【精选】一元一次方程单元培优测试卷
- 格式:doc
- 大小:1.03 MB
- 文档页数:13
一、初一数学一元一次方程解答题压轴题精选(难)
1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).
(1)求两个动点运动的速度;
(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;
(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?
【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,
根据题意得:3×(2x+3x)=15,
解得:x=1,
∴3x=3,2x=2,
答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;
(2)解:3×3=9,2×3=6,
∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;
(3)解:设运动的时间为t秒,
当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,
解得:t1=11,t2=19;
当A、B两点相向而行时,有|15﹣3t﹣2t|=4,
解得:t3= 或t4= ,
答:经过、、11或19秒,A、B两点之间相距4个单位长度.
【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.
(1)求a、b的值;
(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.
【答案】(1)解:2(a-2)=a+4,
2a-4=a+4
a=8,
∵x=a=8,
把x=8代入方程2(x-3)-b=7,
∴2(8-3)-b=7,
b=3
(2)解:①如图:点P在线段AB上,
=3,
AB=3PB,AB=AP+PB=3PB+PB=4PB=8,
PB=2,Q是PB的中点,PQ=BQ=1,
AQ=AB-BQ=8-1=7,
②如图:点P在线段AB的延长线上,
=3,
PA=3PB,PA=AB+PB=3PB,
AB=2PB=8,
PB=4,
Q是PB的中点,BQ=PQ=2,
AQ=AB+BQ=8+2=10.
所以线段AQ的长是7或10.
【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。
(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得
PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.
3.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。
(1)求饮用水和蔬菜各有多少件。
(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学。已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来。
(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元。该单位应选择哪种方案可使运费最少?最少运费是多少元?
【答案】(1)解:设蔬菜有x件,根据题意得
解得:
答:蔬菜有件、饮用水有件
(2)解:设安排甲种货车a辆,根据题意得
解得:
∵a为正整数
∴或或
∴有三种方案:①甲种货车2辆,乙种货车6辆;
②甲种货车3辆,乙种货车5辆;
③甲种货车4辆,乙种货车4辆
(3)解:方案①:(元)
方案②:(元)
方案③:(元)
∵
∴选择方案①可使运费最少,最少运费是元
【解析】【分析】(1)设蔬菜有x件,根据题意列出方程,求出方程的解,即可求解;(2)设安排甲种货车a辆,根据题意列出不等式组,求出不等式组的解集,由a为正整数,得出a为2或3或4,即可求出有三种方案;
(3)分别求出三种方案的运费,即可求解.
4.有两个大小完全一样长方形OABC和EFGH重合着放在一起,边OA、EF在数轴上,O 为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.
(1)数轴上点A表示的数为________.
(2)将长方形EFGH沿数轴所在直线水平移动.
①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的一半时,则移动后点F在数轴上表示的数为________.
②若长方形EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为何值时,D、E两点在数轴上表示的数时互为相反数?
【答案】(1)6
(2)①3或9
②如图所示:
据题意得出D所表示的数为,点E表示数为:,
当D、E两点在数轴上表示的数时互为相反数时:
则
解得:,
当移动x为4的时候D、E两点在数轴上表示的数时互为相反数.
【解析】【解答】解:(1)根据题意可得:
A表示数为的长,
故答案为:6.
( 2 )①当向左边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为9,当向右边边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为3;
故答案为:3或9.
【分析】(1)根据题意可以看出结果;(2)①分为两种情况,分别向左或向右平移;②根据