两等量同种(异种)电荷场强分布特点
- 格式:doc
- 大小:723.50 KB
- 文档页数:8
对等量异种点电荷和等量同种点电荷电场中电场强度变化情况的研究[摘要]:本文用点电荷电场强度的计算公式以及场强的叠加原理,讨论了等量异种点电荷和等量同种点电荷电场中电场强度变化的情况。
[关键词]:电场强度,等量异种,等量同种,点电荷,叠加原理[正文]等量异种点电荷和等量同种点电荷形成的电场的电场线如图1所示。
图1根据电场线的疏密程度,我们可以知道电场中两点间的电场强度关系。
在实际处理问题时,最常见的又是两点电荷连线上的场强变化情况以及连线的中垂线上电场强度的变化情况,我们将就此展开讨论。
一、等量异种点电荷的电场1.二者连线上电场强度的变化情况如图2所示,设两点电荷电荷量的绝对值都是q ,二者间的距离为2a ,我们讨论与连线中点O 的距离为x (a x <<0)的A 点的电场强度。
如图所示,由点电荷的场强公式及电场的叠加原理知,A 点的电场强度为: ()()22a x kq a x kq E ++-= 可见E 是x 的函数,对x 求导,有:图2()()()()[]()()⎥⎦⎤⎢⎣⎡+--=+-+---=-3323112212'x a x a kq x a x a kq E 由于,所以0'>E ,所以在a x <<0上,E 是增函数。
这说明x 的数值越大,即A 点离两点电荷连线的中点O 越远,场强越大。
由对称性可知,当A 位于O 点右边时,有同样的结果。
总之,从连线中点沿连线向两电荷移动时,电场强度逐渐增大,二者连线上中点位置的场强最小。
2.二者连线的中垂线上电场强度的变化情况如图3所示,我们研究二者连线的中垂线上与垂足O 相距x 的点A 的电场强度。
由对称性知,两点电荷在此处产生的场强的大小相等,方向如图所示。
由点电荷的场强公式和场的叠加原理知: θcos 222⋅+⋅=x a kq E 而 22cos x a a+=θ由上面两式可得:()23222x a kqaE +=从上式可以看出,当x 增大时,E 减小。
等量同种负点电荷电场线大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。
电势每点电势为负值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是背离中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先升高再降低,中点电势最高不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向中点;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
电势中点电势最低,由中点至无穷远处逐渐升高至零。
等量同种正点电荷电场线大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是直线。
电势每点电势为正值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是指向中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先降低再升高,中点电势最低不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向无穷远处;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
电势中点电势最高,由中点至无穷远处逐渐降低至零。
等量异种点电荷电场线大部分是曲线,起于正电荷,终止于负电荷;有三条电场线是直线。
电势中垂面有正电荷的一边每一点电势为正,有负电荷的一边每一点电势为负。
连线上场强以中点最小不等于零;关于中点对称的任意两点场强大小相等,方向相同,都是由正电荷指向负电荷;由连线的一端到另一端,先减小再增大。
电势由正电荷到负电荷逐渐降低,中点电势为零。
中垂线上场强以中点最大;关于中点对称的任意两点场强大小相等,方向相同,都是与中垂线垂直,由正电荷指向负电荷;由中点至无穷远处,逐渐减小。
电势中垂面是一个等势面,电势为零(以无穷远处为零电势点,场强为零)(以无穷远处为零电势点,场强为零)注意:电场线、等势面的特点和电场线与等势面间的关系:①电场线的方向为该点的场强方向,电场线的疏密表示场强的大小。
等量电荷两条线上的场强分布特点等量同种(异种)点电荷在空间的场强分布比较复杂,但在两条线(点电荷连线及其中垂线)上仍有其规律性,为研究方便,设它们带电量为Q,两电荷连线AB长度为L,中点为O.一、等量异种电荷1、两电荷连线上如图1所示,在两电荷连线上任取一点G,设AG长度为x,则G点场强EG为两点电荷分别在该点的场强EA、EB的矢量和,方向从A指向B(由正电荷指向负电荷一侧),由点电荷场强公式知:EG= EA+ EB=∵x+(L-x)等于定值L,∴当x=(L-x),即x= 时,x与(L-x)乘积最大,EG有最小值,即在两电荷连线中点O处场强最小,从O点向两侧逐渐增大,数值关于O点对称。
2、中垂线上如图2所示,在中垂线上,任取一点H,设OH=x,根据对称性知:EH沿水平方向向右,即在中垂线上各点场强水平向右(垂直于中垂线指向负电荷一侧),沿中垂线移动电荷,电场力不做功,由电势差定义知:中垂线为一等势线,与无限远处等势,即各点电势为零。
H点的场强EH=,∴在O点,即x=0处,EH最大,x越大,即距O点越远EH越小,两侧电场强度数值关于O 点对称。
二、等量同种电荷1、电荷连线上如图3所示,在两电荷连线上任取一点N,设AN长度为x,则N点场强EN为两点电荷在该点的场强EA、EB的矢量和,方向沿AB连线,O点左侧从A指向B,右侧从B指向A(沿两电荷连线指向较远一侧电荷,若两电荷为等量负电荷则反之),N点电场强度大小知:EN = ,∴当x= 时,EN =0,,即在两电荷连线中点O处场强最小,从O点向两侧逐渐增大,数值关于O点对称,方向相反。
2、中垂线上如图4所示,根据对称性知:在O点两侧,电场强度方向均沿中垂线方向从O点指向无限远(若两电荷为等量负电荷则反之),由极限分析法易得:在O点处,E =0;在距O点无限远处,E =0。
说明中间某位置有极大值,可见:合电场强度的大小随着距O点的距离增大,先从零增大到最大,然后逐渐减小。
两等量同种(异种)电荷场强分布特点等量同种(异种)点电荷在空间的场强分布比较复杂,但在两条线(点电荷连线及其中垂线)上仍有其规律性,为研究方便,设它们带电量为Q ,两电荷连线AB 长度为L,中点为O.一、 等量异种电荷1、 两电荷连线上如图1所示,在两电荷连线上任取一点G ,设AG 长度为x ,则G 点场强E G 为两点电荷分别在该点的场强E A 、E B荷指向负电荷一侧),由点电荷场强公式知:E G = E A + E B =()[]()[]22222)(xL x xx L L kQ x L kQ x kQ ---=-+∵x+(L-x)等于定值L ,∴当x=(L-x),即x=2L时,x 与 (L-x)乘积最大, E G 有最小值,即在两电荷连线中点O 处场强最小,从O 点向两侧逐渐增大,数值关于O 点对称。
2、 中垂线上如图2所示,在中垂线上,任取一点H ,设OH=x ,根据对称性知:E H 沿水平方向向右,即在中垂线上各点场强水平向右(垂直于中垂线指向负电荷一侧),沿中垂线移动电荷,电场力不做功,由电势差定义知:中垂线为一等势线,与无限远处等势,即各点电势为零。
H 点的场强E H =232222222222222cos 22⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛=⋅+⎪⎭⎫ ⎝⎛x L kQL x L L x L kQ x L kQ θ,∴在O 点,即x=0处,E H 最大,x 越大,即距O 点越远E H 越小,两侧电场强度数值关于O 点对称。
图1G O B图2H二、 等量同种电荷1、 电荷连线上如图3所示,在两电荷连线上任取一点N ,设AN 长度为x ,则N 点场强E N 为两点电荷在该点的场强E A 、E B 的矢量和,方向沿AB 连线,O 点左侧从A 指向B ,右侧从B 指向A (沿两电荷连线指向较远一侧电荷,若两电荷为等量负电荷则反之),N 点电场强度大小知:E N =22)(x L kQx kQ --, ∴当x=2L时,E N =0,,即在两电荷连线中点O 处场强最小, 从O 点向两侧逐渐增大,数值关于O 点对称,方向相反。
两等量同种(异种)电荷场强分布特点等量同种(异种)点电荷在空间的场强分布比较复杂,但在两条线(点电荷连线及其中垂线)上仍有其规律性,为研究方便,设它们带电量为Q ,两电荷连线AB 长度为L,中点为O.一、 等量异种电荷1、 两电荷连线上如图1所示,在两电荷连线上任取一点G ,设AG 长度为x ,则G 点场强E G 为两点电荷分别在该点的场强E A 、E B荷指向负电荷一侧),由点电荷场强公式知:E G = E A + E B =()[]()[]22222)(xL x xx L L kQ x L kQ x kQ ---=-+∵x+(L-x)等于定值L ,∴当x=(L-x),即x=2L时,x 与 (L-x)乘积最大, E G 有最小值,即在两电荷连线中点O 处场强最小,从O 点向两侧逐渐增大,数值关于O 点对称。
2、 中垂线上如图2所示,在中垂线上,任取一点H ,设OH=x ,根据对称性知:E H 沿水平方向向右,即在中垂线上各点场强水平向右(垂直于中垂线指向负电荷一侧),沿中垂线移动电荷,电场力不做功,由电势差定义知:中垂线为一等势线,与无限远处等势,即各点电势为零。
H 点的场强E H =232222222222222cos 22⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛=⋅+⎪⎭⎫ ⎝⎛x L kQL x L L x L kQ x L kQ θ,∴在O 点,即x=0处,E H 最大,x 越大,即距O 点越远E H 越小,两侧电场强度数值关于O 点对称。
图1G O B图2H二、 等量同种电荷1、 电荷连线上如图3所示,在两电荷连线上任取一点N ,设AN 长度为x ,则N 点场强E N 为两点电荷在该点的场强E A 、E B 的矢量和,方向沿AB 连线,O 点左侧从A 指向B ,右侧从B 指向A (沿两电荷连线指向较远一侧电荷,若两电荷为等量负电荷则反之),N 点电场强度大小知:E N =22)(x L kQx kQ --, ∴当x=2L时,E N =0,,即在两电荷连线中点O 处场强最小, 从O 点向两侧逐渐增大,数值关于O 点对称,方向相反。
一.等量异种点电荷形成的电场中电场线的分布特点1.两点电荷连线上各点,电场线方向从正电荷指向负电荷.2.两点电荷连线的中垂面(中垂线)上,电场线方向均相同,即场强方向均相同,且总与中垂面(线)垂直.在中垂面(线)上到O点等距离处各点的场强相等(O为两点电荷连线中点).3.在中垂面(线)上的电荷受到的静电力的方向总与中垂面(线)垂直,因此,在中垂面(线)上移动电荷时静电力不做功.4.等量异种点电荷连线上以中点O场强最小,中垂线上以中点O的场强为最大;5.等量异种点电荷连线和中垂线上关于中点对称处的场强相同;二.等量同种点电荷形成的电场中电场线的分布特点1.两点电荷连线中点O处场强为零,此处无电场线.2.中点O附近的电场线非常稀疏,但场强并不为零.3.两点电荷连线中垂面(中垂线)上,场强方向总沿面(线)远离O(等量正电荷).4.在中垂面(线)上从O点到无穷远,电场线先变密后变疏,即场强先变强后变弱.5.等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值.6.等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反.等量异种电荷和等量同种电荷连线上以及中垂线上电场强度各有怎样的规律?(1)等量异种点电荷连线上以中点O场强最小,中垂线上以中点O的场强为最大;等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值.(2)等量异种点电荷连线和中垂线上关于中点对称处的场强相同;等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反.三.等量异种同种电荷产生电场电势等势面1.等量异种点电荷的电场:是两簇对称曲面,两点电荷连线的中垂面是一个等势面.如图-所示.在从正电荷到负电荷的连线上电势逐渐降低,φA>φA′;在中垂线上φB=φB′.2.等量同种点电荷的电场:是两簇对称曲面,如图1-4-7所示,在AA′线上O点电势最低;在中垂线上O点电势最高,向两侧电势逐渐降低,A、A′和B、B′对称等势.1.如图所示,在真空中有两个固定的等量异种点电荷+Q 和-Q 。
创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*两个点电荷电场线分布示意图及场强电势特点等量同种负点电荷电场线大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。
电势每点电势为负值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是背离中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先升高再降低,中点电势最高不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向中点;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
电势中点电势最低,由中点至无穷远处逐渐升高至零。
等量同种正点电荷电场线大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是直线。
电势每点电势为正值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是指向中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先降低再升高,中点电势最低不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向无穷远处;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
电势中点电势最高,由中点至无穷远处逐渐降低至零。
等量异种点电荷电场线大部分是曲线,起于正电荷,终止于负电荷;有三条电场线是直线。
电势中垂面有正电荷的一边每一点电势为正,有负电荷的一边每一点电势为负。
连线上场强以中点最小不等于零;关于中点对称的任意两点场强大小相等,方向相同,都是由正电荷指向负电荷;由连线的一端到另一端,先减小再增大。
电势由正电荷到负电荷逐渐降低,中点电势为零。
中垂线上场强以中点最大;关于中点对称的任意两点场强大小相等,方向相同,都是与中垂线垂直,由正电荷指向负电荷;由中点至无穷远处,逐渐减小。
电势 中垂面是一个等势面,电势为零(以无穷远处为零电势点,场强为零)孤立点电荷电场线分布示意图及场强电势特点(以无穷远处为零电势点,场强为零)注意:电场线、等势面的特点和电场线与等势面间的关系:①电场线的方向为该点的场强方向,电场线的疏密表示场强的大小。
两等量同种(异种)电荷场强分布特点 等量同种(异种)点电荷在空间的场强分布比较复杂,但在两条线(点电荷连线及其 中垂线)上仍有其规律性,为研究方便,设它们带电量为 Q ,两电荷连线 AB 长度为 L,中点 为 O.1、 两电荷连线上如图 1 所示,在两电荷连线上任取一点 G ,设 AG 长度为 x ,则 G 点场强 E G 为两点电荷分别在该点的场强 E A 、E B 的矢量和,方向从A 指向 B (由正电 ∵x+(L-x )等于定值 L ,∴当 x=(L-x ),即x= L 时,x 与 (L-x )乘积最大, E G 有最小值,2即在两电荷连线中点 O 处场强最小,从 O 点向两侧逐渐增大,数值关于 O 点对称。
2、 中垂线上∴在 O 点,即 x=0 处,E H 最大,x 越大,即距 O 点越远E H 越小,两侧电场强度数值关于 O 点对称。
一、 等量异种电荷荷指向负电荷一侧),由点电荷场强公式知: E G = E A + E B = +x 2kQL 2 -2(L -x )xx (L - x )O图 1如图 2 所示,在中垂线上,任取一点 H ,设 OH=x ,根据对称性知:E H 沿水 平方向向右,即在中垂线上各点场强水平向右(垂直于中垂线指向负电荷 一侧),沿中垂线移动电荷,电场力不做功,由电势差定义知:中垂线为一 等势线,与无限远处等势,即各点电势为零。
H 点的场强 E H =cos =kQ B2kQL2+ x 2H二、等量同种电荷1、电荷连线上如图3 所示,在两电荷连线上任取一点N,设AN 长度为x,则N 点场强E N为两点电荷在该点的场强E A、E B的矢量和,方向沿AB连线,O 点左侧从 A 指向B,右侧从 B 指向A(沿两电荷连线指向较远一侧电荷,图3若两电荷为等量负电荷则反之),N 点电场强度大小知:E NkQ kQ=x2 -(L- x)2∴当x= 时,E N =0,,即在两电荷连线中点O 处场强最小,2从O 点向两侧逐渐增大,数值关于O 点对称,方向相反。
匀强电场 等量异种点电荷的电场 等量同种点电荷的电场- - - - 点电荷与带电平+孤立点电荷周围的电场几种典型电场线分布示意图及场强电势特点表重点一、场强分布图二、列表比较 下面均以无穷远处为零电势点,场强为零。
孤立的 正点电荷电场线直线,起于正电荷,终止于无穷远。
场强离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。
电势离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。
等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。
孤立的 负点电荷电场线直线,起于无穷远,终止于负电荷。
场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。
电势离场源电荷越远,电势越高;与场源电荷等距的各点组成的球面是等势面,每点的电势为负。
等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。
等量同种负点电荷电场线大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。
电势每点电势为负值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是背离中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先升高再降低,中点电势最高不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向中点;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
电势中点电势最低,由中点至无穷远处逐渐升高至零。
等量同种正点电荷电场线大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是直线。
电势每点电势为正值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是指向中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先降低再升高,中点电势最低不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向无穷远处;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
两等量同种(异种)电荷场强分布特点等量同种(异种)点电荷在空间的场强分布比较复杂,但在两条线(点电荷连线及其中垂线)上仍有其规律性,为研究方便,设它们带电量为Q ,两电荷连线AB 长度为L,中点为O.一、 等量异种电荷1、 两电荷连线上如图1所示,在两电荷连线上任取一点G ,设AG 长度为x ,则G 点场强E G 为两点电荷分别在该点的场强E A 、E B 的矢量和,方向从A 指向B (由正电荷指向负电荷一侧),由点电荷场强公式知:E G = E A + E B =()[]()[]22222)(x L x xx L L kQ x L kQ x kQ ---=-+∵x+(L-x)等于定值L ,∴当x=(L-x),即x=2L时,x 与 (L-x)乘积最大, E G 有最小值,即在两电荷连线中点O 处场强最小,从O 点向两侧逐渐增大,数值关于O 点对称。
2、 中垂线上如图2所示,在中垂线上,任取一点H ,设OH=x ,根据对称性知:E H 沿水平方向向右,即在中垂线上各点场强水平向右(垂直于中垂线指向负电荷一侧),沿中垂线移动电荷,电场力不做功,由电势差定义知:中垂线为一等势线,与无限远处等势,即各点电势为零。
H 点的场强E H =232222222222222cos 22⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛=⋅+⎪⎭⎫ ⎝⎛x L kQL x L L x L kQ x L kQ θ,∴在O 点,即x=0处,E H 最大,x 越大,即距O 点越远E H 越小,两侧电场强度数值关于O 点对称。
二、 等量同种电荷1、 电荷连线上如图3所示,在两电荷连线上任取一点N ,设AN 长度为x ,图1G O Bx x 图2θ xE HH O B AAE B则N 点场强E N 为两点电荷在该点的场强E A 、E B 的矢量和,方向沿AB连线,O 点左侧从A 指向B ,右侧从B 指向A (沿两电荷连线指向较远一侧电荷,若两电荷为等量负电荷则反之),N 点电场强度大小知:E N =22)(x L kQx kQ --, ∴当x=2L时,E N =0,,即在两电荷连线中点O 处场强最小, 从O 点向两侧逐渐增大,数值关于O 点对称,方向相反。
常见电场电场线分布规律————————————————————————————————作者:————————————————————————————————日期:常见电场电场线分布规律电场强度、电场线、电势部分基本规律总结整理:胡湛霏一、几种常见电场线分布:二、等量异种电荷电场分析1、场强:①在两点电荷连线上,有正电荷到负电荷,电场强度先减小后增大,中点O的电场强度最小。
电场强度方向由正电荷指向负电荷;②两点电荷的连线的中垂线上,中点O的场强最大,两侧场强依次减小。
各点电场强度方向相同。
2、电势:①由正电荷到负电荷电势逐渐降低;②连线的中垂线所在的、并且与通过的所有电场线垂直的平面为一等势面;③若规定无限远处电势为0,则两点电荷连线的中垂线上各点电势即为0。
3、电势能:(设带电粒子由正电荷一端移向负电荷一端)①带电粒子带正电:电场力做正功,电势降低,电势能减少;②带电粒子带负点:电场力做负功,电势降低,电势能增加。
三、等量同种电荷电场分析1、场强:①两点电荷的连线上,由点电荷起,电场强度越来越小,到终点O的电场强度为0,再到另一点电荷,电场强度又越来越大;②两点电荷连线的中垂线上,由中点O向两侧,电场强度越来越大,到达某一点后电场强度又越来越小;③两点电荷(正)连线的中垂线上,电场强度方向由中点O指向外侧,即平行于中垂线。
2、电势:①两正点电荷连线上,O点电势最小,即由一个正点电荷到另一正点电荷电势先降低后升高。
连线的中垂线上,O电电势最大,即O点两侧电势依次降低。
②两负点电荷连线上,O点电势最大,即由一个负点电荷到另一负点电荷电势先增高后降低。
连线的中垂线上,O点电势最小,即O点两侧电势依次升高。
③其余各点电势由一般规律判断,顺着电场线方向电势逐渐降低。
3、电势能:①由电势判断:若带电粒子为正电荷,则电势越高,电势能越大;若带电粒子为负电荷,则电势越高,电势能越小。
②由功能关系判断:若电场力做负功,则电势能增加;若电势能做正功,则电势能减少。
两等量点电荷连线及中垂线上的场强、电势和电势能的情况分析高中物理“电场”这个内容的概念很抽象,学生往往感到很困惑,导致对两点电荷连线及中垂线上的电场强度、电势、电势能的变化情况感到模糊不清,现就将我对这个问题的分析小结如下:这里所指的两点电荷是指靠得很近的两等量同种点电荷和等量异种点电荷。
一、两正点电荷连线及中垂线上的电场强度、电势、电势能的变化1、电场强度(1)两点电荷的连线上两点电荷在空间的电场是由这两个点电荷分别在该点的场强叠加而成。
根据电场强度的决定式2rQ k E =,可知E 与r 2成反比,与Q 成正比,而对于正电荷E 的方向背离点电荷。
在其连线上的中点,由于Q 相等,r 相等,即E 大小相等,而两点电荷在的场强方向相反,故合场强为零,如图1所示。
图1由||||212212r Q k r Q k E E E -=-=知,从中点往两边合场强增大,且关于中点对称。
小结:连线中点场强为零,靠近点电荷场强渐强,且关于中点对称,场强方向沿较近点电荷的场强方向。
(2)两点电荷的中垂线上中垂线上的某点的场强由两点电荷分别在该点的场强叠加而成。
由于中垂线上的点到线两端的距离相等,由2r Q kE =知|E 1|=|E 2|,即大小相等,方向如图2所示:图2分别把E 1、E 2分解在连线上和中垂线上,连线上的分量大小相等,方向相反,相互抵消,故合场强E 如图2所示。
所以从中垂线上中点往两边场强先是由零增大,但由2rQ k E =可知。
r 越大,E 减小,所以合场强又开始减小。
小结:两正电荷的中垂线上电场强度先从中点时的零逐渐增大,当增大到某个值时,又逐渐减小,且两边对称。
2、电势(1)可根据电势与电场线的关系(沿着电场线的方向电势降低)直接判断:连接上,从中点往两边电势升高;中垂线上从中点往两边电势降低。
电场线的分布如图3所示。
图3(2)也可由电势差的定义qW U AB AB =判断。
先看两点电荷的连线上:设一正检验电荷由连线上某点A 向中点O 运动时,如图4所示图4根据W=FS cos θ知,F 与S 的方向相同,故F 做正功,q 又为正电荷,所以 0>=qW U AO AO 即 0>-=O A Ao U ϕϕ故 O A ϕϕ>可知连线上从O 到点电荷电势升高,又由于两边对称,故连线上O 点电势最低。
两等量同种(异种)电荷场强分布特点两等量同种(异种)电荷场强分布特点等量同种(异种)点电荷在空间的场强分布比较复杂,但在两条线(点电荷连线及其中垂线)上仍有其规律性,为研究方便,设它们带电量为Q,两电荷连线AB长度为L,中点为O.一、等量异种电荷1、两电荷连线上如图1所示,在两电荷连线上任取一点G,设AG长度为x,则G点场强E G为两点电荷分别在该点的场强E A、E B的矢量和,方向从A指向BE G=E A+E B=()[]()[]22222)(xLxxxLLkQxLkQxkQ---=-+图1x∵x+(L-x)等于定值L ,∴当x=(L-x),即x=2L时,x 与 (L-x)乘积最大, E G 有最小值,即在两电荷连线中点O 处场强最小,从O 点向两侧逐渐增大,数值关于O 点对称。
2、中垂线上如图2所示,在中垂线上,任取一点H ,设OH=x ,根据对称性知:E H 沿水平方向向右,即在中垂线上各点场强水平向右(垂直于中垂线指向负电荷一侧),沿中垂线移动电荷,电场力不做功,由电势差定义知:中垂线为一等势线,与无限远处等势,即各点电势为零。
H 点的场强E H =232222222222222cos 22⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛=⋅+⎪⎭⎫ ⎝⎛x L kQL x L L x L kQ x L kQ θ,∴在O 点,即x=0处,E H 最大,x 越大,即距O 点越远E H 越小,两侧电场强度数值关于O 点对称。
二、 等量同种电荷1、电荷连线上如图3所示,在两电荷连线上任取一点N ,设AN 长度为x , 则N 点场强E N 为两点电荷在该点的场强E A 、E B 的矢量和,方向沿图3图2HAB连线,O 点左侧从A 指向B ,右侧从B 指向A (沿两电荷连线指向较远一侧电荷,若两电荷为等量负电荷则反之),N 点电场强度大小知:E N =22)(x L kQx kQ --, ∴当x=2L时,E N =0,,即在两电荷连线中点O 处场强最小, 从O 点向两侧逐渐增大,数值关于O 点对称,方向相反。
. 一.等量异种同种电荷产生电场电场线场强关系1.等量异种点电荷形成的电场中电场线的分布特点(1)两点电荷连线上各点,电场线方向从正电荷指向负电荷.(2)两点电荷连线的中垂面(中垂线)上,电场线方向均相同,即场强方向均相同,且总与中垂面(线)垂直.在中垂面(线)上到O点等距离处各点的场强相等(O为两点电荷连线中点).(3)在中垂面(线)上的电荷受到的静电力的方向总与中垂面(线)垂直,因此,在中垂面(线)上移动电荷时静电力不做功.(4) 等量异种点电荷连线上以中点O场强最小,中垂线上以中点O的场强为最大;(5)等量异种点电荷连线和中垂线上关于中点对称处的场强相同;2.等量同种点电荷形成的电场中电场线的分布特点(1)两点电荷连线中点O处场强为零,此处无电场线.(2)中点O附近的电场线非常稀疏,但场强并不为零.(3)两点电荷连线中垂面(中垂线)上,场强方向总沿面(线)远离O(等量正电荷).(4)在中垂面(线)上从O点到无穷远,电场线先变密后变疏,即场强先变强后变弱.(5)等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值.(6)等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反.PS:等量异种电荷和等量同种电荷连线上以及中垂线上电场强度各有怎样的规律?(1)等量异种点电荷连线上以中点O场强最小,中垂线上以中点O的场强为最大;等量同种点电荷连线上以中点电场强度最小,等于零.因无限远处场强E∞=0,则沿中垂线从中点到无限远处,电场强度先增大后减小,之间某位置场强必有最大值.(2)等量异种点电荷连线和中垂线上关于中点对称处的场强相同;等量同种点电荷连线和中垂线上关于中点对称处的场强大小相等、方向相反.二.等量异种同种电荷产生电场电势等势面1.等量异种点电荷的电场:是两簇对称曲面,两点电荷连线的中垂面是一个等势面.如图1-4-6所示.在从正电荷到负电荷的连线上电势逐渐降低,φA>φA′;在中垂线上φB=φB′.2.等量同种点电荷的电场:是两簇对称曲面,如图1-4-7所示,在AA′线上O点电势最低;在中垂线上O点电势最高,向两侧电势逐渐降低,A、A′和B、B′对称等势.-三、练习1.如图所示,在真空中有两个固定的等量异种点电荷+Q和-Q。
两等量同种(异种)电荷场强分布特点等量同种(异种)点电荷在空间的场强分布比较复杂,但在两条线(点电荷连线及其中垂线)上仍有其规律性,为研究方便,设它们带电量为Q ,两电荷连线AB 长度为L,中点为O.一、 等量异种电荷1、 两电荷连线上如图1所示,在两电荷连线上任取一点G ,设AG 长度为x ,则G 点场强E G 为两点电荷分别在该点的场强E A 、E B 的矢量和,方向从A 指向B (由正电荷指向负电荷一侧),由点电荷场强公式知:E G = E A + E B =()[]()[]22222)(x L x xx L L kQ x L kQ x kQ ---=-+∵x+(L-x)等于定值L ,∴当x=(L-x),即x=2L时,x 与 (L-x)乘积最大, E G 有最小值,即在两电荷连线中点O 处场强最小,从O 点向两侧逐渐增大,数值关于O 点对称。
2、 中垂线上如图2所示,在中垂线上,任取一点H ,设OH=x ,根据对称性知:E H沿水平方向向右,即在中垂线上各点场强水平向右(垂直于中垂线指向负电荷一侧),沿中垂线移动电荷,电场力不做功,由电势差定义知:中垂线为一等势线,与无限远处等势,即各点电势为零。
H 点的场强E H =232222222222222cos 22⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛=⋅+⎪⎭⎫ ⎝⎛x L kQL x L L x L kQ x L kQ θ,∴在O 点,即x=0处,E H 最大,x 越大,即距O 点越远E H 越小,两侧电场强度数值关于O 点对称。
图G O B图θxEH O B AE二、 等量同种电荷1、 电荷连线上如图3所示,在两电荷连线上任取一点N ,设AN 长度为x ,则N 点场强E N 为两点电荷在该点的场强E A 、E B 的矢量和,方向沿AB 连线,O 点左侧从A 指向B ,右侧从B 指向A (沿两电荷连线指向较远一侧电荷,若两电荷为等量负电荷则反之),N 点电场强度大小知:E N =22)(x L kQx kQ --, ∴当x=2L时,E N =0,,即在两电荷连线中点O 处场强最小, 从O 点向两侧逐渐增大,数值关于O 点对称,方向相反。
2、 中垂线上如图4所示, 根据对称性知:在O 点两侧, 电场强度方向均沿中垂线方向从O 点指向 无限远(若两电荷为等量负电荷则反之),由极限分析法易得:在O 点处,E =0;在距O 点无限远处,E =0。
说明中间某位置有极大值,可见:合电场强度的大小随着距O 点的距离增大,先从零增大到最大,然后逐渐减小。
在中垂线上,任取一点P ,设OP=x ,由点电荷场强公式, P 点场强 E P =2 E A cos θ=23222222222222cos 2⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+=⋅L x kQx L x x L x kQ rkQ θ,运用数学方法,令y=232222⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+L x kQx,求导可得:y,=322212223222222321⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⨯⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⨯-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⨯L x xL x x L x令y ,=0,则212222322232⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+L x x L x ,即22232x L x =⎪⎭⎫ ⎝⎛+,∴当L x 42±=时, E P 有最大值29316L kQ ,∴从中点沿中垂线向两侧,电场强度的数值先图N O BE增大后减小,两侧方向相反,关于O点对称的点数值相等。
1(09·上海物理·3)两带电量分别为q和-q的点电荷放在x轴上,相距为L,能正确反映两电荷连线上场强大小E与x关系是图(A)2.(09·江苏物理·8)空间某一静电场的电势在轴上分布如图所示,轴上两点B、C点电场强度在方向上的分量分别是Ebx、Ecx,下列说法中正确的有( AD ) A.Ebx的大小大于Ecx的大小 B.Ebx的方向沿x轴正方向 C.电荷在O点受到的电场力在方向上的分量最大 D.负电荷沿轴从移到的过程中,电场力先做正功,后做负功3 .(09·山东·20)如图所示,在x轴上关于原点O对称的两点固定放置等量异种点电荷+Q和-Q,x轴上的P点位于的右侧。
下列判断正确的是()A.在x轴上还有一点与P点电场强度相同B.在x轴上还有两点与P点电场强度相同C.若将一试探电荷+q从P点移至O点,电势能增大D.若将一试探电荷+q从P点移至O点,电势能减小4.如图,一个带负电的粒子沿着异种电荷的中垂线从A点匀速运动到B点,如果粒子重力不计,则带电粒子受到的除电场力外的另一个力大小和方向正确的是(A)A、先变大后变小,方向水平向右B、先变小后变大,方向水平向左C、大小不变,方向水平向左D、大小不变,方向水平向右5.如图所示,A、B为两个固定的等量的同种正电荷,在它们连线的中点处有一个可以自由运动的正电荷C,现给电荷C一个垂直于连线的初速度v0,若不计电荷C所受的重力,则关于电荷C运动过程中的速度和加速度情况,下列说法正确的是( BD ) A.加速度始终增大B.加速度先增大后减小C.速度始终增大,最后趋于无穷大D.速度始终增大,最后趋于某有限值(AB)7.(2009年高考江苏卷)空间某一静电场的电势φ在x轴上分布如图1-7所示,x轴上两点B、C的电场强度在x方向上的分量分别是EBx、ECx.下列说法中正确的有( D )的大小大于ECx的大小的方向沿x轴正方向C.电荷在O点受到的电场力在x方向上的分量最大D.负电荷沿x轴从B移到C的过程中,电场力先做正功,后做负功8.空间有一沿x轴对称分布的电场,其电场强度E随X变化的图像如图所示。
下列说法正确的是( C )(A)O点的电势最低(B)X2点的电势最高(C)X1和- X1两点的电势相等(D)X1和X3两点的电势相等AC10.(09·山东·20)如图所示,在x 轴上关于原点O 对称的两点固定放置等量异种点电荷+Q 和-Q ,x 轴上的P 点位于的右侧。
下列判断正确的是 ( AC )A .在x 轴上还有一点与P 点电场强度相同B .在x 轴上还有两点与P 点电场强度相同C .若将一试探电荷+q 从P 点移至O 点,电势能增大 D .若将一试探电荷+q 从P 点移至O 点,电势能减小11.(2011朝阳一模)如图所示,在真空中有两个固定的等量异种点电荷+Q 和-Q 。
直线MN 是两点电荷连线的中垂线,O 是两点电荷连线与直线MN 的交点。
a 、b 是两点电荷连线上关于O 的对称点,c 、d 是直线MN 上的两个点。
下列说法中正确的是( )A .a 点的场强大于b 点的场强;将一检验电荷沿MN 由c 移动到d ,所受电场力先增大后减小B .a 点的场强小于b 点的场强;将一检验电荷沿MN 由c移动到d ,所受电场力先减小后增大C .a 点的场强等于b 点的场强;将一检验电荷沿MN 由c移动到d ,所受电场力先增大后减小D .a 点的场强等于b 点的场强;将一检验电荷沿MN 由c移动到d ,所受电场力先减小后增大12. (2011昌平二模)等量异种点电荷的连线和其中垂线如图所示,现将一个带负电的检验电荷先从图中a 点沿直线移到b 点,再从b 点沿直线移到c 点.则( )A .从a 点到b 点,电势逐渐增大B .从a 点到b 点,检验电荷受电场力先增大后减小+Q -Qa bc dO M N +•••abcC .从a 点到c 点,检验电荷所受电场力的方向始终不变D .从a 点到c 点,检验电荷的电势能先不变后增大13.(2011石景山一模)如图所示,在矩形ABCD 的AD 边和BC 边的中点M 和N 各放一个点电荷,它们分别带等量的异种电荷。
E 、F 分别是AB 边和CD 边的中点,P 、Q 两点在MN 的连线上,且MP =QN 。
在图中,电场强度相同、电势相等的两点是( )A .E 和FB .P 和QC .A 和CD .C 和D14.(2011•福州模拟)如图9所示,在x 轴上关于原点O 对称的两点固定放置在等量异种点电荷+Q 和—Q ,x 轴上的P 点位于—Q 的右侧。
下列判断正确的是 ( )A .P 点电势比O 点高B .在x 轴上没有点与P 点电场强度相同C .在x 轴上还有一点与P 点电场强度相同D .若将一试探电荷+q 从P 点移至O 点,电势能减小15. (09年山东卷)20.如图所示,在x 轴上关于原点O 对称的两点固定放置等量异种点电荷+Q 和-Q ,x 轴上的P 点位于的右侧。
下列判断正确的是( )A .在x 轴上还有一点与P 点电场强度相同B .在x 轴上还有两点与P 点电场强度相同C .若将一试探电荷+q 从P 点移至O 点,电势能增大D .若将一试探电荷+q 从P 点移至O 点,电势能减小16.【2011•济南模拟】两个固定的异号点电荷,电量给定但大小不等,用E 1和E 2分别表示两个点电荷产生的电场强度的大小,则在通过两点电荷的直线上,E 1=E 2的点( )A .有三个,其中两处合场强为零B .有三个,其中一处合场强为零C .只有两个,其中一处合场强为零D .只有一个,该处合场强不为零17.(2011朝阳期末)如图所示,真空中有直角坐标系xOy ,在x 轴上固定着关于O 点对称的等量异号点电荷+Q 和-Q ,C 是y 轴上的一个点,D 是x 轴上的一个点,DE 连线垂直于x 轴。
将一个点电荷+q 从O 移动到D ,电场力对它做功为W 1,将这个点电荷从C 移动到E ,电场力对它做功为W 2。
下列判断正确的是( )A .两次移动电荷电场力都做正功,并且W 1=W 2B .两次移动电荷电场力都做正功,并且W 1>W 2C .两次移动电荷电场力都做负功,并且W 1=W 2D .两次移动电荷电场力都做负功,并且W 1>W 2MP Q NA B EDCO xy+-C D E18.(2011山东第21题).如图所示,在两等量异种点电荷的电场中,MN为两电荷连线的中垂线,a、b、c三点所在直线平行于两电荷的连线,且a与c关于MN对称,b点位于MN上,d点位于两电荷的连线上。
以下判断正确的是()A.b点场强大于d点场强B.b点场强小于d点场强C.a、b两点的电势差等于b、c两点间的电势差D.试探电荷+q在a点的电势能小于在c点的电势能19.【2011•焦作模拟】某静电场的电场线分布如图所示,P、Q为电场中的两点.则下列说法正确的是()点电势一定高于Q点电势点场强一定小于Q点场强C.负电荷在P点的电势能大于在Q点的电势能D.若将一试探电荷+q由P点释放,它将沿电场线运动到Q点20. 一对等量正点电荷电场的电场线(实线)和等势线(虚线)如图所示,图中A、B两点电场强度分别是E A、E B,电势分别是ΦA、ΦB,负电荷q在A、B时的电势能分别是E PA、E PB,下列判断正确的是()A.E A>E B,ΦA>ΦB,E PA<E PBB.E A>E B,ΦA<ΦB,E PA<E PBC.E A< E B,ΦA>ΦB,E PA>E PBD.E A<E B,ΦA<ΦB,E PA>E PB21.(09年安徽卷)18. 在光滑的绝缘水平面上,有一个正方形的abcd,顶点a、c处分别固定一个正点电荷,电荷量相等,如图所示。