郑州市外国语新枫杨学校七年级上册数学期末试卷(含答案)
- 格式:doc
- 大小:992.50 KB
- 文档页数:26
郑州市外国语新枫杨学校七年级上册数学期末试卷(含答案)一、选择题1.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .2.下列因式分解正确的是() A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+3.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3B .-3C .±3D .+64.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 5.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个6.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。
若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边C .在点 A, C 之间D .以上都有可能7.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .18.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =9.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >010.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离11.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-12.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元 B .200元C .225元D .259.2元13.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .15014.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .115.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题16.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.17.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.18.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.19.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
郑州市外国语新枫杨学校七年级上册数学期末试卷(含答案)一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒3.下列说法中正确的有( )A .连接两点的线段叫做两点间的距离B .过一点有且只有一条直线与已知直线垂直C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线4.下列调查中,适宜采用全面调查的是()A .对现代大学生零用钱使用情况的调查B .对某班学生制作校服前身高的调查C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查5.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个6.21(2)0x y -+=,则2015()x y +等于( )A .-1B .1C .20143D .20143-7.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >0 8.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+ 9.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒ 10.下列图形中,哪一个是正方体的展开图( )A .B .C .D .11.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=212.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.15.当a=_____时,分式13a a --的值为0. 16.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 17.当x= 时,多项式3(2-x )和2(3+x )的值相等.18.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.19.计算:3+2×(﹣4)=_____.20.8点30分时刻,钟表上时针与分针所组成的角为_____度.21.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______. 22.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______23.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、解答题25.计算(1)32527-(2)()3335+- 26.如图1,将一副直角三角板的两顶点重合叠放于点O ,其中一个三角板的顶点C 落在另一个三角板的边OA 上.已知90ABO DCO ∠=∠=,45AOB ∠=,60COD ∠=,作AOD ∠的平分线交边CD 于点E .(1)求∠BOE 的度数;(2)如图2,若点C 不落在边OA 上,当15COE ∠=时,求BOD ∠的度数.27.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为-200,B 点对应的数为-20,C 点对应的数为40.甲从C 点出发,以6单位/秒的速度向左运动.(1)当甲在B 点、C 点之间运动时,设运时间为x 秒,请用x 的代数式表示:甲到A 点的距离: ;甲到B 点的距离: ;甲到C 点的距离: .(2)当甲运动到B 点时,乙恰好从A 点出发,以4单位/秒的速度向右运动,设两人在数轴上的D 点相遇,求D 点对应的数;(3)若当甲运动到B 点时,乙恰好从A 点出发,以4单位/秒的速度向左运动,设两人在数轴上的E 点相遇,求E 点对应的数.28.如图①,将一个由五个边长为1的小正方形组成的图形剪开可以拼成一个正方形. (1)拼成的正方形的面积与边长分别是多少?(2)你能在图②中连结四个格点(每一个小正方形的顶点叫做格点),画出一个面积为10的正方形吗?如果不能,请说明理由;如果能,请在图②中画出这个正方形.29.一位同学做一道题:“已知两个多项式A ,B ,计算.”他误将“”看成“”,求得的结果为.已知,请求出正确答案. 30.解方程:4x ﹣3(20﹣x )+4=0 四、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.32.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a .请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点.(1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒.①当t =2时,求AB 和AC 的长度; ②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.33.已知:如图,点M 是线段AB 上一定点,12AB cm ,C 、D 两点分别从M 、B出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB 的长小于点A 绕点C 到B 的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C .【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.D解析:D【解析】【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项.【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D.【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.3.C解析:C【解析】【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可.【详解】A .连接两点的线段的长度叫做两点间的距离,错误;B .在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C .对顶角相等,正确;D .线段AB 的延长线与射线BA 不是同一条射线,错误.故选C .【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.4.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A 、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误; B 、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C 、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D 、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.5.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.6.A解析:A【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A7.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,ab<0,a﹣b<0,a÷b<0.故选:C.8.D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.9.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.10.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键. 11.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.12.B解析:B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题13.14【解析】因为线段AB 被点C,D 分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N 分别是AC,DB 的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB 被点C,D 分成2:4:7三部分,所以设AC =2x ,CD =4x ,BD =7x ,因为M,N 分别是AC,DB 的中点,所以CM =12AC x =,DN =1722BD x =, 因为mn =17cm,所以x +4x +72x =17,解得x =2,所以BD =14,故答案为:14. 14.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.15.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.16.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.17.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.18.18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原解析:18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:118000=1.18×105,故答案为1.18×105.19.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.21.8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A、C两点间的距离是8cm或4cm故答案为:8cm或4cm.【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.22.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.23.5【解析】【分析】把方程的解代入方程即可得出的值.【详解】把代入方程,得∴故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.解析:5【解析】【分析】把方程的解代入方程即可得出m的值.【详解】x=代入方程,得把1m⨯-=141m=∴5故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.24.6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm. 故答案为:6.解析:6 【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.三、解答题25.(1)2;(2)435 【解析】【分析】(1)根据算术平方根和立方根的定义化简各数,然后再进行减法运算即可;(2)先去括号,然后再进行加减运算即可.【详解】32527=5-3=2; (2)3335 =3335=435【点睛】本题考查了实数的运算,熟练掌握相关的运算法则是解题的关键.26.(1)75;(2)135.【解析】【分析】(1)根据角平分线的定义可求出∠AOE 的度数,根据角的和差关系即可求出∠BOE 的度数;(2)根据角的和差关系可求出∠DOE 的度数,根据角平分线的定义可求出∠AOD 的度数,进而根据角的和差关系即可求出∠BOD 的度数.【详解】(1)∵60AOD ∠=,OE 平分AOD ∠,∴1302AOE AOD ∠=∠= ∵45AOB ∠=∴75BOE AOE AOB ∠=∠+∠=(2)∵60COD ∠=,15COE ∠=,∴45DOE COD COE ∠=∠-∠=∵OE 平分AOD ∠,∴290AOD DOE ∠=∠=∵45AOB ∠=∴135BOD AOD AOB ∠=∠+∠=.【点睛】本题考查角平分线的定义及角的和与差,从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线;熟练掌握定义是解题关键.27.(1)240-6x ,60-6x ,6x ;(2)-128;(3)-560.【解析】【分析】(1)根据题意结合甲的速度得出甲到A 点的距离以及甲到B 点的距离和甲到C 点的距离;(2)利用甲、乙的速度结合运动方向得出等式求出答案;(3)利用甲、乙的速度结合运动方向得出等式求出答案.【详解】(1)当甲在B 点、C 点之间运动时,设运时间为x 秒,请用x 的代数式表示:甲到A 点的距离:240-6x ;甲到B 点的距离:60-6x ;甲到C 点的距离:6x .故答案为240-6x ,60-6x ,6x ;(2)设t 秒时,两人在数轴上的D 点相遇,根据题意可得:6t+4t=180,解得:t=18,则D 点对应的数为:-(18×6+20)=-128;(3)设y 秒时,两人在数轴上的E 点相遇,根据题意可得:6y-4y=180,解得:y=90,则E 点对应的数为:-(90×6+20)=-560.【点睛】此题主要考查了一元一次方程的应用,根据题意结合甲、乙运动的方向和距离得出等式是解题关键.28.(1)面积为5,边长为;(2)详见解析.【解析】【分析】(1)一共有5个小正方形,那么组成的大正方形的面积为5,边长为5的算术平方根;(2)根据正方形的面积为10,可得这个正方形的边长为,根据格点的特征结合勾股定理画出边长为的正方形即可.【详解】(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的面积是:5×1×1=5;边长=;(2)能,如图所示:边长=,.【点睛】本题考查了勾股定理,正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.正方形的面积是由组成正方形的面积的小正方形的个数决定的;边长为面积的算术平方根.29.【解析】【分析】根据题意列出式子,先求出A表示的多项式,然后再求2A+B.【详解】解:由,,得.所以.【点睛】本题考查整式的加减运算,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.根据题中的关系可先求出A,进一步求得2A+B.30.x=8【解析】【分析】按照去括号、移项、合并同类项、系数化为1的步骤进行解答即可.【详解】解:4x﹣60+3x+4=0,4x+3x=60﹣4,7x=56,x=8.【点睛】本题考查了一元一次方程的解法,其一般步骤为去分母、去括号、移项、合并同类项、系数化为1.四、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变【解析】【分析】 (1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t =2时,先求出A 、B 、C 点表示的数,然后利用定义求出AB 、AC 的长即可; ②先求出A 、B 、C 点表示的数,然后利用定义求出AB 、AC 的长,代入3AC -4AB 即可得到结论.【详解】(1)A ,B ,C 三点的位置如图所示:.(2)①当t =2时,A 点表示的数为-4,B 点表示的数为5,C 点表示的数为12,∴AB =5-(-4)=9,AC =12-(-4)=16.②3AC -4AB 的值不变.当移动时间为t 秒时,A 点表示的数为-t -2,B 点表示的数为2t +1,C 点表示的数为3t +6,则:AC =(3t +6)-(-t -2)=4t +8,AB =(2t +1)-(-t -2)=3t +3,∴3AC -4AB =3(4t +8)-4(3t +3)=12t +24-12t -12=12.即3AC ﹣4AB 的值为定值12,∴在移动过程中,3AC ﹣4AB 的值不变.【点睛】本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.33.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm .故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN ﹣BN=MN .又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.。
七年级上册郑州市外国语新枫杨学校数学期末试卷章末练习卷(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知长方形纸片ABCD,点E,F,G分别在边AB,DA,BC上,将三角形AEF沿EF翻折,点A落在点处,将三角形EBG沿EG翻折,点B落在点处.(1)点E,,共线时,如图,求的度数;(2)点E,,不共线时,如图,设,,请分别写出、满足的数量关系式,并说明理由.【答案】(1)解:如图中,由翻折得: ,(2)解:如图,结论: .理由:如图中,由翻折得:,如图,结论:,理由: ,,.【解析】【分析】(1)根据翻折不变性得:,由此即可解决问题.(2)根据翻折不变性得到:,根据分别列等式可得图和的结论即可.2.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间【答案】(1)解:因为,所以2a+4=0,b-6=0,所以a=−2,b=6;所以AB的距离=|b−a|=8;(2)解:设数轴上点C表示的数为c.因为AC=2BC,所以|c−a|=2|c−b|,即|c+2|=2|c−6|.因为AC=2BC>BC,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c= ;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c=14.故当AC=2BC时,c= 或c=14;(3)解:①因为甲球运动的路程为:1×t=t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t=2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t= ;当t>3时,得t+2=2t−6,解得t=8.故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等.【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.3.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
郑州市外国语新枫杨学校七年级上册数学期末试卷(含答案)一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108B .6.5×107C .6.5×108D .65×1062.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1 B .2 C .3 D .4 4.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0 B .1- C . 2.5- D .3 5.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-26.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab +=7.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .2C 2D 328.如果a ﹣3b =2,那么2a ﹣6b 的值是( ) A .4B .﹣4C .1D .﹣1 9.已知一个多项式是三次二项式,则这个多项式可以是( )A .221x x -+B .321x +C .22x x -D .3221x x -+10.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB11.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-12.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题13.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.15.把5,5,35按从小到大的顺序排列为______.16.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.17.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.18.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.19.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.20.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.21.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.22.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 24.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.三、压轴题25.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 26.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.27.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
2022-2023学年七上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列各组中不是同类项的是( )A .52与25B .2212a b c 与2213a cb C .29m 与28m D .214a b 与25ab - 2.下列各式中,与3x 2y 3不是同类项的是( )A .2x 2y 3B .﹣3y 3x 2C .﹣12x 2y 3D .﹣13y 5 3.如图,B 、C 两点把线段MN 分成三部分,其比为MB :BC :CN =2:3:4,点P 是MN 的中点,PC =2cm ,则MN 的长为( )A .30cmB .36cmC .40cmD .48cm4.若1x =-是关于x 的一元一次方程20ax +=的解,则a 的值是( )A .-2B .-1C .1D .25.如图是一个正方体纸盒的表面展开图,折成正方体后,相对面上的两个数互为相反数,则A 、B 、C 表示的数分别为( )A .0,﹣5,3B .0,3,﹣5C .3,0,﹣5D .﹣5,3,06.甲、乙两地相距300千米,从甲地开出一辆快车,速度为100千米/时,从乙地开出一辆慢车,速度为 65千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x 小时两车相遇,则根据题意列方程为( )A .()10010065300x ++=B .()100165300x x -+=C .()6510065300x ++=D .()6510065300x +-=7.一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则设销售员出售此商品最低可打x 折,由题意列方程,得( )A .()3000x 200015%=-B .3000x 20005%2000-=C .()x 3000200015%10⋅=⋅-D .()x 3000200015%10⋅=⋅+ 8.下列各组数中,互为相反数的是( ) A .2和-2 B .-2和12 C .-2和12- D .12和2 9.下列等式变形正确的是( )A .由7x =5得x =75B .由10.2x =得2x =10 C .由2﹣x =1得x =1﹣2 D .由3x ﹣2=1得x ﹣6=3 10.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了( )场.A .3B .4C .5D .6二、填空题(本大题共有6小题,每小题3分,共18分)11.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小30,则1∠的度数为____________︒.12.关于x 的一元一次方程ax +4=10的解为x =2,则a =_____.13.若代数式﹣4x 6y 与x 2n y 是同类项,则常数n 的值为____.14.一列数按某规律排列如下:11,12,21,13,22,31,14,23,32,41,⋯,若第n 个数为56,则n =_______. 15.计算的结果等于______. 16.已知一组单项式:﹣x 2,2x 4,﹣3x 6,4x 8,﹣5x 10,…则按此规律排列的第15个单项式是_____.三、解下列各题(本大题共8小题,共72分)17.(8分)如图,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线.(1)若120AOB ∠=︒,则COE ∠是多少度?(2)如果3BOC AOD ∠=∠,30EOD COD ∠-∠=︒,那么∠BOE 是多少度?18.(8分)解方程:13x ++1 = x ﹣12x -. 19.(8分)如图,点A 从原点出发沿数轴向左运动,同时点B 从原点出发沿数轴向右运动,4秒钟后,两点相距16个单位长度,已知点B 的速度是点A 的速度的3倍.(速度单位:单位长度/秒)(1)求出点A 点B 运动的速度.(2)若A 、B 两点从(1)中位置开始,仍以原来的速度同时沿数轴向左运动,几秒时原点恰好处在点A 点B 的正中间?(3)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C 同时从B 点位置出发向A 点运动,当遇到A 点后,立即返回向B 点运动,遇到B 点又立即返回向A 点运动,如此往返,直到B 点追上A 点时,点C 一直以10单位长度/秒的速度运动,那么点C 从开始运动到停止运动,行驶的路程是多少单位长度.20.(8分)为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.下表是小明家1至4月份用水量和缴纳水费情况,根据表格提供的数据,回答问题: 月份一 二 三 四 用水量(吨)6 7 12 15 水费(元) 12 14 28 37(1)该市规定用水量为 吨,规定用量内的收费标准是______元/吨,超过部分的收费标准是___元/吨;(2)若小明家五月份用水10吨,则应缴水费______元;(3)若小明家六月份应缴水费49元,则六月份他们家的用水量是多少吨?21.(8分)A 、B 两仓库分别有水泥15吨和35吨,C 、D 两工地分别需要水泥20吨和30吨.已知从A 、B 仓库到C 、D 工地的运价如表:到C 工地 到D 工地A 仓库每吨15元 每吨12元 B 仓库每吨10元 每吨9元(1)若从A 仓库运到C 工地的水泥为x 吨,则用含x 的代数式表示从A 仓库运到D 工地的水泥为 吨,从B 仓库将水泥运到D 工地的运输费用为 元;(2)求把全部水泥从A 、B 两仓库运到C 、D 两工地的总运输费(用含x 的代数式表示并化简);(3)如果从A 仓库运到C 工地的水泥为10吨时,那么总运输费为多少元?22.(10分)直角三角板ABC 的直角顶点C 在直线DE 上,CF 平分∠BCD ,(1)在图1中,若∠BCE=40°,求∠ACF 的度数;(2)在图1中,若∠BCE=α,直接写出∠ACF 的度数(用含α的式子表示);(3)将图1中的三角板ABC 绕顶点C 旋转至图2的位置,探究:写出∠ACF 与∠BCE 的度数之间的关系,并说明理由.23.(10分)若一个多项式与221x x -+的和是32x -,求这个多项式.24.(12分)解方程:()1()3441x x -=-()211123x x -+-=参考答案一、选择题(每小题3分,共30分)1、D【解析】根据同类项的定义解答即可.【详解】A .25与52是常数项,是同类项,故本选项不合题意;B .2212a b c 与2213a cb 是同类项,与字母顺序无关,故本选项不合题意; C .9m 2与8m 2是同类项,故本选项不合题意;D .214a b 与﹣5ab 2中,相同字母的指数不同,不是同类项,故本选项符合题意. 故选:D .【点睛】本题考查了同类项,解答本题的关键是正确理解同类项的概念.2、D【分析】根据同类项的定义,逐一判断选项,即可得到答案.【详解】A 、3x 2y 3与2x 2y 3是同类项,故本选项不符合题意,B 、3x 2y 3与﹣3y 3x 2是同类项,故本选项不符合题意,C 、3x 2y 3与﹣12x 2y 3是同类项,故本选项不符合题意, D 、3x 2y 3与﹣13y 5所含的字母不相同,不是同类项,故本选项符合题意. 故选:D .【点睛】本题主要考查同类项的定义,掌握同类项的定义:“字母相同,相同字母的指数也相同的单项式是同类项”是解题的关键.3、B【分析】此题根据题目中三条线段比的关系设未知数,通过用线段之间的计算得出等量关系,列方程即可进行求解.【详解】解:由题意,设MB 为2x ,BC 为3x ,CN 为4x ,则MN 为9x ,因为P 是MN 的中点,所以PC =PN ﹣CN =12MN ﹣CN , 即:12×9x ﹣4x =2,解得x =4,所以MN =4x =36cm . 故选B .【点睛】此题主要考查了线段的计算,由题目中的比例关系入手设未知量列方程求解是比较常见的题型,本题根据线段之间的关系得出等量关系列方程是解题的关键.4、D【分析】将1x =-代入方程,即可得出a 的值.【详解】将1x =-代入方程,得20a -+=∴2a =故选:D .【点睛】此题主要考查利用一元一次方程的解求参数的值,熟练掌握,即可解题.5、A【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点和相对面上的两个数互为相反数,即可求出A 、B 、C 的值.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴A 与0是相对面,B 与5是相对面,C 与﹣1是相对面,∵折成正方体后相对的面上的两个数互为相反数,∴A =0,B =﹣5,C =1.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6、C【分析】根据两车相遇共行驶270千米列出方程即可.【详解】解:设经过x 小时两车相遇,依题意得()6510065300x ++=.故选C .【点睛】本题考查了一元二次方程的应用,解题的关键是了解相遇问题中的等量关系.7、D【分析】当利润率是5%时,售价最低,根据利润率的概念即可求出售价,进而就可以求出打几折.【详解】解:设销售员出售此商品最低可打x 折,根据题意得:3000×x 10=2000(1+5%), 故选D .【点睛】本题考查了由实际问题抽象出一元一次方程的知识,理解什么情况下售价最低,并且理解打折的含义,是解决本题的关键.8、A【解析】分析:根据相反数的定义,只有符号不同的两个数是互为相反数.解答:解:A 、2和-2只有符号不同,它们是互为相反数,选项正确;B 、-2和12除了符号不同以外,它们的绝对值也不相同,所以它们不是互为相反数,选项错误; C 、-2和-12符号相同,它们不是互为相反数,选项错误; D 、12和2符号相同,它们不是互为相反数,选项错误. 故选A .9、D【分析】分别利用等式的基本性质判断得出即可.性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式【详解】解:A 、等式的两边同时除以7,得到:x=57,故本选项错误; B 、原方程可变形为1012x = ,故本选项错误; C 、在等式的两边同时减去2,得到:-x=1-2,故本选项错误;D 、在等式的两边同时乘以3,得到:x-6=3,故本选项正确;故选D .【点睛】此题主要考查了等式的基本性质,熟练掌握性质是解题关键.10、B【解析】试题分析:设这个队胜了x 场,则这个队平了(11-5-x )场,根据题意得:3x+(11-5-x )=17,解得:x=1.考点:一元一次方程的应用二、填空题(本大题共有6小题,每小题3分,共18分)11、30;【分析】根据图形用∠1表示出∠2,然后根据1∠的度数比2∠的度数小30列出方程求解即可.【详解】由图可知,∠1+∠2=180︒−90︒=90︒,所以,∠2=90︒−∠1,由题意得,(90︒−∠1)-∠1=30︒,解得∠1=30︒.故答案为:30︒.【点睛】本题考查了余角和补角,准确识图,用∠1表示出∠2,然后列出方程是解题的关键.12、3【分析】根据一元一次方程的解的定义,即可求解.【详解】把x=2代入方程得:2a+4=10,解得:a=3,故答案为:3【点睛】本题主要考查一元一次方程的解,理解一元一次方程解的定义,是解题的关键.13、1.【解析】根据同类项的定义列式求解即可.【详解】∵代数式﹣4x6y与x2n y是同类项,∴2n=6,解得:n=1.14、50【分析】根据题目中的数据对数据进行改写,进而观察规律得出第n个数为56时n的值.【详解】解:∵11,12,21,13,22,31,14,23,32,41,⋯,可以写为:11,(12,21),(13,22,31),(14,2 3,32,41),⋯,∴根据规律可知56所在的括号内应为(1234567891,,,,,,,,,109876543210),共计10个,56在括号内从左向右第5位,∴第n个数为56,则n=1+2+3+4+5+6+7+8+9+5=50.故答案为:50.【点睛】本题考查数字的变化规律,解答本题的关键是明确题意,发现题目中数字的变化规律.15、x.【解析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘,进而得出答案.【详解】=x .故答案为:x.【点睛】 此题考查积的乘方,解题关键在于掌握运算法则.16、﹣15x 1【解析】符号规律:序数是奇数时符号为负,序数为偶数时符号为正;系数即为序数;字母的指数是序数的2倍,据此可得.【详解】由题意得,第n 个单项式是(﹣1)n •n •x 2n ,所以第15个单项式是(﹣1)15•15•x 2×15=﹣15x 1.故答案为:﹣15x 1.【点睛】本题主要考查数字的变化类,分别找出单项式的系数和次数的规律是解决此类问题的关键.三、解下列各题(本大题共8小题,共72分)17、(1)60°;(2)50°【分析】(1)利用角平分线性质得出AOC DOC ∠=∠及BOE DOE ∠=∠,进而得出12COE AOB ∠=∠进一步求解即可;(2)设∠BOE 的度数为x ,则DOE ∠的度数也为x ,根据题意建立方程求解即可.【详解】(1)∵OC 是AOD ∠的平分线,∴AOC DOC ∠=∠.∵OE 是BOD ∠的平分线,∴BOE DOE ∠=∠,∴∠COD+∠DOE=12(∠AOD+∠BOD)=1 2∠AOB , ∴1602COE AOB ∠=∠=︒ (2)设∠BOE 的度数为x ,则DOE ∠的度数也为x∵30EOD COD ∠-∠=︒,∴30COD AOC x ∠=∠=-︒,∴22(30)AOD AOC x ∠=∠=-︒∵3BOC AOD ∠=∠,∴30x x x ++-︒32(30)x =⨯-︒,解得50x =︒,即∠BOE 的度数为50︒.【点睛】本题主要考查了角平分线的性质以及角度的计算,熟练掌握相关方法是解题关键.18、x=5【解析】试题分析:先依据等式的性质2两边乘以6去分母,然后去括号、移项、合并同类项、系数化为1进行解答即可.试题解析:解:2(x +1)+6=6x -3(x -1)2x +2+6=6x -3x +32x -6x +3x =3-2-6-x =-5x =519、(1)A 、B 这动的速度分别为1单位长度/秒,3单位长度/秒;(2)2秒时,原点给好处在点A 点B 正中间;(3)C 行驶的路程是80个单位长度.【分析】(1)设点A 的速度为每秒x 个单位,则点B 的速度为每秒3x 个单位,由甲的路程+乙的路程=总路程建立方程求出其解即可;(2)设t 秒时原点恰好在A 、B 的中间,根据两点离原点的距离相等建立方程求出其解即可;(3)先根据追击问题求出A 、B 相遇的时间就可以求出C 行驶的路程.【详解】(1)设点A 的速度为每秒x 个单位,则点B 的速度为每秒3x 个单位,由题意,得4x +4×3x =16,解得:x =1,所以点A 的速度为每秒1单位长度/秒,则点B 的速度为3单位长度/秒.(2)设t 秒后原点位于A 、B 点正中间.(4)(123)02t t --+-= 480t -+=2t =2∴秒时,原点给好处在点A 点B 正中间.(3)设B 点追上A 点的时间为1t 秒112(4)831t --==-(秒)∴点C 行驶路程:10880⨯=(单位长度)C ∴行驶的路程是80个单位长度.【点睛】本题考查了列一元一次方程解实际问题的运用,数轴的运用,行程问题的相遇问题和追及问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.20、(1)8;2;3;(2)22;(3)六月份小明家用水量为19吨.【分析】(1)根据小明家1月和2月的用水量及水费,可判断出这两个月的水费是2元/吨,且没有超过规定用量,3月和4月都超过了规定用量,则可计算出超过部分的收费标准,设规定用水量为a 吨,根据3月份收费,列出方程即可得出答案;(2)由(1)可知,5月份用水10吨先算规定用水量中的8吨,每吨2元,再算超出标准用水量中的2吨,每吨3元,相加即可得出答案;(3)设六月份用水量为x ,根据题意可得关于x 的方程,解方程即可得出答案.【详解】解:(1)由表中1月和2月份收费可知,规定用量内的收费标准是1226=元/吨, 则3月和4月用水都超过了标准用水量,则可得,超过部分的收费为372831512-=-, 设规定用水量为a 吨,可得()231228a a +-=,解得8a =,故答案为:8;2;3. (2)由(1)可得,若用水10吨,则需交水费()28108322⨯+-⨯=元,故答案为:22;(3)设六月份用水量为x ,由题可得:()283849x ⨯+-=,解得:19x =;所以小明家6月份用水量为19吨.【点睛】本题考查一元一次方程的应用中分段收费的题型,注意观察表格,找出算法相同的数据,比较可得出收费标准;已知收费标准再算收费的时候注意题中说的是超过的部分收费标准,还是超过之后全部的收费标准.21、(3)35-x ;9x+380;(3)(3x+535)元;(3)3元.【分析】(3)A 仓库原有的30吨去掉运到C 工地的水泥,就是运到D 工地的水泥;首先求出B 仓库运到D 仓库的吨数,也就是D 工地需要的水泥减去从A 仓库运到D 工地的水泥,再乘每吨的运费即可;(3)用x 表示出A 、B 两个仓库分别向C 、D 运送的吨数,再乘每吨的运费,然后合并起来即可;(3)把x=30代入(3)中的代数式,求得问题的解.【详解】(3)从A仓库运到D工地的水泥为:(35-x)吨,从B仓库将水泥运到D工地的运输费用为:[30-(35-x)]×9=(9x+335)元;(3)总运输费:35x+33×(35-x)+30×(30-x)+[30-(35-x)]×9=(3x+535)元;(3)当x=30时,3x+535=3.答:总运费为3元.考点:3.列代数式;3.代数式求值.22、(1)∠ACF=20°;(2)∠ACF=12α;(3)∠ACF=12∠BCE.理由见解析.【分析】(1)由∠ACB=90°,∠BCE=40°,可得∠ACD,∠BCD的度数,再根据CF平分∠BCD,可得∠DCF的度数,继而可求得∠ACF=∠DCF﹣∠ACD=20°;(2)由∠ACB=90°,∠BCE=α°,可得∠ACD=90°﹣α,∠BCD=180°﹣α,再根据CF平分∠BCD,从而可得∠DCF=90°﹣12α,继而可得∠ACF=12α;(3)由点C在DE上,可得∠BCD=180°﹣∠BCE,再根据CF平分∠BCD,可得∠BCF=90°-12∠BCE,再根据∠ACB=90°,从而有∠ACF=12∠BCE.【详解】解:(1)如图1,∵∠ACB=90°,∠BCE=40°,∴∠ACD=180°﹣90°﹣40°=50°,∠BCD=180°﹣40°=140°,又CF平分∠BCD,∴∠DCF=∠BCF=12∠BCD=70°,∴∠ACF=∠DCF﹣∠ACD=70°﹣50°=20°;(2)如图1,∵∠ACB=90°,∠BCE=α°,∴∠ACD=180°﹣90°﹣α°=90°﹣α,∠BCD=180°﹣α,又CF平分∠BCD,∴∠DCF=∠BCF=12∠BCD=90°﹣12α,∴∠ACF=90°﹣12α﹣90°+α=12α;(3)∠ACF=12∠BCE .理由如下: 如图2,∵点C 在DE 上,∴∠BCD=180°﹣∠BCE .∵CF 平分∠BCD ,∴∠BCF=12∠BCD=12(180°﹣∠BCE )=90°-12∠BCE . ∵∠ACB=90°, ∴∠ACF=∠ACB ﹣∠BCF=90°﹣(90°-12∠BCE )=12∠BCE . 即:∠ACF=12∠BCE .23、253x x -+-【分析】根据减法是加法的逆运算知,这个多项式可表示为:2(32)(21)x x x ---+,然后去括号,合并同类项求解.【详解】解: 2(32)(21)x x x ---+=23221x x x --+-=253x x -+-.答:这个多项式是253x x -+-.【点睛】本题考查了整式的加减,解本题的关键是熟记去括号法则,熟练运用合并同类项的法则.24、(1)x = -11;(2)x = 11【分析】(1)先算乘法去括号,再移项和合并同类项,即可求解.(2)方程两边同时乘以6,再移项和合并同类项,即可求解.【详解】(1)()3441x x -=-31241x x -=-11x =-(2)11123x x -+-= 33226x x ---=11x =【点睛】本题考查了一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.。
2025届河南省郑州市枫杨外国语数学七上期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在平面直角坐标系中,点()3,4P 在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.将一副三角尺按如图所示的位置摆放,则α∠和β∠的大小是( )A .αβ∠>∠B .αβ∠<∠C .αβ∠=∠D .无法比较3.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( ) A .x+1=2(x ﹣2) B .x+3=2(x ﹣1) C .x+1=2(x ﹣3) D .1112x x +-=+ 4.用量角器测量的度数,操作正确的是( )A .B .C .D .5.下图是某超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙第一算,该洗发水的原价是:( )A .22元B .23元C .24元D .25元6.若327x y +=,则966x y +-的值为( ) A .27-B .15C .15-D .无法确定7.把16000写成10n a ⨯(1≤a <10,n 为整数)的形式,则a 为( ) A .1B .1.6C .16D .2.168.在下列有理数中:20 3.533--,,,中,最大的有理数是( ) A .0B . 3.5-C .3D .23-9.下列说法错误的是 ( ) A .2231x xy --是二次三项式 B .1x -+不是单项式 C .223xy π-的系数是23π-D .222xab -的次数是610.若13m +与273m -互为相反数,则m =( ) A .10 B .10- C .43D .43-11.下列计算正确的是( ) A .B .C .D .12.中国人最早使用负数,可追溯到两千年前的秦汉时期.﹣5的相反数是( ) A .±5B .5C .15D .﹣15二、填空题(每题4分,满分20分,将答案填在答题纸上)13.如图,点C ,D 在线段AB 上,AC =BD ,若AD =8cm ,则BC =_____cm .14.已知2a ﹣b =﹣2,则6+(4b ﹣8a )的值是_____.15.若分式241312a a a-++无意义,则a 的值为___________.16.某商场把一个双肩背包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是________元. 17.已知n <0,比较大小2n_________3n .三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)一个安有进水管和出水管的蓄水池,每单位时间内进水量分别是一定的.若从某时刻开始的4小时内只进水不出水,在随后的8小时内既进水又出水,得到时间x (小时)与蓄水池内水量()3my 之间的关系如图所示.(1)求进水管进水和出水管出水的速度;(2)如果12小时后只放水,不进水,求此时y 随x 变化而变化的关系式.19.(5分)新规定:点C 为线段AB 上一点,当 3CA CB =或3CB CA =时,我们就规定C 为线段AB 的“三倍距点”。