固体表面特征(精选)
- 格式:ppt
- 大小:4.33 MB
- 文档页数:6
固体材料的表面特性一、固体材料按照材料的特性,固体材料可分为金属材料、无机非金属材料和有机高分子材料三类;按照材料所起的作用,固体材料可分为结构材料和功能材料两大类;根据原子排列的特征,固态物质可分为晶体和非晶体两类。
晶体和非晶体原子排列如图2-2所示。
图2-2 晶体和非晶体原子排列晶体是指其组成微粒(原子、离子或分子)呈规则排列的物质。
晶体有固定的熔点和凝固点、规则的几何外形和各向异性的特点,如金刚石、石墨及一般固态金属材料等均是晶体。
非晶体是指其组成微粒无规则地堆积在一起的物质,如玻璃、沥青、石蜡、松香等都是非晶体。
非晶体没有固定的熔点,而且性能具有各向同性。
随着现代技术的发展,使得晶体与非晶体之间可以互相转化,如人们通过快速冷却,制成了具有特殊性能的非晶态的金属材料。
二、固体-气体的表面结构物质的聚集态有固、液、气三种形态,将两凝聚相的边界区域称为界面(interface),两凝聚相与气相形成的界面称为表面(surface)。
由于气体之间接触时通过气体分子间的相互作用而很快混合在一起,成为由混合气体组成的一个气相,即不存在气-气界面。
因此,界面有固-液、液-液、固-固三种类型,表面有固-气、液-气两种类型。
固体-气体界面示意图如图2-3所示。
图2-3 固体-气体界面示意图通常所说的表面是指固-气表面,这是我们研究的主要对象。
表面大致可以分为理想表面、清洁表面和实际表面三种类型。
人们日常生活中和工程上涉及固-气表面的现象和过程随处可见,例如气体吸附于固-气表面,形成吸附层。
例如:许多固-固界面在形成过程中,不少反应物质先以液态或气态存在,即先出现固-气表面和固-液界面,然后在一定条件下(通常为冷凝)才转变为固-固界面。
图2-4所示为固-固表面的结构,从截面上可以看出膜层与基体之间的界面结合处形貌。
图2-4 固-固表面的结构a)铝合金微弧氧化Al2O3陶瓷膜层表面SEM形貌 b)截面膜层形貌1.理想表面理想表面是一种理论的、结构完整的二维点阵平面。
第四章表面与界面§4-1 固体的表面一、固体表面的特征1、固体表面的不均一性(1)、同一种固体物质,制备或加工条件不同也会有不同的表面性质;(2)、实际晶体的表面由于晶格缺陷、空位或位错而造成表面的不均一性;(3)、只要固体暴露在空气中,其表面总是被外来物质所污染,被吸附的外来原子可占据不同的表面位置,形成有序或无序排列,也引起了固体表面的不均一性。
总之,实际固体表面的不均一性,使固体表面的性质悬殊较大,从而增加了固体表面结构和性质研究的难度。
2、固体表面力场定义:晶体中每个质点周围都存在着一个力场,在晶体内部,质点力场是对称的。
但在固体表面,质点排列的周期重复性中断,使处于表面边界上的质点力场对称性破坏,表现出剩余的键力,称之为固体表面力。
长程力:固体物体之间相互作用力。
它是两相之间的分子引力通过某种方式加合和传递而产生的,其本质仍属范德华力。
长程力分两类:一类是依靠粒子之间的电场传播的;另一类是通过一个分子到另一个分子逐个传播而达到长距离的。
范氏力主要来源于三种不同的力:定向作用力诱导作用力色散力二、晶体表面结构1、离子晶体的表面离子晶体MX在表面力作用下,离子的极化与重排过程见图4-1。
处于在表面层的负离子(X-)在外侧不饱和,负离子极化率大,通过电子云拉向内侧正离子一方的极化变形来降低表面能,这一过程称为松弛,是瞬间完成的,接着发生离子重排。
从晶格点阵稳定性考虑,作用力较大、极化率小的正离子应处于稳定的晶格位置,而易极化X-受诱导极化偶极子排斥而推向外侧,从而形成双电层。
如:NaCI表面形成厚度为0.02nm的表面双电层。
AI2O3、SiO2、ZrO2表面也有此现象。
2、晶体表面的几何结构随着晶体面的不同,表面上原子的密度也不同。
固体的实际表面是不规则和粗糙的,存在着无数台阶、裂缝和凹凸不平的山峰谷,这些不同的几何状态必然会对表面性质产生影响,其中最重要的是表面粗糙度和微裂纹。