孙训方版 材料力学公式总结大全
- 格式:docx
- 大小:171.81 KB
- 文档页数:12
材料力学重点及其公式
材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。
变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。
外力分类:表面力、体积力;静载荷、动载荷。
内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力
截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A =∆∆=→∆lim 0正应力、切应力。
变形与应变:线应变、切应变。
杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。
静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为
极限应力理想情形。
塑性材料、脆性材料的许用应力分别为:
[]3n s σσ=,
[]b
b
n σ
σ=,强度条件:
[]σσ≤⎪⎭⎫
⎝⎛=max max A N ,等截面杆 []σ≤A N max
轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=∆1,沿轴线方向的应变和横
截面上的应力分别为:l
l ∆=
ε,A P
A N ==σ。横向应变为:b b b b b -=∆=1'ε,横向应变与轴向应变的关系为:μεε-='
。
胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA
Nl l =
∆ 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。
圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx
d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx
d G dx d G dA T A A A ⎰⎰⎰===2
2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T ==
max τ;圆轴扭转的强度条件: ][max ττ≤=t
W T
,可以进行强度校核、截面设计和确定许可载荷。 圆轴扭转时的变形:⎰⎰==
l p
l p dx GI T dx GI T ϕ;等直杆:p
GI Tl
=ϕ 圆轴扭转时的刚度条件: p GI T dx d ==
'ϕϕ,][max max
ϕϕ'≤='p
GI T
弯曲内力与分布载荷q 之间的微分关系
)()
(x q dx x dQ =;
()()x Q dx
x dM =;()()()x q dx x dQ dx
x M d ==2
2 Q 、M 图与外力间的关系
a )梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。
b )梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。
c )在梁的某一截面。
()()0==x Q dx
x dM ,剪力等于零,弯矩有一最大值或最小值。
d )由集中力作用截面的左侧和右侧,剪力Q 有一突然变化,弯矩图的斜率也发生突然变化形成一个转折点。
梁的正应力和剪应力强度条件[]σσ≤=
W
M max
max ,[]ττ≤max 提高弯曲强度的措施:梁的合理受力(降低最大弯矩m ax M ,合理放置支座,合理布置载荷,合理设计截面形状
塑性材料:[][]c t σσ=,上、下对称,抗弯更好,抗扭差。脆性材料:[][]c t σσ<, 采用T 字型或上下不对称的工字型截面。
等强度梁:截面沿杆长变化,恰使每个截面上的正应力都等于许用应力,这样的变截面梁称为等强度梁。
用叠加法求弯曲变形:当梁上有几个载荷共同作用时,可以分别计算梁在每个载荷单独作用时的变形,然后进行叠加,即可求得梁在几个载荷共同作用时的总变形。 简单超静定梁求解步骤: (1)判断静不定度;
(2)建立基本系统(解除静不定结构的内部和外部多余约束后所得到的静定结构); (3)建立相当系统(作用有原静不定梁载荷与多余约束反力的基本系统); (4)求解静不定问题。
二向应力状态分析—解析法 (1)任意斜截面上的应力ατασσσσσα2sin 2cos 2
2
xy y
x y
x --+
+=
;
ατασστα2cos 2sin 2
xy y
x +-=
(2)极值应力 正应力:y
x xy
tg σστα--=220, 2
2min max )2(2xy y x y
x τσσσσσσ+-±+=
⎭⎬⎫
切应力:xy
y x tg τσσα221-=, 2
2min max )2(
xy y x τσσττ+-±=⎭⎬⎫ (3)主应力所在的平面与剪应力极值所在的平面之间的关系
α与1α之间的关系为:4
,2
220101π
ααπ
αα+
=+
=,即:最大和最小剪应力所在的平面
与主平面的夹角为45°
扭转与弯曲的组合(1)外力向杆件截面形心简化(2)画内力图确定危险截面(3)确定危险点并建立强度条件
按第三强度理论,强度条件为:[]σσσ≤-31 或
[]στσ≤+224,
对于圆轴,W W t 2=,其强度条件为:
][2
2σ≤+W
T M 。按第四强度理论,强度条件为:()()()[]
[]σσσσσσσ≤-+-+-2132322212
1
,经化简得出:[]στσ≤+223,对于圆轴,其强度条件为:
][75.02
2σ≤+W
T M 。
欧拉公式适用范围(1)大柔度压杆(欧拉公式):即当1λλ≥,其中P E
σπλ21=时,
22λπσE cr =(2)中等柔度压杆(经验公式):即当12λλλ≤≤,其中b a s
σλ-=2时,
λσb a cr -=(3)小柔度压杆(强度计算公式):即当2λλ<时,s cr A
F
σσ≤=
。 压杆的稳定校核(1)压杆的许用压力:[]st
cr
n P P =,[]P 为许可压力,st n 为工作安全系数
。(2)压杆的稳定条件:[]P P ≤
提高压杆稳定性的措施:选择合理的截面形状,改变压杆的约束条件,合理选择材料
外力偶矩计算公式 (P 功率,n 转速)
弯矩、剪力和荷载集度之间的关系式