明 由已知可得2S n =a 2n +a n ,且a n >0,当n =1时,2a 1=a 21+a 1,解得a 1=1.当n ≥2时,有2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n -a 2n -1+a n -a n -1,所以a 2n -a 2n -1=a n +a n -1,即(a n +a n -1)(a n -a n -1)=a n +a n -1,因为a n +a n -1>0,所以a n -a n -1=1(n ≥2).故数列{a n }是首项为1,公差为1的等差数列.(2)解 由(1)可知a n =n ,设c n =a n ·b n ,则c n =n (-n +5)=-n 2+5n=-⎝ ⎛⎭⎪⎫n -522+254, 因为n ∈N *,所以n =2或3,c 2=c 3=6,因此当n =2或n =3时,{a n ·b n }取最大项,且最大项的值为6.12.(2020·新高考山东卷)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为__________.答案 3n 2-2n解析 法一(观察归纳法) 数列{}2n -1的各项为1,3,5,7,9,11,13,…;数列{3n -2}的各项为1,4,7,10,13,….现观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列, 则a n =1+6(n -1)=6n -5.故其前n 项和为S n =n (a 1+a n )2=n (1+6n -5)2=3n 2-2n . 法二(引入参变量法) 令b n =2n -1,c m =3m -2,b n =c m ,则2n -1=3m -2,即3m =2n +1,m 必为奇数.令m =2t -1,则n =3t -2(t =1,2,3,…).a t =b 3t -2=c 2t -1=6t -5,即a n =6n -5.以下同法一.13.(2022·衡水模拟)已知在数列{a n }中,a 6=11,且na n -(n -1)a n +1=1,则a n =______;a 2n +143n 的最小值为________.答案 2n -1 44解析 na n -(n -1)a n +1=1,∴(n +1)a n +1-na n +2=1,两式相减得na n -2na n +1+na n +2=0,∴a n +a n +2=2a n +1,∴数列{a n }为等差数列.当n =1时,由na n -(n -1)a n +1=1得a 1=1,由a 6=11,得公差d =2,∴a n =1+2(n -1)=2n -1,∴a 2n +143n =(2n -1)2+143n=4n +144n -4≥24n ·144n -4=44, 当且仅当4n =144n ,即n =6时等号成立.14.等差数列{a n }中,公差d <0,a 2+a 6=-8,a 3a 5=7.(1)求{a n }的通项公式;(2)记T n 为数列{b n }前n 项的和,其中b n =|a n |,n ∈N *,若T n ≥1 464,求n 的最小值.解 (1)∵等差数列{a n }中,公差d <0,a 2+a 6=-8, ∴a 2+a 6=a 3+a 5=-8,又∵a 3a 5=7,∴a 3,a 5是一元二次方程x 2+8x +7=0的两个根,且a 3>a 5, 解方程x 2+8x +7=0,得a 3=-1,a 5=-7,∴⎩⎪⎨⎪⎧a 1+2d =-1,a 1+4d =-7,解得a 1=5,d =-3. ∴a n =5+(n -1)×(-3)=-3n +8.(2)由(1)知{a n }的前n 项和S n =5n +n (n -1)2×(-3)=-32n 2+132n . ∵b n =|a n |,∴b 1=5,b 2=2,b 3=|-1|=1,b 4=|-4|=4, 当n ≥3时,b n =|a n |=3n -8.当n <3时,T 1=5,T 2=7;当n ≥3时,T n =-S n +2S 2=3n 22-13n 2+14.∵T n ≥1 464,∴T n =3n 22-13n 2+14≥1 464,即(3n-100)(n+29)≥0,解得n≥100,3∴n的最小值为34.。
第35讲 等差数列及其前n 项和学校:___________姓名:___________班级:___________考号:___________【基础巩固】1.(2022·浙江·杭师大附中模拟预测)等差数列{}n a 的前n 项和为n S ,547,29,198n n a a S -===,则n =( ) A .10 B .11 C .12 D .13【答案】B【分析】根据等差数列的通项的性质和前n 项和公式求解. 【详解】因为()()15422n n n n a a n a a S -++==, 又547,29,198n n a a S -===, 所以18198n =, 所以11n =, 故选:B .2.(2022·湖北武汉·模拟预测)设公差不为零的等差数列{}n a 的前n 项和为n S ,452a a =,则74S S =( )A .74B .-1C .1D .54【答案】C【分析】利用等差中项5462a a a =+,6572a a a =+及等差数列前n 项和的性质即可求解. 【详解】解:在等差数列{}n a 中,5462a a a =+,452a a =,故60a =, 又6572a a a =+,故75a a =-, 则745674S S a a a S =+++=,故741S S =. 故选:C.3.(2022·福建·莆田华侨中学模拟预测)2022年4月26日下午,神州十三号载人飞船返回舱在京完成开舱.据科学计算,运载“神十三”的“长征二号”F 遥十三运载火箭,在点火第一秒钟通过的路程为2千米,以后每秒钟通过的路程都增加2千米,在达到离地面380千米的高度时,火箭与飞船分离,则这一过程需要的时间大约是( ) A .10秒 B .13秒 C .15秒 D .19秒【答案】D【分析】根据题意和等差数列的定义可知每秒钟通过的路程构成数列{}n a ,结合等差数列的前n 项求和公式计算即可.【详解】设每秒钟通过的路程构成数列{}n a , 则{}n a 是首项为2,公差为2的等差数列,由求和公式有()221380n n n n n +-=+=,解得19n =. 故选:D.4.(2022·福建省德化第一中学模拟预测)设等差数列{}n a 的前n 项和为n S ,若728S =,则237a a a ++的值为( ) A .8 B .10 C .12 D .14【答案】C【分析】根据等差数列的求和公式,求得44a =,结合等差数列的性质,化简得到27433a a a a =++,即可求解.【详解】因为728S =,由等差数列的性质和求和公式得17747()7282a a S a +===,即44a =, 则112374393(3)312a d a a a a a d =+=+==++. 故选:C.5.(2022·海南海口·二模)设公差不为0的等差数列{}n a 的前n 项和为n S ,已知()9353m S a a a =++,则m =( )A .9B .8C .7D .6【答案】C【分析】根据等差数列的前n 项和的性质及等差数列通项公式化简可得.【详解】因为()9353m S a a a =++,又959S a =,所以()53593m a a a a =++,所以3553m a a a a ++=,即352m a a a +=, 设等差数列{}n a 的公差为d , 则1112(1)2(4)a d a m d a d +++-=+, 所以(+1)8m d d =,又0d ≠, 所以18m +=, 所以7m =. 故选:C.6.(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.9【答案】D【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项. 【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D7.(2022·重庆·二模)等差数列{}n a 的公差为2,前n 项和为n S ,若5m a =,则m S 的最大值为( ) A .3 B .6 C .9 D .12【答案】C【分析】先利用等差数列的通项公式得到首项,再利用等差数列的前n 项和公式和一元二次函数求其最值. 【详解】设等差数列{}n a 的首项为1a , 因为5m a =,且2d =, 所以1+2(1)5a m -=, 解得172a m =-, 则1()(122)=22m m m a a m m S +-= 2(3)99m =--+≤,即3m m S =时取最大值为9. 故选:C.8.(2022·重庆八中模拟预测)已知等差数列{}n a 与等差数列{}n b 的前n 项和分别为n S 和n T ,且1n n S nT n =+,那么87a b 的值为( ) A .1312B .1413C .1514D .1615【答案】C【分析】设等差数列{}n a 、{}n b 的公差分别为1d 、2d ,由题意利用等差数列的性质求出它们的首项、公差之间的关系,可得结论.【详解】设等差数列{}{},n n a b 的公差分别为1d 和2.d11111,12n n S S a n T n T b =∴==+,即1112a b = 2112122223S a d T b d +∴==+,即11232b d d =- ① 311312333334S a d T b d +∴==+,即21143d d b =- ①由①①解得1211,.d d b d ==11811712111771526614d d a a d b b d d d ++∴===++故选:C 9.(2022·广东·华南师大附中三模)已知数列{}n a 满足()213nn n a a ++-=,11a =,22a =,数列{}n a 的前n项和为n S ,则30S =( ) A .351 B .353 C .531 D .533【答案】B【分析】根据题意讨论n 的奇偶,当n 为奇数时,可得23n n a a +-=,按等差数列理解处理,当n 为偶数时,可得23n n a a ++=,按并项求和理解出来,则30S 按奇偶分组求和分别理解处理. 【详解】依题意,()213nn n a a ++-=, 显然,当n 为奇数时有23n n a a +-=,即有313a a -=,533a a -=,…,21213n n a a +--=, 令21n n b a -=,故13n n b b +-=,所以数列{}n b 是首项为1,公差为3的等差数列, 故32n b n =-;当n 为偶数时有23n n a a ++=,即423a a +=,643a a +=,…,2223n n a a ++=, 于是,()()3013292430S a a a a a a =+++++++()()()12152462830b b b a a a a a =+++++++++⎡⎤⎣⎦14315273330233532+=⨯++⨯=+=, 故选:B .10.(多选)(2022·河北沧州·二模)已知数列{}n a 满足()1121,(1)n n n a a a n n ++==--+,记{}n a 的前n 项和为n S ,则( )A .4850100a a += B .50464a a -= C .48600S = D .49601S =【答案】BCD【分析】由条件可得当n 为奇数时,211n n a a a +===;当n 为偶数时,22n n a a n ++=,然后可逐一判断.【详解】因为()1121,(1)n n n a a a n n ++==--+,所以当n 为奇数时,211n n a a a +===;当n 为偶数时,22n n a a n ++=.所以485096a a +=,选项A 错误;又因为464892a a +=,所以50464a a -=,选项B 正确; ()()()481354724684648S a a a a a a a a a a ⎡⎤=+++++++++++⎣⎦()()24612241226462426002+⨯=⨯+⨯+++=+⨯=故C 正确4948496001601S S a =+=+=,选项D 正确.故选:BCD11.(多选)(2022·湖北·华中师大一附中模拟预测)记数列{}n a 是等差数列,下列结论中不恒成立的是( )A .若120a a +>,则230a a +>B .若130a a +<,则20a <C .若12a a <,则2a >D .若10a <,则()()21230a a a a --> 【答案】ACD【分析】根据等差数列通项公式及等差中项,结合基本不等式即可求解. 【详解】设等差数列{}n a 的首项为1a ,公差为d ,则对于A ,由数列{}n a 是等差数列及120a a +>,所以可取123101a a a ===-,,,所以230a a +>不成立,故A 正确;对于B ,由数列{}n a 是等差数列,所以13202a a a +<=,所以20a <恒成立,故B 不正确;对于C, 由数列{}n a 是等差数列,12a a <可取123321a a a =-=-=-,,,所以2a C 正确;对于D ,由数列{}n a 是等差数列,得()()221230a a a a d --=-≤,无论1a 为何值,均有()()21230a a a a --≤所以若10a <,则()()21230a a a a -->恒不成立,故D 正确. 故选:ACD.12.(2022·北京·101中学三模)已知等差数列{}n a 中2341,25a a a =-+=,则20222020a a -=_______. 【答案】4【分析】设出公差,利用等差数列通项公式基本量计算得到方程组,求出公差,求出答案.【详解】设公差为d ,则()11112235a d a d a d +=-⎧⎨+++=⎩,解得:132a d =-⎧⎨=⎩,所以2022202024a a d -==故答案为:413.(2022·山东青岛·二模)将等差数列中的项排成如下数阵,已知该数阵第n 行共有12n -个数,若12a =,且该数阵中第5行第6列的数为42,则n a =___________.a 1 a 2 a 3 a 4 a 5 a 6 a 7 ……【答案】2n【分析】利用等比数列前n 项和公式确定42为数列中的第几项,可以求出公差,从而确定等差数列的通项公式.【详解】解:设公差为d , 因为该数阵第n 行共有12n -个数, 则前4行共有()41121512⨯-=-个数,所以第5行第6列数为2142a =,则2114222211211a a d --===--, 所以2(1)22n a n n =+-⨯=. 故答案为:2n .14.(2022·辽宁·抚顺一中模拟预测)已知等差数列{}n a 的前n 项和为n S ,若12113S a =,则5a =______,9S =______.【答案】 0 0【分析】根据等差数列的求和公式,化简可得12d a =,代入12113S a =即可求出14a d =-,根据等差数列的通项公式和求和公式,即可求出答案.【详解】等差数列{}n a 中,12111112663330S a d a a d =+==+, 所以111266330a d a d +=+, 即14a d =-,所以5140a a d =+=,9590S a == 故答案为:①0;①0.15.(2022·江苏·南京市天印高级中学模拟预测)2022年北京冬奥会开幕式始于24节气倒计时,它将中国人的物候文明、传承久远的诗歌、现代生活的画面和谐统一起来.我国古人将一年分为24个节气,如图所示,相邻两个节气的日晷长变化量相同,冬至日晷长最长,夏至日晷长最短,周而复始.已知冬至日晷长为13.5尺,芒种日晷长为2.5尺,则一年中夏至到立冬的日晷长的和为______尺【答案】60【分析】因为相邻两个节气的日晷长变化量相同,所以每个节气的日晷长构成等差数列,所以夏至到立冬的日晷长的和可以用等差数列求和公式得到.【详解】因为相邻两个节气的日晷长变化量相同,所以每个节气的日晷长构成等差数列, 设冬至日晷长13.5尺为1a ,则芒种日晷长2.5尺为12a ,所以1211121a a d -==--, 所以夏至日晷长为1.5尺,记夏至日晷长1.5尺为1b ,小暑为2b ,大暑为3b ,……,立冬为10b则121010(101)101.51602b b b ⋅-+++=⋅+⋅=. 故答案为:60.16.(2022·重庆八中模拟预测)在等差数列{}n a 中,261028a a a ++=,则数列{}n a 的前13项和为______. 【答案】26【分析】由等差数列的通项公式得12+6a d =,再代入求和公式()13113+6S a d =可求得答案. 【详解】解:设等差数列{}n a 的公差为d ,因为261028a a a ++=,()()()111+++5+2+98d d a a a d ∴=, 12+6a d ∴=,则()131113(131)13+13+6262S a d a d ⨯-===, 故答案为:26.17.(2022·广东·模拟预测)已知{}n a 和{}n b 均为等差数列,若12456,9a b a b ==+=,则78a b +的值是__________. 【答案】6【分析】利用等差数列的性质计算即可得解. 【详解】解:因为{}n a 和{}n b 均为等差数列, 所以1742852,2a a a b b b +=+=, 所以()1728452a a b b a b +++=+, 即781229a b ++=⨯,所以786a b +=. 故答案为:6.18.(2022·江苏泰州·模拟预测)已知等差数列{n a }的前n 项和是n S ,180S >,190S <,则数列{|n a |}中值最小的项为第___项. 【答案】10【分析】根据题意判断等差数列{n a }的90a >,100a <,9100a a >->,由此可判断数列{||}n a 的项的增减情况,进而确定答案.【详解】由题意得:119191019()1902a a S a +===<,①100a <,()1180990S a a =+>,①90a >,9100a a >->,①910a a >,故等差数列{n a }为递减数列,即公差为负数, 因此{||}n a 的前9项依次递减,从第10项开始依次递增, 由于910a a >,①{|n a |}最小的项是第10项, 故答案为:1019.(2022·湖北·大冶市第一中学模拟预测)已知数列{}n a 的前n 项和为n S ,111a =-,29a =-,且()11222n n n S S S n +-+=+≥.(1)求数列{}n a 的通项公式; (2)已知11n n n b a a +=,求数列{}n b 的前n 项和n T . 【解】(1)由题意得:由题意知()()112n n n n S S S S +----=,则()122n n a a n +-=≥又212a a -=,所以{}n a 是公差为2的等差数列,则()11213n a a n d n =+-=-; (2)由题知()()11112132112213211n b n n n n ⎛⎫==- ⎪----⎝⎭则1111111111211997213211211211n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-++-+++-=-- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦12122n n =- 20.(2022·山东·济南市历城第二中学模拟预测)在“①1n n a a +>,31044a a =,4915a a +=;①765S a =,23a =;①2(3)n S n n =+”三个条件中任选一个,补充到下面的横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,且__________. (1)求{}n a 的通项公式; (2)若11n n n b a a +=,求{}n b 的前n 项和为n T ,求证:12n T <. 【解】(1)若选择①,因为1n n a a +>,31044a a =,4915a a +=,31049a a a a +=+, 解得34a =,1011a =,设公差为d ,则有1324a a d +==,101911a a d =+=, 解得12a =,1d =, 所以1n a n =+.若选择①,设公差为d ,74675S a a ==, 即()()117355a d a d +=+,结合213a a d =+=,解得12a =,1d =, 所以1n a n =+.若选择①,当1n =时,112a S ==; 当2n ≥时,1(3)(1)(2)122n n n n n n n a S S n -+-+=-=-=+, 当1n =时亦满足上式, 所以1n a n =+. (2)证明:由(1)得11111(1)(2)12n n n b a a n n n n +===-++++, 所以1111111123341222n T n n n =-+-++-=-+++, 因为102n >+,(*N n ∈),所以111222n -<+,所以12n T <. 【素养提升】1.(2022·浙江省江山中学模拟预测)已知sin ,sin ,sin x y z 依次组成严格递增的等差数列,则下列结论错误..的是( )A .tan ,tan ,tan x y z 依次可组成等差数列B .cos ,cos ,cos x y z 依次可组成等差数列C .cos ,cos ,cos x z y 依次可组成等差数列D .cos ,cos ,cos z x y 依次可组成等差数列【答案】B 【分析】取,0,66x y z ππ=-==,即可判断A ;利用反证法,假设cos ,cos ,cos xy z 依次可组成等差数列,则有2cos coscos y x z =+,2sin sin sin y x z =+,两式相加,整理即可判断B ;取sin 0,sin x y z ===CD.【详解】解:对于A ,当,0,66x y z ππ=-==时,此时11sin ,sin 0,sin 22x y z =-==依次组成严格递增的等差数列,则tan tan 0,tan x y z ===依次组成等差数列,故A 正确; 对于B ,假设cos ,cos ,cos x y z 依次可组成等差数列, 则有2cos cos cos y x z =+, 又因2sin sin sin y x z =+,两式平方相加得()422cos cos sin sin x z x z =++, 则()cos 1x z -=,故2x z k π-=,所以2,Z x k z k π=+∈, 所以()sin sin 2sin x k z z π=+=,与题意矛盾,所以cos ,cos ,cos x y z 依次不可能组成等差数列,故B 错误;对于C ,当sin 0,sin 33x y z =-==11cos ,cos ,cos 133x z y =-==,则cos ,cos ,cos x z y 为等差数列,故C 正确;对于D ,当sin 0,sin 33x y z =-==若11cos ,cos ,cos 133z x y =-==,则cos ,cos ,cos z x y 为等差数列,故D 正确.故选:B.2.(2022·辽宁·渤海大学附属高级中学模拟预测)已知等差数列{}n a 的前n 项和为n S ,且满足()552sin 2350a a +--=,()201820182sin 2370a a +--=,则下列结论正确的是( )A .20222022S =,且52018a a >B .20222022S =-,且52018a a <C .20224044S =-,且52018a a >D .20224044S =,且52018a a <【答案】C【分析】根据题意构造函数()2sin 3f x x x =-,确定函数的奇偶性及单调性,进而根据()()520182,2f a f a ++的关系即可确定答案.【详解】设函数()2sin 3f x x x =-,则()f x 为奇函数,且()2cos 30f x x '=-<,所以()f x 在R 上递减,由已知可得()()552sin 2321a a +-+=-,()()201820182sin 2321a a +-+=,有()521f a +=-,()201821f a +=,所以()()5201822f a f a +<+,且()()5201822f a f a +=-+,所以520185201822a a a a +>+⇒>,且()5201822a a +=-+,所以520184a a +=-, 120222022520182022()1011()40442a a S a a +==+=-.故选:C.3.(多选)(2022·江苏·南京市江宁高级中学模拟预测)已知两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列说法正确的是( )A .若为等差数列,则112d a =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d【答案】ABD【分析】对于A ,利用 对于B ,利用()2211332S T S T S T +=+++化简可得答案;对于C ,利用2211332a b a b a b =+化简可得答案;对于D ,根据112n n b b a a d d +-=可得答案.【详解】对于A ,因为为等差数列,所以即 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =,所以{}n b a 也为等差数列,且公差为12d d ,故D 正确. 故选:ABD4.(多选)(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A -记为20a =,()30,1A -记为31,a =-⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =-C .82n a n =D .()245312n n n n S ++=【答案】ABD【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,则2440n n S +=,同时第n 圈的最后一个点对应坐标为(),n n ,设2022a 在第k 圈,则k 圈共有()41k k +个数,可判断前22圈共有2024个数,2024a 所在点的坐标为()22,22,向前推导,则可判断A ,B 选项;当2n =时,16a 所在点的坐标为()2,2--,即可判断C 选项;借助2440n n S +=与图可知22222244144245454544n n n n n nn n n n n n S S S a a a++++++++=-=+++,即n 项之和,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,即可求解判断D 选项. 【详解】由题,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280S a a a =+++=;第二圈从点()2,1到点()2,2共16个点,由对称性可知248910240S S a a a -=+++=,即 240S =,以此类推,可得第n圈的8n 个点对应的这8n 项的和为0,即()214482n nn n SS ++⨯==,设2022a 在第k 圈,则()()888168412k k k kk ++++==+,由此可知前22圈共有2024个数,故20240S =,则()2022202420242023S S a a =-+,2024a 所在点的坐标为()22,22,则2024222244a =+=,2023a 所在点的坐标为()21,22,则2023212243a =+=,2022a 所在点的坐标为()20,22,则2022202242a =+=,故A 正确;()()20222024202420230444387S S a a =-+=-+=-,故B 正确;8a 所在点的坐标为()1,1,则8112a =+=,16a 所在点的坐标为()2,2--,则16224a =--=-,故C 错误;22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=-=+++,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,所以()()()()()245111112122n n S n n n n n n n n +=+++++-++++=+++++()()2123122n n n n n ++++==,故D 正确.故选:ABD5.(2022·湖北·荆门市龙泉中学一模)在数列{}n a 中,11a =,()11nn n a a n ++-=,*N n ∈,则4a =_______;{}n a 的前2022项和为_______.【答案】 3 1023133【分析】求出数列前若干项,根据其特性,分别求和后再可解即可. 【详解】由()11nn n a a n ++-=,得()11nn n a n a +=--,又11a =,所以()21112a a =--=,()232210a a =--=,()343313a a =--=,()454411a a =--=,()565516a a =--=,()676610a a =--=,()787717a a =--=,()898811a a =--=,()91099110a a =--=,()1011101010a a =--=,()11121111111a a =--=,()1213121211a a =--=,()13141313114a a =--=,⋯;因为202250542=⨯+, 所以,明显可见,规律如下: 159132021,,,,,a a a a a ,成各项为1的常数数列,其和为1506506⨯=, 2610142022,,,,,a a a a a ,成首项为2,公差为4的等差数列,其和为25065055062450625120722⨯⨯+⨯=⨯=, 3711152019,,,,,a a a a a ,成各项为0的成常数数列,其和为05050⨯=,4812162020,,,,,a a a a a ,成首项为3,公差为4的等差数列,其和为505504505345105552⨯⨯+⨯=, 故202250651207205105551023133S =+++=. 故答案为:①3;①1023133.6.(2022·湖南·长郡中学模拟预测)已知数列{}n a 的前n 项和2n S n an =+(a 为常数),则20222021a a -=________;设函数()8sin()cos()g x x x x ππ=+-且()()()12918g a g a g a +++=,则5a =__________.【答案】 2;14【分析】根据数列前n 项和与第n 项的关系、等差数列的定义、等差数列的性质,结合辅助角公式、构造函数法,利用导数的性质进行求解即可.【详解】当*2,N n n ≥∈时,221(1)(1)21n n n a S S n an n a n n a -=-=+----=+-,当1n =时,显然成立,因为当*2,N n n ≥∈时,12n n a a --=,数列{}n a 为等差数列,且公差2d =,所以202220212a a -=.又因为111()8sin πcos π8π8π2444g x x x x x x x x ⎛⎫⎛⎫⎛⎫=+-=-=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()8πh t t t =,因为()8π)(8π)()h t t t t t h t -=--=-=-, 所以()h t 为奇函数,因为()8cos π0h t t =+>',所以()h t 在R 上单调递增. 由题意得()()()1292220g a g a g a -+-++-=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,因为数列{}n a 是公差不为0的等差数列,其中129a a a <<<,则129111444a a a -<-<<-,假设1911044a a ⎛⎫⎛⎫-+-> ⎪ ⎪⎝⎭⎝⎭,1919191111110444444a a h a h a h a h a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫->--⇒->--⇒-+-> ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.因为1928374651111111112,444444444a a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-=-+-=-+-=-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以1291110444h a h a h a ⎛⎫⎛⎫⎛⎫-+-++-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.假设1911044a a ⎛⎫⎛⎫-+-< ⎪ ⎪⎝⎭⎝⎭,同理可得1291110444h a h a h a ⎛⎫⎛⎫⎛⎫-+-++-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,综上,19195111104424a a a a a ⎛⎫⎛⎫-+-=⇒+=⇒= ⎪ ⎪⎝⎭⎝⎭.故答案为:2;14。
6.2 等差数列及其前n 项和必备知识预案自诊知识梳理1.等差数列(1)定义:一般地,如果一个数列从 起,每一项与它的前一项的 都等于 ,那么这个数列就叫做等差数列,这个常数叫做等差数列的 ,公差通常用字母d 表示.数学语言表示为a n+1—a n =d (n ∈N *),d 为常数。
(2)等差中项:数列a ,A ,b 成等差数列的充要条件是 ,其中A 叫做a ,b 的 。
(3)等差数列{a n }的通项公式:a n = ,可推广为a n =a m +(n —m )d.(4)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d.2。
等差数列的通项公式及前n 项和公式与函数的关系 (1)a n =a 1+(n —1)d 可化为a n =dn+a 1-d 的形式。
当d ≠0时,a n是关于n 的一次函数;当d>0时,数列为递增数列;当d<0时,数列为递减数列.(2)数列{a n }是等差数列,且公差不为0⇔S n =An 2+Bn (A ,B 为常数)。
1.已知{a n }为等差数列,d 为公差,S n 为该数列的前n项和.(1)在等差数列{a n}中,当m+n=p+q时,a m+a n=a p+a q(m,n,p,q∈N*).特别地,若m+n=2p,则2a p=a m+a n(m,n,p∈N*).(2)a k,a k+m,a k+2m,…仍是等差数列,公差为md(k,m ∈N*).(3)S n,S2n-S n,S3n—S2n,…也成等差数列,公差为n2d。
(4)若{a n},{b n}是等差数列,则{pa n+qb n}也是等差数列.(5)若项数为偶数2n,则S2n=n(a1+a2n)=n(a n+a n+1);S偶-S奇=nd;S奇S偶=a na n+1。
(6)若项数为奇数2n—1,则S2n—1=(2n—1)a n;S奇—S偶=a n;S奇S偶=nn-1。
第2讲 等差数列及其前n 项和,)1.等差数列的有关概念 (1)定义假如一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2.3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.1.辨明两个易误点(1)要留意概念中的“从第2项起”.假如一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.(2)留意区分等差数列定义中同一个常数与常数的区分. 2.妙设等差数列中的项若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元. 3.等差数列的四种推断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. (3)通项公式法:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式法:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列.1.教材习题改编 等差数列11,8,5,…,中-49是它的第几项( ) A .第19项 B .第20项 C .第21项D .第22项C a 1=11,d =8-11=-3, 所以a n =11+(n -1)×(-3)=-3n +14. 由-3n +14=-49,得n =21.故选C.2.教材习题改编 已知p :数列{a n }是等差数列,q :数列{a n }的通项公式a n =k 1n +k 2(k 1,k 2均为常数),则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件C 若{a n }是等差数列,不妨设公差为d . 所以a n =a 1+(n -1)d =dn +a 1-d , 令k 1=d ,k 2=a 1-d ,则a n =k 1n +k 2,若数列{a n }的通项公式a n =k 1n +k 2(k 1,k 2为常数,n ∈N *), 则当n ≥2且n ∈N *时,a n -1=k 1(n -1)+k 2, 所以a n -a n -1=k 1(常数)(n ≥2且n ∈N *), 所以{a n }为等差数列, 所以p 是q 的充要条件.3.教材习题改编 等差数列{a n }的前n 项之和为S n ,若a 5=6,则S 9为( ) A .45 B .54 C .63D .27B 法一:由于S 9=9(a 1+a 9)2=9a 5=9×6=54.故选B.法二:由a 5=6,得a 1+4d =6,所以S 9=9a 1+9×82d =9(a 1+4d )=9×6=54,故选B.4.(2021·金丽衢十二校联考)已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为________.设等差数列{a n }的公差为d ,则d =a 13-a 313-3=33-1310=2.25.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. 所以S 16=16×3+16×152×(-1)=-72.-72等差数列的基本运算(高频考点)等差数列基本量的计算是高考的常考内容,多消灭在选择题、填空题或解答题的第(1)问中,属简洁题. 高考对等差数列基本量计算的考查主要有以下三个命题角度: (1)求公差d 、项数n 或首项a 1; (2)求通项或特定项; (3)求前n 项和.(1)(2021·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A .172B .192C .10D .12(2)设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5B .6C .7D .8【解析】 (1)由于公差为1,所以S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.由于 S 8=4S 4,所以8a 1+28=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192,故选B.(2)法一:由题知S n =na 1+n (n -1)2d =n +n (n -1)=n 2,S n +2=(n +2)2,由S n +2-S n =36得,(n +2)2-n 2=4n +4=36,所以n =8.法二:S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8. 【答案】 (1)B (2)D等差数列基本运算的解题方法(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.角度一 求公差d 、项数n 或首项a 11.(2021·豫东、豫北十所名校联考)已知等差数列{a n }中,a 5=13,S 5=35,则公差d =( ) A .-2 B .-1 C .1D .3D 依题意,得⎩⎪⎨⎪⎧a 1+4d =13,5a 1+10d =35,解得⎩⎪⎨⎪⎧a 1=1,d =3,故选D.角度二 求通项或特定项2.(2022·高考全国卷乙)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97C 设等差数列{a n }的公差为d ,由于{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98,选C.角度三 求前n 项和3.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27. 27等差数列的判定与证明已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.【解】 (1)证明:由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1, 由于a n +1≠0, 所以a n +2-a n =λ.(2)由题设知a 1=1,a 1a 2=λS 1-1, 可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1, 公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2, 因此存在λ=4, 使得数列{a n }为等差数列.(1)推断证明一个数列是否是等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简洁推断.(2)用定义证明等差数列时,常接受两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必需加上“n ≥2”,否则n =1时,a 0无定义.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *).设b n =1a n -1(n ∈N *),求证:数列{b n }是等差数列.由于a n =2-1a n -1,所以a n +1=2-1a n.所以b n +1-b n =1a n +1-1-1a n -1,=12-1a n-1-1a n -1,=a n -1a n -1=1, 所以{b n }是首项为b 1=12-1=1,公差为1的等差数列.等差数列的性质及最值(1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( ) A .18 B .99 C .198D .297(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.(3)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.【解析】 (1)由于a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.(2)由于{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21.(3)当且仅当n =8时,S n 取得最大值,说明⎩⎪⎨⎪⎧a 8>0,a 9<0.所以⎩⎪⎨⎪⎧7+7d >0,7+8d <0.所以-1<d <-78.【答案】 (1)B (2)21 (3)⎝⎛⎭⎪⎫-1,-78应用等差数列的性质应留意的两点(1)在等差数列{a n }中,若m +n =p +q =2k (m 、n 、p 、q 、k ∈N *),则a m +a n =a p +a q =2a k 是常用的性质. (2)把握等差数列的性质,悉心争辩每共性质的使用条件及应用方法,认真分析项数、序号、项的值的特征,这是解题的突破口.1.已知等差数列{a n }的公差为2,项数是偶数,全部奇数项之和为15,全部偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40A 设这个数列有2n 项,则由等差数列的性质可知:偶数项之和减去奇数项之和等于nd ,即25-15=2n ,故2n =10,即数列的项数为10.2.在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15B .S 16C .S 15或S 16D .S 17A 设{a n }的公差为d , 由于a 1=29,S 10=S 20,所以10a 1+10×92d =20a 1+20×192d ,解得d =-2,所以S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.所以当n =15时,S n 取得最大值.3.(2021·陕西省五校模拟)等差数列{a n }中,假如 a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66C 由等差数列的性质可知,2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9)=39+27=66, 所以a 2+a 5+a 8=33,所以数列{a n }前9项的和为66+33=99.,)——整体思想在等差数列中的应用在等差数列{a n }中,S 10=100,S 100=10,则S 110=________. 【解析】 法一:设数列{a n }的公差为d ,首项为a 1,则⎩⎪⎨⎪⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.法二:法一中两方程相减得 -90a 1-100×99-902d =90,所以a 1+110-12d =-1,所以S 110=110a 1+110(110-1)2d =-110.法三:由于S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.【答案】 -110(1)法一是利用等差数列的前n 项和公式求解基本量,然后求和,是等差数列运算问题的常规思路.而法二、法三都突出了整体思想,分别把a 1+110-12d 、a 11+a 100看成了一个整体,解起来都很便利.(2)整体思想是一种重要的解题方法和技巧,这就要求同学要娴熟把握公式,理解其结构特征.已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.法一:设数列{a n }的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D . 所以5+2D =10, 所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. 20,)1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15B 设{a n }的公差为d ,由S 5=(a 2+a 4)·52⇒25=(3+a 4)·52⇒a 4=7,所以7=3+2d ⇒d =2,所以a 7=a 4+3d =7+3×2=13.2.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0C .14D .12B 由题知,a 2+a 4=2a 3=2, 又由于a 2a 4=34,数列{a n }单调递增,所以a 2=12,a 4=32.所以公差d =a 4-a 22=12.所以a 1=a 2-d =0. 3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84B 由a 3+a 5+a 11+a 17=4⇒2(a 4+a 14)=4⇒a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.(2021·东北三校联考(一))已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121B 设等差数列{b n }的公差为d ,则d =-14,由于a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72=-112,则a 8=-109. 5.(2021·黄冈质检)在等差数列{a n }中,假如a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)=40+3×20=100.6.(2021·杭州重点中学联考)设S n 为等差数列{a n }的前n 项和,若a 4<0,a 5>|a 4|,则使S n >0成立的最小正整数n 为( )A .6B .7C .8D .9C 在等差数列{a n }中 ,由于a 4<0,a 5>|a 4|,所以a 5>0,a 5+a 4>0,S 7=7(a 1+a 7)2=7×2a 42=7a 4<0,S 8=8(a 1+a 8)2=8(a 4+a 5)2=4(a 4+a 5)>0.所以使S n >0成立的最小正整数n 为8,故选C.7.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为________. a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37. 所以m =37. 378.设S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=__________. 设{a n }的公差为d ,由题意知 ⎩⎪⎨⎪⎧2a 1+d =6a 1+6×52d ,a 1+3d =1,解得⎩⎪⎨⎪⎧a 1=7,d =-2,所以a 5=a 4+d =1+(-2)=-1.-19.若两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n n +3,则a 5b 5等于________.由于a 5=a 1+a 92,b 5=b 1+b 92,所以a 5b 5=a 1+a 92b 1+b 92=9(a 1+a 9)29(b 1+b 9)2=S 9T 9=7×99+3=214.21410.记等差数列{a n }的前n 项和为S n ,当k ≥2时,若S k -1=8,S k =0,S k +1=-10,则S n 的最大值为________. 当k ≥2时,a k =S k -S k -1=-8,a k +1=S k +1-S k =-10,公差d =a k +1-a k =-2,S k =k (a 1+a k )2=0,所以a 1+a k =0,所以a 1=8,所以a n =-2n +10,由a n =0得n =5,所以S 4=S 5=20最大.2011.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.(1)证明:由于b n =1a n ,且a n =a n -12a n -1+1,所以b n +1=1a n +1=1a n2a n +1=2a n +1a n,所以b n +1-b n =2a n +1a n -1a n=2.又b 1=1a 1=1,所以数列{b n }是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n ,所以a n =1b n =12n -1.所以数列{a n }的通项公式为a n =12n -1.12.已知等差数列{a n }中,S n 是前n 项的和,a 1=-2 017,S 2 0172 017-S 2 0152 015=2,则S 2 019的值为________.由S 2 0172 017-S 2 0152 015=a 1 009-a 1 008=2. 即{a n }的公差d =2,又a 1=-2 017,所以S 2 019=2 019×(-2 017)+2 019×2 0182×2=2 019.2 01913.各项均为正数的数列{a n }满足a 2n =4S n -2a n -1(n ∈N *),其中S n 为{a n }的前n 项和. (1)求a 1,a 2的值; (2)求数列{a n }的通项公式. (1)当n =1时,a 21=4S 1-2a 1-1, 即(a 1-1)2=0,解得a 1=1.当n =2时,a 22=4S 2-2a 2-1=4a 1+2a 2-1=3+2a 2, 解得a 2=3或a 2=-1(舍去). (2)a 2n =4S n -2a n -1,①a 2n +1=4S n +1-2a n +1-1.②②-①得a 2n +1-a 2n =4a n +1-2a n +1+2a n =2(a n +1+a n ), 即(a n +1-a n )(a n +1+a n )=2(a n +1+a n ).由于数列{a n }各项均为正数,所以a n +1+a n >0,a n +1-a n =2, 所以数列{a n }是首项为1,公差为2的等差数列. 所以a n =2n -1.14.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.由于2a n +1=a n +a n +2,所以a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4. 所以a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0, 解得292≤n ≤312,由于n ∈N *,所以n =15,即数列{b n }的前15项均为负值,所以T 15最小. 由于数列{b n }的首项是-29,公差为2, 所以T 15=15(-29+2×15-31)2=-225.。
2022届高考数学一轮复习第五章第二节等差数列及第二节等差数列及其前n项和[全盘巩固]1.已知等差数列{an}的前n项和为Sn,a4=15,S5=55,则数列{an}的公差是()1A.B.4C.-4D.-34解析:选B∵{an}是等差数列,a4=15,S5=55,∴a1+a5=22,∴2a3=22,a3=11,∴公差d=a4-a3=4.2.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.27S3=3a1+3d=9,解析:选B设等差数列{an}的公差为d,依题意得6某5S=36,6=6a1+2=1,d=2,则a7+a8+a9=3a8=3(a1+7d)=45.3.(2022·辽宁高考)下面是关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;anp3:数列是递增数列;np4:数列{an+3nd}是递增数列.解得a1其中的真命题为()A.p1,p2B.p3,p4C.p2,p3D.p1,p4解析:选D∵{an}是等差数列,∴设an=a1+(n-1)d.∵d>0,∴{an}是递增数列,故a1-da1-d3p1是真命题;nan=dn2+(a1-d)n的对称轴方程为n=-当-时,由二次函数2d2d2anana1-d的对称性知a1>2a2,{nan}不是递增数列,p2=d+,当a1-d>0时,是nnn递减数列,p3是假命题;an+3nd=4nd+a1-d,4d>0,{an+3nd}是递增数列,p4是真命题.故p1,p4是真命题.4.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99.用Sn表示{an}的前n项和,则使得Sn达到最大值的n是()A.21B.20C.19D.18解析:选B∵a1+a3+a5=105,a2+a4+a6=99,∴3a3=105,3a4=99,即a3=35,a4=33.∴a1=39,d=-2,得an=41-2n.某令an≥0且an+1≤0,n∈N,则有n=20.5.已知Sn为等差数列{an}的前n项和,若S1=1=4,则的值为()935 A.B..4423解析:选A由等差数列的性质可知S2,S4-S2,S6-S44,得S4S2S6S4S4S2S4-S2S2S69=3,则S6-S4=5S2,所以S4=4S2,S6=9S2,=.S44某6.数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N).若b3=-2,b10=12,则a8=()A.0B.3C.8D.11解析:选B因为{bn}是等差数列,且b3=-2,b10=12,12--某故公差d==2.于是b1=-6,且bn=2n-8(n∈N),即an+1-an=2n-8.10-3所以a8=a7+6=a6+4+6=a5+2+4+6=…=a1+(-6)+(-4)+(-2)+0+2+4+6=3.7.在等差数列{an}中,首项a1=0,公差d≠0,若ak=a1+a2+a3+…+a7,则k=________.-d解析:a1+a2+…+a7=7a1+=21d,2而ak=a1+(k-1)d=(k-1)d,所以(k-1)d=21d,d≠0,故k=22.答案:228.在等差数列{an}中,an>0,且a1+a2+…+a10=30,则a5·a6的最大值为________.解析:∵a1+a2+…+a10=30,a1+a10即30,a1+a10=6,∴a5+a6=6,2a5+a62=9.∴a5·a6≤2答案:929.已知等差数列{an}中,an≠0,若n>1且an-1+an+1-an=0,S2n-1=38,则n=________.2解析:∵2an=an-1+an+1,an-1+an+1-an=0,2∴2an-an=0,即an(2-an)=0.∵an≠0,∴an=2.∴S2n-1=2(2n-1)=38,解得n=10.答案:10 1213某10.设Sn是数列{an}的前n项和且n∈N,所有项an>0,且Snn+an -.424(1)证明:{an}是等差数列;(2)求数列{an}的通项公式.1213解:(1)证明:当n=1时,a1=S1=a11-,424解得a1=3或a1=-1(舍去).当n≥2时,112an=Sn-Sn-1(a2n+2an-3)an-1+2an-1-3).4422∴4an=an-an-1+2an-2an-1.即(an+an-1)(an-an-1-2)=0.∵an+an-1>0,∴an-an-1=2(n≥2).∴数列{an}是以3为首项,2为公差的等差数列.(2)由(1)知an=3+2(n-1)=2n+1.11.已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3·a4=117,a2+a5=22.(1)求通项公式an;(2)求Sn的最小值;(3)若数列{bn}是等差数列,且bn=,求非零常数c.n+c解:(1)∵数列{an}为等差数列,∴a3+a4=a2+a5=22.又a3·a4=117,2∴a3,a4是方程某-22某+117=0的两实根,又公差d>0,∴a3<a4,∴a3=9,a4=13,Sna1+2d=9,∴a1+3d=13,a1=1,∴d=4.∴通项公式an=4n-3.(2)由(1)知a1=1,d=4,nn-1212∴Sn=na1+d=2n-n=2n-,248∴当n=1时,Sn最小,最小值为S1=a1=1.2Sn2n-n2(3)由(2)知Sn=2n-n,∴bn=n+cn+c1615∴b1=b2=b3.1+c2+c3+c∵数列{bn}是等差数列,∴2b2=b1+b3,61152即2c+c=0,2+c1+c3+c11∴c=-或c=0(舍去),故c=-222212.已知数列{an}是等差数列,bn=an-an+1.(1)证明:数列{bn}是等差数列;(2)若a1+a3+a5+…+a25=130,a2+a4+a6+…+a26=143-13k(k为常数),求数列{bn}的通项公式;(3)在(2)的条件下,若数列{bn}的前n项和为Sn,是否存在实数k,使Sn当且仅当n=12时取得最大值?若存在,求出k的取值范围;若不存在,请说明理由.22222解:(1)证明:设{an}的公差为d,则bn+1-bn=(an+1-an+2)-(an-an+1)=2an+1-(an+1222-d)-(an+1+d)=-2d,2(2)∵a1+a3+a5+…+a25=130,a2+a4+a6+…+a26=143-13k,∴13d=13-13k,∴d=1-k,-又13a1+某2d=130,∴a1=-2+12k,2∴an=a1+(n-1)d=(-2+12k)+(n-1)(1-k)=(1-k)n+13k-3,2222∴bn=an-an+1=(an+an+1)(an-an+1)=-2(1-k)n+25k-30k+5.(3)存在满足题意的实数k.由题意可知,当且仅当n=12时Sn最大,则b12>0,b13<0,22-k+25k-30k+5>0,-即22--k+25k-30k+5<0,k+18k-19>0,∴2k-22k+21>0,2解得k<-19或k>21.故k的取值范围为(-∞,-19)∪(21,+∞).[冲击名校]a11a12a13a32a33等差数列,若a22=8,则这9个数的和为()A.16B.32C.36D.72解析:选D依题意得a11+a12+a13+a21+a22+a23+a31+a32+a33=3a12+3a22+3a32=9a22=72.2.(2022·新课标全国卷Ⅱ)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为________.311.已知数阵aa21a22a23中,每行的3个数依次成等差数列,每列的3个数也依次成10a1+45d=0,,得15a1+105d=25,解析:由Sn=na1nn-22解得a1=-3,d=,3nn-212则Sn=-3n+n-10n),233132所以nSn=(n-10n),3132令f(某)=(某-10某),320222则f′(某)=某-=某某,3320当某∈1,时,f(某)单调递减;320当某∈时,f(某)单调递增,320又,f(6)=-48,f(7)=-49,3所以nSn的最小值为-49.答案:-49[高频滚动]21.已知数列{an}的前n项和Sn=-n+3n,若an+1an+2=80,则n的值为()A.5B.4C.3D.22解析:选A由Sn=-n+3n,可得an=4-2n,因此an+1·an+2=[4-2(n+1)][4-2(n+2)]=80,即n(n-1)=20,解得n=-4(舍去)或n=5.2n2.已知数列{an},{bn}满足a1=1,且an,an+1是函数f(某)=某-bn某+2的两个零点,则b10=________.nn+1解析:∵an+an+1=bn,an·an+1=2,∴an+1·an+2=2,∴an +2=2an.nn-1某又∵a1=1,a1·a2=2,∴a2=2,∴a2n=2,a2n-1=2(n∈N),∴b10=a10+a11=64.答案:64。
第 1 页 共 13 页 2022年高考数学总复习:等差数列及其前n 项和
1.等差数列的定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.
2.等差数列的通项公式
如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .
3.等差中项
由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.
4.等差数列的常用性质
(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).
(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .
(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .
(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.
(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.
(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.
5.等差数列的前n 项和公式
设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2 或S n =na 1+n (n -1)2
d . 6.等差数列的前n 项和公式与函数的关系
S n =d 2
n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).
7.等差数列的前n 项和的最值
在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 知识拓展
等差数列的四种判断方法
(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列.
(2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列.
(3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.
(4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.。