压杆的稳定性问题
- 格式:ppt
- 大小:1.52 MB
- 文档页数:45
材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。
压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。
本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。
压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。
压杆通常是一根长条形材料,两端固定或铰接。
在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。
在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。
压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。
当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。
所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。
压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。
当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。
在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。
临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。
当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。
临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。
这些方法能够给出压杆在不同边界条件下的临界压力比。
在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。
压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。
弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。
在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。
提高压杆稳定性的措施引言压杆是一种常见的工程结构,在许多领域中都有广泛应用,例如建筑、机械工程等。
然而,由于外界因素的干扰或设计不当,压杆的稳定性可能会受到影响,导致安全隐患和性能下降。
因此,提高压杆稳定性是非常重要的。
本文将介绍一些提高压杆稳定性的措施,涵盖了材料选择、结构设计和应用方法等方面。
1. 材料选择材料的选择对于压杆的稳定性具有重要影响。
以下是一些措施可以提高材料的稳定性:•强度:选择高强度的材料可以提高杆件的抗弯刚度,减少因扭曲和挠度导致的不稳定性。
•塑性:材料的塑性越大,即在超过屈服点后仍能延展,可以提高杆件的能量吸收能力,从而提高稳定性。
•抗腐蚀性:如果压杆在恶劣环境中使用,选择具有抗腐蚀性的材料可以延长压杆的使用寿命,并减少外界因素对稳定性的影响。
2. 结构设计良好的结构设计是确保压杆稳定性的重要条件。
以下是一些结构设计方面的措施:•适当选择剖面形状:选择适当的压杆剖面形状可以提高其抗弯刚度和稳定性,例如矩形、圆形或I型剖面。
•增加支撑点:在压杆的负荷路径上增加适当数量和位置的支撑点可以有效地减少压杆的挠度和变形,提高稳定性。
•增加剪切连接:通过增加剪切连接来加强压杆的稳定性,例如使用焊接、螺栓连接或搭接连接等。
•考虑过载情况:在设计过程中考虑到可能的过载情况,并采取相应的措施以确保压杆在不稳定情况下的安全性。
3. 应用方法合理的应用方法也能提高压杆的稳定性。
以下是一些应用方法方面的措施:•适当的预压:在使用压杆之前,进行适当的预压可以减小压杆受力后的变形,提高后续使用时的稳定性。
•控制温度变化:温度变化会导致压杆结构的膨胀或收缩,进而影响其稳定性。
控制温度变化可以采取隔热、冷却、通风等措施。
•合理的负荷分配:在实际应用中,合理分配负荷是确保压杆稳定性的关键。
通过考虑实际应力和挠度等因素,合理分布和调整负荷,可以提高稳定性。
4. 定期维护进行定期维护可以确保压杆稳定性的长期有效性。
提高压杆稳定性的措施压杆是在机械工程和结构工程中经常使用的一种构件,用于支撑、固定或调整结构的位置和形状。
在一些特定的应用中,压杆可能面临着稳定性的问题,因此需要采取一些措施来提高其稳定性。
下面将介绍一些可以提高压杆稳定性的措施。
1.增加固定点的刚度:在压杆两端的固定点,可以通过改变支撑构造或增加支撑的数量来提高固定点的刚度。
增加固定点的刚度可以有效地减小压杆的位移或变形,在很大程度上提高了压杆的稳定性。
2.增加压杆的截面积:压杆的截面积越大,其在承受压力时的变形和变位越小。
因此,增大压杆的截面积可以提高其抗压能力,从而提高压杆的稳定性。
这可以通过增加压杆的直径或者采用更厚的材料来实现。
3.增加材料的强度:材料的强度是压杆稳定性的重要因素之一、因此,可以通过选择强度更高的材料来提高压杆的稳定性。
例如,工程师可以使用高强度钢材来制造压杆,以提高其承载能力和稳定性。
4.增加压杆的长度:增加压杆的长度可以有效地提高其稳定性。
根据欧拉公式,压杆的临界压力与长度成反比。
因此,通过增加压杆的长度,可以降低压杆的临界压力,提高其稳定性。
同时,增加压杆的长度还可以增大其受力面积,分散受力,从而减小应力集中。
5.增加压杆的支撑方式:压杆的支撑方式是影响其稳定性的重要因素之一、传统的支撑方式是在两端固定点进行支撑,可以通过改变支撑点的位置或增加支撑点的数量来提高压杆的稳定性。
此外,还可以采用斜支撑或环形支撑等新型支撑方式,以进一步增加压杆的稳定性。
6.加入支撑构件:在压杆的受力部位加入支撑构件是提高其稳定性的有效手段之一、支撑构件可以通过增加结构的稳定性,使压杆受力更加均匀,减小结构的变形。
根据具体情况,可以选择不同形式和位置的支撑构件,以提高压杆的稳定性。
总之,提高压杆的稳定性是设计和工程实践中重要的问题之一、通过采取上述措施,可以有效地提高压杆的稳定性,保证结构的安全性和可靠性。
当然,在实际应用中,还需要根据具体情况进行综合考虑和工程计算,以确保采取的措施能够产生预期的效果。
压杆稳定【例1】压杆的压力一旦达到临界压力值,试问压杆是否就丧失了承受荷载的能力?解:不是。
压杆的压力达到其临界压力值,压杆开始丧失稳定,将在微弯形态下保持平衡,即丧失了在直线形态下平衡的稳定性。
既能在微弯形态下保持平衡,说明压杆并不是完全丧失了承载能力,只能说压杆丧失了继续增大荷载的能力。
但当压杆的压力达到临界压力后,若稍微增大荷载,压杆的弯曲挠度将趋于无限,而导致压溃,丧失了承载能力。
且在杆系结构中,由于某一压杆达到临界压力,引起该杆弯曲。
若在增大荷载,将引起结构各杆内力的重新分配,从而导致结构的损坏,而丧失其承载能力。
因此,压杆的压力达到临界压力时,是其承受荷载的“极限”状态。
【例2】如何判别压杆在哪个平面内失稳?图示截面形状的压杆,设两端为球铰。
试问,失稳时其截面分别绕哪根轴转动?解:(1)压杆总是在柔度大的纵向平面内失稳。
(2)因两端为球铰,各方向的U=1,由柔度知九=巴i(a) i —i,在任意方向都可能失稳。
xy(b) ,i V i 失稳时截面将绕x 轴转动。
xy(c) i >i ,失稳时截面将绕y 轴转动。
xy【例3】细长压杆的材料宜用高强度钢还是普通钢?为什么?解:对于细长压杆,其临界压力与材料的强度指标无关,而与材料的弹性模量E 有关。
由于高强度钢与普通钢的E 大致相等,而其价格贵于普通钢,故细长压杆的材料宜用普通钢。
【例4】图示均为圆形截面的细长压杆(入三入p ),已知各杆所用的材料及直径d 均相同,长度如图。
当压力P 从零开始以相同的速率增加时,问哪个杆首先失稳?yx解:方法一:用公式P^n z EI/Wl)2计算,由于分子相同,则M越大,P]越小,杆件越先失稳。
方法二:运用公式PA=n2EA/入2,分子相同,而入=ul/i,i相同,故卩l越大,入ijij越大,p越小,杆件越先失稳。
ij综上可知,杆件是否先失稳,取决于卩1。
图中,杆A:ul=2Xa=2a杆B:ul=lX1.3a=1.3a杆C:ul=0.7X1.6a=1.12a由(ul)>(ul)>(ul)可知,杆A首先失稳。
材料力学压杆稳定材料力学是研究物质在外力作用下的形变和破坏规律的学科。
在材料力学中,压杆是一种常见的结构元素,它能够承受压缩力,用来支撑、传递和稳定结构的荷载。
压杆的稳定性是指在外力作用下,压杆不会发生失稳或破坏。
稳定性的分析对于设计和使用压杆结构具有重要意义,可以保证结构的安全可靠性。
本文将从材料的稳定性理论出发,探讨压杆稳定的原理和影响因素。
压杆的稳定性主要受到两种力的影响:压缩力和弯曲力。
压缩力使得杆件在长轴方向上缩短,而弯曲力使得杆件发生侧向的弯曲变形。
这两种力的作用会引起杆件在截面上的应力分布,当这些应力达到一定的极限时,杆件就会发生失稳或破坏。
为了保证压杆的稳定性,需要考虑以下几个因素:1.杆件的形状和尺寸:杆件的形状和尺寸是影响压杆稳定性的重要因素。
一般来说,杆件的截面形状应当是圆形或类圆形,这样能够均匀地分配应力,在承受压力时能够更好地抵抗失稳。
此外,杆件的直径或截面积也应当足够大,以提高材料的稳定性。
2.材料的性质:材料的性质对杆件的稳定性有着重要的影响。
一般来说,杆件所使用的材料应当具有足够的强度和刚度。
强度可以提供杆件抵抗失稳的能力,而刚度可以减小失稳时的弯曲变形。
此外,材料应当具有足够的韧性,以防止杆件发生断裂。
3.杆件的支撑条件:杆件的支撑条件也会对稳定性产生影响。
一般来说,杆件的两端应当进行良好的支撑,以减小弯曲变形和失稳的发生。
支撑条件可以通过适当的连接方式、支撑点的设置和钢结构的设计来实现。
4.外力的作用:外力的作用是导致杆件发生失稳的主要原因。
外力可以包括静力荷载、动力荷载和温度荷载等。
在设计和使用压杆结构时,需要对外力进行充分的分析和计算,确保结构在外力作用下能够稳定运行。
总之,压杆的稳定性是确保结构安全可靠性的重要因素。
在材料力学中,通过对压杆受力和形变规律的分析,可以找到保证压杆稳定的途径和措施。
合理选择杆件的形状和尺寸,使用适当的材料,提供良好的支撑条件,并进行准确的外力分析和计算,可以有效地提高压杆的稳定性,确保结构的安全运行。
【陆工总结材料力学考试重点】之(第7章)压杆的稳定性问题1、压杆稳定性的特点?答:1)杆件两端受轴向压缩载荷作用;2)杆子比较细长;3)产生弯曲变形。
2、细长压杆的平衡状态?答:在F的作用下,压杆存在两种平衡状态:直线平衡状态,弯曲平衡状态。
F cr称为临界载荷,即使杆件恰好由直杆变为曲杆的压缩载荷。
压杆稳定性问题的关键就是求临界载荷F cr。
3、细长压杆的临界载荷——欧拉公式?答:细长压杆的临界载荷公式(欧拉公式):F cr=π2EI (μL)2式中:L为压杆的实际长度,μ为长度系数,μL为压杆的相当长度(有效长度),I为压杆横截面对中性轴的惯性矩,E为弹性模量。
注意:对于上图所示矩形截面压杆,有两种弯曲可能,在xz面弯曲,或yx面弯曲,具体在哪个面弯曲,取决于惯性矩I z=bℎ312和I y=ℎb312的大小。
若I y>I z,则在xz平面内弯曲;若I z>I y,则在xy平面内弯曲;即采用F cr=π2EI(μL)2计算细长压杆的临界载荷时,I取I y、I z里面的较小值。
4、不同约束的长度系数μ值?1)对于图a):细长压杆的一端为固定端约束,一端为自由端,μ=2 2)对于图b):细长压杆的两端均为铰链约束,μ=13)对于图c):细长压杆的一端为固定端约束,一端为铰链约束,μ=0.7 4)对于图d):细长压杆的两端均为固定端约束, μ=0.5约束的强弱程度顺序:固定端约束>铰链约束>自由端约束可知:约束程度越强,则μ值越小。
5、临界正应力总图?答:根据不同压杆临界正应力σcr与长细比λ之间的关系绘成图,即可得到压杆的临界正应力总图:结论:杆子长细比λ越大,临界正应力σcr(临界载荷F cr=σcr A)越小,则杆子越容易弯曲(实际经验也可知道,杆子越细越长,则越容易被压弯)。
6、压杆的稳定性计算?答:设压杆的临界载荷为F cr,压杆实际承受的工作载荷为F,定义安全系数:n=F crF(可知,对于固定的压杆,其临界载荷为一固定值,则实际承受的工作载荷越小,安全系数就越大,压杆也就越安全),出于工程安全的考虑,假设压杆所允许的工作安全系数为[n]st(大于1的数),则实际操作中就必须满足:n=F crF≥[n]st。
压杆临界压力的验证一、问题描述:某构件的受力可以简化成如图1所示的模型,细长杆承受压力,两端铰支。
根据材料力学的知识,当杆件承受的压力P 超过临界压力ij P 时,杆件将丧失稳定性。
已知杆的横截面积形状为矩形,截面的高度h 和宽度b 均为0.03m ,杆的长度L=2m ,使用材料Q235,弹性模量E=2×1011pa,求解杆件的临界压力Pij 。
二、普通计算方法:杆横截面积的惯性矩为I=()48-42-3m 1075.61210312bh ⨯=⨯=杆的横截面积为A=bh=3×10-2×3×10-2=9×10-4m 2杆横截面的最小惯性半径为i=m 1066.81091075.6I 348---⨯=⨯⨯=A 杆的柔度为λ= 2311066.821i L3-=⨯⨯=μ式中,μ为受压杆的长度系数,两端铰支时μ=1 因为受压杆用Q235A 刚制造,且λ>100,所以应该用欧拉公式计 算其临界压力。
根据欧拉公式,得()()N L EI P 33310211075.61022811222ij =⨯⨯⨯⨯⨯==-πμπ 三、用ANSYS 软件求解1、改变任务名2、选择单元类型3、定义材料模型4定义梁截面5、创建关键点6、创建直线7、划分单元8打开预应力效果9、显示关键点号10、显示线11、施加约束12、施加单位约束13.求解14.结束静应力分析15、指定分析类型16、指定分析选项17指定扩展解18、确定显示输出的内容19、求解20、读入第一个载荷步数据21、显示屈曲载荷系数和临界载荷22、显示结构失稳变形三.两种计算结果的比较由普通方法计算得的临界压力为33310N,而用ANSYS软件进行有限元计算的临界压力为33292N.故验证了该公式的正确性。