2015年湖北省高考数学试卷理科-高考
- 格式:doc
- 大小:636.55 KB
- 文档页数:31
2015年湖北省高考数学试卷(理科)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)i为虚数单位,i607的共轭复数为()
A.i B.﹣i C.1 D.﹣1
2.(5分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()
A.134石B.169石C.338石D.1365石
3.(5分)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()
A.212B.211C.210D.29
4.(5分)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是()
A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)
C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y ≥t)
5.(5分)设a1,a2,…,a n∈R,n≥3.若p:a1,a2,…,a n成等比数列;q:
(a12+a22+…+a n
﹣12)(a22+a32+…+a n2)=(a1a2+a2a3+…+a n
﹣1
a n)2,则()
A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件
D.p既不是q的充分条件,也不是q的必要条件
6.(5分)已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f
(x)﹣f(ax)(a>1),则()
A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnx C.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]
7.(5分)在区间[0,1]上随机取两个数x,y,记P1为事件“x+y≥”的概率,P2为事件“|x﹣y|≤”的概率,P3为事件“xy≤”的概率,则()
A.P1<P2<P3B.P2<P3<P1C.P3<P1<P2D.P3<P2<P1
8.(5分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()
A.对任意的a,b,e1>e2
B.当a>b时,e1>e2;当a<b时,e1<e2
C.对任意的a,b,e1<e2
D.当a>b时,e1<e2;当a<b时,e1>e2
9.(5分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()
A.77 B.49 C.45 D.30
10.(5分)设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[t n]=n同时成立,则正整数n的最大值是()
A.3 B.4 C.5 D.6
二、填空题:本大题共4小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.
11.(5分)已知向量⊥,||=3,则•=.
12.(5分)函数f(x)=4cos2cos(﹣x)﹣2sinx﹣|ln(x+1)|的零点个数
为.
13.(5分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.
14.(5分)如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B (B在A的上方),且|AB|=2.
(1)圆C的标准方程为;
(2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论:①=;②﹣=2;③+=2.
其中正确结论的序号是.(写出所有正确结论的序号)
选修4-1:几何证明选讲
15.(5分)如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=3PB,则=.
选修4-4:坐标系与参数方程
16.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sinθ﹣3cosθ)=0,曲线C的参数方程为(t 为参数),l与C相交于A,B两点,则|AB|=.
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
17.(11分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0π2π
x
Asin(ωx+φ)05﹣50
(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.18.(12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.
(1)求数列{a n},{b n}的通项公式
(2)当d>1时,记c n=,求数列{c n}的前n项和T n.
19.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若面DEF与面ABCD所成二面角的大小为,求的值.
20.(12分)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
W121518
P0.30.50.2
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(1)求Z的分布列和均值;
(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.
21.(14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转