高考全国1卷理科数学试题及答案解析
- 格式:doc
- 大小:828.00 KB
- 文档页数:11
2019 年普通高等学校招生全国统一考试理科数学1.已知集合Mx 4 x 2 , N { x x2x 6 0 ,则MN =A. { x4 x 3B. { x4 x2C. { x2 x 2D.{ x 2 x3【答案】 C【解析】【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,Mx 4 x 2 , Nx 2 x 3 ,则M Nx 2 x2 .故选C.【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设复数 z 满足z i =1,z在复平面内对应的点为(x,y) ,则A.( x+1)2y21B. ( x 1)2y 21C. x2( y 1)21D. x2( y+1)21【答案】 C【解析】【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0, 1)之间的距离为1,可选正确答案C.【详解】 z x yi , z i x ( y 1)i , zix2( y 1)21, 则x2( y 1)21.故选C.【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.3.已知alog 2 0.2, b 2 0.2, c0.20.3,则A.a b cB. a cbC. c a bD.b c a【答案】 B【解析】【分析】运用中间量0 比较a , c,运用中间量1比较b , c【详解】 a log2 0.2 log 2 10, b 20.2201, 0 0.20.30.201, 则0c1,a c b .故选B.【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512(5 1≈ 0.618,称为黄金分割比例 ),著名的“断臂维纳斯”便是如此.此外,最美人体2的头顶至咽喉的长度与咽喉至肚脐的长度之比也是51.若某人满足上述两个黄金分割2比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm 【答案】 B【解析】【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则26 2 6 x 5 1 42.07cm, y 5.15 cm .又其腿长为105cm ,头顶至脖子下xy 1 0 5,得 x2端的长度为 26cm ,所以其身高约为 42.07+5.15+105+26=178 .22,接近 175cm .故选 B .【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.sin x x5.函数 f( x)= cos x x 2在[— π, π]的图像大致为A.B.C.D.【答案】【解析】【分析】D先判断函数的奇偶性,得 f (x)是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.sin( x) ( x) sin x x f ( x) ,得f ( x)是奇函数,其图象关【详解】由 f ( x)x)( x)2cos x x 2cos(于原点对称.又 f ( )12422 0.故选D.21, f ( )12()22【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6 个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3 个阳爻的概率是5112111 A. B. C. D.16323216【答案】 A【解析】【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3 个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有 2 中情况,一重卦的 6 爻有26情况,其中 6 爻中恰有 3 个阳爻情况有 C63,所以该重卦恰有 3 个阳爻的概率为C63=5,故选A.2616【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.7.已知非零向量a, b 满足a = 2 b ,且(a–b)b,则 a 与 b 的夹角为π π 2π 5π A.B.C.D.6336【答案】 B【解析】【分析】本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由 (a b) b 得出向量a,b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为(a b) b ,所以 (ab) b a b b 2 =0 ,所以a b b 2,所以cos =a b | b |2 1 a 与b 的夹角为 ,故选 B .a b2 | b |2,所以23【点睛】对向量夹角的计算, 先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0, ].1 8.如图是求21的程序框图,图中空白框中应填入2 121 B. A=21 1 A. A=C. A=D. A=2 AA1 2 A112 A【答案】 A【解析】【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.1 , k 11, k k1【详解】执行第 1次, A 1 2 是,因为第一次应该计算1=2222A1=2,循环,执行第 2 次,k2 2 ,是,因为第二次应该计算1=1, k k1 2122A2=3,循环,执行第 3 次,k2 2 ,否,输出,故循环体为1,故选 A.AA21【点睛】秒杀速解认真观察计算式子的结构特点,可知循环体为A.2A9.记S n为等差数列 { a n} 的前n项和.已知 S40,a5 5 ,则A.a n2n5B. a n3n 10C.S n 2n28nD.S n 1 n22n2【答案】 A【解析】【分析】等差数列通项公式与前 n项和公式.本题还可用排除,对 B ,a5 5 ,S44(72)100 ,排除B,对C,S40, a5S5S4 2 5285010 5 ,2排除 C.对 D,S40, a5S5S4152 2 505 5 ,排除D,故选A.22S44a1d430a13a n n5 ,故选【详解】由题知,2,解得,∴A.2a5a14d5d2【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.10. 已知椭圆 C 的焦点为F1( 1,0) , F2( 1,0) ,过F2的直线与C 交于,两点若A B.│ AF│22│F2B│1,│ AB│ │ BF│,则C的方程为A.x2y21x2y2x2y2D. 2B.1C.13243x2y2154【答案】 B【解析】【分析】可以运用下面方法求解:如图,由已知可设F2 B n ,则 AF22n , BF1AB3n,由椭圆的定义有2a BF1BF24n ,AF12a AF22n.在△ 1 2△BF F中,AF F和 1 2由余弦定理得4n24 2 2n 2 cos AF2 F14n2 ,,又 AF F,BF F互补,n24 2 n 2 cos BF2 F19n22121c o s A F F c o s B F F ,0两式消去cos AF F , cos BF F,得3n2611n2,21212121解得n 3 .2a4n 2 3 , a 3 ,b2a2c231 2 ,所求椭圆方程为2x2y21,故选B.32【详解】如图,由已知可设F2 B n ,则 AF22n , BF1AB3n,由椭圆的定义有2a BF1BF24n , AF12a AF22n .在△A F1 B 中,由余弦定理推论得cos F1 AB 4n29n29n2122214 ,22n3n.在△AF1F2中,由余弦定理得4n4n2n 2n33解得n 3 .22a 4n 2 3 , a3 , b2a2c2 3 1 2 ,所求椭圆方程为x2y21,32故选 B.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.11. 关于函数f ( x)sin | x | | sin x |有下述四个结论:① f(x)是偶函数② f(x)在区间(, )单调递增2③ f(x)在[ ,]有4个零点④ f(x)的最大值为 2其中所有正确结论的编号是A. ①②④B. ②④C. ①④D. ①③【答案】 C【解析】【分析】化简函数 f x sin x sin x ,研究它的性质从而得出正确答案.【详解】f x sin x sin xsin x sin x f x , f x为偶函数,故①正确.当2x时, f x2sin x,它在区间,单调递减,故②错误.当 0 x2时,f x2s i nx0;当x0时,,它有两个零点:f x s i n x s i x n ,它2有x一s个i零n点:,故 f x 在,有 3个零点:0,故③错误.当 x 2k , 2k k N时, f x 2 s i nx;当x 2k, 2k2k N时, f x si n x si nx ,0 又 f x 为偶函数,f x的最大值为2,故④正确.综上所述,①④正确,故选 C.【点睛】画出函数f x sin x sin x 的图象,由图象可得①④正确,故选C.12. 已知三棱锥P-ABC 的四个顶点在球O 的球面上,PA=PB=PC,△ ABC 是边长为2 的正三角形,E, F 分别是PA, PB 的中点,∠CEF =90 °,则球O 的体积为A.86B.46C.26D.6【答案】D【解析】【分析】先证得PB 平面PAC ,再求得PAPBPC2,从而得PABC为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一 :PA PB PC,ABC 为边长为2的等边三角形,P ABC 为正三棱锥,PB AC ,又 E ,F分别为 PA、 AB 中点,EF //PB,EF AC,又 EF CE ,CEAC C ,EF平面 PAC , PB平面 PAC ,PAB PA PB PC 2 ,P ABC 为正方体一部分,2R 2 2 26,即 R 6 ,V4R34 6 6 6 ,故选D.2338解法二 :设 PA PB PC2x , E, F 分别为PA, AB中点,EF //PB,且EF 1PB x ,ABC 为边长为 2 的等边三角形,2CF 3 又CEF90CE3x2,AE 1PA x 2AEC 中余弦定理 cos EAC x243x2,作 PD AC于D,PA PC,2 2xAD1x243x2 1 ,Q D 为 AC 中点,cos EAC,PA2x 4 x2x2x2 1 2x21x 2 ,PA PB PC2,又 AB=BC =AC=2 ,22PA , PB , PC 两两垂直,2R222 6 ,R 6 ,2V 4 R3466 6 ,故选D.338【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、填空题:本题共 4 小题,每小题5 分,共 20 分。
绝密★启用前2020年普通高等学校招生全国统一考试理科数学注意事项:1. 答卷前,考生务必将白己的姓名、考生号等填写在答题卡和试卷指定位H±o2. 回答选择题时,选出每小题答案后,用铅笔把答题R对应题日的答案标号涂黑。
如需改动,用橡皮擦T净后,再选涂梵他答案标号。
冋答非选择题时,将答案写在答题卡上。
写在木试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
L 若z=l+i,则k2-2z∣=A. 0B. 1C. √2D・ 22. 设^A={x∖x2 4<0}, B- {x∣2r÷α<0}, WA^B-{x∖-2≤κ<∖},则旷A. -4 B∙ -2 C. 2 D. 43. 埃及胡夫金字塔是古代世界建筑奇迹之•,它的形状可视为•个正四棱锭•以该卩q核锥的高为边长的正方形而枳等于该四棱维一个侧而三角形的面枳,则几侧面三角形底边上的髙与底而正方形的边长的比值4. 已知/为抛物线Cy=2砂(p>0)上•点,点/到C的焦点的距离为12,到)轴的距离为9,则严5∙某校一个课外学习小组为研究某作物种子的发芽率y和温度X (单位:O C)的关系,在20个不同的温度亦+ 1A. 2B. 3C. 6D. 9为442条件卜•进行种子发芽实验•由实验数据(兀丿)(心12….20)得到卜•而的散点图:100%8. (.r + ^-)(x + >05的展开式中QJ 的系数为 XA ・5 B. IO C. 15D. 209∙己知 αe (0,π)t M. 3cos2α 一 Scosa==5» 则 Sina =A.逅B. ZC.1 D.迈 333910.已知4氏C 为球O 的球面上的三个点.OQ 为Z ∖∕BC 的外接圆.KOO I 的面积为4兀・由此散点图,在10。
1.【ID:4002604】若,则()A.B.C.D.【答案】D【解析】解:,则.故选D.2.【ID:4002605】设集合,,且,则()A.B.C.D.【答案】B【解析】解:易求得:,,则由,得,解得.故选B.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4002607】已知为抛物线:上一点,点到的焦点的距离为,到轴的距离为,则()A.B.C.D.【答案】C【解析】解:由题意知,,则.故选C.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4002609】函数的图象在点处的切线方程为()A.B.C.D.【答案】B【解析】解:,则切线斜率,又,则切线方程为.故选B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4002611】的展开式中的系数为()A.B.C.D.【答案】C【解析】解:,要得到项,则应取项,则其系数为.故选C.9.【ID:4002612】已知,且,则()A.B.C.D.【答案】A【解析】解:由,得,解得:或(舍),又,则.故选A.10.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.11.【ID:4002614】已知:,直线:,为上的动点.过点作的切线,,切点为,,当最小时,直线的方程为()A.B.C.D.【答案】D【解析】解::,则,如图,由圆的切线性质,易知:,则,所以最小时,最短,即最短,此时,易求得:,则直线:,整理,得:.故选D.12.【ID:4002615】若,则()A.B.C.D.【答案】B【解析】根据题意,有,若,则,不符合题意,因此.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4002617】设,为单位向量,且,则________.【答案】【解析】解:因为,,则,则.15.【ID:4002618】已知为双曲线:的右焦点,为的右顶点,为上的点,且垂直于轴.若的斜率为,则的离心率为________.【答案】2【解析】解:如图,,,则由题意得:,解得:,(舍),所以的离心率为.16.【ID:4002619】如图,在三棱锥的平面展开图中,,,,,,则________.【答案】【解析】在中,;在中,,由展开图的生成方式可得,在中,由余弦定理可得,于是,因此在中,由余弦定理可得.17. 设是公比不为的等比数列,为,的等差中项.(1)【ID:4002620】求的公比.【答案】【解析】解:设数列的公比为,则,,即,解得或(舍去),的公比为.(2)【ID:4002621】若,求数列的前项和.【答案】【解析】解:记为的前项和.由及题设可得,.所以,.可得.所以.18. 如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.(1)【ID:4002622】证明:平面.【答案】见解析【解析】方法:以为原点,所在直线为轴,建立如图所示的空间直角坐标系,则有,,,,,.,,,则,,,平面.方法:设,由题设可得,,,.因此,从而.又,故.所以平面.(2)【ID:4002623】求二面角的余弦值.【答案】【解析】由知,,,平面的一个法向量为,设平面的一个法向量为,则,即,解得,,二面角的余弦值为.19. 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰:当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)【ID:4002624】求甲连胜四场的概率.【答案】【解析】解:.(2)【ID:4002625】求需要进行第五场比赛的概率.【答案】【解析】(甲连胜场)(乙连胜场)(丙连胜场).(3)【ID:4002626】求丙最终获胜的概率.【答案】【解析】丙最终获胜,有两种情况,丙连胜或输一场.(丙连胜),丙输一场,则共进行场,丙可以在①第场输,、场胜;②第、场胜,场输;③第、、场胜,第场输,(丙第场输,,场胜);(丙第,场胜,第场输);(丙第,,场胜,第场输),(丙胜).20. 已知,分别为椭圆:的左、右顶点.为的上顶点,,为直线上的动点,与的另一交点为,与的另一交点为.(1)【ID:4002627】求的方程.【答案】【解析】由题意知,,,故,,,故椭圆的方程为.(2)【ID:4002628】证明:直线过定点.【答案】见解析【解析】方法:设,,故:,,故:,联立,,同理可得,,①当时,:,②当时,,:,③当且时,,:,令,故直线恒过定点.方法:设,,.若,设直线的方程为,由题意可知.因为直线的方程为,所以.直线的方程为,所以.可得.又,故,可得,即.①将代入得.所以,.代入①式得.解得(舍去),.故直线的方程为,即直线过定点.若,则直线的方程为,过点.综上,直线过定点.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。
普通高等学校招生全国统一考试理科数学注意事项:1.答卷前, 考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时, 选出每小题答案后, 用铅笔把答题卡对应题目的答案标号涂黑。
如需改动, 用橡皮擦干净后, 再选涂其它答案标号。
回答非选择题时, 将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后, 将本试卷和答题卡一并交回。
一、选择题:本题共12小题, 每小题5分, 共60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1.设1i2i 1iz -=++, 则||z = A .0 B .12C .1D .22.已知集合{}220A x x x =-->, 则A =R ð A .{}12x x -<< B .{}12x x -≤≤C .}{}{|1|2x x x x <->UD .}{}{|1|2x x x x ≤-≥U3.某地区经过一年的新农村建设, 农村的经济收入增加了一倍, 实现翻番, 为更好地了解该地区农村的经济收入变化情况, 统计了该地区新农村建设前后农村的经济收入构成比例, 得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后, 种植收入减少B .新农村建设后, 其他收入增加了一倍以上C .新农村建设后, 养殖收入增加了一倍D .新农村建设后, 养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和, 若3243S S S =+, 12a =, 则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+, 若()f x 为奇函数, 则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中, AD 为BC 边上的中线,E 为AD 的中点, 则EB =u u u rA .3144AB AC-u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r7.某圆柱的高为2, 底面周长为16, 其三视图如图.圆柱表面上的点M 在正视图上的对应点为A , 圆柱表面上的点N 在左视图上的对应点为B , 则在此圆柱侧面上, 从M 到N 的路径中, 最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F , 过点(–2, 0)且斜率为23的直线与C 交于M , N 两点, 则FM FN ⋅u u u u r u u u r=A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点, 则a 的取值范围是 A .[–1, 0)B .[0, +∞)C .[–1, +∞)D .[1, +∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成, 三个半圆的直径分别为直角三角形ABC 的斜边BC , 直角边AB , AC .△ABC 的三边所围成的区域记为I, 黑色部分记为II, 其余部分记为III .在整个图形中随机取一点, 此点取自I, II,III 的概率分别记为p 1, p 2, p 3, 则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=, O 为坐标原点, F 为C 的右焦点, 过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形, 则|MN |= A .32B .3C .3D .412.已知正方体的棱长为1, 每条棱所在直线与平面α所成的角相等, 则α截此正方体所得截面面积的最大值为 A 33B 23C 32D 3 二、填空题:本题共4小题, 每小题5分, 共20分。
绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅰ卷理科数学本试卷共6页,23题(含选考题).全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码黏贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷,草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷,草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若1i z =+,则22z z -=( )A .0B .1C .2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =( )A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514- B .512- C .514+D .512+4.已知A 为抛物线()2:20C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()()1220i i x y i =,,,…,得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数()432f x x x =-的图像在点()()11f ,处的切线方程为( )A .21y x =--B .21y x =-+毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此-------------------卷-------------------上-------------------答-------------------题-------------------无------------------效----------------C .23y x =-D .21y x =+7.设函数()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭在[]ππ-,的图像大致如下图,则()f x 的最小正周期为( )A .10π9B .7π6 C .4π3 D .3π28.()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中33x y 的系数为( )A .5B .10C .15D .20 9.已知()0πα∈,,且3cos28cos 5αα-=,则sin α= ( )A .53B .23C .13D .5910.已知A ,B ,C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π11.已知⊙22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点.过点P 作⊙M 的切线PA ,PB ,切点为A ,B ,当PM AB ⋅最小时,直线AB 的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++= 12.若242log 42log aba b +=+则( )A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件2201010x y x y y +-⎧⎪--⎨⎪+⎩≤,≥,≥,则7z x y =+的最大值为 .14.设a ,b 为单位向量,且1+=a b ,则-=a b .15.已知F 为双曲线()2222:100x y C a b a b-=>,>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴,若AB 的斜率为3,则C 的离心率为 .16.如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=,则cos FCB ∠= .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =. (1)证明:PA PBC ⊥平面; (2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一轮轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.20.(12分)已知A ,B 分别为椭圆E :()22211x y a a+=>的左、右顶点,G 为E 上顶点,8AG GB ⋅=.P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程; (2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性;(2)当0x ≥时,()3112f x x +≥,求a 的取值范围.(二)选考题:共10分,请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为()cos sin kkx t t y t⎧=⎪⎨=⎪⎩,为参数,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4—5:不等式选讲](10分) 已知函数()3121f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()()1f x f x +>的解集.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答------------------题------------------无------------------效----------------2020年普通高等学校招生全国统一考试·全国Ⅰ卷理科数学答案解析一、选择题 1.【答案】D【解析】由题意首先求得22z z -的值,然后计算其模即可.由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D .【考点】复数的运算法则,复数的模的求解 2.【答案】B【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的 值.求解二次不等式240x -≤可得:{}22A x x =-≤≤,求解一次不等式20x a +≤可得:2a B x x ⎧⎫=-⎨⎬⎩⎭≤.由于{}21AB x x =-≤≤,故:12a-=,解得:2a =-.故选:B .【考点】交集的运算,不等式的解法 3.【答案】C【解析】设CD a =,PE b =,利用212PO CD PE =⋅得到关于a ,b 的方程,解方程即可得到答案.如图,设CD a =,PE b =,则PO ==212PO ab =,即22142a b ab -=,化简得24210b b a a ⎛⎫-⋅-= ⎪⎝⎭,解得14b a +=(负值舍去). 故选:C .【考点】正四棱锥的概念及其有关计算 4.【答案】C【解析】利用抛物线的定义建立方程即可得到答案. 设抛物线的焦点为F ,由抛物线的定义知122A p AF x =+=,即1292p=+,解得6p =. 故选:C .【考点】利用抛物线的定义计算焦半径 5.【答案】D【解析】根据散点图的分布可选择合适的函数模型.由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D .【考点】函数模型的选择,散点图的分布6.【答案】B【解析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简 即可.()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B .【考点】利用导数求解函图象的切线方程7.【答案】C【解析】由图可得:函数图象过点409π⎛⎫-⎪⎝⎭,,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合409π⎛⎫- ⎪⎝⎭,是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即 可得解.由图可得:函数图象过点409π⎛⎫-⎪⎝⎭,,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭. 又409π⎛⎫- ⎪⎝⎭,是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=.所以函数()f x 的最小正周期为224332T πππω===. 故选:C .【考点】三角函数的性质及转化,三角函数周期公式 8.【答案】C【解析】求得()5x y +展开式的通项公式为515r r rr T C x y -+=(r ∈N 且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与()5x y + 展开式的乘积为65rrrC xy -或425r rr C xy-+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.()5x y + 展开式的通项公式为515rrrr T C xy -+=(r ∈N 且5r ≤).所以2y x x ⎛⎫+ ⎪⎝⎭与()5x y +展开式的乘积可表示为:56155rrrr rrr xT xC x y C xy --+==或22542155r r rr r r r T C x y xC y y y x x --++==在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x xy =,该项 中33x y 的系数为5.所以33x y 的系数为10515+=. 故选:C【考点】二项式定理及其展开式的通项公式,赋值法 9.【答案】A【解析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0)απ∈,,sin α∴==. 故选:A .【考点】三角恒等变换,同角间的三角函数关系求值 10.【答案】A【解析】由已知可得等边ABC △的外接圆半径,进而求出其边长,得出1OO 的值,根据球截面性质,求出 球的半径,即可得出结论.设圆1O 半径为r ,球的半径为R ,依题意,得24r ππ=,2r ∴=,由正弦定理可得2sin 6023AB r ==,1OO AB ∴==,根据圆截面性质1OO ABC ⊥平面,11OO O A ∴⊥,4R OA =,∴球O 的表面积2464S R ππ==.故选:A .【考点】球的表面积,应用球的截面性质11.【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点A ,P ,B ,M 共圆,且AB MP ⊥,根据22PAM PM AB S PA ⋅==△可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==,所以直线l 与圆相离.依圆的知识可知,四点A ,P ,B ,M 四点共圆,且AB MP ⊥, 所以12222PAMPM AB S PA AM PA ⋅==⨯⨯⨯=△,而PA =,当直线MP l ⊥时,min MP =min 1PA =,此时PM AB ⋅最小.()1:112MP y x ∴-=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【考点】直线与圆,圆与圆的位置关系的应用,圆的几何性质的应用 12.【答案】B【解析】设()22log x f x x =+,利用作差法结合()f x 的单调性即可得到答案. 设()22log xf x x =+,则()f x 为增函数,因为22422log 42log 2log a b ba b b +=+=+,所以()()()()22222222122log 2log 22log 2log 2log 102a b b b f a f b a b b b -=+-+=+-+==-<,所以()()2f a f b <,所以2a b <.()()()()22222222222222log 2log 2log 2log 22log a b b b b b f a f b a b b b b-=+-+=+-+=--,当1b =时,()()220f a f b -=>,此时()()2f a f b >,有2a b >.当2b =时,()()210f a f b -=-<,此时()()2f a f b <,有2a b <,所以C 、D 错误. 故选:B .【考点】函数与方程的综合应用,构造函数,利用函数的单调性比较大小二、填空题 13.【答案】1【解析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值. 绘制不等式组表示的平面区域,如图所示,目标函数7z x y =+即:1177y x z =-+,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:22010x y x y +-=⎧⎨--=⎩,可得点 A 的坐标为:()10A ,,据此可知目标函数的最大值为:max 1701z =+⨯=.故答案为:1. 14.【解析】整理已知可得:()2a b a b +=+,再利用a ,b 为单位向量即可求得21a b ⋅=-,对a b -变形可得:222a b a a b b -=-⋅+,问题得解.因为a ,b 为单位向量,所以1a b ==,所以()2222221a b a ba ab b a b +=+=+⋅+=+⋅=.解得:21a b ⋅=-. 所以()22223a b a b a a b b -=-=-⋅+=.【考点】向量模的计算公式及转化 15.【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.依题可得,3BF AF =,而2bBF a =,AF c a =-,即23ba c a=-,变形得22233c a ac a -=-,化简可得, 2320e e -+=,解得2e =或1e =(舍去).故答案为:2. 【考点】双曲线的离心率的求法,双曲线的几何性质的应用 16.【答案】14-【解析】在ACE △中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值.AB AC ⊥,AB 1AC =,由勾股定理得2BC ==,同理得BD =,BF BD ∴==ACE △中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=,1CF CE ∴==,在BCF△中,2BC =,BF =,1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.【考点】利用余弦定理解三角形 三、解答题17.【答案】(1)2-(2)()()11329nn n S -+-=【解析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论.设{}n a 的公比为q ,1a 为2a ,3a 的等差中项,1232a a a =+,10a ≠,220q q ∴+-=,1q ≠,2q ∴=-.(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论.设{}n na 的前n 项和为n S ,11a =,()12n n a -=-,()()()211122322n n S n -=⨯+⨯-+⨯-++-,①()()()()()()2312122232122n nn S n n --=⨯-+⨯-+⨯-+--+-,②-①②得,()()()()()()()()()211211323122222123nnn nnn n S n n ----+-=+-+-++---=--=--,()()11329nn n S -+-∴=.【考点】等比数列通项公式基本量的计算,等差中项的性质,错位相减法求和 18.【答案】(1)证明:由题设,知DAE △为等边三角形,设1AE =,则DO =,112CO BO AE ===,所以PO =,PC =,PB ==又ABC △为等边三角形,则2sin60BA OA=,所以BA =22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥,同理PAPC ⊥,又PC PB P =,所以PA PBC ⊥平面.(2)5【解析】(1)要证明PA PBC ⊥平面,只需证明PA PB ⊥,PA PC ⊥即可. 由题设,知DAE △为等边三角形, 设1AE =,则DO =,1122CO BO AE ===,所以PO=,4PC ==, 4PB ==,又ABC △为等边三角形,则2sin60BA OA =,所以2BA =,22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥,同理PA PC ⊥,又PCPB P =,所以PA PBC ⊥平面. (2)以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,分别算出平面PCB 的法向量为n ,平面PCE 的法向量为m ,利用公式cos m <,||||n mn n m ⋅=>计算即可得到答案.过O 作ON BC ∥交AB 于点N ,因为PO ABC ⊥平面,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则1002E ⎛⎫- ⎪⎝⎭,,,004P ⎛⎫ ⎪⎪⎝⎭,,,104B ⎛⎫- ⎪⎪⎝⎭,104C ⎛⎫- ⎪⎪⎝⎭,,14PC ⎛=- ⎝⎭,,14PB ⎛=-⎝⎭,102PE ⎛=- ⎝⎭,,,设平面PCB 的一个法向量为()111n x y z =,,,由0n PC n PB ⎧⋅=⎪⎨⋅=⎪⎩,得1111110x x ⎧--=⎪⎨-+-=⎪⎩,令1x =得11z =-,10y =,所以()201n =-,,,设平面PCE 的一个法向量为()222m x y z =,,由00m PC m PE ⎧⋅=⎪⎨⋅=⎪⎩,得22222020x x ⎧-=⎪⎨-=⎪⎩,令21x =,得2z =2y=,所以 313m ⎛= ⎝,故cos m <,2||||3n m n n m ⋅==⋅⨯,设二面角22143x y +=的大小为θ,则cos θ. 【考点】线面垂直的证明,利用向量求二面角的大小 19.【答案】(1)116(2)34(3)716【解析】(1)根据独立事件的概率乘法公式可求得事件“甲连胜四场”的概率.记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭.(2)计算出四局以内结束比赛的概率,然后利用对立事件的概率公式可求得所求事件的概率.记事件A 为甲输,事件B 为乙输,事件C 为丙输,则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=.(3)列举出甲赢的基本事件,结合独立事件的概率乘法公式计算出甲赢的概率,由对称性可知乙赢的概率和甲赢的概率相等,再利用对立事件的概率可求得丙赢的概率.记事件A 为甲输,事件B 为乙输,事件C 为丙输,记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,所以,甲赢的概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等,所以丙赢的概率为()97123216P N =-⨯=.【考点】独立事件概率的计算20.【答案】(1)2219x y +=(2)证明:设()06P y ,,则直线AP 的方程为:()()00363y y x -=+--,即:()039yy x =+.联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+.将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+.所以点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,.同理可得:点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,.∴直线CD 的方程为: 0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=- ⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得: ()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭.整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭.故直线CD 过定点302⎛⎫⎪⎝⎭,. 【解析】(1)由已知可得:()0A a -,,()0B a ,,()01G ,,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.依据题意作出如下图象:由椭圆方程()222:11x E y a a +=>可得:()0A a -,,()0B a ,,()01G ,.∴()1AG a =,,()1GB a =-,.∴218AG GB a ⋅=-=,∴29a =.∴椭圆方程为:2219x y +=.(2)设()06P y ,,可得直线AP 的方程为:()039yy x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,,同理可得点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,,即可表示出直线CD 的方程, 整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证. 证明:设()06P y ,,则直线AP 的方程为:()()00363y y x -=+--,即:()039yy x =+.联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810yx y x y +++-=,解得:3x =-或20203279y x y -+=+.将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+.所以点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,.同理可得:点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,. ∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭. 故直线CD 过定点302⎛⎫ ⎪⎝⎭,. 【考点】椭圆的简单性质,方程思想21.【答案】(1)当()0x ∈-∞,时,()'0f x <,()f x 单调递减,当()0x ∈+∞,时,()'0f x >,()f x 单调递增.(2)274e ⎡⎫-+∞⎪⎢⎣⎭, 【解析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.当1a =时,()2x x x e f x =+-,()'21x f x e x =+-,由于()''20x f x e =+>,故()'f x 单调递增,注意到()'00f =,故:当()0x ∈-∞,时,()'0f x <,()f x 单调递减,当()0x ∈+∞,时,()'0f x >,()f x 单调递增.(2)首先讨论0x =的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确 定实数a 的取值范围.由()3112f x x +≥得,23112x e ax x x +-+,其中0x ≥,①当0x =时,不等式为:11≥,显然成立,符合题意;②当0x >时,分离参数a 得,32112x e x x a x----, 记()32112x e x x g x x ---=-,()()231212'x x e x x g x x ⎛⎫---- ⎪⎝⎭=-,令()()21102x e x x h x x ---=≥,则()'1x h x e x =--,()''10x h x e =-≥,故()'h x 单调递增,()()''00h x h =≥,故函数()h x 单调递增,()()00h x h =≥,由()0h x ≥可得:21102x e x x ---恒成立,故当()02x ∈,时,()'0g x >,()g x 单调递增; 当()2x ∈+∞,时,()'0g x <,()g x 单调递减;因此,()()2max724e g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是274e ⎡⎫-+∞⎪⎢⎣⎭,. 【考点】导数的几何意义,解析几何,微积分,用导数求函数的单调区间,判断单调性,已知单调性求参数,利用导数求函数的最值(极值),数形结合思想的应用 22.【答案】(1)曲线1C 表示以坐标原点为圆心,半径为1的圆(2)1144⎛⎫⎪⎝⎭,【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论.当1k =时,曲线1C 的参数方程为cos sin x t y t=⎧⎨=⎩(t 为参数),两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆.(2)当4k =时,0x ≥,0y ≥,曲线1C 的参数方程化为22cos sin tt(t 为参数),两式相加消去参数t ,得1C 普通方程,由cos x ρθ=,sin y ρθ=,将曲线2C 化为直角坐标方程,联立1C ,2C 方程,即可求解.当4k =时,曲线1C 的参数方程为44cos sin x ty t⎧=⎨=⎩(t 为参数),所以数学试卷 第21页(共22页) 数学试卷 第22页(共22页)0x ≥,0y ≥,曲线1C的参数方程化为22cos sin tt(t 为参数),两式相加得曲线1C11,平方得1y x =-,01x ≤≤,01y ≤≤,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,曲线2C 直角坐标方程为41630x y -+=,联立1C ,2C方程141630y x x y ⎧=-⎪⎨-+=⎪⎩,整理得12130x -=12=136(舍去),14x ∴=,14y =,1C ∴,2C 公共点的直角坐标为1144⎛⎫⎪⎝⎭,.【考点】参数方程与普通方程互化,极坐标方程与直角坐标方程互化23.【答案】(1)因为()3115113133x x f x x x x x ⎧⎪+⎪⎪=--⎨⎪⎪---⎪⎩,≥,<<,≤,作出图象,如图所示:(2)76⎛⎫-∞- ⎪⎝⎭, 【解析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象.因为()3115113133x x f x x x x x ⎧⎪+⎪⎪=--⎨⎪⎪---⎪⎩,≥,<<,≤,作出图象,如图所示:(2)作出函数()1f x +的图象,根据图象即可解出.将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式的解集为76⎛⎫-∞- ⎪⎝⎭,. 【考点】分段函数的图象,利用图象解不等式。
普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}42M x x =-<<,{}260N x x x =--<,则M N =A .{}43x x -<<B .{}42x x -<<-C .{}22x x -<<D .{}23x x <<2.设复数z 满足1z i -=,z 在复平面内对应的点为(),x y ,则A .()2211x y ++=B .()2211x y -+=C .()2211x y +-=D .()2211x y ++=3.已知2log 0.2a =,0.22b =,0.30.2c =,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-。
若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是 A .165cmB .175cmC .185cmD .190cm5.函数()2sin cos x xf x x x+=+在[],ππ-的图象大致为6.我国古代典籍《周易》用“卦”描述万物的变化。
每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,右图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B .1132C .2132D .11167.已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为()A .6π B .3π C .23π D .56π 8.右图是求112122++的程序框图,图中空白框中应填入A .12A A =+B .12A A=+C .112A A=+D .112A A=+9.记n S 为等差数列{}n a 的前n 项和,已知4=0S ,55a =,则A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =-10.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为A .2212x y += B .22132x y +=C .22143x y +=D .22154x y +=11.关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增 ③()f x 在[],ππ-有4个零点④()f x 的最大值为2 A .①②④B .②④C .①④D .①③12.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,90CEF ∠=︒,则球O 的体积为A .86πB .46πC .26πD 6π二、填空题:本题共4小题,每小题5分,共20分。
2021年高考理科数学全国新课标卷1(附答案)2021年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I新课标)注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2021课标全国Ⅰ,理1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ). A.A∩B= B.A∪B=R C.B?A D.A?B2.(2021课标全国Ⅰ,理2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ).A.-4 B.?A.500π3866π3cm B.cm 3344 C.4 D. 557.(2021课标全国Ⅰ,理7)设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( ).A.3 B.4 C.5 D.68.(2021课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).3.(2021课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样x2y254.(2021课标全国Ⅰ,理4)已知双曲线C:2?2=1(a>0,b>0)的离心率为,则C的渐近线方程为( ).ab211A.y=?x B.y=?x341C.y=?x D.y=±x25.(2021课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).A.16+8π B.8+8π C.16+16π D.8+16π+9.(2021课标全国Ⅰ,理9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m1展开式的二项式系数的最大值为b.若13a=7b,则m=( ).A.5 B.6 C.7 D.8x2y210.(2021课标全国Ⅰ,理10)已知椭圆E:2?2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两ab点.若AB的中点坐标为(1,-1),则E的方程为( ).x2y2x2y2?=1 B.?=1 A.45363627x2y2x2y2?=1 D.?=1 C.2718189A.[-3,4] B.[-5,2]C.[-4,3] D.[-2,5]6.(2021课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ).??x2?2x,x?0,11.(2021课标全国Ⅰ,理11)已知函数f(x)=?若|f(x)|≥ax,则a的取值范围是( ).?ln(x?1),x?0.A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]12.(2021课标全国Ⅰ,理12)设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,….若b1>c1,b1+c1=2a1,an+1=an,bn+1=A.{Sn}为递减数列cn?anb?an,cn+1=n,则( ). 22 第 1 页共 1 页B.{Sn}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2021课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b・c=0,则t=__________. 14.(2021课标全国Ⅰ,理14)若数列{an}的前n项和Sn?21an?,则{an}的通项公式是an=__________. 3315.(2021课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2021课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(2021课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB=3,BC=1,P为△ABC内一点,∠BPC=90°.19.(2021课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,且各件产品是否为优质品相互独2(1)若PB=1,求PA; 2(2)若∠APB=150°,求tan∠PBA.18.(2021课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2021课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.第 2 页共 2 页21.(2021课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑. 22.(2021课标全国Ⅰ,理22)(本小题满分10分)选修4―1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)当a=-2时,求不等式f(x)<g(x)的解集; (2)设a>-1,且当x∈???a1?,?时,f(x)≤g(x),求a的取值范围. ?22?(1)证明:DB=DC;(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.23.(2021课标全国Ⅰ,理23)(本小题满分10分)选修4―4:坐标系与参数方程?x?4?5cost,已知曲线C1的参数方程为?(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,y?5?5sint?曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2021课标全国Ⅰ,理24)(本小题满分10分)选修4―5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.第 3 页共 3 页感谢您的阅读,祝您生活愉快。
2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.14- B.12 C.14+ D.12+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109πB.76πC.43πD.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A 10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点,1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】B二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2020年普通高等学校招生全国统一考试课标1理科数学2020年全国1高考数学与2020全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p <<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C. 【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D. 【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A2222||sin cos()2p pDE παα==-,所以22222211||||4()cos sin cos sin p p AB DE αααα+=+=+ 2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭L L 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +L 的部分和,即1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为.【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -). 则221242421t t k k ---++==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简. 21.(12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。
2022年普通高等学校招生全国统一考试(新高考Ⅰ卷)数学一、单选题(本大题共8小题,共40.0分)1. 若集合M ={x|√x <4},N ={x|3x ≥1},则M ∩N =( )A. {x|0≤x <2}B. {x|13≤x <2}C. {x|3≤x <16}D. {x|13≤x <16}2. 若i(1−z)=1,则z +z −=( )A. −2B. −1C. 1D. 23. 在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =n ⃗ ,则CB ⃗⃗⃗⃗⃗ =( ) A. 3m⃗⃗⃗ −2n ⃗ B. −2m⃗⃗⃗ +3n ⃗ C. 3m⃗⃗⃗ +2n ⃗ D. 2m⃗⃗⃗ +3n ⃗ 4. 南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( )A. 1.0×109m 3B. 1.2×109m 3C. 1.4×109m 3D. 1.6×109m 35. 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A. 16B. 13C. 12D. 236. 记函数f(x)=sin(ωx +π4)+b(ω>0)的最小正周期为T.若2π3<T <π,且y =f(x)的图像关于点(3π2,2)中心对称,则f(π2)=( )A. 1B. 32C. 52D. 37. 设a =0.1e 0.1,b =19,c =−ln0.9,则( )A. a <b <cB. c <b <aC. c <a <bD. a <c <b8. 已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( )A. [18,814]B. [274,814]C. [274,643]D. [18,27]二、多选题(本大题共4小题,共20.0分)9.已知正方体ABCD−A1B1C1D1,则()A. 直线BC1与DA1所成的角为90°B. 直线BC1与CA1所成的角为90°C. 直线BC1与平面BB1D1D所成的角为45°D. 直线BC1与平面ABCD所成的角为45°10.已知函数f(x)=x3−x+1,则()A. f(x)有两个极值点B. f(x)有三个零点C. 点(0,1)是曲线y=f(x)的对称中心D. 直线y=2x是曲线y=f(x)的切线11.已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,−1)的直线交C于P,Q两点,则()A. C的准线为y=−1B. 直线AB与C相切C. |OP|⋅|OQ|>|OA|2D. |BP|⋅|BQ|>|BA|212.已知函数f(x)及其导函数f′(x)的定义域均为R,记g(x)=f′(x).若f(32−2x),g(2+x)均为偶函数,则()A. f(0)=0B. g(−12)=0 C. f(−1)=f(4) D. g(−1)=g(2)三、填空题(本大题共4小题,共20.0分)13.(1−yx)(x+y)8的展开式中x2y6的系数为______(用数字作答).14.写出与圆x2+y2=1和(x−3)2+(y−4)2=16都相切的一条直线的方程______.15.若曲线y=(x+a)e x有两条过坐标原点的切线,则a的取值范围是______.16.已知椭圆C:x2a2+y2b2=1(a>b>0),C的上顶点为A,两个焦点为F1,F2,离心率为12.过F1且垂直于AF2的直线与C交于D,E两点,|DE|=6,则△ADE的周长是______.四、解答题(本大题共6小题,共70.0分)17. 记S n 为数列{a n }的前n 项和,已知a 1=1,{S na n}是公差为13的等差数列.(1)求{a n }的通项公式; (2)证明:1a 1+1a 2+⋯+1a n<2.18. 记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cosA 1+sinA =sin2B1+cos2B .(1)若C =2π3,求B ;(2)求a 2+b 2c 2的最小值.19. 如图,直三棱柱ABC −A 1B 1C 1的体积为4,△A 1BC 的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值.20. 一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组 40 60 对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”,P(B|A)P(B −|A)与P(B|A −)P(B −|A −)的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R . (ⅰ)证明:R =P(A|B)P(A −|B)⋅P(A −|B −)P(A|B −);(ⅱ)利用该调查数据,给出P(A|B),P(A|B −)的估计值,并利用(ⅰ)的结果给出R 的估计值. 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d). P(K 2≥k)0.050 0.010 0.001 k3.8416.63510.82821.已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.已知函数f(x)=e x−ax和g(x)=ax−lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.答案解析1.【答案】D【解析】解:由√x <4,得0≤x <16,∴M ={x|√x <4}={x|0≤x <16}, 由3x ≥1,得x ≥13,∴N ={x|3x ≥1}={x|x ≥13}, ∴M ∩N ={x|0≤x <16}∩{x|x ≥13}={x|13≤x <16}. 故选:D .分别求解不等式化简M 与N ,再由交集运算得答案. 本题考查交集及其运算,考查不等式的解法,是基础题.2.【答案】D【解析】解:由i(1−z)=1,得1−z =1i =−i−i 2=−i , ∴z =1+i ,则z −=1−i , ∴z +z −=1+i +1−i =2. 故选:D .把已知等式变形,利用复数代数形式的乘除运算化简,求出z −,再求出z +z −. 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【答案】B【解析】解:如图,CD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +12(CB ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ +12CB ⃗⃗⃗⃗⃗ −12CD ⃗⃗⃗⃗⃗ , ∴12CB ⃗⃗⃗⃗⃗ =32CD ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ ,即CB ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ −2CA ⃗⃗⃗⃗⃗ =3n ⃗ −2m ⃗⃗⃗ . 故选:B .直接利用平面向量的线性运算可得12CB⃗⃗⃗⃗⃗ =32CD⃗⃗⃗⃗⃗ −CA⃗⃗⃗⃗⃗ ,进而得解.本题主要考查平面向量的线性运算,考查运算求解能力,属于基础题.4.【答案】C【解析】解:140km2=140×106m2,180km2=180×106m2,根据题意,增加的水量约为140×106+180×106+√140×106×180×1063×(157.5−148.5)=(140+180+60√7)×1063×9≈(320+60×2.65)×106×3=1437×106≈1.4×109m3.故选:C.先统一单位,再根据题意结合棱台的体积公式求解即可.本题以实际问题为载体考查棱台的体积公式,考查运算求解能力,属于基础题.5.【答案】D【解析】解:从2至8的7个整数中任取两个数共有C72=21种方式,其中互质的有:23,25,27,34,35,37,38,45,47,56,57,58,67,78,共14种,故所求概率为1421=23.故选:D.先求出所有的基本事件数,再写出满足条件的基本事件数,用古典概型的概率公式计算即可得到答案.本题考查古典概型的概率计算,考查运算求解能力,属于基础题.6.【答案】A【解析】解:函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T,则T=2πω,由2π3<T<π,得2π3<2πω<π,∴2<ω<3,∵y=f(x)的图像关于点(3π2,2)中心对称,∴b=2,且sin(3π2ω+π4)=0,则3π2ω+π4=kπ,k∈Z.∴ω=23(k−14),k∈Z,取k=4,可得ω=52.∴f(x)=sin(52x+π4)+2,则f(π2)=sin(52×π2+π4)+2=−1+2=1.故选:A.由周期范围求得ω的范围,由对称中心求解ω与b值,可得函数解析式,则f(π2)可求.本题考查y=Asin(ωx+φ)型函数的图象与性质,考查逻辑思维能力与运算求解能力,是中档题.7.【答案】C【解析】解:构造函数f(x)=lnx+1x,x>0,则f′(x)=1x −1x2,x>0,当f′(x)=0时,x=1,0<x<1时,f′(x)<0,f(x)单调递减;x>1时,f′(x)>0,f(x)单调递增,∴f(x)在x=1处取最小值f(1)=1,∴lnx>1−1x,∴ln0.9>1−10.9=−19,∴−ln0.9<19,∴c<b;∵−ln0.9=ln109>1−910=110,∴109>e0.1,∴0.1e0.1<19,∴a<b;∵0.1e0.1>0.1×1.1=0.11,而−1n0.9=ln109<12(109−910)=19180<0.11,∴a>c,∴c<a<b.故选:C.构造函数f(x)=lnx+1x ,x>0,利用导数性质求出lnx>1−1x,由此能求出结果.本题考查三个数的大小的判断,考查构造法、导数性质等基础知识,考查运算求解能力,是基础题.8.【答案】C【解析】解:如图所示,正四棱锥P −ABCD 各顶点都在同一球面上,连接AC 与BD 交于点E ,连接PE ,则球心O 在直线PE 上,连接OA , 设正四棱锥的底面边长为a ,高为ℎ,在Rt △PAE 中,PA 2=AE 2+PE 2,即l 2=(√2a2)2+ℎ2=12a 2+ℎ2,∵球O 的体积为36π,∴球O 的半径R =3,在Rt △OAE 中,OA 2=OE 2+AE 2,即R 2=(ℎ−3)2+(√2a2)2,∴12a 2+ℎ2−6ℎ=0,∴12a 2+ℎ2=6ℎ, ∴l 2=6ℎ,又∵3≤l ≤3√3,∴32≤ℎ≤92,∴该正四棱锥体积V(ℎ)=13a 2ℎ=13(12ℎ−2ℎ2)ℎ=−23ℎ3+4ℎ2, ∵V′(ℎ)=−2ℎ2+8ℎ=2ℎ(4−ℎ),∴当32≤ℎ<4时,V′(ℎ)>0,V(ℎ)单调递增;当4<ℎ≤92时,V′(ℎ)<0,V(ℎ)单调递减, ∴V(ℎ)max =V(4)=643,又∵V(32)=274,V(92)=814,且274<814,∴274≤V(ℎ)≤643,即该正四棱锥体积的取值范围是[274,643], 故选:C .画出图形,由题意可知求出球的半径R =3,设正四棱锥的底面边长为a ,高为ℎ,由勾股定理可得l 2=12a 2+ℎ2,又R 2=(ℎ−3)2+(√2a 2)2,所以l 2=6ℎ,由l 的取值范围求出ℎ的取值范围,又因为a 2=12ℎ−2ℎ2,所以该正四棱锥体积V(ℎ)=−23ℎ3+4ℎ2,利用导数即可求出V(ℎ)的取值范围. 本题主要考查了正四棱锥的外接球问题,考查了利用导数研究函数的最值,属于中档题.9.【答案】ABD【解析】解:如图,连接B 1C ,由A 1B 1//DC ,A 1B 1=DC ,得四边形DA 1B 1C 为平行四边形, 可得DA 1//B 1C ,∵BC 1⊥B 1C ,∴直线BC 1与DA 1所成的角为90°,故A 正确;∵A 1B 1⊥BC 1,BC 1⊥B 1C ,A 1B 1∩B 1C =B 1,∴BC 1⊥平面DA 1B 1C ,而CA 1⊂平面DA 1B 1C , ∴BC 1⊥CA 1,即直线BC 1与CA 1所成的角为90°,故B 正确;设A 1C 1∩B 1D 1=O ,连接BO ,可得C 1O ⊥平面BB 1D 1D ,即∠C 1BO 为直线BC 1与平面BB 1D 1D 所成的角,∵sin∠C 1BO =OC 1BC 1=12,∴直线BC 1与平面BB 1D 1D 所成的角为30°,故C 错误;∵CC 1⊥底面ABCD ,∴∠C 1BC 为直线BC 1与平面ABCD 所成的角为45°,故D 正确. 故选:ABD .求出异面直线所成角判断A ;证明线面垂直,结合线面垂直的性质判断B ;分别求出线面角判断C 与D . 本题考查空间中异面直线所成角与线面角的求法,考查空间想象能力与思维能力,考查运算求解能力,是基础题.10.【答案】AC【解析】解:f′(x)=3x 2−1,令f′(x)>0,解得x <−√33或x >√33,令f′(x)<0,解得−√33<x <√33,∴f(x)在(−∞,−√33),(√33,+∞)上单调递增,在(−√33,√33)上单调递减,且f(−√33)=2√3+99>0,f(√33)=9−2√39>0,∴f(x)有两个极值点,有且仅有一个零点,故选项A 正确,选项B 错误;又f(x)+f(−x)=x 3−x +1−x 3+x +1=2,则f(x)关于点(0,1)对称,故选项C 正确;假设y =2x 是曲线y =f(x)的切线,设切点为(a,b),则{3a 2−1=22a =b,解得{a =1b =2或{a =−1b =−2,显然(1,2)和(−1,−2)均不在曲线y =f(x)上,故选项D 错误. 故选:AC .对函数f(x)求导,判断其单调性和极值情况,即可判断选项AB ;由f(x)+f(−x)=2,可判断选项C ;假设y =2x 是曲线y =f(x)的切线,设切点为(a,b),求出a ,b 的值,验证点(a,b)是否在曲线y =f(x)上即可.本题考查利用导数研究函数的单调性,极值以及曲线在某点的切线方程,考查运算求解能力,属于中档题.11.【答案】BCD【解析】解:∵点A(1,1)在抛物线C :x 2=2py(p >0)上, ∴2p =1,解得p =12,∴抛物线C 的方程为x 2=y ,准线方程为y =−14,选项A 错误; 由于A(1,1),B(0,−1),则k AB =1−(−1)1−0=2,直线AB 的方程为y =2x −1,联立{y =2x −1x 2=y ,可得x 2−2x +1=0,解得x =1,故直线AB 与抛物线C 相切,选项B 正确;根据对称性及选项B 的分析,不妨设过点B 的直线方程为y =kx −1(k >2),与抛物线在第一象限交于P(x 1,y 1),Q(x 2,y 2),联立{y =kx −1y =x 2,消去y 并整理可得x 2−kx +1=0,则x 1+x 2=k ,x 1x 2=1,y 1y 2=(kx 1−1)(kx 2−1)=k 2x 1x 2−k(x 1+x 2)+1=1,|OP|⋅|OQ|=√x 12+y 12⋅√x 22+y 22≥√2x 1y 1⋅√2x 2y 2=2√x 1x 2y 1y 2=2=|OA|2,由于等号在x 1=x 2=y 1=y 2=1时才能取到,故等号不成立,选项C 正确;|BP||BQ|=√x 12+(y 1+1)2⋅√x 2+(y 2+1)2>√x 12+4y 1⋅√x 22+4y 2=√5x 12⋅√5x 22=5√(x 1x 2)2=5=|BA|2,选项D 正确. 故选:BCD .对于A ,根据题意求得p 的值,进而得到准线;对于B ,求出直线AB 方程,联立直线AB 与抛物线方程即可得出结论;对于C ,设过点B 的直线方程为y =kx −1(k >2),联立该直线与抛物线方程,由韦达定理得到两根之和及两个之积,然后利用两点间的距离公式,结合基本不等式判断选项CD . 本题考查抛物线方程的求解,直线与抛物线位置关系的综合运用,同时还涉及了两点间的距离公式以及基本不等式的运用,考查运算求解能力,属于中档题.12.【答案】BC【解析】解:∵f(32−2x)为偶函数,∴可得f(32−2x)=f(32+2x),∴f(x)关于x =32对称, 令x =54,可得f(32−2×54)=f(32+2×54),即f(−1)=f(4),故C 正确; ∵g(2+x)为偶函数,∴g(2+x)=g(2−x),g(x)关于x =2对称,故D 不正确; ∵f(x)关于x =32对称,∴x =32是函数f(x)的一个极值点,∴g(32)=f′(32)=0, 又∴g(x)关于x =2对称,∴g(52)=g(32)=0,∴x =52是函数f(x)的一个极值点,f(x)关于x =32对称,∴x =−12是函数f(x)的一个极值点,∴g(−12)=f′(−12)=0,故B 正确; f(x)图象位置不确定,可上下移动,即没一个自变量对应的函数值是确定值,故A 错误. 故选:BC .由f(32−2x)为偶函数,可得f(x)关于x =32对称,可判断C ;g(2+x)为偶函数,可得g(2+x)=g(2−x),g(x)关于x =2对称,可判断D ;由g(32)=0,g(x)关于x =2对称,可得g(52)=0,得到x =52是f(x)的极值点,x =−12也是极值点,从而判断B ;f(x)图象位置不确定,可上下移动,故函数值不确定,从而判断A .本题考查函数的奇偶性,极值点与对称性,考查了转化思想和方程思想,属中档题.13.【答案】−28【解析】解:(x +y)8的通项公式为T r+1=C 8r x 8−r y r, 当r =6时,T 7=C 86x 2y 6,当r =5时,T 6=C 85x 3y 5,∴(1−yx)(x +y)8的展开式中x 2y 6的系数为C 86−C 85=8!6!⋅2!−8!5!⋅3!=28−56=−28. 故答案为:−28.由题意依次求出(x +y)8中x 2y 6,x 3y 5项的系数,求和即可. 本题考查二项式定理的应用,考查运算求解能力,是基础题.14.【答案】x =−1(填3x +4y −5=0,7x −24y −25=0都正确)【解析】解:圆x 2+y 2=1的圆心坐标为O(0,0),半径r 1=1, 圆(x −3)2+(y −4)2=16的圆心坐标为C(3,4),半径r 2=4, 如图:∵|OC|=r 1+r 2,∴两圆外切,由图可知,与两圆都相切的直线有三条. ∵k OC =43,∴l 1的斜率为−34,设直线l 1:y =−34x +b ,即3x +4y −4b =0,由|−4b|5=1,解得b =54(负值舍去),则l 1:3x +4y −5=0;由图可知,l 2:x =−1;l 2与l 3关于直线y =43x 对称,联立{x =−1y =43x ,解得l 2与l 3的一个交点为(−1,−43),在l 2上取一点(−1,0),该点关于y =43x 的对称点为(x 0,y 0),则{y 02=43⋅x 0−12y 0x 0+1=−34,解得对称点为(725,−2425).∴k l 3=−2425+43725+1=724,则l 3:y =724(x +1)−43,即7x −24y −25=0. ∴与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程为: x =−1(填3x +4y −5=0,7x −24y −25=0都正确).故答案为:x =−1(填3x +4y −5=0,7x −24y −25=0都正确).由题意画出图形,可得两圆外切,由图可知,与两圆都相切的直线有三条.分别求出三条切线方程,则答案可求.本题考查圆的切线方程的求法,考查圆与圆位置关系的应用,考查运算求解能力,是中档题.15.【答案】(−∞,−4)∪(0,+∞)【解析】解:y′=e x +(x +a)e x ,设切点坐标为(x 0,(x 0+a)e x 0), ∴切线的斜率k =e x 0+(x 0+a)e x 0,∴切线方程为y −(x 0+a)e x 0=(e x 0+(x 0+a)e x 0)(x −x 0), 又∵切线过原点,∴−(x 0+a)e x 0=(e x 0+(x 0+a)e x 0)(−x 0),整理得:x 02+ax 0−a =0,∵切线存在两条,∴方程有两个不等实根,∴Δ=a2+4a>0,解得a<−4或a>0,即a的取值范围是(−∞,−4)∪(0,+∞),故答案为:(−∞,−4)∪(0,+∞).设切点坐标为(x0,(x0+a)e x0),利用导数求出切线的斜率,进而得到切线方程,再把原点代入可得x02+ax0−a=0,因为切线存在两条,所以方程有两个不等实根,由Δ>0即可求出a的取值范围.本题主要考查了利用导数研究曲线上某点处的切线方程,属于中档题.16.【答案】13【解析】解:∵椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,∴不妨可设椭圆C:x24c2+y23c2=1,a=2c,∵C的上顶点为A,两个焦点为F1,F2,∴△AF1F2为等边三角形,∵过F1且垂直于AF2的直线与C交于D,E两点,∴k DE=tan30°=√33,由等腰三角形的性质可得,|AD|=|DF2|,|AE|=|EF2|,设直线DE方程为y=√33(x+c),D(x1,y1),E(x2,y2),将其与椭圆C联立化简可得,13x2+8cx−32c2=0,由韦达定理可得,x1+x2=−8c13,x1x2=−32c213,|DE|=√k2+1|x1−x2|=√(x1+x2)2−4x1x2=√13+1⋅√(−8c13)2+128c213=4813c=6,解得c=138,由椭圆的定义可得,△ADE的周长等价于|DE|+|DF2|+|EF2|=4a=8c=8×138=13.故答案为:13.根据已知条件,先设出含c的椭圆方程,再结合三角形的性质,以及弦长公式,求出c的值,最后再根据椭圆的定义,即可求解.本题主要考查直线与椭圆的综合应用,需要学生很强的综合能力,属于中档题.17.【答案】解:(1)已知a1=1,{S na n }是公差为13的等差数列,所以S na n =1+13(n−1)=13n+23,整理得S n=13na n+23a n,①,故当n≥2时,S n−1=13(n−1)a n−1+23a n−1,②,①−②得:13a n=13na n−13na n−1−13a n−1,故(n−1)a n=(n+1)a n−1,化简得:a na n−1=n+1n−1,a n−1a n−2=nn−2,........,a3a2=42,a2a1=31;所以a na1=n(n+1)2,故a n=n(n+1)2(首项符合通项).所以a n=n(n+1)2.证明:(2)由于a n=n(n+1)2,所以1a n =2n(n+1)=2(1n−1n+1),所以1a1+1a2+...+1a n=2(1−12+12−13+...+1n−1n+1)=2×(1−1n+1)<2.【解析】(1)直接利用数列的递推关系式的应用求出数列的通项公式;(2)利用(1)的结论,进一步利用裂项相消法的应用求出数列的和,进一步利用放缩法的应用求出结果.本题考查的知识要点:数列的递推关系式,数列的通项公式的求法,数列的求和,裂项相消法在数列求和中的应用,主要考查学生的运算能力和数学思维能力,属于中档题.18.【答案】解:(1)∵cosA1+sinA =sin2B1+cos2B,∴cosA1+sinA=2sinBcosB2cos2B=sinBcosB,化为:cosAcosB=sinAsinB+sinB,∴cos(B+A)=sinB,∴−cosC=sinB,C=2π3,∴sinB=12,∵0<B<π3,∴B=π6.(2)由(1)可得:−cosC =sinB >0,∴cosC <0,C ∈(π2,π), ∴C 为钝角,B ,A 都为锐角,B =C −π2. sinA =sin(B +C)=sin(2C −π2)=−cos2C ,a 2+b 2c 2=sin 2A+sin 2Bsin 2C=cos 22C+cos 2Csin 2C=(1−2sin 2C)2+(1−sin 2C)sin 2C =2+4sin 4C−5sin 2Csin 2C=2sin 2C+4sin 2C −5≥2√2×4−5=4√2−5,当且仅当sinC =1√24时取等号.∴a 2+b 2c 2的最小值为4√2−5.【解析】(1)利用倍角公式、和差公式、三角形内角和定理即可得出B .(2)利用诱导公式把A 用C 表示,再利用正弦定理、倍角公式、基本不等式即可得出结论. 本题考查了倍角公式、和差公式、三角形内角和定理、余弦定理、基本不等式、转化方法,考查了推理能力与计算能力,属于中档题.19.【答案】解:(1)由直三棱柱ABC −A 1B 1C 1的体积为4,可得V A 1−ABC =13V A 1B 1C 1−ABC =43,设A 到平面A 1BC 的距离为d ,由V A 1−ABC =V A−A 1BC , ∴13S △A 1BC ⋅d =43,∴13×2√2⋅d =43,解得d =√2. (2)由直三棱柱ABC −A 1B 1C 1知BB 1⊥平面ABC ,所以平面ABC ⊥平面ABB 1A 1,又平面A 1BC ⊥平面ABB 1A 1,又平面ABC ∩平面A 1BC =BC , 所以BC ⊥平面ABB 1A 1,∴BC ⊥A 1B ,BC ⊥AB ,以B 为坐标原点,BC ,BA ,BB 1所在直线为坐标轴建立如图所示的空间直角坐标系,∵AA 1=AB ,∴BC ×√2AB ×12=2√2,又12AB ×BC ×AA 1=4,解得AB =BC =AA 1=2, 则B(0,0,0),A(0,2,0),C(2,0,0),A 1(0,2,2),D(1,1,1), 则BA ⃗⃗⃗⃗⃗ =(0,2,0),BD ⃗⃗⃗⃗⃗⃗ =(1,1,1),BC ⃗⃗⃗⃗⃗ =(2,0,0),设平面ABD 的一个法向量为n⃗ =(x,y,z), 则{n ⃗ ⋅BA ⃗⃗⃗⃗⃗ =2y =0n ⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =x +y +z =0,令x =1,则y =0,z =−1,∴平面ABD 的一个法向量为n ⃗ =(1,0,−1), 设平面BCD 的一个法向量为m⃗⃗⃗ =(a,b,c), {m ⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =2a =0m⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =a +b +c =0,令b =1,则a =0,c =−1, 平面BCD 的一个法向量为m ⃗⃗⃗ =(0,1,−1), cos <n ⃗ ,m ⃗⃗⃗ >=√2⋅√2=12, 二面角A −BD −C 的正弦值为√1−(12)2=√32.【解析】(1)利用体积法可求点A 到平面A 1BC 的距离;(2)以B 为坐标原点,BC ,BA ,BB 1所在直线为坐标轴建立如图所示的空间直角坐标系,利用向量法可求二面角A −BD −C 的正弦值.本题考查求点到面的距离,求二面角的正弦值,属中档题.20.【答案】解:(1)补充列联表为:计算K 2=200×(40×90−10×60)2100×100×50×150=24>6.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异. (2)(i)证明:R =P(B|A)P(B −|A):P(B|A −)P(B −|A −)=P(B|A)P(B −|A)⋅P(B −|A −)P(B|A −)=P(AB)P(A)P(AB −)P(A)⋅P(A −B −)P(A −)P(A −B)P(A −)=P(AB)⋅P(A −B −)P(AB −)⋅P(A −B)=P(AB)P(B)P(A −B)P(B)⋅P(A −B −)P(B −)P(AB −)P(B −)=P(A|B)P(A −|B)⋅P(A −|B −)P(A|B −);(ⅱ)利用调查数据,P(A|B)=40100=25,P(A|B −)=10100=110,P(A −|B)=1−P(A|B)=35,P(A −|B −)=1−P(A|B −)=910, 所以R =2535×910110=6.【解析】(1)补充列联表,根据表中数据计算K 2,对照附表得出结论. (2)(i)根据条件概率的定义与运算性质,证明即可;(ⅱ)利用调查数据和对立事件的概率公式,计算即可.本题考查了独立性检验应用问题,也考查了条件概率的应用问题,是中档题.21.【答案】解:(1)将点A 代入双曲线方程得 4a 2−1a 2−1=1,化简得a 4−4a 2+4=0,∴a 2=2,故双曲线方程为x 22−y 2=1,由题显然直线l 的斜率存在,设l :y =kx +m ,设P(x 1,y 1)Q(x 2,y 2), 则联立双曲线得:(2k 2−1)x 2+4kmx +2m 2+2=0, 故x 1+x 2=−4km 2k 2−1,x 1x 2=2m 2+22k 2−1,k AP +k AQ =y 1−1x 1−2+y 2−1x 2−2=kx 1+m−1x 1−2+kx 2+m−1x 2−2=0,化简得:2kx 1x 2+(m −1−2k)(x 1+x 2)−4(m −1)=0, 故2k(2m 2+2)2k 2−1+(m −1−2k)(−4km2k 2−1)−4(m −1)=0,即(k +1)(m +2k −1)=0,而直线l 不过A 点,故k =−1; (2)设直线AP 的倾斜角为α,由tan∠PAQ =2√2,∴2tan∠PAQ 21−tan 2∠PAQ 2=2√2,得tan∠PAQ 2=√22, 由2α+∠PAQ =π,∴α=π−∠PAQ2,得k AP =tanα=√2,即y 1−1x 1−2=√2,联立y 1−1x 1−2=√2,及x 122−y 12=1得x 1=10−4√23,y 1=4√2−53, 代入直线 l 得m =53,故x 1+x 2=203,x 1x 2=689,而|AP|=√3|x 1−2|,|AQ|=√3|x 2−2|, 由tan∠PAQ =2√2,得sin∠PAQ =2√23, 故S △PAQ =12|AP||AQ|sin∠PAQ =√2|x 1x 2−2(x 1+x 2)+4|=16√29. 【解析】(1)将点A 代入双曲线方程得x 22−y 2=1,由题显然直线l 的斜率存在,设l :y =kx +m ,与双曲线联立后,根据直线AP ,AQ 的斜率之和为0,求解即可;(2)设直线AP 的倾斜角为α,由tan∠PAQ =2√2,得tan∠PAQ 2=√22,联立y 1−1x 1−2=√2,及x 122−y 12=1,根据三角形面积公式即可求解.本题考查了直线与双曲线的综合,属于中档题.22.【答案】(1)解:∵f(x)=e x−ax,g(x)=ax−lnx,∴f′(x)=e x−a,g′(x)=a−1x,∵y=e x在x∈R上单调递增,函数y=−1x在x∈(0,+∞)上单调递增,∴函数f′(x)和函数g′(x)在各自定义域上单调递增,又∵函数f(x)=e x−ax和g(x)=ax−lnx有最小值,∴当f′(x)=0时,x=lna,当g′(x)=0时,x=1a,∴函数f(x)在(−∞,lna)上单调递减,在(lna,+∞)上单调递增,函数g(x)在(0,1a )上单调递减,在(1a,+∞)上单调递增,∴f(x)min=f(lna)=a−alna,g(x)min=1+lna,∵函数f(x)=e x−ax和g(x)=ax−lnx有相同的最小值∴a−alna=1+lna,解得:a=1.(2)证明:设三个交点的横坐标从小到大依次为x1,x2,x3,由(1)得,函数f(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增,函数g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴x1∈(−∞,0),x2∈(0,1),x3∈(1,+∞),b=e x1−x1=e x2−x2=x2−lnx2=x3−lnx3,∴2x2=e x2+lnx2,e x1−x1=x2−lnx2,e x2−x2=x3−lnx3,∴e x1−x1=e lnx2−lnx2,e x2−x2=e lnx3−lnx3,∴f(x1)=f(lnx2),f(x2)=f(lnx3),∵lnx2∈(−∞,0),lnx3∈(0,+∞),∴x1=lnx2,x2=lnx3,∴x3=e x2,∴x1+x3=lnx2+e x2=2x2,∴x1,x2,x3成等差数列,∴存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【解析】(1)先对两个函数求导,然后由函数有相同的最小值得到函数f(x)和g(x)的单调性,从而求得f′(x)和g′(x)的零点,进而得到函数的最小值,然后列出方程求得a的值;(2)设三个交点的横坐标从小到大依次为x1,x2,x3,得到有关x1,x2,x3的方程,然后化简利用函数f(x)的单调性求得x1,x3和x2的数量关系,进而得证命题.本题考查了导数的应用,利用导数求函数的单调性,函数的零点,解题的关键是利用函数的单调性求得x1、x3和x2的数量关系.。
绝密☆启用前试卷类型:A2022年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{4},{31}M x N x x =<=≥∣,则M N = ()A.{}02x x ≤<B.123x x ⎧⎫≤<⎨⎬⎩⎭ C.{}316x x ≤< D.1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D 【解析】【分析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D2.若i(1)1z -=,则z z +=()A.2-B.1- C.1D.2【答案】D 【解析】【分析】利用复数的除法可求z ,从而可求z z +.【详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D3.在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB=()A.32m n -B.23m n-+C.32m n+D.23m n+【答案】B 【解析】【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,2BD DA =,所以2BD DA = ,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=- 23m n =-+ .故选:B .4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m . 2.65≈)()A.931.010m ⨯B.931.210m ⨯ C.931.410m ⨯ D.931.610m ⨯【答案】C 【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =++=⨯⨯⨯+⨯'(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D 【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种,故所求概率2172213P -==.故选:D.6.记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭()A.1B.32C.52D.3【答案】A 【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎪⎝⎭对称,所以3,24k k Z ππωπ+=∈,且2b =,所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭.故选:A7.设0.110.1e ,ln 0.99a b c ===-,则()A.a b c <<B.c b a<< C.c a b<< D.a c b<<【答案】C 【解析】【分析】构造函数()ln(1)f x x x =+-,导数判断其单调性,由此确定,,a b c 的大小.【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增,所以1((0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >,所以1((0)010f f -<=,所以91ln+01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增,又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)xg x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >故选:C.8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤,则该正四棱锥体积的取值范围是()A.8118,4⎡⎤⎢⎥⎣⎦ B.2781,44⎡⎤⎢⎥⎣⎦C.2764,43⎡⎤⎢⎥⎣⎦D.[18,27]【答案】C 【解析】【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l <≤时,0V '<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知正方体1111ABCD A B C D -,则()A.直线1BC 与1DA 所成的角为90︒B.直线1BC 与1CA 所成的角为90︒C.直线1BC 与平面11BB D D 所成的角为45︒D.直线1BC 与平面ABCD 所成的角为45︒【答案】ABD 【解析】【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接1B C 、1BC ,因为11//DA B C ,所以直线1BC 与1B C 所成的角即为直线1BC 与1DA 所成的角,因为四边形11BB C C 为正方形,则1B C ⊥1BC ,故直线1BC 与1DA 所成的角为90︒,A 正确;连接1AC ,因为11A B ⊥平面11BB C C ,1BC ⊂平面11BB C C ,则111A B BC ⊥,因为1B C ⊥1BC ,1111A B B C B = ,所以1BC ⊥平面11A B C ,又1AC ⊂平面11A B C ,所以11BC CA ⊥,故B 正确;连接11A C ,设1111A C B D O = ,连接BO ,因为1BB ⊥平面1111D C B A ,1C O ⊂平面1111D C B A ,则11C O B B ⊥,因为111C O B D ⊥,1111B D B B B ⋂=,所以1C O ⊥平面11BB D D ,所以1C BO ∠为直线1BC 与平面11BB D D 所成的角,设正方体棱长为1,则122C O =,1BC =,1111sin 2C O C BO BC ∠==,所以,直线1BC 与平面11BB D D 所成的角为30 ,故C 错误;因为1C C ⊥平面ABCD ,所以1C BC ∠为直线1BC 与平面ABCD 所成的角,易得145C BC ∠= ,故D 正确.故选:ABD10.已知函数3()1f x x x =-+,则()A.()f x 有两个极值点B.()f x 有三个零点C.点(0,1)是曲线()y f x =的对称中心D.直线2y x =是曲线()y f x =的切线【答案】AC 【解析】【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D.【详解】由题,()231f x x '=-,令()0f x '>得3x >或3x <-,令()0f x '<得3333x -<<,所以()f x 在33(,33-上单调递减,在3(,3-∞-,3,)3+∞上单调递增,所以33x =±是极值点,故A 正确;因323(1039f -=+>,3231039f =->,()250f -=-<,所以,函数()f x 在,3⎛-∞-⎪⎝⎭上有一个零点,当33x ≥时,()303f x f ⎛≥> ⎝⎭,即函数()f x 在33⎛⎫∞ ⎪ ⎪⎝⎭上无零点,综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误.故选:AC.11.已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则()A.C 的准线为1y =-B.直线AB 与C 相切C.2|OP OQ OA ⋅> D.2||||||BP BQ BA ⋅>【答案】BCD 【解析】【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D.【详解】将点A 的代入抛物线方程得12p =,所以抛物线方程为2x y =,故准线方程为14y =-,A 错误;1(1)210AB k --==-,所以直线AB 的方程为21y x =-,联立221y x x y=-⎧⎨=⎩,可得2210x x -+=,解得1x =,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点,所以,直线l 的斜率存在,设其方程为1y kx =-,1122(,),(,)P x y Q x y ,联立21y kx x y=-⎧⎨=⎩,得210x kx -+=,所以21212Δ401k x x k x x ⎧=->⎪+=⎨⎪=⎩,所以2k >或2k <-,21212()1y y x x ==,又||OP ==,||OQ ==,所以2||||||2||OP OQ k OA ⋅==>=,故C 正确;因为1||||BP x =,2||||BQ x =,所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD12.已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫-⎪⎝⎭,g (2+x )均为偶函数,则()A.(0)0f =【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解 D.g (-1)=g C.f (-1)=f 2B.g ⎛1⎫- ⎝⎭⎪=0(4)(2)【答案】BC【解析】.【详解】因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=-⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.三、填空题:本题共4小题,每小题5分,共20分.13.81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答).【答案】-28【解析】【分析】()81y x y x ⎛⎫-+ ⎪⎝⎭可化为()()88y x y x y x +-+,结合二项式展开式的通项公式求解.【详解】因为()()()8881=y y x y x y x y x x⎛⎫-++-+ ⎪⎝⎭,所以()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x-=-,()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为-28故答案为:-2814.写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程________________.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.15.若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.【答案】()(),40,∞∞--⋃+【解析】【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围.【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e xy x a =+,切线斜率()001e xk x a =++,切线方程为:()()()00000e1e x x y x a x a x x -+=++-,∵切线过原点,∴()()()00000e 1e x x x a x a x -+=++-,16.已知椭圆整理得:x 02+ax 0-a =0,∵切线有两条,∴Δ=a2+4a>0,解得a <-4或a >0,∴a 的取值范围是(-∞,-4)⋃(0,+∞),故答案为:(-∞,-4)⋃(0,+∞)2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE 的周长是________________.【答案】13【解析】【分析】利用离心率得到椭圆的方程为222222213412043x y x y c c c+=+-=,即,根据离心率得到直线2AF 的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,利用弦长公式求得138c =,得1324a c ==,根据对称性将ADE 的周长转化为2F DE △的周长,利用椭圆的定义得到周长为413a =.【详解】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为33,直线DE的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,)22224139616c c +⨯⨯=⨯⨯判别式Δ=(6,∴12213CD y y =-=⨯=2⨯6⨯4⨯1c 3=6,∴138c =,得1324a c ==,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【答案】(1)()12n n n a +=(2)见解析【解析】【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=;(2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭ ,进而证得.【小问1详解】∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;【小问2详解】()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 18.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A B A B=++.(1)若23C π=,求B ;(2)求222a b c+的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A B A B=++化成()cos sin A B B +=,再结合π02B <<,即可求出;(2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B+-,然后利用基本不等式即可解出.【小问1详解】因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A B C =-=+=-=,而π02B <<,所以π6B =;【小问2详解】由(1)知,sin cos 0BC =->,所以πππ,022C B <<<<,而πsin cos sin 2B C C ⎛⎫=-=-⎪⎝⎭,所以π2C B =+,即有π22A B =-.所以222222222sin sin cos 21cos sin cos a b A B B B c C B+++-==()2222222cos 11cos 24cos 555cos cos B BB B B-+-==+-≥=.当且仅当22cos 2B =时取等号,所以222a b c +的最小值为5-.19.如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】(1(2)32【解析】【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面11ABB A ,建立空间直角坐标系,利用空间向量法即可得解.【小问1详解】在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则1111111111433333A A BC A A ABC A ABC A B BC C C B V S h h V S A A V ---=⋅===⋅== ,解得h =,所以点A 到平面1A BC 的距离为;【小问2详解】取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC 平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B为原点,建立空间直角坐标系,如图,由(1)得AE =12AA AB ==,1A B =2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC == ,设平面ABD 的一个法向量(),,m x y z = ,则020m BD x y z m BA y ⎧⋅=++=⎪⎨⋅==⎪⎩ ,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c = ,则020m BD a b c m BC a ⎧⋅=++=⎪⎨⋅==⎪⎩ ,可取()0,1,1n =-r,则1cos ,2m n m n m n⋅===⋅ ,所以二面角A BD C --2=.20.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B =⋅;(ⅱ)利用该调查数据,给出(|),(|)P A B P A B 的估计值,并利用(ⅰ)的结果给出R 的估计值.附22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.0500.0100.001k 3.841 6.63510.828【答案】(1)答案见解析(2)(i )证明见解析;(ii)6R =;【解析】【分析】(1)由所给数据结合公式求出2K 的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i)根据定义结合条件概率公式即可完成证明;(ii)根据(i )结合已知数据求R .【小问1详解】由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -⨯-⨯==++++⨯⨯⨯,又2( 6.635)=0.01P K ≥,24 6.635>,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.【小问2详解】(i)因为(|)(|()()(()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =⋅⋅⋅⋅,所以()()(()()()()()P AB P B P AB P B R P B P AB P B P AB =⋅⋅⋅所以(|)(|)(|)(|)P A B P A B R P A B P A B =⋅,(ii)由已知40(|)100P A B =,10(|)100P A B =,又60(|)100P A B =,90(|100P A B =,所以(|)(|)=6(|)(|)P A B P A B R P A B P A B =⋅21.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=,求PAQ △的面积.【答案】(1)1-;(2)1629.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ 的倾斜角互补,再根据tan PAQ ∠=即可求出直线,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.【小问1详解】因为点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.【小问2详解】不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=tan 2α=-,2tan 0αα-=,解得tan α=,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以10423P x -=,P y =4253-,同理可得,103Q x +=,Q y=53--.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ 的距离223d ==,故PAQ △的面积为116221622339⨯⨯=.22.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.【小问1详解】()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,+∞,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫ ⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11ln ln a a a a -=-,整理得到1ln 1a a a-=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,+∞上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1a a a-=+的解为1a =.综上,1a =.【小问2详解】由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e x S x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0-∞上为减函数,在()0,+∞上为增函数,所以()()min 010S x S b ==-<,而()e0b S b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20b u b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x ¢<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()e e 0b b T --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2x h x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,+∞上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,+∞上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,+∞上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e x x b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44e x b x -=即()44e 0x b x b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.。
2023年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己地姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上地准考证号、姓名和科目.2.每小题选出解析后,用2B铅笔把答题卡上对应题目地解析标号涂黑,如需改动,用橡皮擦干净后,再选涂其他解析标号.在试卷卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.参考公式:如果事件A B ,互斥,那么球地表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球地半径()()()P A B P A P B = 球地体积公式如果事件A 在一次试验中发生地概率是P ,那么34π3V R =n 次独立重复试验中恰好发生k 次地概率其中R 表示球地半径()(1)(01,2)k kn k n n P k C P P k n -=-= ,,,一、选择题1.函数y =地定义域为( )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤B本题主要考查了函数的定义域及集体运算。
是基础题。
答案为2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车地行驶路程s 看作时间t 地函数,其图像可能是( )A本题主要考查了导数的几何意义即为切线斜率的几何意义。
是基础题。
答案为3.在ABC △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b c B .5233-c b C .2133-b c D .1233+b c 222BC AC AB b c,BD=BC=b c,3332212AD=AB+BD=c+b c=c+ b A3333本题主要考查了向量的加减及实数与向量的积等向量的运算。
2021 年普通高等学校招生全国统一考试(全国乙卷)数学(理)一、选择题1.设2(z +z) + 3(z -z) = 4 + 6i ,则z =( )A.1 - 2iB.1 + 2iC.1 +iD.1 -i答案:C解析:设z =a +bi ,则 z =a -bi ,2(z +z) + 3(z -z) = 4a + 6bi = 4 + 6i ,所以 a = 1 ,b = 1,所以 z = 1 +i .2.已知集合S = {s | s = 2n +1, n ∈Z} ,T = {t | t = 4n +1,n ∈Z},则S T =()A. ∅B. SC. TD. Z答案:C解析:s = 2n +1,n ∈Z ;当n = 2k ,k ∈Z 时,S = {s | s = 4k +1, k ∈Z} ;当n = 2k +1,k ∈Z 时,T =TS = {s | s = 4k + 3, k ∈Z}.所以T Ü S ,S.故选 C.3.已知命题p : ∃x ∈R ﹐sin x < 1 ;命题q : ∀x ∈R,e|x| ≥1 ,则下列命题中为真命题的是()A.p ∧qB.⌝p ∧qC.p ∧⌝qD.⌝( p ∨q)答案:A解析:根据正弦函数的值域sin x ∈[-1,1] ,故∃x ∈R ,sin x < 1 ,p 为真命题,而函数 y =y =e|x|为偶函数,且x ≥ 0 时,y =e|x| ≥1,故∀x ∈R ,y =e|x| ≥1恒成立.,则q 也为真命题,所以p ∧q 为真,选 A.4.设函数f ( x) =1-x,则下列函数中为奇函数的是()1+xA.f ( x -1) -1B.f ( x -1) +1C.f ( x +1) -1D.f ( x +1) +1答案:B解析:1-x 2 2f (x) ==-1+1+x1+x ,f (x) 向右平移一个单位,向上平移一个单位得到g(x) =为奇x函数.5.在正方体ABCD -A1B1C1D1中,P为B1D1 的中点,则直线PB 与AD1所成的角为()A. π2 B. π3 C. π4 D. π65 4答案:D解析:如图, ∠PBC 1 为直线 PB 与 AD 1 所成角的平面角.易知∆A 1BC 1 为正三角形,又 P 为 A 1C 1 中点,所以∠PBC=π.166. 将5 名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶4 个项目进行培训,每名志愿者只分配到1 个项目,每个项目至少分配1 名志愿者,则不同的分配方案共有( ) A. 60 种B. 120 种C. 240 种D. 480 种 答案:C解析:所求分配方案数为C2A 4 = 240 .7. 把函数 y = f ( x ) 图像上所有点的横坐标缩短到原来的1倍,纵坐标不变,再把所得曲 2线向右平移 π 个单位长度,得到函数 y = sin( x - π) 的图像,则 f ( x ) = ()3 4 A. sin( x - 7π )2 12 B. sin( x + π )2 12C. sin(2x - 7π)12 D. sin(2x +π) 12答案:B解析:逆向:y= sin(x -π左移ππ) −−−3→y=sin(x +) −横−坐−标变−为原−来的−2倍−→y = sin(1x +π) .4 12 2 12故选 B.8.在区间(0,1) 与(1, 2) 中各随机取1 个数,则两数之和大于7的概率为()4A.79B.2332 C.932 D.29答案:B解析:由题意记x ∈ (0,1),y ∈ (1, 2) ,题目即求x +y >7的概率,绘图如下所示. 4S 1⨯1-1AM ⋅AN 1-1⨯3⨯3故P =阴= 2 = 2 4 4 =23.S正ABCD1⨯1 1 329.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点E, H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”. GC 与EH 的差称为“表目距的差”,则海岛的高AB =()A.表高⨯表距+表高表目距的差B.表高⨯表距-表高表目距的差C.表高⨯表距+表距表目距的差D.表高⨯表距-表距表目距的差答案:A解析:连接 DF 交 AB 于M ,则 AB =AM +BM .记∠BDM =α,∠BFM =β,则MBtan βMBtanα=MF -MD =DF .而tan β=FG,tanα=ED.所以GC EHMB-MB=MB(1-1) =MB ⋅(GC-EH) =MB ⋅GC -EH. tan β tanα tan β tanα FG ED ED故MB = ED ⋅DF =表高⨯表距,所以高AB =表高⨯表距+表高.GC -EH 表目距的差表目距的差-10.设a≠0 ,若x =a 为函数f(x)=a(x -a)2 (x -b)的极大值点,则A.a <bB.a >bC.ab <a2D.ab >a2答案:D解析:若a > 0 ,其图像如图(1),此时,0 <a <b ;若a < 0 ,时图像如图(2),此时,b <a < 0 . 综上, ab <a2.x2 +y2=>>11.设B 是椭圆C :a2 b2 1(a b 0) 的上顶点,若C 上的任意一点P 都满足,PB ≤ 2b ,则C 的离心率的取值范围是()A.[2,1) 21[ ,1)2 B.2 1.04 C.(0, 2] 21 (0, ]2答案:C解析:x 2y2y 2由题意,点 B (0, b ) ,设 P (x , y ) ,则 0 + 0 = 1⇒ x 2 = a 2 (1- 0 ) ,故 0a 2b 22y 2b 2c 2 PB = x 2 + ( y - b )2 = a 2(1- 0) + y 2 - 2by + b 2 = - y 2 - 2by + a 2 + b 2 ,0 0y 0 ∈[-b ,b ] .b 2 0 0 b 3b 2 0c由题意,当 y = -b 时,PB 2最大,则- ≤ -b ,b 2 ≥ c 2 ,a 2 - c 2 ≥ c 2 ,c = ≤ ,c ∈(0, 0c 2a 22].212. 设a = 2 ln1.01,b = ln1.02 ,c = 1,则()A. a < b < cB. b < c < aC. b < a < cD. c < a < b答案:B解析:设 f (x ) = ln(1+ x ) -+1,则b - c = f (0.02) ,易得f '(x ) =1 -1+ x当 x ≥ 0 时,1+ x =≥ ,故 f '(x ) ≤ 0 .所以 f (x ) 在[0, +∞) 上单调递减,所以 f (0.02) < f (0) = 0 ,故b < c .1+ 2x 2 1+ 2x = 1+ 2x - (1+ x ) (1+ x ) 1+ 2x(1+ x )2 1+ 2x D.1+ 4x 42 1+ 4x 1+ 4x - (1- x ) (1+ x ) 1+ 4x3y 再设 g (x ) = 2 l n(1+ x ) -+1,则a - c = g (0.01) ,易得g '(x ) =2 1+ x - = 2 ⋅.当0 ≤ x < 2 时, ≥ = 1+ x ,所以 g '(x ) 在[0.2) 上≥ 0 . 故 g (x ) 在[0.2) 上单调递增,所以 g (0.01) > g (0) = 0 ,故 a > c . 综上, a > c > b .二、填空题13. 已知双曲线 C :x 2 - 2m= 1(m > 0) 的一条渐近线为 3x + my = 0 , 则 C 的焦距为.答案:4解析:易知双曲线渐近线方程为 y = ± bx ,由题意得 a 2 = m , b 2 = 1 ,且一条渐近线方程为 ay =- mx ,则有m = 0 (舍去), m = 3 ,故焦距为 2c = 4 .14. 已知向量a = (1,3) , b = (3, 4) ,若(a - λb ) ⊥ b ,则λ =.答案:3 5解析:由题意得(a - λb ) ⋅ b = 0 ,即15 - 25λ = 0 ,解得λ = 3.515. 记 ∆ABC 的内角 A , B , C 的对边分别为 a , b , c,面积为a 2 + c 2 = 3ac ,则b =., B = 60︒ ,答案:2解析:1+ 4x 1+ 2x + x 2 3 23 2 5 S= 1 ac sin B = 3ac = ,所以 ac = 4 ,∆ABC2 4由余弦定理, b 2 = a 2 + c 2 - ac = 3ac - ac = 2ac = 8 ,所以b = 2 .16. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面 PAC ⊥ 平面 ABC ,PA = PC =2 ,BA = BC =,AC = 2 ,俯视图为⑤.俯视图为③,如图(2), PA ⊥ 平面 ABC , PA = 1, AC = AB =5 , BC = 2 ,俯视图为④.1三、解答题17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10 件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和 y , 样本方差分别己为 s 2 和 S 2. 1 2(1)求x , y , s 2, s 2:12( 2 ) 判断新设备生产产品的该项指标的均值较旧设备是否有显著提高 ( 如果y - x ≥ 2 , 否则不认为有显著提高 ) 。
绝密★启用前普通高等学校招生全国统一考试理科数学本试卷5页, 23小题, 满分150分。
考试用时120分钟。
注意事项:1.答卷前, 考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时, 选出每小题答案后, 用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动, 用橡皮擦干净后, 再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答, 答案必须写在答题卡各题目指定区域内相应位置上;如需改动, 先划掉原来的答案, 然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后, 将试卷和答题卡一并交回。
一、选择题:本题共12小题, 每小题5分, 共60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1.已知集合A ={x |x <1}, B ={x |31x <}, 则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图, 正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点, 则此点取自黑色部分的概率是A .14 B .π8 C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R , 则z ∈R ;2p :若复数z 满足2z ∈R , 则z ∈R ;3p :若复数12,z z 满足12z z ∈R , 则12z z =;4p :若复数z ∈R , 则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=, 648S =, 则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减, 且为奇函数.若(11)f =-, 则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示, 其中正视图和左视图都由正方形和等腰直角三角形组成, 正方形的边长为2, 俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形, 这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n−2n>1000的最小偶数n , 那么在和两个空白框中, 可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x , C 2:y =sin (2x +2π3), 则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍, 纵坐标不变, 再把得到的曲线向右平移π6个单位长度, 得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍, 纵坐标不变, 再把得到的曲线向左平移π12个单位长度, 得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍, 纵坐标不变, 再把得到的曲线向右平移π6个单位长度, 得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍, 纵坐标不变, 再把得到的曲线向左平移π12个单位长度, 得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点, 过F 作两条互相垂直的直线l 1, l 2, 直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点, 则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数, 且235x y z ==, 则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召, 开发了一款应用软件.为激发大家学习数学的兴趣, 他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 4, 8, 16, …, 其中第一项是20, 接下来的两项是20, 21, 再接下来的三项是20, 21, 22, 依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题, 每小题5分, 共20分。
13.已知向量a , b 的夹角为60°, |a |=2, |b |=1, 则| a +2 b |= .14.设x , y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩, 则32z x y =-的最小值为 .15.已知双曲线C :22221x y a b-=(a >0, b >0)的右顶点为A , 以A 为圆心, b 为半径做圆A , 圆A 与双曲线C 的一条渐近线交于M 、N 两点。
若∠MAN =60°, 则C 的离心率为________。
16.如图, 圆形纸片的圆心为O , 半径为5 cm , 该纸片上的等边三角形ABC 的中心为O 。
D 、E 、F 为圆O上的点, △DBC , △ECA , △FAB 分别是以BC , CA , AB 为底边的等腰三角形。
沿虚线剪开后, 分别以BC , CA , AB 为折痕折起△DBC , △ECA , △FAB , 使得D 、E 、F 重合, 得到三棱锥。
当△ABC 的边长变化时, 所得三棱锥体积(单位:cm 3)的最大值为_______。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题, 每个试题考生都必须作答。
第22、23题为选考题, 考生根据要求作答。
(一)必考题:共60分。
17.(12分)△ABC 的内角A , B , C 的对边分别为a , b , c , 已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1, a =3, 求△ABC 的周长. 18.(12分)如图, 在四棱锥P-ABCD 中, AB//CD , 且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC , 90APD ∠=o , 求二面角A -PB -C 的余弦值. 19.(12分)为了监控某种零件的一条生产线的生产过程, 检验员每天从该生产线上随机抽取16个零件, 并测量其尺寸(单位:cm ).根据长期生产经验, 可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常, 记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数, 求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中, 如果出现了尺寸在(3,3)μσμσ-+之外的零件, 就认为这条生产线在这一天的生产过程可能出现了异常情况, 需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.929.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑, 161622221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑, 其中i x 为抽取的第i 个零件的尺寸, 1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ, 用样本标准差s 作为σ的估计值ˆσ, 利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据, 用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ, 则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0), 四点P 1(1,1), P 2(0,1), P 3(–1, 32), P 4(1, 32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A , B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1, 证明:l 过定点. 21.(12分)已知函数)f x =(a e 2x+(a ﹣2) e x﹣x . (1)讨论()f x 的单调性;(2)若()f x 有两个零点, 求a 的取值范围.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做, 则按所做的第一题计分。
22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中, 曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数), 直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1, 求C 与l 的交点坐标;(2)若C 上的点到l 17 求a. 23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4, g (x )=│x +1│+│x –1│. (1)当a =1时, 求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1, 1], 求a 的取值范围.新课标1理数答案1.A2.B3.B4.C5.D6.C7.B8.D9.D 10.A 11.D 12.A 13. 235- 5.23316. 1517.解:(1)由题设得21sin 23sin a ac B A =, 即1sin 23sin ac B A=.由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-, 即1cos()2B C +=-. 所以2π3B C +=, 故π3A =. 由题设得21sin 23sin a bc A A=, 即8bc =.由余弦定理得229b c bc +-=, 即2()39b c bc +-=, 得33b c +=故ABC △的周长为33318.解:(1)由已知90BAP CDP ∠=∠=︒, 得AB ⊥AP , CD ⊥PD . 由于AB ∥CD , 故AB ⊥PD , 从而AB ⊥平面PAD . 又AB ⊂平面PAB , 所以平面PAB ⊥平面PAD . (2)在平面PAD 内做PF AD ⊥, 垂足为F ,由(1)可知, AB ⊥平面PAD , 故AB PF ⊥, 可得PF ⊥平面ABCD .以F 为坐标原点, FA u u u r的方向为x 轴正方向, ||AB uuu r 为单位长, 建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得22A , 2(0,0,2P , 22B , 2(2C -. 所以22()PC =u u u r , 2,0,0)CB =u u u r , 22()PA =u u u r , (0,1,0)AB =u u u r . 设(,,)x y z =n 是平面PCB 的法向量, 则00PC CB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n , 即22020x y z x ⎧+=⎪⎨=, 可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量, 则00PA AB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m , 即220220x z y -=⎪⎨⎪=⎩, 可取(1,0,1)=n .则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为319.【解】(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974, 从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026, 故~(16,0.0026)X B .因此 (1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常, 一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026, 一天内抽取的16个零件中, 出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408, 发生的概率很小.因此一旦发生这种情况, 就有理由认为这条生产线在这一天的生产过程学科&网可能出现了异常情况, 需对当天的生产过程进行检查, 可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈, 得μ的估计值为ˆ9.97μ=, σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外, 因此需对当天的生产过程进行检查. 剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的平均数为1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑, 剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 因此σ0.0080.09≈. 20.(12分)解:(1)由于3P , 4P 两点关于y 轴对称, 故由题设知C 经过3P , 4P 两点. 又由222211134a b a b +>+知, C 不经过点P 1, 所以点P 2在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩, 解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1, k 2,如果l 与x 轴垂直, 设l :x =t , 由题设知0t ≠, 且||2t <, 可得A , B 的坐标分别为(t ,24t -,(t , 24t -.则221242421t t k k ---++-=-, 得2t =, 不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1, y 1), B (x 2, y 2), 则x 1+x 2=2841kmk -+, x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-, 故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时, 0∆>, 欲使l :12m y x m +=-+, 即11(2)2m y x ++=--, 所以l 过定点(2, 1-)22.[选修4-4:坐标系与参数方程](10分)解:(1)曲线C 的普通方程为2219x y +=. 当1a =-时, 直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩.从而C 与l 的交点坐标为(3,0), 2124(,)2525-. (2)直线l 的普通方程为440x y a +--=, 故C 上的点(3cos ,sin )θθ到l 的距离为17d =.当4a ≥-时, d 171717= 所以8a =;当4a <-时, d 171717= 所以16a =-. 综上, 8a =或16a =-.、 23.[选修4-5:不等式选讲](10分)解:(1)当1a =时, 不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时, ①式化为2340x x --≤, 无解;当11x -≤≤时, ①式化为220x x --≤, 从而11x -≤≤; 当1x >时, ①式化为240x x +-≤, 从而1171x -+<≤. 所以()()f x g x ≥的解集为117{|1}2x x -+-<≤. (2)当[1,1]x ∈-时, ()2g x =.所以()()f x g x ≥的解集包含[1,1]-, 等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一, 所以(1)2f -≥且(1)2f ≥, 得11a -≤≤. 所以a 的取值范围为[1,1]-.21.解:(1)()f x 的定义域为(,)-∞+∞, 2()2(2)1(1)(21)x x x xf x ae a e ae e '=+--=-+,(ⅰ)若0a ≤, 则()0f x '<, 所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >, 则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时, ()0f x '<;当(ln ,)x a ∈-+∞时, ()0f x '>, 所以()f x 在(,ln )a -∞-单调递减, 在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤, 由(1)知, ()f x 至多有一个零点.(ⅱ)若0a >, 由(1)知, 当ln x a =-时, ()f x 取得最小值, 最小值为1(ln )1ln f a a a-=-+. ①当1a =时, 由于(ln )0f a -=, 故()f x 只有一个零点;②当(1,)a ∈+∞时, 由于11ln 0a a -+>, 即(ln )0f a ->, 故()f x 没有零点; ③当(0,1)a ∈时, 11ln 0a a -+<, 即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>, 故()f x 在(,ln )a -∞-有一个零点. 设正整数0n 满足03ln(1)n a >-, 则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a ->-, 因此()f x 在(ln ,)a -+∞有一个零点.综上, a 的取值范围为(0,1).。