离散数学模拟试题及答案
- 格式:docx
- 大小:89.12 KB
- 文档页数:8
一、证明下列各题1、 (10分)证明蕴涵式:()P P Q Q ∧→⇒2、(10分)证明:,1111f g f g -⇒-I 为函数为函数。
5、 3、(10分)给定代数结构,N ⨯和{}0,1,⨯,其中N 是自然数集合,⨯是数的乘法。
设{}:0,1f N →,定义为:12,,()0k n n k N f n ⎧=∈=⎨⎩否则试证}01N ⨯≅⨯,,,。
4、(10分)给定代数结构,R *,其中R 是实数集合,对R 中任意元a 和b ,*定义如下:a b a b a b *=++⨯ 试证明:,R *是独异点。
二、求下列各题的解:1、试求下列公式的主析取范式和主合取范式(15分):()()P Q P Q ⌝∨⌝→⌝€2、(15分){}010*********R =设,,,,,,,,,,,,试求(1)、R R *,(2)、{}1R ↑,(3)、{}11R -↑,(4)、{}1R ⎡⎤⎣⎦,(5)、{}11R -⎡⎤⎣⎦3、(15分给定无向图,G V E =,如图,试求: F E DCA B(1) 从A 到D 的所有基本链; (2) 从A 到D 的所有简单链;(3) 长度分别是最小和最大的简单圈; (4) 长度分别是最小和最大的基本圈; (5) 从A 到D 的距离。
4、(15分)给定二部图12,,G E V =,如图 9v 8v 7v 6v 1V1v 2v 3v 4v 5v 2V 试求1V 到2V 的最大匹配一、证明下列各题1、 (10分)证明蕴涵式:()P Q P P Q →⇒→∧2、(10分)证明:()()()A B C A B A C ⨯-=⨯-⨯3、(10分)给定群,G ,则,G 为Abel 群⇔222()()(,())∀∀∈→=a b a b G a b a b4、(10分)给定代数结构,S *,其中S 中元为实数有序对,*定义为 ,,,2a b c d a c b d bd *=+++,试证,S *是可交换独异点。
一、填空1.不能再分解的命题称为____________,至少包含一个联结词的命题称为____________。
2.一个命题公式A(P, Q, R)为真的所有真值指派是000, 001, 010, 100,则其主析取范式是__________________,其主合取范式是_________________。
3.设A={a,b,c},B={b,c,d,e},C={b,c},则( A ⋃ ⊕=____________。
4.幂集P(P(∅)) =________________。
5.设A为任意集合,请填入适当运算符,使式子A________A=∅;A________A’=∅成立。
6.设A={0,1,2,3,6},R={〈x,y〉|x≠y∧(x,y∈A)∧y≡x(mod 3)},则D(R)=____________,R(R)=____________。
7.称集合S是给定非空集合A的覆盖:若S={S1,S2,…,S n},其中S i⊆A,S i≠Ø,i=1,2,…,n,且______ _____;进一步若_____ _______,则S是集合A的划分。
8.两个重言式的析取是____ ____式,一个重言式和一个永假式的合取式是式。
9.公式┐(P∨Q) ←→(P∧Q)的主析取范式是。
10. 已知Π={{a}{b,c}}是A={a,b,c}的一个划分,由Π决定的A上的一个等价关系是。
二、证明及求解1.求命题公式(P→Q)→(Q∨P)的主析取范式。
2.推理证明题1)⌝P∨Q,⌝Q∨R,R→S⇒P→S。
2) (∀x)(P(x)→Q(y)∧R(x)),(∃x)P(x)⇒Q(y)∧(∃x)(P(x)∧R(x))x)},S={〈x,y〉|x,y∈A∧(x=y+2)}。
3.设A={0,1,2,3},R={〈x,y〉|x,y∈A∧(y=x+1∨y=2试求R S R。
4.证明:R是传递的⇔R*R⊆R。
5.设R是A上的二元关系,S={<a, b>| 存在c∈A,使<a, c>∈R,且<c, b>∈R}。
离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。
A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。
A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。
A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。
A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。
答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。
答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。
答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。
答案:可达10. 命题逻辑中,合取(AND)的符号是______。
答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。
证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。
因此,若p∧q为真,则p和q都为真。
12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。
请找出f的值域。
答案:根据函数的定义,f的值域是其所有输出值的集合。
因此,f的值域为{4,5,6}。
离散数学试题及答案一、单项选择题(每题2分,共20分)1. 在集合论中,空集的表示符号是()。
A. {0}B. ∅C. {}D. Ø答案:B2. 如果A和B是两个集合,那么A∩B表示()。
A. A和B的并集B. A和B的交集C. A和B的差集D. A和B的补集答案:B3. 命题逻辑中,p ∧ q的真值表中,当p和q都为假时,p ∧ q的值为()。
A. 真B. 假C. 不确定D. 无定义答案:B4. 在图论中,如果一个图中的任意两个顶点都由一条边相连,则称这个图为()。
A. 连通图B. 无向图C. 完全图D. 有向图答案:C5. 布尔代数中,逻辑或运算符表示为()。
A. ∧B. ∨C. ¬D. →答案:B6. 一个关系R是从集合A到集合B的二元关系,如果对于A中的每个元素x,B中都存在唯一的元素y与之对应,则称R为()。
A. 单射B. 满射C. 双射D. 单满射答案:C7. 在命题逻辑中,如果p是假命题,那么¬p的值为()。
A. 真B. 假C. 不确定D. 无定义答案:A8. 一个有向图是无环的,那么它一定是()。
A. 有向无环图B. 无向无环图C. 有向有环图D. 无向有环图答案:A9. 在集合论中,如果集合A是集合B的子集,那么A⊆B表示()。
A. A包含于BB. A是B的真子集C. A是B的超集D. A与B相等答案:A10. 命题逻辑中,p → q的真值表中,当p为真,q为假时,p → q 的值为()。
A. 真B. 假C. 不确定D. 无定义答案:B二、多项选择题(每题3分,共15分)1. 在集合论中,以下哪些符号表示的是集合的并集()。
A. ∪B. ∩C. ⊆D. ⊂答案:A2. 在图论中,以下哪些说法是正确的()。
A. 有向图可以是无环的B. 无向图可以是无环的C. 有向图一定是连通的D. 无向图一定是连通的答案:A B3. 在命题逻辑中,以下哪些符号表示的是逻辑与()。
离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。
2. 存在三个可识别的状态A,B,C。
置换群 $S_3$ 作用在状态集上。
定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。
确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。
3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。
4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。
b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。
答案1. $A \cap B = \{2,4,6\}$。
2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。
这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。
所以合数的个数不小于任意$n$。
4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。
如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。
所以从这条路径中任意取出的子路径都是最短路径。
b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。
因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。
所以从$i$到$j$的最短路径可能不唯一。
离散数学试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1}B. {2,3}C. {1,2,3}D. {2,3,4}答案:B2. 命题“若x>0,则x^2>0”的逆否命题是:A. 若x≤0,则x^2≤0B. 若x^2≤0,则x≤0C. 若x^2>0,则x>0D. 若x^2≤0,则x≤0答案:B3. 函数f: X→Y是单射的,当且仅当:A. 对于任意x1≠x2,有f(x1)=f(x2)B. 对于任意x1≠x2,有f(x1)≠f(x2)C. 对于任意y∈Y,存在唯一的x∈X,使得f(x)=yD. 对于任意y∈Y,存在x∈X,使得f(x)=y答案:B4. 有限集合A的子集个数为2^n,其中n是集合A的元素个数,则n 等于:A. 0B. 1C. 2D. 3答案:C5. 逻辑运算符“与”用符号表示为:A. ∧B. ∨C. →D. ¬答案:A6. 命题逻辑中,命题p和q的析取(逻辑或)的真值表中,当p为真,q为假时,p∨q的值为:A. 真B. 假C. 可能真,可能假D. 不确定答案:A7. 以下哪个选项表示的是等价关系:A. 自反性B. 对称性C. 传递性D. 自反性、对称性和传递性答案:D8. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称该图为:A. 连通图B. 完全图C. 无向图D. 有向图答案:B9. 以下哪个选项是图的顶点的度的定义:A. 与该顶点相连的边的数量B. 与该顶点相连的顶点的数量C. 该顶点发出的边的数量D. 该顶点接收的边的数量答案:A10. 在布尔代数中,逻辑运算符“异或”用符号表示为:A. ⊕B. ∧C. ∨D. ¬答案:A二、填空题(每题2分,共20分)1. 集合{1,2,3}的补集在全集U={1,2,3,4,5}中表示为________。
答案:{4,5}2. 命题“若x>0,则x^2>0”的逆命题是“若________,则x>0”。
离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
网络学院离散数学模拟试题1 考试时间120 分钟考试方式:开卷专业年级姓名学号一、选择填空题(每个空格3分,共30分)1.设A,B是集合,且φA,则_____必定成立。
D-B=A.A=B B.B⊆A C.A∩B=φD.A⊆B 2.{φ,{φ}}-φ=_____;CA. φ B. {φ} C. {φ,{φ}} D. {{φ}}3.设集合A={{0}},则P(A) =_____。
DA. P(P({0}))B. P({0})∪φC. P({0})∪{{0}}D. {φ,{{0}}}4.设有集合A={1,2,3,4},则从A到{0,1}的不同的函数有____个。
EA.0 B.1 C.4 D.12 E. 16 F. 24 G. 32 5.设G=(a)为12阶循环群,则G没有____阶子群。
EA.1 B.2 C.3 D.4 E. 5 F. 66.凡_____都满足消去律。
DA. 代数系统B. 半群C. 独异点D. 群7.从无向完全图K中至少删除____条边后,所得的图将成为平面图。
B5A.0 B.1 C.2 D.38.若无向图G是有99个结点,9个连通分量,则G中的边数必_____。
C A. ≤90 B. =90 C. ≥90 D. =100 E. ≥1009.下列句子中为命题的是_____。
AA.今天不是星期六。
B.考场内禁用手机!C.今天是周末吗?D.今天真冷呀!10. 任意两个不同极大项的析取式必为______。
AA. 永真公式B. 可满足公式C. 永假公式D. 等值公式二、求出谓词公式(,)(,,)u v F u v w G u v w ∃∃→∀的前束范式。
(10分)解:(,)(,,)u v F u v w G u v w ∃∃→∀ ⇔1111(,)(,,)u u F u v w G u v w ∃∃→∀ ⇔111(,)(,,)u v F u v w G u v w ⌝∃∃∨∀ ⇔1111(,)(,,)u y F u v w G u v w ∀∀⌝∨∀⇔1111(,)(,,)u v wF u vG u v w ∀∀∀⌝∨()三、用形式证明的方法证明下列论证的有效性:“本班有些同学是有经验的C++程序员,任何C++程序员都知道对象的概念。
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
离散数学考试题目及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={3,4,5},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:B2. 函数f: X→Y是一个双射,当且仅当:A. f是单射且满射B. f是单射C. f是满射D. f是双射答案:A3. 命题p: "x是偶数",命题q: "x是3的倍数",下列逻辑运算中,表示"x是6的倍数"的是:A. p∧qB. p∨qC. ¬p∧¬qD. ¬p∨¬q答案:A4. 有向图G中,若存在从顶点u到顶点v的有向路径,则称顶点u可达顶点v。
若G中任意两个顶点都相互可达,则称G为:A. 强连通图B. 弱连通图C. 无向图D. 有向无环图答案:A5. 在二进制数系统中,下列哪个数的值最大?A. 1010B. 1100C. 1110D. 1101答案:C6. 布尔代数中,逻辑或运算符表示为:A. ∧B. ∨C. ¬D. →答案:B7. 有限自动机中,状态q0是初始状态,状态q1是接受状态。
若存在从q0到q1的ε-转移,则该自动机:A. 仅在输入为空时接受B. 仅在输入非空时接受C. 无论输入为何都接受D. 无法确定是否接受答案:C8. 命题逻辑中,若命题p和q都为真,则p∧q的真值是:A. 真B. 假C. 可能为真,也可能为假D. 无法确定答案:A9. 集合{1,2,3}的子集个数为:A. 4B. 6C. 7D. 8答案:D10. 若关系R在集合A上是自反的,则对于A中的任意元素a,有:A. (a,a)∈RB. (a,a)∉RC. (a,a)是R的自反对D. (a,a)不是R的自反对答案:A二、填空题(每题3分,共15分)1. 集合A={1,2,3}的幂集包含__个元素。
答案:82. 若函数f: X→Y是满射,则对于Y中的任意元素y,至少存在X中的一个元素x,使得f(x)=__。
离散数学模拟试题(一)一、选择题1、由集合运算的定义,下列各式中,正确的是( )。
(A) A ∪E = A; (B) A ∩∅ = A; (C) A ⊕ ∅ = A; (D) A ⊕ A = A.2、设G 如右图:那么G 不是( ). (A)平面图; (B)完全图;(C)欧拉图; (D)哈密顿图.3、设个体域为整数,下列公式中真值为1的是( )。
(A)∀x ∀y(x + y = 1); (B)∀x ∃y(x + y = 1); (C)∃x ∀y(x + y = 1); (D) ⌝ ∃x ∃y(x + y = 1)。
4、下列命题为假的是( )。
(A) {∅}∈ρ(∅); (B) ∅ ⊆ρ({∅});(C) {∅} ⊇ρ(∅); (D)ρ(∅) ∈ρ({∅})。
5、设集合A = {1,2,3,4},A 上的关系R = {(1,1),(2,3),(2,4),(3,4)},则R 具有( ). (A)自反性; (B)传递性; (C)对称性; (D)以上都不是.6、谓词公式)())()((x Q y yR x P x →∃∨∀中量词∀x 的辖域是( )(A) ))()((y yR x P x ∃∨∀ (B) P (x ) (C) )()(y yR x P ∃∨ (D) )(x Q7、谓词公式∃xA (x )∧⌝∃xA (x )的类型是( )(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 不属于(A),(B),(C)任何类型8、设L (x ):x 是演员,J (x ):x 是老师,A (x ,y ):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( ) (A) ),()(y x A x xL →∀ (B) )),()(()((y x A y J y x L x ∧∃→∀(C) )),()()((y x A y J x L y x ∧∧∃∀ (D) )),()()((y x A y J x L y x →∧∃∀9、设命题公式⌝(P ∧(Q →⌝P )),记作G ,则使G 的真值指派为0的P ,Q 的取值是( ) (A) (0,0) (B) (0,1) (C) (1,0) (D) (1,1) 10、与命题公式P →(Q →R )等值的公式是( )(A) (P ∨Q )→R (B)(P ∧Q )→R (C) (P →Q )→R (D) P →(Q ∨R ) 二、填空题1、命题: ∅ ⊆ {{a }} ⊆ {{a },3,4,1} 的真值 = ____ .2、 设A= {a,b}, B = {x | x 2-(a+b) x+ab = 0}, 则两个集合的关系为:A____B.3、设集合A ={a ,b ,c },B ={a ,b }, 那么 ρ(B )-ρ(A )=______ .4、无孤立点的有限有向图有欧拉路的充分必要条件为: _______________________________________________.5、公式))(),(()),()((x S z y R z y x Q x P x →∃∨→∀的自由变元是 , 约束变元是 .6、设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 .7、设N (x ):x 是自然数,Z (y );y 是整数,则命题“每个自然数都是整数,而有些整数不是自然数”符号化为 8、设G 是n 个结点的简单图,若G 中每对结点的度数之和 ,则G 一定是哈密顿图. 9、设全集合E ={1,2,3,4,5},A ={1,2,3},B ={2,5},~A ⋃~B = .10、设集合A ={a ,b ,c },B ={a ,b },那么P (A )-P (B )= 三、计算题1、求公式 G = (P ∧Q)→R 的主析取范式和主合取范式。
离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。
答案:如果x不能被2整除,则x不是偶数。
2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。
答案:6个顶点。
3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。
答案:2^4=16个元素。
4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。
答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。
5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。
答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。
a 离散模拟答案11命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.一、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f gd eb c图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)二、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→F)→C, B→(A∧S)B→Eb)x(P(x)→Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠且B≠,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。
离散数学考试(试题及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。
解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。
则根据题意应有:A C D,(B∧C),C D必须同时成立。
因此(A C D)∧(B∧C)∧(C D)(A∨(C∧D)∨(C∧D))∧(B∨C)∧(C∨D)(A∨(C∧D)∨(C∧D))∧((B∧C)∨(B∧D)∨C∨(C∧D))(A∧B∧C)∨(A∧B∧D)∨(A∧C)∨(A∧C∧D)∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧D∧C∧D)∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧D∧C∧D)F∨F∨(A∧C)∨F∨F∨(C∧D∧B)∨F∨F∨(C∧D∧B)∨F∨(C∧D)∨F(A∧C)∨(B∧C∧D)∨(C∧D∧B)∨(C∧D)(A∧C)∨(B∧C∧D)∨(C∧D)T故有三种派法:B∧D,A∧C,A∧D。
二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。
解:论域:所有人的集合。
S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x (S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x(S(x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A B⌝(B A)。
证明:A B x(x∈A→x∈B)∧x(x∈B∧x A)x(x A∨x∈B)∧x(x∈B∧x A) ⌝x(x∈A∧x B)∧⌝x(x B∨x∈A)⌝x(x∈A∧x B)∨⌝x(x∈A∨x B)⌝(x(x∈A∧x B)∧x(x∈A∨x B))⌝(x(x∈A∧x B)∧x(x∈B→x∈A))⌝(B A)。
《离散数学》模拟试题
一、 填空题(每小题2分,共20分)
1. 已知集合A ={φ,1,2},则A 得幂集合p (A )=_____ _。
2. 设集合E ={a , b , c , d , e }, A = {a , b , c }, B = {a , d , e }, 则A ∪B =___ ___,
A ∩
B =____ __,A -B =___ ___,~A ∩~B =____ ____。
3. 设A ,B 是两个集合,其中A = {1, 2, 3}, B = {1, 2},则A -B =____ ___,
ρ(A )-ρ(B )=_____ _ _。
4. 已知命题公式,则G 的析取范式为 。
5. 设P :2+2=4,Q :3是奇数;将命题“2+2=4,当且仅当3是奇数。
”符号化
,其真值为 。
二、单项选择题(选择一个正确答案的代号填入括号中,每小题4分,共16分。
)
1. 设A 、B 是两个集合,A ={1,3,4},B ={1,2},则A -B 为( ). A. {1} B. {1, 3} C. {3,4} D. {1,2}
2. 下列式子中正确的有( )。
A. φ=0 B. φ∈{φ} C. φ∈{a,b} D. φ∈φ
3. 设集合X ={x , y },则ρ(X )=( )。
A. {{x },{y }} B. {φ,{x },{y }}
C. {φ,{x },{y },{x , y }}
D. {{x },{y },{x , y }} 4. 设集合
A ={1,2,3},A
上的关系
R =
{(1,1),(2,2),(2,3),(3,3),(3,2)}, 则R 不具备( ). 三、计算题(共50分)
R Q P G →∧⌝=)(
1. (6分)设全集E =N ,有下列子集:A ={1,2,8,10},B
={n |n 2
<50 ,n ∈N },C ={n |n 可以被3整除,且n <20 ,n ∈N },D ={n |2i ,i <6且i 、n ∈N },求下列集合: (1)A ∪(C ∩D ) (2)A ∩(B ∪(C ∩D )) (3)B -(A ∩C ) (4)(~A ∩B ) ∪D
2. (6分)设集合A ={a , b , c },A 上二元关系R 1,R 2,R 3分别为:R 1=A ×A ,
R 2 ={(a ,a ),(b ,b )},R 3 ={(a ,a )},试分别用
定义和矩阵运算求R 1· R 2 ,,R 1· R 2 · R 3 , (R 1·R 2 ·R 3 )-1 。
(6分)化简等价式(﹁P ∧(﹁Q ∧R ))∨(Q ∧R )∨(P ∧R ).
4. (8分) 设集合A ={1,2,3},R 为A 上的二元关系,且 M R =
写出R 的关系表达式,画出R 的关系图并说明R 的性质.
5. (10分) 设公式G 的真值表如下. 试叙述如何根据真值表求G 的 主析取范式和主合取范式,并 写出G 的主析取范式和主合取范式.
22R
1 0 0
1 1 0 1 0 0
6. (8分) 设解释I 为:
(1) 定义域D ={-2,3,6}; (2) F (x ): x ≤3 G (x ): x >5
在解释I 下求公式 x (F(x)∨G(x))的真值.
7. (6分) 试用克鲁斯卡尔算法求下图所示权图中的最优支撑树.要求画出
其最优支撑树,并求出权和.
四、证明题(每小题8分,共16分)
1. 设A ,B ,C 为三个任意集合,试证明: ( 8分) (1)(A -B )-C =(A -C )-(B -C ) (2)A ∪(B ∩C )=A ∪((B -A )∩(A ∪C )) (3)(A ∪(B -A ))-C =(A -C )∪(B -C ) (4)((A ∪B ∪C )∩(A ∪B ))-((A ∪(B -C ))∩A )=B -
A
2. 证明下面的等价式: ( 8分)
(1)(⌝ P ∧(⌝ Q ∧R ))∨(Q ∧R )∨(P ∧R )=R (2)(P ∧(Q ∧S ))∨(⌝ P ∧(Q ∧S ))=(Q ∧S ) (3)P → (Q → R )=(P ∧Q )→ R (4)⌝( P Q )=(P ∧⌝ Q )∨(⌝P ∧Q )
参考答案
一、填空题
1. {φ,{φ},{1},{φ,1},{φ,2},{1,2},A}
2. {a ,b ,c ,d ,e };{a };{b ,c };φ
3. {3};{{3},{1,3},{2,3},{1,2,3}} 4 . 5. P ↔Q ,1
二、单项选择题
1. C
2. B
3. C
4. B
三、计算题
1. (1)A ;(2){1};(3)B ;(4){2,4,8,9,16,32}
2. R 1 ·R 2 =={(a ,a ),(a ,b ),(b ,a ),(b ,b ),(c ,a ),(c ,b )}; ={( a ,a ),(a ,b )};
R 1·R 2 ·R 3 = {( a ,a ),(b ,a ),(c ,a )};
(R 1·R 2 ·R 3)-1
= {( a ,a ),(a ,b ),(a ,c )}; 3. 解:
(﹁P ∧(﹁Q ∧R ))∨(Q ∧R )∨(P ∧R ) =(﹁P ∧(﹁Q ∧R ))∨((Q ∨P )∧R )
↔R Q P ∨⌝∨22
R
=((﹁P∧﹁Q)∧R))∨((Q∨P)∧R)
=((﹁P∧﹁Q)∨(Q∨P))∧R
=(﹁(P∨Q)∨(P∨Q))∧R
=1∧R
=R
解:
R={(1,1),(2,1),(2,2),(3,1) }
其关系图如下:
R是反对称的和传递的.
5. 解:
将真值表中最后一列的1左侧的二进制数,所对应的极小项写出后,将其析取起来,
就得到G的主析取范式.
于是,G=(﹁P∧﹁Q∧﹁R)∨(﹁P∧ Q∧﹁R)∨(﹁P∧Q∧R)∨(P∧﹁ Q∧R).
将真值表中最后一列的0左侧的二进制数,所对应的极大项写出后,将其合取起来,
就得到G的主合取范式.
于是,G=(P∨Q∨﹁R)∧(﹁P∨ Q∨R)∧(﹁P∨﹁Q∨R)∧(﹁P∨﹁ Q∨﹁R).
6. 解:
∃ x ( F(x) ∨G(x))
⇔ ( F(-2) ∨G(-2)) ∨ ( F(3) ∨G(3)) ∨ ( F(6) ∨G(6))
(1∨0) ∨(1∨0) ∨(0∨1)
1
7. 解:
下图的粗线条为该权图的最优支撑树,5条边.
权和为2+2+3+3+5=15.
四、证明题
1.(1)
左边=(A-B)∩~C=A∩~B∩~C
右边=(A∩~C)∩~(B∩~C)
=(A∩~C)∩(~B∪C)
=(A∩~C∩~B)∪(A∩~C∩C)
=(A∩~B∩~C)∪0
=A∩~B∩~C
=左边
(2)
左边=(A∪B)∩(A∪C)
右边=A∪((B∩~A)∩(A∪C))
=A∪((B∩~A∩A)∪(B∩~A∩C))
=A∪(B∩~A∩C)
=(A∪B)∩(A∪~A)∩(A∪C)
=(A∪B)∩(A∪C)
=左边
(3)
左边=(A∪(B∩~A))∩~C
=((A∪B)∩(A∪~A))∩~C
=(A∪B)∩~C
=(A∩~C)∪(B∩~C)
=(A-C) ∪(B-C)
=右边
(4)
左边=(A∪B)-A
=(A∪B)∩~A
=(A∩~A)∩(B∩~A)
=B-A
=右边
2.(1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)
=(⌝P∧(⌝Q∧R))∨((Q∨P)∧R)
=((⌝P∧⌝Q)∧R)∨((Q∨P)∧R)
=((⌝P∧⌝ Q)∨(Q∨P))∧R
=(⌝(P∨Q)∨(Q∨P))∧R
=1∧R
=R
(2)(P∧(Q∧S))∨(⌝P∧(Q∧S))
=((Q∧S)∧P)∨((Q∧S)∧⌝P)
=(Q∧S)∧(P∨⌝P)
=(Q∧S)∧1
=Q∧S
(3)P→ (Q→R)
=⌝ P∨(⌝ Q∨R)
=(⌝ P∨⌝ Q)∨R
=⌝(P∧Q)∨R
=(P∧Q)→ R
(4)⌝(P Q)
↔
=⌝((P→ Q)∧(Q→P))
=⌝((⌝ P∨Q)∧(⌝ Q∨P))
=⌝(⌝ P∨Q)∨⌝(⌝ Q∨P)
=(⌝(⌝ P)∧⌝ Q)∨(⌝(⌝ Q)∧⌝P)
=(P∧⌝ Q)∨(Q∧⌝P)
=(P∧⌝ Q)∨(⌝P∧Q)。