频率与概率[上学期]--北师大版
- 格式:pdf
- 大小:1.39 MB
- 文档页数:10
教学设计用频率估计概率一、学生知识状况分析学生通过以前的学习,已经会用列表法或树状图求简单的随机事件的概率。
对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,试验频率稳定于理论概率,并可据此估计某一事件发生的概率”.二、教学任务分析本节课的重点是掌握试验的方法估计复杂的随机事件发生的概率。
难点是试验估计随机事件发生的概率。
为此,本节课的教学目标是:1、感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系。
2、能用试验频率估计一些随机事件发生的概率,进一步体会概率的意义。
三、教学过程分析第一环节:课前3分钟(对相关知识进行回顾学习)1、事件的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧随机事件不可能事件必然事件确定性事件事件2、什么是频率?在相同情况下,进行了n 次试验,在这n 次试验中,事件A 发生了m 次,则事件A 发生的频率P=nm . 3、练习:(1)下列事件,是确定事件的是( )A.投掷一枚图钉,针尖朝上、朝下的概率一样.B.从一幅扑克中任意抽出一张牌,花色是红桃.C.任意选择电视的某一频道,正在播放动画片.D.在同一年出生的367名学生中,至少有两人的生日是同一天.(2)明天下雨的概率为95%,那么下列说法错误的是( )A.明天下雨的可能性较大B.明天不下雨的可能性较小C.明天有可能是晴天D.明天不可能是晴天第二环节:情境引入内容:下表列出了一些历史上的数学家所做的掷硬币试验的数据:目的:以历史上的抛硬币试验引入本课,激发学生的学习兴趣.结论:当试验次数很大时,一个事件发生频率一般稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.在相同情况下随机的抽取若干个体进行试验,进行试验统计.并计算事件发生的频率nm ,根据频率估计该事件发生的概率.第三环节:实践演练例1、抛掷一只纸杯的重复试验的结果如下表:(1)在表内的空格初填上适当的数(2)任意抛掷一只纸杯,杯口朝上的概率为.练习一:1、对某服装厂的成品西装进行抽查,结果如下表:(1)请完成上表(2)任抽一件是次品的概率是多少?(3)如果销售1 500件西服,那么大约需要准备多少件正品西装供买到次品西装的顾客调换?思考:摸球游戏现在有一个盒子,3个红球,7个白球,每个球除颜色外全部相同。
用频率估计概率-北师大版九年级数学上册教案在我们的日常生活中,概率应用非常广泛。
比如说,在天气预报中,我们会听到天气预报员说“明天的降雨概率是60%”。
那么,这个“60%”到底是怎么算出来的呢?其实,这涉及到了用频率估计概率的知识。
一、理解频率在介绍频率之前,先来回顾一下我们在初中学习的关于“试验”的知识。
什么是试验?试验就是一系列具有某些特征的随机事件组成的过程。
比如说,掷一个骰子,这个过程就是一个试验。
每次掷骰子,可能出现1、2、3、4、5或者6这六个数字中的一个,我们称之为随机事件。
如果我们把这个试验重复进行很多次,比如说进行10000次,那么每一个数字出现的次数就可能不同。
如果我们把每个数字出现的次数记下来,就得到了这样一张表格:数字出现次数1 16502 17123 16724 16815 16446 1641这个表格告诉我们每个数字出现的频率,也就是它们出现的次数除以总次数。
比如说,1这个数字出现的频率为1650/10000=0.165,也就是约为0.17。
二、用频率估计概率了解了什么是频率之后,我们来看看如何用频率来估计概率。
在前面的例子中,我们重复进行了一万次试验,这样做是为了让每个数字出现的次数更接近于它们理论上出现的次数。
如果这个试验只进行了一次,那么每个数字出现的次数就只有0或者1,这样的话,我们无法从中计算出概率。
但是,现实生活中,我们也很难做到重复进行数万次试验。
因此,我们通常是通过重复进行相对较少次数的试验,然后通过统计相应的频率来估计概率。
比如说,在天气预报中,我们实际上并不会重复进行许多次“明天是否下雨”的试验,因为这样做是不可能的。
但是,我们可以根据历史的气象数据,计算出过去每个月份下雨的总次数和总天数,从而得出下雨的频率。
然后,我们就可以用这个频率来估计未来某一天下雨的概率了。
三、用频率估计概率的误差用频率来估计概率是一种常用的方法,但是,它并不是一个完美的方法。
§3频率与概率一、必备知识基础练1.[探究点二]从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取出一张卡片并记下号码,统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10取出的次数10 11 8 8 6 10 18 9 11 9则取到的号码为奇数的频率是()A.0.53B.0.5C.0.47D.0.372.[探究点一](多选题)下列说法中正确的有()A.做9次抛掷一枚质地均匀的硬币的试验,结果有5次出现正面,所以出现正面的概率是59B.盒子中装有大小和形状相同的3个红球,3个黑球,2个白球,每种颜色的球被摸到的可能性相同C.从-4,-3,-2,-1,0,1,2中任取一个数,取得的数小于0和不小于0的可能性不相同D.设有一大批产品,已知其次品率为0.1,则从中任取100件,次品的件数可能不是10件3.[探究点二]我国古代数学名著中有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米夹谷,抽样取米一把,数得254粒,夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.454石4.[探究点一]气象台预测“本市明天降雨的概率是90%”,对预测的正确理解是()A.本市明天将有90%的地区降雨B.本市明天将有90%的时间降雨C.明天出行不带雨具肯定会淋雨D.明天出行不带雨具可能会淋雨5.[探究点二]已知样本容量为200的频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为,数据落在[2,10)内的概率约为.6.[探究点二]一个容量为20的样本,数据的分组及各组的频数如下:[10,20)2个;[20,30)3个;[30,40)x个;[40,50)5个;[50,60)4个;[60,70)2个.并且样本在[30,40)之间的频率为0.2,则x=;根据样本的频率分布估计,数据落在[10,50)的概率约为.7.[探究点二]某篮球运动员在同一条件下进行投篮练习,结果如下表所示.投篮次数n/次8 10 15 20 30 40 50进球次数m/次 6 8 12 17 25 32 38进球频率mn(1)填写上表中的进球频率;(2)这位运动员投篮一次,进球的概率大约是多少?8.[探究点三]已知n是一个三位正整数,若n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如135,256,345等).现要从甲、乙两名同学中,选出一个参加某市组织的数学竞赛,选取的规则如下:从由1,2,3,4,5,6组成的所有“三位递增数”中随机抽取1个数,且只抽取1次,若抽取的“三位递增数”是偶数,则甲参加数学竞赛;否则,乙参加数学竞赛.(1)由1,2,3,4,5,6可组成多少“三位递增数”?并一一列举出来.(2)这种选取规则对甲、乙两名学生公平吗?并说明理由.二、关键能力提升练9.掷一枚均匀的硬币,如果连续抛掷1 000次,那么第999次出现正面向上的概率是()A.1999B. 11000C. 9991000D. 1210.(多选题)某调查公司在一服务区从七座以下小型汽车中抽取了40名驾驶员进行询问调查,将他们在某段高速公路的车速(单位:km/h)分成六个区间:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90],得到如图所示的频率分布直方图.下列结论正确的是()A.这40辆小型车辆车速的众数的估计值为77.5B.在该服务区任意抽取一辆车,车速超过80 km/h的概率为0.35C.若从车速在[60,70)的车辆中任意抽取2辆,则至少有一辆车的车速在[65,70)的概率为1415D.若从车速在[60,70)的车辆中任意抽取2辆,则车速都在[60,65)内的概率为1311.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径(单位:厘米)检验,结果如下:直径/厘米个数直径/厘米个数[6.88,6.89] 1 (6.93,6.94] 26(6.89,6.90] 2 (6.94,6.95] 15(6.90,6.91] 10 (6.95,6.96] 8(6.91,6.92] 17 (6.96,6.97] 2(6.92,6.93] 17 (6.97,6.98] 2从这100个螺母中任意取一个,则事件A:螺母的直径在(6.93,6.95]范围内的频率为;事件B:螺母的直径在(6.91,6.95]范围内的频率为.12.为了解市民对A,B两个品牌共享单车使用情况的满意程度,分别从使用A,B两个品牌单车的市民中随机抽取了100人,对这两个品牌的单车进行评分,满分60分.根据调查,得到A品牌单车评分的频率分布直方图和B品牌单车评分的频数分布表:A品牌分数频率分布直方图B品牌单车评分的频数分布表分数区间频数[0,10) 1[10,20) 3[20,30) 6[30,40) 15[40,50) 40[50,60) 35根据用户的评分,定义用户对共享单车评价的“满意度指数”如下:评分[0,30) [30,50) [50,60]满意度指数0 1 2(1)求对A品牌单车评价“满意度指数”为0的人数;(2)从对A,B两个品牌单车评分都在[0,10)范围内的人中随机选出2人,求2人中恰有1人是A品牌单车的评分人的概率.三、学科素养创新练13.电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数140 50 300 200 800 510好评率0.4 0.2 0.15 0.25 0.2 0.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大(只需写出结论)?参考答案1.A 由题意知,本题是一个古典概型,∵有放回地取100次,每次取一张卡片并记下号码,∴事件总数是100,由表可以看出取到号码为奇数有10+8+6+18+11=53(种)结果,∴P=53100=0.53,故选A .2.CD 对于A 中,应为出现正面的频率是59,故A 错误;对于B 中,摸到白球的概率要小于摸到红球或黑球的概率,故B 错误;对于C 中,取得的数小于0的概率大于不小于0的概率,故C 正确;对于D 中,任取100件产品,次品的件数是随机的,故D 正确.故选CD . 3.B 由题意可知,这批米内夹谷约为1 534×28254≈169(石),故选B .4.D “本市明天降雨的概率是90%”也即为“本市明天降雨的可能性为90%”.故选D .5.64 0.4 由于[6,10)范围内,频率为0.08×4=0.32,所以频数为0.32×200=64.在[2,10)范围内的概率约为(0.02+0.08)×4=0.4.6.4 0.7 样本总数为20个,∴x=20-(2+3+5+4+2)=20-16=4,∴数据落在[10,50)的概率P=1420=0.7.7.解(1)表中从左到右依次填:0.75 0.80 0.80 0.85 0.83 0.80 0.76.(2)由于进球频率都在0.80左右摆动,故这位运动员投篮一次,进球的概率约是0.80. 8.解(1)由题意知,所有由1,2,3,4,5,6组成的“三位递增数”共有20个. 分别是123,124,125,126,134,135,136,145,146,156,234,235,236,245,246,256,345,346,356,456. (2)不公平.由(1)知,所有由1,2,3,4,5,6组成的“三位递增数”有20个,记“甲参加数学竞赛”为事件A ,记“乙参加数学竞赛”为事件B.则事件A 含有样本点有:124,134,234,126,136,146,156,236,246,256,346,356,456共13个.由古典概型计算公式,得P (A )=1320,又A 与B 对立,所以P (B )=1-P (A )=1-1320=720,所以P (A )>P (B ).故选取规则对甲、乙两名学生不公平.9.D每一次出现正面朝上的概率都是1,故选D.210.ABC在A中,由题图可知,众数的估计值为75+80=77.5,A正确;2在B中,车速超过80 km/h的频率为0.05×5+0.02×5=0.35,用频率估计概率知,B正确;在C中,由题可知,车速在[60,65)内的车辆数为2,车速在[65,70)内的车辆数为4,运用古典,即车速都在[60,65)内的概率为概型求概率得,至少有一辆车的车速在[65,70)的概率为14151,故C正确,D错误.故选ABC.1511.0.410.75螺母的直径在(6.93,6.95]范围内的频数为26+15=41,所以事件A的频率=0.41.螺母的直径在(6.91,6.95]范围内的频数为17+17+26+15=75,所以事件B的频为41100=0.75.率为7510012.解(1)由A的频率分布直方图可知,对A评分低于30的频率为(0.003+0.005+0.012)×10=0.2,所以评分低于30的人数为100×0.2=20.(2)设事件A为“2人中恰有1人是A品牌单车的评分人”.对A评分在[0,10)范围内的有3人,设为M1,M2,M3;对B评分在[0,10)范围内的有1人,设为N.从这4人中随机选出2人的选法为(M1,M2),(M1,M3),(M1,N),(M2,M3),(M2,N),(M3,N),共6种.其中,恰有1人是A的选法.为(M1,N),(M2,N),(M3,N),共3种.故概率为P(A)=1213.解(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000,第四类电影中获得好评的电影部数是200×0.25=50.故所求概率为50=0.025.2000(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=56+10+45+50+160+51=372.故所求概率估计为1-372=0.814.2000(3)增加第五类电影的好评率,减少第二类电影的好评率.。
用频率估计概率-北师大版九年级数学上册教案一、教学目标1.了解频率和概率的关系,掌握用频率估计概率的方法。
2.能够运用用频率估计概率的方法解决实际问题。
3.提高学生的观察能力和自主学习能力。
二、教学重点1.频率和概率的关系。
2.用频率估计概率的方法。
三、教学难点用频率估计概率的方法。
四、教学方式1.探究式教学。
2.案例式教学。
3.合作学习。
五、教学准备1.计算器。
2.板书工具。
六、教学过程1. 导入请同学们回忆一下上课学到的内容,回答以下问题:1.什么是“实验”?2.什么是“样本空间”?3.什么是“事件”?2. 操作过程1.情境引入请同学们想一想,在日常生活中,我们如何估计一个事件发生的概率?是否可以通过实验来完成?2.引出频率和概率的关系通过实验的方法,同学们可以得到若干次实验结果,那么这些实验结果中,某个事件发生的频率与概率是否有关系?通过给出小球模拟实验的例子,让学生感受到频率和概率的关系。
3.讲解用频率估计概率的方法在实际生活中,我们往往不能做出无限次的实验,那么我们如何根据有限的实验次数估计事件的概率呢?讲解用频率估计概率的方法,并结合实例进行说明。
4.案例演示案例:某地区的饮用水源主要是水井,地方政府为了保障饮用水的安全,要求对100口水井进行水质检测,得到以下结果:含铁量超标:60口井含铬量超标:45口井含锰量超标:25口井同学们通过以上数据,计算出相应的频率和概率,并解释结果的含义。
5.合作学习分组讨论,在小组内进行合作学习,完成以下题目:有一组班级的学生成绩数据,如下所示:成绩优秀良好及格不及格学生人数10 25 35 30假设从中随机选出一个学生,求:(1) 选中的学生成绩优秀的概率; (2) 用频率估计成绩较好(不包括不及格)的概率。
6.结束语总结本节课的主要内容,并要求学生预习下一节课内容。
七、作业1.完成教师发放的作业。
2.充分利用生活中的实例,用频率估计概率。
八、板书设计频率和概率的关系用频率估计概率的方法。
练 案1、下列说法正确的是 ( ) A. 某事件发生的概率为21,这就是说:在两次重复实验中,必有一次发生 B .一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球C .两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反,所以出现一正一反的概率是31 D .全年级有400名同学,一定会有2人同一天过生日2、掷一枚硬币,落地后,国徽朝上、朝下的概率各是多少?3、一个均匀的小正方体,各面分别标有1~6六个数字,求下列事件的概率: (1)随机掷这个小正方体,落地后朝上面数字是6的概率是 ;(2)随机掷这个小正方体两次,两次落地后朝上面数字之和为6的概率是 .6.1 频率与概率(2)学案学习目标: 学习用树状图和列表法计算涉及两步实验的随机事件发生的概率. 重难点:会用树状图和列表法计算涉及两步实验的随机事件发生的概率 学习过程: 一、复习1.当试验次数很大时,一个事件发生的 也稳定在相应的 附近.因此,我们可以通过多次试验,用一个事件发生的 来估计这一事件发生的 .2.掷两枚完全相同的硬币,两个都是正面朝上的概率是多少?3.抛骰子时,出现点数为6的概率是多少?二、自主学习(1)在前面的摸牌游戏中,在第一次试验中,如果摸得第一张牌的牌面的数字为1,那么摸第二张牌时,摸得牌面数字为几的可能性大? 如果摸得第一张牌的牌面的数字为2呢?(2)做一做:根据你所做的30次试验的记录,分别统计一下,摸得第一张牌的牌面的数字为1时,摸第二张牌的牌面数字为1和2的次数.摸得第二张牌的牌面的数字为1 ( 次) 第一张牌的牌面的数字为1( 次)摸得第二张牌的牌面的数字为2 ( 次) (3)议一议:阅读P175内容,你同意小明的看法吗? (4)想一想对于前面的摸牌游戏,一次试验中会出现哪些可能的结果?每种结果出现的可能性相同吗? (5)自学课本P176—P178页内容 (6)请用列表法解答例1当堂检测:1.随机掷一枚均匀的硬币两次,到少有一次正面朝上的概率是多少?(请用树状图法和列表法两种方法解答)2.从一定高度随机掷一枚均匀的硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果.小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上.那么,你认为小明第4次掷硬币,出现正面朝上的可能性大,还是反面朝上的可能性大,还是一样大?说说你的理由,并与同伴进行交流.3.袋中装有一个红球和一个黄球,他们除了颜色外都相同.随机从中摸出一球,记录下颜色再放回袋中,充分摇匀后,再随机摸出一球.两次都摸到红球的概率是多少?(请用列表法解答)练案1.袋中装有三个完全相同的球,分别标有“1”“2”“3”.从中随机摸出一球,以该球上的数字作为十位数;将球放回并充分摇匀后,再随机摸出一球,以该球上的数字作为个位数.那么所得数字为“23”的概率为多少?(请用树状图法解答)2.在摸球游戏中,如果每组3张牌,他们的牌面数字分别为1,2,3,那么从每组牌中各随机摸出一张牌,两张牌的牌面数字和为几的概率最大?最大的概率为多少?3.A,B,C三个小朋友在做游戏前需要确定游戏的先后顺序.他们协商约定:将两枚均匀的硬币同时向上抛出,落地后,若都是正面朝上,则A 先做;若都是反面朝上,则B先做;若一正一反,则C先做.这样的办法对三人是否公平?为什么?6.1 频率与概率(3)学案学习目标:1、进一步经历用树状图、列表法计算两步随机实验的概率.2、经历计算理论概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.教学重点:用树状图、列表法计算概率教学难点:正确地利用列表法计算概率学习过程:一、复习检测1.当试验次数很大时,一个事件发生也稳定在相应的附近.因此,我们可以通过多次试验,用一个事件发生的来估计这一事件发生的 .2.利用或可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.3、请利用列表法.求出掷两枚骰子:(1)“点数和为12点”的概率;(2)“点数和至少是9点”的概率;(3)“两颗骰子点数相同”的慨率;(4)“两颗骰子的点数都是偶数”的概率;(5)“点数和为1点”的概率;(6)“点数和小于13点”的概率.二、自主学习1.完成课本P180页问题2、想一想:阅读课本P180---181页内容你认为谁做的对?说说你的理由。
北师大版数学九年级上册6.1.1《频率与概率》教学设计一. 教材分析《频率与概率》是北师大版数学九年级上册第六章第一节的内容。
本节内容主要介绍了频率与概率的概念,以及如何通过实验来估计事件的概率。
本节课的内容对于学生来说比较抽象,需要通过大量的实验和案例来理解和掌握。
教材通过具体的案例和实验,引导学生认识频率与概率之间的关系,培养学生运用概率知识解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有一定的了解。
但是,由于本节课的内容比较抽象,学生可能对于频率与概率的概念和关系有一定的困难。
因此,在教学过程中,需要通过具体的案例和实验,让学生直观地感受频率与概率之间的关系,从而更好地理解和掌握本节课的内容。
三. 教学目标1.理解频率与概率的概念,掌握频率与概率之间的关系。
2.能够通过实验来估计事件的概率,并运用概率知识解决实际问题。
3.培养学生的动手操作能力和数据分析能力,提高学生的数学思维能力。
四. 教学重难点1.频率与概率的概念及其关系。
2.如何通过实验来估计事件的概率。
3.运用概率知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过具体的案例和实验,引导学生自主探索频率与概率之间的关系。
2.利用多媒体课件和实物教具,进行直观演示,帮助学生理解和掌握概念。
3.学生进行小组讨论和合作交流,培养学生的团队合作能力和口头表达能力。
4.结合课后习题和实际问题,进行巩固练习,提高学生的应用能力。
六. 教学准备1.多媒体课件和实物教具。
2.实验器材:骰子、卡片、抽奖箱等。
3.课后习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个简单的猜数字游戏,引导学生思考概率的概念。
教师提出问题:“如果你猜一个数字,有多少的概率能够猜中?”让学生思考并回答。
2.呈现(10分钟)教师通过多媒体课件或者实物教具,呈现频率与概率的概念。
解释频率是指事件发生的次数与总次数的比值,概率是指事件发生的可能性。
1.1频率与概率1.2生活中的概率三维目标1.知识与技能(1)了解随机事件、必然事件、不可能事件的概念;(2)了解随机事件发生的不确定性和频率的稳定性;(3)了解概率的概念和意义以及事件发生的频率与概率的区别与联系;(4)利用概率知识正确理解现实生活中的实际问题.2.过程与方法(1)发现法教学:经历抛硬币试验获取数据的过程,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过三种事件的区分及用统计算法计算随机事件的概率,提高学生分析问题、解决问题的能力;(3)通过概念的提炼和小结的归纳提高学生的语言表达和归纳能力.3.情感、态度与价值观(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;培养学生以随机的观点认识世界,使学生了解偶然性和必然性的辩证统一,培养其辩证唯物主义思想.(2)通过动手实验,培养学生的“做”数学的精神,享受“做”数学带来的成功喜悦.重点难点重点:事件的分类;了解随机事件发生的不确定性和概率的稳定性;正确理解概率的定义.难点:随机事件的概率的统计定义.由于概念比较抽象,突破难点的重要途径是注重它们的实际意义,通过实例、试验来加深学生对概念的理解.教学建议实践教学法,指导学生做简单易行的试验,让学生自然地发现随机事件的某一结果发生的规律性.以实际生活中的例子展开,让学生自己动手、动脑和亲身试验来理解知识,学生参与到知识的发生、发展中来,体会数学知识与现实世界的联系.教学流程创设情境引入新课:明天下雨的可能性为95%,明天一定下雨吗?怎样理解这句话⇒引导学生结合初中所学的概率知识分析、思考概率与频率的区别与联系⇒通过引导学生回答所提问题给出概率的统计意义⇒通过例1及变式训练,使学生掌握判断随机事件的基本方法⇒通过例2及互动探究,使学生明确概率与频率的关系⇒通过例3及其变式训练,学生能初步掌握现实生活中的一些概率问题的合理解释⇒归纳整理,进行小结,使学生从整体上把握本节知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正课前自主导学附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A 的概率,记作P(A).我们有0≤P(A)≤1.做一个简单的实验:把一枚骰子掷多次,观察出现的结果,并记录各结果出现的频数.1.在本实验中出现了几种结果?【提示】一共出现了1点、2点、3点、4点、5点、6点六种结果.2.一次试验中的试验结果试验前能确定吗?【提示】不能.3.若做大量地重复试验,你认为出现每种结果的次数有何关系?【提示】大致相等.频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确定的值,因此,人们用概率来反映随机事件发生的可能性的大小.在实际问题中,某些随机事件的概率往往难以确切得到,因此,我们常常通过做大量的重复试验,用随机事件发生的频率作为它的概率的估计值.【问题导思】某同学投篮命中率为50%,那么他投篮10次,一定会投中5次吗?【提示】不一定.投篮命中率为50%,并不能说他投篮10次一定投中5次,但随着投篮次数的增加,他投中的次数会越来越接近一半,即投中率接近50%.概率和日常生活有着密切的联系,对生活中的随机事件,我们可以利用概率知识作出合理的判断与决策.例1(1)在标准大气压下,水在温度达到90 ℃时沸腾;(2)某一天内电话收到的呼叫次数为0;(3)一个袋内装有形状、大小都相同的一个白球和一个黑球,从中任意摸出1个球为白球.【思路探究】可先判断在给定条件下,所给事件是否一定发生,然后再确定其事件类型.解根据“在一定条件下可能发生,也可能不发生的事件叫作随机事件”,可知(2)、(3)为随机事件.根据“在一定条件下一定不会发生的事件叫作不可能事件,一定条件下必然会发生的事件叫作必然事件”可知,(1)为不可能事件.规律方法1.准确掌握随机事件、必然事件、不可能事件的概念是解决此类问题的关键.2.应用时要特别注意看清条件,在给定条件下判断一定发生,还是不一定发生,还是一定不发生来确定哪一类事件.变式训练指出下列事件是随机事件、必然事件还是不可能事件:(1)我国东南沿海某地明年将受到3次热带气旋的侵袭;(2)若a为实数,则|a|≥0;(3)某人开车通过10个路口都将遇到绿灯;(4)一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷2次,数字之和大于12.解(1)(3)所陈述的事件可能发生也可能不发生,故为随机事件;(2)所陈述的事件在此条件下一定会发生,故为必然事件;(4)中的事件在此条件下一定不会发生,故为不可能事件.例210分,然后作了统计,统计结果如下:贫困地区:(1)(2)估计两个地区参加测试的儿童得60分以上的概率.【思路探究】先分析两个地区参加测试的儿童得60分以上的频率,然后根据频率估计两个地区参加测试的儿童得60分以上的概率.解(1)贫困地区:规律方法1.计算数值要细心,保留小数的位数要相同,试验次数越多,频率就越接近概率.2.随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生呈现一定的规律性,因而,可以从统计的角度,用事件发生的频率去“测量”,通过计算事件发生的频率去估计概率.互动探究利用本例的计算结果,分析贫富差距为什么会带来人的智力差别?解由条件可知,贫困地区经济不发达、生活水平低,儿童的健康和发育会受到一定的影响;另外经济落后也会使教育事业发展落后,这都是贫富差距带来人的智力差别的原因.例3) A.如果有100个这种病人各使用一剂这样的药物,则有90人会治愈B.如果一个患有这种疾病的病人使用两剂这样的药物就一定会治愈C.说明使用一剂这种药物治愈这种疾病的可能性是90%D.以上说法都不对【思路探究】本题主要考查概率的意义,概率从数量上客观地反映了随机事件发生的可能性的大小.【解析】概率是指一个事件发生的可能性的大小.治愈某种疾病的概率为90%,说明使用一剂这种药物治愈这种疾病的可能性是90%,但不能说明使用一剂这种药物一定可以治愈这种疾病,只能说是治愈的可能性较大,故选C.【答案】 C规律方法1.根据概率的定义可知“90%”表示的含义:使用一剂药后此病治愈的可能性是90%.2.概率只是说明了事件发生的可能性的大小,是在事件发生之前对事件是否发生进行的一种猜测.变式训练某射手击中靶心的概率是0.9是不是说明他射击10次就一定能击中靶心9次?解从概率的定义出发,击中靶心的概率是0.9并不意味着射击10次就一定能击中靶心9次,只有进行大量射击试验时,击中靶心的次数才约为910n,其中n为射击次数,而且n越大,射中的次数就越接近于910n.易错易误辨析混淆频率与概率致误典例把一枚质地均匀的硬币连续掷1 000次,其中有498次正面朝上,502次反面朝上,求掷一次硬币正面朝上的概率.【错解】由题意,据公式可知4981 000=0.498.【错因分析】混淆了频率与概率的概念,事实上频率本身是随机的,做同样的试验得到的事件的频率是不同的,如本题中的0.498是1 000次试验中正面朝上的频率;而概率是一个确定的常数,是客观存在的,与每次试验无关.【防范措施】 1.正确理解频率与概率的概念.2.弄清频率与概率的区别与联系.【正解】通过做大量的试验可以发现,正面朝上的频率都在0.5附近摆动,故掷一次硬币,正面朝上的概率是0.5.课堂小结1.辨析随机事件、必然事件、不可能事件时要注意看清条件,在给定的条件下判断是一定发生(必然事件),还是不一定发生(随机事件),还是一定不发生(不可能事件).2.随机事件的发生既是随机的,又是有规律的.每次试验的结果是随机的,大量试验的结果才呈现出其规律性.3.概率体现了随机事件发生的可能性,故可用样本的频率来近似地估计总体中该结果出现的概率.当堂检测1.下列事件是随机事件的是()①从一个三角形的三个顶点各任意画一条射线,这三条射线交于一点;②把9写成两个数的和,其中一定有一个数小于5;③汽车排放尾气,污染环境;④明天早晨有雾;⑤明年7月28日的最高气温高于今年8月10日的最高气温.A.①④B.②③⑤C.①④⑤D.②③④【解析】对于②,③为必然事件,①,④,⑤为随机事件.【答案】 C2.下列关于随机事件的频率与概率的关系的叙述中正确的是()A.频率就是概率B.随着试验次数的增加,频率一般会越来越接近概率C.概率是随机的,在试验前不能确定D.频率是客观存在的,与试验次数无关【解析】根据频率与概率的关系可得答案为B.【答案】 B3.某地天气预报说“明天降水概率为90%”,这是指()A.明天该地区约90%的地方会降水B.明天该地区约90%的时间会降水C.气象台的专家中,有90%认为明天会降水,其余专家认为不降水D.明天该地区降水的可能性为90%【解析】概率是指某一随机事件发生的可能性,题中的90%只跟降水这个事件有关,而与该地区的降水范围、时间等无关.【答案】 D4.某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:(1)将各组的频率填入表中;(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率.解(1)频率依次是:0.048,0.121,0.208,0.223,0.193,0.165,0.042.(2)样本中寿命不足1 500小时的频数是48+121+208+223=600,所以样本中寿命不足1 500小时的频率是6001 000=0.6.所以灯管使用寿命不足1 500小时的概率约为0.6.。