初中数学鲁教版(五四制)七年级上册第一章三角形1认识三角形
- 格式:docx
- 大小:36.27 KB
- 文档页数:7
章节测试题1.【答题】已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=30°+∠B,则∠B=______°.【答案】60【分析】本题考查了三角形的内角和定理.【解答】∵∠A+∠B+∠=180°,∴30°+∠B+30°+∠B=180°,∴∠B=60°.故答案为:60°.2.【答题】AE是△ABC的角平分线,AD是BC边上的高,且∠B=40°,∠ACD=70°,则∠DAE的度数为______.【答案】15°或35°【分析】本题考查了三角形的内角和定理、三角形的高和角平分线.【解答】本题需要分两种情况进行讨论:如图1所示:根据∠B=40°,∠C=70°可得:∠BAC=70°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=35°,则∠DAE=35°-20°=15°;如图2所示:根据∠B=40°,∠ACD=70°可得:∠BAC=30°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=15°,则∠DAE=15°+20°=35°.3.【题文】已知△ABC中,∠A=105°,∠B比∠C大15°,求:∠B,∠C的度数.【答案】45°【分析】本题考查了三角形的内角和定理.根据三角形的内角和定理得∠A+∠B+∠C=180°,再把∠A=105°,∠B=∠C+15°代入可计算出∠C,然后计算∠B的度数.【解答】∵∠A+∠B+∠C=180°,而∠A=105°,∠B=∠C+15°,∴105°+∠C+15°+∠C=180°,∴∠C=30°,∴∠B=∠C+15°=30°+15°=45°.4.【题文】如图,在△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.【答案】∠B=60°.【分析】本题考查了三角形的内角和定理、角的平分线.【解答】∵DE是CA边上的高,∴∠DEA=∠DEC=90°.∵∠A=20°,∴∠EDA=90°-20°=70°.∵∠EDA=∠CDB,∴∠CDE=180°-70°×2=40°.在Rt△CDE中,∠DCE=90°-40°=50°.∵CD是∠BCA的平分线,∴∠BCA=2∠DCE=2×50°=100°.∴∠B=180°-∠BCA-∠A=60°.5.【题文】如图,在△ABC中,∠A=36°,∠C=72°,BD平分∠ABC,求∠DBC的度数.【答案】36°【分析】本题考查了三角形的内角和定理.首先根据三角形的内角和定理求得∠ABC的度数,然后利用角的平分线的定义求解.【解答】∵∠A=36°,∠C=72°,∴∠ABC==180°-∠A-∠C=72°,∵BD平分∠ABC,∴∠DBC=∠ABC=×72°=36°.6.【题文】如图所示,在△ABC中,∠A=38°,∠ABC=70°,CD⊥AB于点D,CE 平分∠ACB,DF⊥CE于点F,求∠CDF的度数.【答案】74°【分析】本题考查了三角形的内角和定理、角的平分线.首先根据∠A和∠B的度数以及三角形内角和定理得出∠ACB的度数,然后根据角平分线的性质和垂直的定义得出∠ACE和∠ACD的度数,然后求出∠DCE的度数,最后根据DF⊥CE,∠CDF=90°-∠DCE得出答案.【解答】∵∠A=38°,∠B=70°,∴∠BCA=180°-∠A-∠B=180°-38°-70°=72°,∵CE平分∠ACB,∴∠ACE=36°,∵CD⊥AB,∴∠ACD=90°-∠A=90°-38°=52°,∴∠DCE=∠ACD-∠ACE=52°-36°=16°,∵DF⊥CE,∴∠CDF=90°-∠DCE=90°-16°=74°.7.【答题】Rt△ABC中,∠C=90°,∠B=46°,则∠A=()A. 44°B. 34°C. 54°D. 64°【答案】A【分析】本题考查了三角形的内角和定理.【解答】∵∠C=90°,∠B=46°,∴∠A=90°-46°=44°.选A.8.【答题】如图,AD是Rt△ABC的斜边BC上的高,则图中与∠B互余的角有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了三角形的高线和余角.【解答】∵AD是Rt△ABC斜边上的高,∴∠B+∠C=90°,∠B+∠BAD=90°,∴与∠B互余的角有∠C和∠BAD,共2个.选B.9.【答题】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A. 45°B. 54°C. 40°D. 50°【答案】C【分析】本题考查了三角形的内角和定理、平行线的性质、角的平分线.【解答】∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.选C.10.【答题】如图,AB⊥BD,AC⊥CD,∠D=35°,则∠A的度数为()A. 65°B. 35°C. 55°D. 45°【答案】B【分析】本题考查了三角形的内角和定理.【解答】∵AB⊥BD,AC⊥CD,∴∠B=∠C=90°,∴∠A+∠AEB=∠D+∠CED=90°.又∵∠AEB=∠CED,∴∠A=∠D=35°.选B.11.【答题】直角三角形中两锐角之差为20°,则较大锐角为()A. 45°B. 55°C. 65°D. 50°【答案】B【分析】本题考查了三角形的内角和定理.【解答】设两个锐角分别为x、y,由题意得,,解得,∴最大锐角为55°.选B.12.【答题】如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()A. 2α+∠A=180°B. α+∠A=90°C. 2α+∠A=90°D. α+∠A=180°【答案】A【分析】本题考查了三角形的内角和定理.【解答】A、正确.∵∠A+∠B+∠C=180°,∠B=∠C=α,∴2α+∠A=180°.B、错误.不妨设,α+∠A=90°,∵2α+∠A=180°,∴α=90°,这个显然与已知矛盾,故结论不成立.C、错误.∵2α+∠A=180°,∴2α+∠A=90°不成立.D、错误.∵2α+∠A=180°,∴α+∠A=180°不成立.选A.13.【答题】已知三角形的一个内角是另一个内角的,是第三个内角的,则这个三角形各内角的度数分别为()A. 60°,90°,75°B. 48°,72°,60°C. 48°,32°,38°D. 40°,50°,90°【答案】B【分析】本题考查了三角形的内角和定理.【解答】设第一个内角的度数为x,∵三角形的一个内角是另一个内角的,是第三个内角的,∴另一个内角的度数为x,第三个内角为x,∴x+x+x=180°,解得x=48°,∴三个内角分别为48°,72°,60°,选B.14.【答题】在一个直角三角形中,有一个锐角等于30°,则另一个锐角的大小为______度.【答案】60【分析】本题考查了三角形的内角和定理.【解答】∵三角形是直角三角形,一个锐角等于30°,∴另一个锐角为90°-30°=60°.故答案为:60.15.【答题】一个三角形的三个内角之比为1∶2∶3,则三角形是______三角形.【答案】直角【分析】本题考查了三角形的内角和定理.【解答】设三角形三内角度数分别为x,2x,3x,根据三角形的内角和为180°得:x+2x+3x=180°,即6x=180°,解得x=30°,可得三角形三内角分别为30°,60°,90°,则三角形是直角三角形.故答案为:直角.16.【答题】如图,AC⊥BC于点C,DE⊥BE于点E,BC平分∠ABE,∠BDE=58°,则∠A=______°.【答案】58【分析】本题考查了三角形的内角和定理.【解答】∵BC平分∠ABE,∴∠ABC=∠DBE,∵AC⊥BC,DE⊥BE,∴∠A+∠ABC=90°,∠BDE+∠DBE=90°,∴∠A=∠BDE=58°.故答案为:58.17.【答题】三角形中最大的内角不能小于______度,最小的内角不能大于______度.【答案】60 60【分析】本题考查了三角形的内角和定理.【解答】(1)设三角形中最大的内角为x度,由三角形内角和定理得,3x≥180,则x≥60,即三角形中最大的内角不能小于60°.(2)设三角形中最小的内角为y度,由三角形内角和定理得,3y≤180,则y≤60,即三角形中最小的内角不能大于60°.故答案为:60;60.18.【题文】如图,A点在B点的北偏东40°方向,C点在B点的北偏东75°方向,A点在C点的北偏西50°方向.求从A点观测B,C两点的视角∠BAC的度数.【答案】90°【分析】本题考查了三角形的内角和定理.【解答】∵∠DBA=40°,∠DBC=75°,∴∠ABC=∠DBC−∠DBA=75°−40°=35°,∵DB∥EC,∴∠DBC+∠ECB=180°,∴∠ECB=180°−∠DBC=180°−75°=105°,∴∠ACB=∠ECB−∠ACE=105°−50°=55°,∴∠BAC=180°−∠ACB−∠ABC=180°−55°−35°=90°.19.【题文】(1)如图(1),已知任意三角形ABC,过点C作DE∥AB;①求证:∠DCA=∠A;②求证:∠A+∠B+∠ACB=180°;(2)如图(2),求证:∠AGF=∠AEF+∠F;(3)如图(3),AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F.【答案】(1)证明见解答;(2)证明见解答(3)29.5°.【分析】(1)①根据“两直线平行,内错角相等”可证明;②结合①的证明,转化为平角的意义证明三角形的内角和;(2)根据平角的意义和三角形的内角和,等量代换即可;(3)先根据两直线平行,内错角相等,同旁内角互补,求得∠AED和∠DEB的度数,再根据平角的意义和角平分线的性质求得∠DEF的度数,结合(2)的结论可求解.【解答】证明:(1)①∵DE∥BC,∴∠DCA=∠A;②如图1所示,在△ABC中,∵DE∥BC,∴∠B=∠ECA,∠DCA=∠A(内错角相等).∵∠ECA+∠BCA+∠DCA=180°,∴∠A+∠B+∠C=180°.即三角形的内角和为180°;(2)∵∠AGF+∠FGE=180°,由(1)知,∠GEF+∠F+∠FGE=180°,∴∠AGF=∠AEF+∠F;(3)∵AB∥CD,∠CDE=119°,∴∠DEB=119°,∠AED=61°,∵GF交∠DEB的平分线EF于点F,∴∠DEF=59.5°,∴∠AEF=120.5°,∵∠AGF=150°,∵∠AGF=∠AEF+∠F,∴∠F=150°﹣120.5°=29.5°.20.【题文】已知凸四边形ABCD中,∠A=∠C=90°.(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DE与BF位置关系并证明.(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.【答案】见解答【分析】(1)DE⊥BF,延长DE交BF于G.易证∠ADC=∠CBM.可得∠CDE=∠EBF.即可得∠EGB=∠C=90゜,则可证得DE⊥BF;(2)DE∥BF,连接BD,易证∠NDC+∠MBC=180゜,则可得∠EDC+∠CBF=90゜,继而可证得∠EDC+∠CDB+∠CBD+∠FBC=180゜,则可得DE∥BF.【解答】解:(1)DE⊥BF.证明如下:延长DE交BF于点G.∵∠A+∠ABC+∠C+∠ADC=360°,∠A=∠C=90°,∴∠ABC+∠ADC=180°.∵∠ABC+∠MBC=180°,∴∠ADC=∠MBC.∵DE、BF分别平分∠ADC、∠MBC,∴∠EDC=∠ADC,∠EBG=∠MBC,∴∠EDC=∠EBG.∵∠EDC+∠DEC+∠C=180°,∠EBG+∠BEG+∠EGB=180°,∠DEC=∠BEG,∴∠EGB=∠C=90°,∴DE⊥BF;(2)DE∥BF.证明如下:连接BD.∵DE、BF分别平分∠NDC、∠MBC,∴∠EDC=∠NDC,∠FBC=∠MBC.∵∠ADC+∠NDC=180°,∠ADC=∠MBC,∴∠MBC+∠NDC=180°,∴∠EDC+∠FBC=90°.∵∠C=90°,∴∠CDB+∠CBD=90°,∴∠EDC+∠CDB+∠FBC+∠CBD=180°,即∠EDB+∠FBD=180°,∴DE∥BF.。
章节测试题1.【答题】在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于()A. 50°B. 100°C. 75°D. 125°【答案】C【分析】本题考查了三角形的内角和定理.【解答】∵∠B比∠C大25°,∴设∠B=x,则∠C=x-25°,∵∠A+∠B+∠C=180°,∠A=55°,∴55°+x+x-25°=180°,解得x=75°,选C.2.【答题】一个三角形的两个内角分别为60°和20°,则这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定【答案】C【分析】本题考查了三角形的内角和定理.【解答】解:∵三角形的两个内角分别为60°和20°,∴第三个角为:180°﹣60°﹣20°=100°,∴是钝角三角形,选C.3.【答题】已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=∠A,则此三角形()A. 一定有一个内角为45°B. 一定有一个内角为60°C. 一定是直角三角形D. 一定是钝角三角形【答案】C【分析】本题考查了三角形的内角和定理.【解答】∵∠A+∠B+∠C=180°,∠B+∠C=∠A,∴2∠A=180°,∴∠A=90°,即△ABC一定是直角三角形;选C.4.【答题】如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()A. 2α+∠A=180°B. α+∠A=90°C. 2α+∠A=90°D. α+∠A=180°【答案】A【分析】本题考查了三角形的内角和定理.【解答】A、正确.∵∠A+∠B+∠C=180°,∠B=∠C=α,∴2α+∠A=180°.B、错误.不妨设,α+∠A=90°,∵2α+∠A=180°,∴α=90°,这个显然与已知矛盾,故结论不成立.C、错误.∵2α+∠A=180°,∴2α+∠A=90°不成立.D、错误.∵2α+∠A=180°,∴α+∠A=180°不成立.选A.5.【答题】在△ABC中,若∠A+∠B=90°,则△ABC一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形【答案】B【分析】本题考查了三角形的内角和定理.【解答】在△ABC中,∠A+∠B=90°,根据三角形的内角和定理可得∠C=90°,∴△ABC一定是直角三角形,选B.6.【答题】在△ABC中,∠A=2∠B=80°,则∠C等于()A. 40°B. 60°C. 80°D. 120°【答案】B【分析】本题考查了三角形的内角和定理.【解答】解:∵在△ABC中,∠A=2∠B=80°,∴∠A=80°,∠B=40°,∴∠C=180°﹣∠A ﹣∠B=180°﹣80°﹣40°=60°.选B.7.【答题】如果一个三角形的三个内角都不相等,那么最小角一定小于()A. 60°B. 45°C. 30°D. 59°【答案】A【分析】本题考查了三角形的内角和定理.【解答】假设,最小角度大于或等于60°,则另外两个角一定也大于60°,那么此三角形内角和大于180°,故假设不成立,∴此三角形的最小角一定要小于60°.选A.8.【答题】如图,在△ABC中,D是BC上一点,若∠B=∠C=∠BAD,∠DAC=∠ADC,∠BAC的度数为()A. 36度B. 72度C. 98度D. 108度【答案】D【分析】本题考查了三角形的内角和定理.【解答】∵∠ADC=∠B+∠BAD,∠B=∠C=∠BAD,∠ADC=∠DAC,∴∠B+∠C+∠BAD+∠DAC=180°,∴5∠B=180°,解得∠B=36°,∴∠BAC=180°-2∠B=108°.选D.9.【答题】已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠B等于()A. 40°B. 60°C. 80°D. 90°【答案】C【分析】本题考查了三角形的内角和定理.【解答】解得∠B=80°,,∠C=60°,∴选C.10.【答题】在△ABC中,∠A=40°,∠B=60°,则∠C=()A. 40°B. 80°C. 60°D. 100°【答案】B【分析】本题考查了三角形的内角和定理.【解答】根据三角形的内角和定理得:.选B.11.【答题】直角三角形的一个锐角是40°,则另一个锐角的度数是()A. 50°B. 60°C. 70°D. 90°【答案】A【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵直角三角形的一个锐角是40°,∴另一个锐角的度数是90°-40°=50°.选A.12.【答题】一个三角形三个内角的度数之比为2:3:5,这个三角形一定是()A. 等腰三角形B. 直角三角形C. 锐角三角形D. 钝角三角形【答案】B【分析】本题考查了三角形的内角和定理.【解答】解:∵一个三角形三个内角的度数之比为2:3:5,∴这个三角形的最大角为:180°×=90°,∴这个三角形一定是直角三角形.选B.13.【答题】已知∠A:∠B:∠C=1:2:2,则△ABC三个角度数分别是()A. 40°、80°、80°B. 35°、70°70°C. 30°、60°、60°D. 36°、72°、72°【答案】B【分析】本题考查了三角形的内角和定理.【解答】∴设则解得:选D.14.【答题】在△ABC中,若∠C=∠A+∠B,则△ABC是()A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形【答案】C【分析】本题考查了三角形的内角和定理.【解答】∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,、∴△ABC是直角三角形.选C.15.【答题】在△ABC中,∠A=30°,∠B=75°,则△ABC是()A. 直角三角形B. 钝角三角形C. 等边三角形D. 等腰三角形【答案】D【分析】本题考查了三角形的内角和定理.【解答】∵在△ABC中,∠A=30°,∠B=75°,∴∠C=180°-30°-75°=75°,∴△ABC是等腰三角形.选D.16.【答题】如图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A. 40°B. 50°C. 60°D. 70°【答案】A【分析】本题考查了三角形的内角和定理.【解答】∵AB⊥BD,∠A=40°,∴∠AEB=50°,∴∠DEC=50°,又AC⊥CD,∴∠D=40°,选A.17.【答题】在下列条件中:①②③④中,能确△ABC是直角三角形的定条件有()A. ①②B. ③④C. ①③④D. ①②③【答案】D【分析】本题考查了三角形的内角和定理.【解答】①∠A+∠B=∠C,根据三角形的内角和定理可得2∠C=180°,∠C=90°,∴△ABC是直角三角形;②∵∠A:∠B:∠C=1:2:3,设∠A=x,根据三角形的内角和定理可得x+2x+3x=180,解得x=30°,∴∠C=30°×3=90°,即△ABC是直角三角形;③∵∠A=90°-∠B,∴∠A+∠B=90°,即可得∠C=180°-90°=90°,∴△ABC是直角三角形;④∵∠A=∠B=∠C,三角形为等边三角形.∴能确定△ABC是直角三角形的有①②③共3个.选D.18.【答题】在△ABC中,∠B﹣∠A=50°,∠B是∠A的3.5倍,则△ABC是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定【答案】C【分析】本题考查了三角形的内角和定理.【解答】设∠A=x,则∠B=3.5x,∴3.5x-x=50°,解得x=20°,∴∠A=20°,∠B=70°,∴∠C=180°-20°-70°=90°,∴△ABC是直角三角形.选C.19.【答题】已知一个三角形的两个角是锐角,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定是什么三角形【答案】D【分析】本题考查了三角形的内角和定理.【解答】锐角三角形、直角三角形和钝角三角形中都可以有两个锐角,∴不能判断这个三角形是什么三角形.选D.20.【答题】已知△ABC中,∠A、∠B、∠C对应的比例如下,其中能判定△ABC是直角三角形的是()A. 2:3:4B. 4:3:5C. 1:2:3D. 1:2:2【答案】C【分析】本题考查了三角形的内角和定理.【解答】A.设三个角分别为2x,3x,4x,根据三角形内角和定理得三个角分别为:40°,60°,80°,∴不是直角三角形;B.设三个角分别为3x,4x,5x,根据三角形内角和定理得三个角分别为:45°,60°,75°,∴不是直角三角形;C.设三个角分别为x,2x,3x,根据三角形内角和定理得三个角分别为:30°,60°,90°,∴是直角三角形;D.设三个角分别为x,2x,2x,根据三角形内角和定理得三个角分别为:36°,72°,72°,∴不是直角三角形.选B.。
章节测试题1.【答题】如图,于C,于D,于E,则下列说法中错误的是()A. 中,AC是BC边上的高B. 中,DE是BC边上的高C. 中,DE是BE边上的高D. 中,AD是CD边上的高【答案】C【分析】根据三角形的高线的定义解答即可.【解答】中,AC是BE边上的高,C错.2.【答题】三角形一边上的高()A. 必在三角形内部B. 必在三角形外部C. 必在三角形的边上D. 以上三种情况都有可能【答案】D【分析】根据三角形的高线的定义和特征解答即可.【解答】锐角三角形所有高在内部,直角三角形两条高在边上,钝角三角形两条高在外部.选D.3.【答题】下列叙述中正确的是()A. 三角形一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的射线,叫做三角形的角平分线B. 连结三角形一个顶点和它对边中点的直线,叫做三角形的中线C. 从三角形一个顶点向它的对边画垂线叫做三角形的高D. 三角形的三条中线总在三角形的内部【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】选项A,三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线,A错.选项B, 三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.B错.选项C, 从三角形一个顶点向它的对边作一条垂线,三角形顶点和垂足之间的线段称三角形这条边上的高.C错误.D正确.所以选D.4.【答题】如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A. 1cm2B. 2cm2C. 8cm2D. 16cm2【答案】D【分析】根据三角形中线的定义解答即可.【解答】解:∵F是CE中点,∴△BEF的面积与△BCF的面积相等,∴S△BEC=2S△BEF=8(cm2),∵D、E分别为BC、AD的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,∴S△ABC=2S△BEC=16(cm2).选D.5.【答题】如果AD是△ABC的中线,那么下列结论一定成立的有()①BD=CD;②AB=AC;③S△ABD=S△ABC.A. 3个B. 2个C. 1个D. 0个【答案】B【分析】根据三角形的中线定义解答即可.【解答】解:∵AD是△ABC的中线,∴BD=CD=BC,故①正确;∵AD与BC不一定互相垂直,∴AB与AC不一定相等,故②错误;设△ABC中BC边上的高为h,则S△ABD=•BD•h=•BC•h=S△ABC,故③正确.选B.6.【答题】一定在△ABC内部的线段是()A. 锐角三角形的三条高、三条角平分线、三条中线B. 钝角三角形的三条高、三条中线、一条角平分线C. 任意三角形的一条中线、二条角平分线、三条高D. 直角三角形的三条高、三条角平分线、三条中线【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:钝角三角形一条高在三角形内部,另两条高在三角形的外部,三条中线和三条角平分线都在三角形的内部,故B、C错误;任意三角形的三条角平分线、三条中线、一条高一定在三角形内部,故D错误.选A.7.【答题】给出下列说法:①三条线段组成的图形叫三角形;②三角形的角平分线是射线;③三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;④任何一个三角形都有三条高、三条中线、三条角平分线;⑤三角形的三条角平分线交于一点,且这点在三角形内.正确的说法有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:三条线段首尾顺次相接组成的图形叫三角形,故①错误;三角形的角平分线是线段,故②错误;三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,故③错误;所以正确的命题是④⑤,共2个.选B.8.【答题】下列说法不正确的是()A. 三角形的重心是其三条中线的交点B. 三角形的三条角平分线一定交于一点C. 三角形的三条高线一定交于一点D. 三角形中,任何两边的和大于第三边【答案】C【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:A、三角形的重心是其三条中线的交点,正确;B、三角形的三条角平分线一定交于一点,正确;C、钝角三角形的三条高线不相交,故三角形的三条高线一定交于一点错误;D、根据三角形的三边关系定理可知三角形中,任何两边的和大于第三边,正确.选C.9.【答题】如图,AD⊥BC,GC⊥BC,CF⊥AB,垂足分别是D、C、F,下列说法中,错误的是()A. △ABC中,AD是边BC上的高B. △ABC中,GC是边BC上的高C. △GBC中,GC是边BC上的高D. △GBC中,CF是边BG上的高【答案】B【分析】根据三角形的高线的定义解答即可.【解答】解:A、AD经过△ABC的一个顶点,且AD垂直于BC边所在的直线,所以△ABC中AD是边BC上的高,故此选项正确;B、GC没有经过BC所对的顶点A,所以△ABC中,GC不是BC边上的高,故此选项错误;C、GC经过△GBC的一个顶点,且GC垂直于BC,所以△GBC中GC是边BC上的高,故此选项正确;D、CF经过△GBC的一个顶点,且CF垂直于BG,所以△GBC中CF是边BG上的高,故此选项正确.选B.10.【答题】下列说法不正确的是()A. △ABC的中线AD平分边BCB. △ABC的角平分线BE平分∠ABCC. △ABC的高CF垂直ABD. 直角△ABC只有一条高【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:A、∵AD是△ABC的中线,∴D是BC的中点,即AD平分边BC,故此选项正确;B、∵BE是△ABC的角平分线,∴BE平分∠ABC,故此选项正确;C、∵CF是△ABC的高,∴CF⊥AB,故此选项正确;D、直角△ABC有三条高,其中两条是直角边,一条在三角形内部,故此选项错误.选D.11.【答题】能把一个三角形的面积一分为二的线段是()A. 高B. 中线C. 角平分线D. 外角平分线【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:三角形的中线把三角形分成两个三角形,这两个三角形等底同高,所以这两个三角形的面积相等,所以能把一个三角形的面积一分为二的线段是中线.选B.12.【答题】如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:因为直角三角形的三条高线的交点是直角顶点,而其他三角形三条高线的交点都不在顶点上,所以如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是直角三角形.选B.13.【答题】如图,△ABC的角平分线BD与中线CE相交于点O.有下列两个结论:①BO是△CBE的角平分线;②CO是△CBD的中线.其中()A. 只有①正确B. 只有②正确C. ①和②都正确D. ①和②都不正确【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:BD是△ABC的角平分线,所以OBE=OBC,所以BO是△CBE的角平分线,CE平分AB,但不平分BD,所以CO不是△CBD的中线.选A.14.【答题】如图,△ABC中∠C=90°,CD⊥AB,图中线段中可以作为△ABC的高的有()A. 2条B. 3条C. 4条D. 5条【答案】B【分析】根据三角形的高的定义:三角形的顶点到对边的垂直距离.得到可以作为△ABC的高的条数.【解答】解:可以作为△ABC的高的有AC,BC,CD,共3条.选B.15.【答题】如下图中的最右图:在△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,∠B=40°,∠BAC=80°,则∠DAE=()A. 7B. 8°C. 9°D. 10°【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】∵AD平分∠BAC,又∵∠BAC=80°,∴.∵AE⊥BC,又∵∠B=40°,即∠ABE=40°,∴在Rt△AEB中,∠BAE=90°-∠ABE=90°-40°=50°,∴∠DAE=∠BAE-∠BAD=50°-40°=10°.故本题应选D.16.【答题】三角形的高线是()A. 直线B. 线段C. 射线D. 三种情况都可能【答案】B【分析】根据三角形高线的定义解答即可.【解答】由三角形高的定义:“过三角形的一个顶点向对边或对边所在的直线引垂线,顶点到垂足之间的线段叫三角形的高线”可知:三角形的高线是线段.选B.17.【答题】在△ABC中,AD为中线,BE为角平分线,则在以下等式中:①∠BAD=∠CAD;②∠ABE=∠CBE;③BD=DC;④AE=EC. 正确的是()A. ①②B. ③④C. ①④D. ②③【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】如下图,∵AD是△ABC的中线,BE是△ABC的角平分线,∴BD=CD,∠ABE=∠CBE,∴上述结论中正确的是②③.选D.18.【答题】如图所示,AD是△ABC的角平分线,AE是△ABD的角平分线.若∠BAC=80°,则∠EAD的度数是()A. 20°B. 30°C. 45°D. 60°【答案】A【分析】根据三角形角平分线的定义解答即可.【解答】∵AD△ABC的角平分线,∠BAC=80°,∴∠BAD=∠BAC=40°.又∵AE是△ABD的角平分线,∴∠EAD=∠BAD=20°.选A.19.【答题】如图,D、E分别是△ABC的边AC、BC的中点,那么下列说法中不正确的是()A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.AD=EC,DC=BE【答案】D【分析】根据三角形的中线的定义解答即可.【解答】∵D、E分别是△ABC的边AC、BC的中点,∴DE是△BCD的中线,BD是△ABC的中线,AD=DC,BE=EC.但不能得到AD=EC和DC=BE.选D.20.【答题】如图,在△ABC中,∠1=∠2,G为AD的中点,BG的延长线交AC于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 1个B. 2个C. 3个D. 4个【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.选B.。
章节测试题1.【题文】已知如图,在△ABC中,AD是角平分线,AE是高,∠ABC=30°,∠ACB=70°.(1)求∠DAE的度数.(2)如图2,若点F为AD延长线上一点,过点F作FG⊥BC于点G,求∠AFG的度数.【答案】见解答.【分析】(1)先利用三角形内角和定理求出∠BAC=80°,再利用角平分线求出∠BAD=40°,进而求出∠ADC=∠BAD+∠ABD=70°,最后用三角形的内角和定理即可得出结论;(2)先判断出FG∥AE,即可得出结论.【解答】解:(1)在△ABC中,∵∠ABC=30°,∠ACB=70°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣30°﹣70°=80°∵AD平分∠BAC∴∠BAD=∠CAD=∠BAC=×80°=40°,在△ABD中,∠ADC=∠BAD+∠ABD=40°+30°=70°∵AE为三角形的高,∴∠AED=90°.在△AED中,∠DAE=180°﹣∠ADE﹣∠AED=180°﹣70°﹣90°=20°.(2)∵FG⊥BC∴∠FGD=90°∵∠AED=90°∴∠FGD=∠AED∴FG∥AE∴∠AFG=∠DAE由(1)可知∠DAE=20°∴∠AFG=20°.2.【题文】如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=70°,∠BED=64°,求∠BAC的度数.【答案】58°.【分析】由已知条件,首先得出∠DAC=20°,再利用∠ABE=∠EBD,进而得出∠ABE+∠BAE=64°,求出∠EBD=26°,进而得出答案.【解答】解:∵AD是△ABC的高,∠C=70°,∴∠DAC=20°,∵BE平分∠ABC交AD于E,∴∠ABE=∠EBD,∵∠BED=64°,∴∠ABE+∠BAE=64°,∴∠EBD+64°=90°,∴∠EBD=26°,∴∠BAE=38°,∴∠BAC=∠BAE+∠CAD=38°+20°=58°.3.【题文】已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.【答案】见解答.【分析】(1)根据平行线的性质得出∠ABC+∠DAB=180°,求出∠ABC+∠DCB=180°,根据平行线的判定推出即可;(2)求出∠EAF和∠AEF的度数,即可求出答案.【解答】证明:(1)∵AD∥BC,∴∠ABC+∠DAB=180°,∵∠DCB=∠DAB,∴∠ABC+∠DCB=180°,∴DC∥AB;(2)解:∵DC∥AB,∠DEA=30°,∴∠EAF=∠DEA=30°,∵AE⊥EF,∴∠AEF=90°,∴∠AFE=180°﹣∠AEF﹣∠EAF=60°.4.【答题】如图,将△ABC沿MN折叠,使MN∥BC,点A的对应点为点A',若∠A'=32°,∠B=112°,则∠A'NC的度数是()A. 114°B. 112°C. 110°D. 108°【答案】D【分析】由MN∥BC,可得出∠MNC与∠C互补,由三角形的内角和为180°可求出∠C的度数,从而得出∠MNC的度数,由折叠的性质可知∠A′NM与∠MNC互补,而∠A′NC=∠MNC﹣∠A′NM,套入数据即可得出结论.【解答】解:∵MN∥BC,∴∠MNC+∠C=180°,又∵∠A+∠B+∠C=180°,∠A=∠A′=32°,∠B=112°,∴∠C=36°,∠MNC=144°.由折叠的性质可知:∠A′NM+∠MNC=180°,∴∠A′NM=36°,∴∠A′NC=∠MNC﹣∠A′NM=144°﹣36°=108°.5.【答题】下列条件中,不能确定△ABC是直角三角形的是()A. ∠A﹣∠B=90°B. ∠B=∠C=∠AC. ∠A=90°﹣∠BD. ∠A+∠B=∠C【答案】A【分析】根据三角形的内角和定理对各选项进行逐一判断即可.【解答】解:A.由∠A﹣∠B=90°不能确定△ABC是直角三角形,符合题意;B.由∠B=∠C=∠A可得,∠B=∠C=45°,∠A=90°,能确定△ABC是直角三角形,不合题意;C.由∠A=90°﹣∠B可得,∠A+∠B=90°,能确定△ABC是直角三角形,不合题意;D.由∠A+∠B=∠C可得,∠A+∠B=90°,能确定△ABC是直角三角形,不合题意;选:A.6.【答题】如图,将三角形ABC纸片沿MN折叠,使点A落在点A′处,若∠AMN =50°,∠A′MB的度数是()A. 20°B. 120°C. 70°D. 80°【分析】根据折叠的性质和平角的定义即可得到结论.【解答】解:∵将三角形ABC纸片沿MN折叠,使点A落在点A′处,∴∠A′MN=∠AMN=50°,∴∠A′MB=180°﹣50°﹣50°=80°,选:D.7.【答题】如图,是一块三角形木板的残余部分,量得∠A=110°,∠B=30°,这块三角形木板缺少的角是()A. 30°B. 40°C. 50°D. 60°【答案】B【分析】根据三角形的内角和定理计算即可.【解答】解:根据三角形的内角和定理第三个角=180°﹣110°﹣30°=40°,选:B.8.【答题】下列说法中错误的是()A. 一个三角形中至少有一个角不小于60°B. 直角三角形只有一条高C. 三角形的中线不可能在三角形外部D. 三角形的中线把三角形分成面积相等的两部分【答案】B【分析】分别根据三角形内角和定理,三角形的角平分线、中线和高对各选项进行逐一分析即可.【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、直角三角形有三条高,故本选项错误;C、三角形的中线一定在三角形的内部,故本选项正确;D、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确.选:B.9.【答题】在△ABC中,∠ABC和∠ACB的平分线交于点O,且∠BOC=110°,则∠A=()A. 70°B. 55°C. 40°D. 35°【答案】C【分析】根据三角形内角和定理列式求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和定理列式计算即可得解.【解答】解:在△BOC中,∵∠BOC=110°,∴∠OBC+∠OCB=180°﹣110°=70°,∵OB、OC分别是∠ABC和∠ACB的平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2×70°=140°,在△ABC中,∠A=180°﹣(∠ABC+∠ACB)=180°﹣140°=40°.选:C.10.【答题】一个三角形三个内角的度数之比为4:5:6,这个三角形一定是()A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形【答案】C【分析】利用三角形内角和定理求出三角形的内角即可判断.【解答】解:∵三角形三个内角的度数之比为4:5:6,∴这个三角形的内角分别为180°×=48°,180°×=60°,180°×=72°,∴这个三角形是锐角三角形,选:C.11.【答题】如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A. 120°B. 135°C. 150°D. 不能确定【答案】B【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【解答】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠FAD+∠FDA)=180﹣45°=135°.选:B.12.【答题】如图,BC⊥AE,垂足为C,过C作CD∥AB,若∠ECD=43°,则∠B=()A. 43°B. 57°C. 47°D. 45°【答案】C【分析】利用平行线的性质和三角形内角和定理计算即可.【解答】解:∵BC⊥AE,∴∠ACB=90°,∵CD∥AB,∴∠ECD=∠A=43°,∴∠B=90°﹣∠A=47°,选:C.13.【答题】如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于()A. 95°B. 120°C. 135°D. 无法确定【答案】C【分析】先根据三角形内角和定理求出∠OBC+∠OCB的度数,再根据∠BOC+(∠OBC+∠OCB)=180°即可得出结论.【解答】解:∵∠A=80°,∠1=15°,∠2=40°,∴∠OBC+∠OCB=180°﹣∠A﹣∠1﹣∠2=180°﹣80°﹣15°﹣40°=45°,∵∠BOC+(∠OBC+∠OCB)=180°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣45°=135°.选:C.14.【答题】如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A. 100°B. 115°C. 130°D. 140°【答案】B【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的性质求出∠PBC+∠PCB的度数,进而可得出结论.【解答】解:∵在△ABC中,∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°.∵BP平分∠ABC,CP平分∠ACB,∴∠PBC+∠PCB=(∠ABC+∠ACB)=×130°=65°,∴∠BPC=180°﹣65°=115°.选:B.15.【答题】如图所示,y与x的关系式为()A. y=-x+120B. y=120+xC. y=60-xD. y=60+x【答案】A【分析】根据三角形内角和定理建立等量,求出y即可.【解答】解:根据三角形内角和定理可知:x+y+60=180,则y=-x+120,故答案为:A.16.【答题】若三角形有两个内角的和是90°,那么这个三角形是()A. 钝角三角形B. 直角三角形C. 锐角三角形D. 不能确定【答案】B【分析】根据三角形的内角和即可得到结论.【解答】解:∵三角形有两个内角的和是90°,∴三角形的第三个角=180°﹣90°=90°,∴这个三角形是直角三角形,选:B.17.【答题】如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A. 90°B. 135°C. 270°D. 315°【答案】C【分析】先根据直角三角形的性质求得两个锐角和是90度,再根据四边形的内角和是360度,即可求得∠1+∠2的值.【解答】解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.选:C.18.【答题】下列条件,可以确定△ABC是直角三角形的是()A. ∠A+∠B+∠C=180°B. ∠A+∠B=∠CC. ∠A=∠B=∠CD. ∠A=∠B=2∠C【答案】B【分析】根据三角形内角和定理计算,根据直角三角形的定义判断.【解答】解:∠A+∠B+∠C=180°,∠A,∠B,∠C的度数不确定,A不能确定△ABC 是直角三角形;∠A+∠B=∠C,根据三角形内角和定理得到∠C=90°,B可以确定△ABC是直角三角形;∠A=∠B=∠C,则△ABC是等边三角形,C不能确定△ABC是直角三角形;∠A=∠B=2∠C,则△ABC是等腰三角形,D不能确定△ABC是直角三角形;选:B.19.【答题】如图,点D在△ABC的AB边上,∠ADC=80°,则下列结论正确的是()A. ∠A+∠ACD=80°B. ∠B+∠ACD=80°C. ∠A+∠ACD=100°D. ∠B+∠ACD=100°【答案】C【分析】根据三角形内角和定理计算,得到答案.【解答】解:∠A+∠ACD=180°﹣∠ADC=100°,A错误,C正确,∠B+∠ACD无法确定,B、D错误,选:C.20.【答题】如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P的度数是()A. 30°B. 45°C. 55°D. 60°【答案】B【分析】由OA⊥OB即可得出∠OAB+∠ABO=90°、∠AOB=90°,再根据角平分线的定义以及三角形内角和定理即可求出∠P的度数.【解答】解:∵OA⊥OB,∴∠OAB+∠ABO=90°,∠AOB=90°.∵PA平分∠MAO,∴∠PAO=∠OAM=(180°﹣∠OAB).∵PB平分∠ABO,∴∠ABP=∠ABO,∴∠P=180°﹣∠PAO﹣∠OAB﹣∠ABP=180°﹣(180°﹣∠OAB)﹣∠OAB﹣∠ABO =90°﹣(∠OAB+∠ABO)=45°.选:B.。
章节测试题1.【题文】如图,AD是∠CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是∠EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.【答案】是,理由见解答【分析】由DE∥AB,DF∥AC,可得∠EDA=∠DAF,∠FDA=∠EAD,再结合∠EAD=∠FAD,就可得∠EDA=∠FDA,从而得到DO平分∠EDF.【解答】DO是∠EDF的角平分线,理由如下:∵AD是∠CAB的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA,∴DO是∠EDF的角平分线.2.【题文】如图,在3×2的正方形网格中,小正方形的边长为1,以图中A,B,C,D,E中的三点为顶点的三角形中,面积为1的三角形有哪些?【答案】△ABC,△ADE,△BCE,△ACD.【分析】根据不在同一直线上的三个点可构成一个三角形分析可知,以A、B、C、D、E中的三点为顶点的三角形共有9个,再根据题目中的已知条件计算每个三角形的面积可得答案.【解答】以A、B、C、D、E中的三点为顶点的三角形有:△ABC,△ABD,△ABE,△ACD,△ACE,△ADE,△BCD,△BCE,△BDE,共9个;再根据小正方形的边长为1,计算可得其中面积为1的三角形有:△ABC,△ADE,△BCE,△ACD.3.【题文】如图,在△ABC中,CD、CE分别是△ABC的高和角平分线.(1)若∠A=30°,∠B=50°,求∠ECD的度数;(2)试用含有∠A、∠B的代数式表示∠ECD(不必证明)【答案】见解答【分析】(1)利用高的定义和互余得到∠BCD=90°-∠B,再根据角平分线定义得到∠BCE=∠ACB,接着根据三角形内角和定理得到∠ACB=180°-∠A-∠B,于是得到∠BCE=90°-(∠A+∠B),然后计算∠BCE-∠BCD得到∠ECD=(∠B-∠A),再把∠A=30°,∠B=50°代入计算即可;(2)直接由(1)得到结论.【解答】(1)∵CD为高,∴∠CDB=90°,∴∠BCD=90°-∠B,∵CE为角平分线,∴∠BCE=∠ACB,而∠ACB=180°-∠A-∠B,∴∠BCE=(180°-∠A-∠B)=90°-(∠A+∠B),∴∠ECD=∠BCE-∠BCD=90°-(∠A+∠B)-(90°-∠B)=(∠B-∠A),当∠A=30°,∠B=50°时,∠ECD=×(50°-30°)=10°;(2)由(1)得∠ECD=(∠B-∠A).4.【题文】如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.【答案】∠ADB=100°.【分析】根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.【解答】∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.5.【题文】如图,已知在中,,AD是BC边上的高,AE是的平分线,求证:.【答案】证明见解答.【分析】根据三角形内角和定理以及AD是BC边上的高,求得∠BAD=90°-∠B,再根据AE平分∠BAC,求得∠BAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,最后根据∠DAE=∠BAE-∠BAD即可求解.【解答】∵AD是BC边上的高,∴∠BAD=90°-∠B.∵AE平分∠BAC,∴∠BAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C.∵∠DAE=∠BAE-∠BAD,∴∠DAE=(90°-∠B-∠C)-(90°-∠B)=∠B-∠C=(∠B-∠C).6.【题文】如图,AD是△ABC边上的高,BE平分∠△ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC和∠BAC的度数.【答案】∠ABC=40°,∠BAC=80°【分析】先根据AD是△ABC的高得出∠ADB=90°,再由三角形内角和定理及三角形外角的性质可知∠DBE+∠ADB+∠BED=180°,故∠DBE=180°-∠ADB-∠BED=20°.根据BE平分∠ABC得出∠ABC=2∠DBE=40°.根据∠BAC+∠ABC+∠C=180°,∠C=60°即可得出结论.【解答】解:∵AD是△ABC的高,∴∠ADB=90°,又∵,∠°BED=70°,∴.∵BE平分∠ABC,∴∠ABC=2∠DBE=40°.又∵∠BAC+∠ABC+∠C=180°,∠C=60°,∴∠BAC=180°-∠ABC-∠C=80°.7.【答题】如图.在Rt△ABC中,∠ABC=90°,AB=12cm,BC=5cm,AC=13cm,若BD是AC边上的高,则BD的长为______cm.【答案】【分析】本题考查了三角形的高线.【解答】∵S△ABC=AB•BC=AC•BD,∴12×5=13BD,∴BD=cm.故答案为.8.【答题】如图所示,已知点G为Rt△ABC的重心,∠ABC=90°,若AB=12cm,BC=9cm,则△AGD的面积是______ cm2.【答案】9【分析】本题考查了三角形的中线.【解答】∵G为直角△ABC的重心,∴BG=2GD,AD=DC,∴S△AGD=S△ABD=•S△ABC=S△ABC,而S△ABC=AB×BC=54,∴S△AGD=9cm2故答案为:9cm29.【答题】如图,AD、AF分别是△ABC的高和角平分线,已知∠B=36°,∠C=76°,则∠DAF=______.【答案】20°【分析】本题考查了三角形的高线、角平分线及三角形的内角和定理.【解答】∵AD⊥BC,∠B=36°,∴∠ADB=90°,∴在△ABD中,∠BAD=180°-∠ADB-∠B=180°-90°-36°=54°.在△ABC中,∠BAC=180°-∠B-∠C=180°-36°-76°=68°.∵AF平分∠BAC,∴∠BAF=∠BAC=×68°=34°,∴∠DAF=∠BAD-∠BAF=54°-34°=20°.10.【答题】如图,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为______.【答案】7.5【分析】本题考查了三角形的中线.【解答】根据题意,阴影部分的面积为三角形面积的一半,阴影部分面积为:故答案为:11.【答题】如图,△ABC中,点D、E分别是BC,AD的中点,且△ABC的面积为8,则阴影部分的面积是______.【答案】2【分析】本题考查了三角形的中线.【解答】∵点D是BC的中点,∴.∵点E是AD的中点,∴.12.【答题】如图,在△ABC中,∠B=63°,∠C=51°,AD是BC边上的高,AE是∠BAC的平分线,则∠DAE的度数______°【答案】6【分析】本题考查了三角形的高线、角平分线、及三角形的内角和定理.【解答】∵在△ABC中,∠B=63°,∠C=51°,∴∠BAC=180°-∠B-∠C=180°-63°-51°=66°,∵AE是∠BAC的平分线,∴∠EAC=∠BAC=33°,在直角△ADC中,∠DAC=90°-∠C=90°-51°=39°,∴∠DAE=∠DAC-∠EAC=39°-33°=6°.故答案为:6.13.【答题】已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是______.【答案】4【分析】本题考查了三角形的中线.【解答】由三角形的重心的概念和性质,由AD、BE为△ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=AD=×6=4.故答案为:4.14.【答题】如图,在△ABC中,CD是AB边上的中线,E是AC的中点,已知△DEC的面积是4cm2,则△ABC的面积是______ cm2.【答案】16【分析】本题考查了三角形的中线.【解答】由E是AC的中点,△DEC的面积是4cm2,根据“等底同高”可得△ADC的面积为8cm2,然后同理,可由CD是AB边上的中线,求得△ABC的面积为16cm2.故答案为:16.15.【答题】三角形的三条角平分线在三角形的______部.【答案】内【分析】本题考查了三角形的角平分线.【解答】三角形的三条角平分线在三角形的内部.16.【答题】已知:如图,AC为的角平分线,AE为的角平分线,则有,______;______.【答案】CAD DAF【分析】本题考查了三角形的角平分线.【解答】AC为的角平分线,,AE为的角平分线,.17.【答题】如图,已知BE和CF是△ABC的两条高,∠ABC=48°,∠ACB=76°,则∠FDE=______.【答案】124°【分析】本题考查了三角形的高、三角形的内角和定理.【解答】在△ABC中,∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣48°﹣76°=56°,在四边形AFDE中,∵∠A+∠AFC+∠AEB+∠FDE=360°,又∵∠AFC=∠AEB=90°,∠A=56°,∴∠FDE=360°﹣90°﹣90°﹣56°=124°.18.【答题】三角形一边上的中线把三角形分成的两个三角形的面积关系为______.【答案】相等【分析】根据等底等高的三角形面积相等可知,中线能把一个三角形分成两个面积相等的部分.【解答】解:三角形一边上的中线把三角形分成的两个三角形的面积相等.故答案为:相等.19.【答题】如图所示:(1)在△ABC中,BC边上的高是______;(2)在△AEC中,AE边上的高是______.【答案】AB CD【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据三角形高的概念即可得出答案.【解答】解:(1)在△ABC中,BC边上的高是AB;(2)在△AEC中,AE边上的高是CD.故答案为:(1)AB;(2)CD.20.【答题】如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE 的角平分线;②BO是△ABD的中线;③DE是△ADC的中线;④ED是△EBC的角平分线的结论中正确的有______个.【答案】2【分析】本题考查了三角形的中线、角平分线.【解答】(1)∵AD是△ABC的角平分线,可得∠BAO=∠CAO,∴①“AO是△ABE的角平分线”这种说法是正确的;(2)由BE是△ABC的中线可得AE=CE,但不能确定AO=DO,∴②“BO是△ABD 的中线”这种说法是错误的;(3)由BE是△ABC的中线可得AE=CE,∴③“DE是△ADC的中线”这种说法是正确的;(4)∵由题中条件不能得到∠ADE=∠CDE,∴④“ED是△EBC的角平分线”这种说法是错误的;即上述说法中正确的个数为:2.。
章节测试题1.【答题】若等腰三角形的周长为,其中一边长为,则该等腰三角形的底边长为()A. B. C. 或 D.【答案】B【分析】本题考查了了等腰三角形的计算,正确理解分两种情况讨论,并且注意到利用三角形的三边关系定理,是解题的关键.【解答】解:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;当长是3cm的边是腰时,底边长是:13-3-3=7cm,而3+3<7,不满足三角形的三边关系.故底边长是:3cm.选B.2.【答题】下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A. 1,2,1B. 1,2,3C. 1,2,2D. 1,2,4【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:三角形的三边关系为:任意两边之和大于第三边.A.不能构成三角形.B.不能构成三角形.C.能构成三角形.D.不能构成三角形.选C.3.【答题】△ABC的三条边长分别是、、,则下列各式成立的是()A. B.C. D.【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】对于任意一个三角形,三角形的三边关系满足:两边之和大于第三边.选B.4.【答题】如果一个三角形的两边长分别为和,则第三边长可能是()A. B. C. D.【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:设第三边长为x,则由三角形三边关系定理得4-2<x<4+2,即2<x <6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.选B.5.【答题】下列各数可能是一个三角形的边长的是().A. 1,3,5B. 3,4,5C. 2,2,4D.【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.A、∵1+3<5,∴本组数不能构成三角形.故本选项错误;B、∵3+4>5,∴本组数能构成三角形.故本选项正确;C、∵2+2=4,∴本组数可以构成三角形.故本选项正确;D、∵,∴本组数不能构成三角形.故本选项错误;6.【答题】若a,b,c为△ABC的三边长,且满足a-4+(b-2)2=0,则c的值可以为()A. 5B. 6C. 7D. 8【答案】A【分析】根据非负数的性质和三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:∵∴a−4=0,a=4;b−2=0,b=2;则4−2<c<4+2,2<c<6,5符合条件;选A.7.【答题】下列各组数不可能是一个三角形的边长的是().A. ,,B. ,,C. ,,D. ,,【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A.5+5>5,能构成三角形;B.5+7>7,能构成三角形;C.5+12>13,能构成三角形;D.7+5=12,不能构成三角形.8.【答题】下列长度的四根木棒中,能与长为,的两根木棒围成一个三角形的是().A. B. C. D.【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边长为,则,即.选C.9.【答题】下列各组数不可能是一个三角形的边长的是().A. ,,B. ,,C. ,,D. ,,【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】三角形中任意两边和需大于第三边,任意两边之差小于第三边,可知A选项:1+2=3,构不成三角形,选.10.【答题】以下列长度的线段为边,能组成三角形的是()A. ,,B. ,,C. ,,D. ,【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A、1+2=3,构不成三角形,不符合题意;B、6+8<15,构不成三角形,不符合题意;C、4+7>10,10-7<4,能构成三角形,符合题意;D、3+3<7,构不成三角形,不符合题意,选C.11.【答题】下列长度的三条线段能组成三角形的是()A. 3,4,8B. 2,5,3C. ,,5D. 5,5,10【答案】C【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】选项A,3+4<8,根据三角形的三边关系可知,不能够组成三角形;选项B,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C,+>5,根据三角形的三边关系可知,能够组成三角形;选项D,5+5=10,根据三角形的三边关系可知,不能够组成三角形;选C.12.【答题】等腰三角形的周长为13cm,其中一边长为3cm.则该等腰三角形的底长为()A. 3cm或5cmB. 3cm或7cmC. 3cmD. 5cm【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】①3cm是腰长时,底边=13﹣3×3=7cm,此时,三角形的三边分别为3cm、3cm、7cm,∵3+3=6<7,∴不能组成三角形;②3cm是底边时,腰长=(13﹣3)=5cm,此时,三角形的三边分别为5cm、5cm、3cm,能够组成三角形,∴等腰三角形的底长为3cm,选C.13.【答题】至少有两边相等的三角形是()A. 等边三角形B. 等腰三角形C. 等腰直角三角形D. 锐角三角形【答案】B【分析】本题考查了三角形的分类.本题属于易错题,同学们往往忽略了等边三角形是一特殊的等腰三角形,且等腰三角形也可以是锐角三角形、钝角三角形以及直角三角形.【解答】解:本题需要分类讨论:两边相等的三角形称为等腰三角形,该等腰三角形可以是等腰直角三角形,该等腰三角形有可能是锐角三角形,也有可能是钝角三角形;当有三边相等时,该三角形是等边三角形.等边三角形是一特殊的等腰三角形.14.【答题】图中三角形的个数是()A. 8个B. 9个C. 10个D. 11个【分析】本题考查了三角形,注意要不重不漏地找到所有三角形,一般从一边开始,依次进行.【解答】解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.15.【答题】以下三条线段为边,能组成三角形的是()A. 1cm、2cm、3cmB. 2cm、2cm、4cmC. 3cm、4cm、5cmD. 4cm、8cm、2cm【答案】C【分析】本题考查三角形的三边关系:任何两边的和大于第三边;做本题题目的关键是直接判断较小的两条边的和与最长边的和的大小关系,如果前者大,说明这三条边能组成三角形,否则,不能组成三角形.【解答】解:根据三角形的三边关系,得:A项,1+2=3,不能组成;B项,2+2=4,不能组成;C项,3+4>5,能组成;D项,4+2=8,不能组成.选C.16.【答题】已知三角形的三边为4、5、x,则不可能是()A. 6B. 5C. 4D. 1【答案】D【分析】根据“三角形两边的和大于第三边”和“三角形两边的差小于第三边”可得第三条边的取值范围.【解答】解:根据三角形三边关系,可得,即,则x不能取1.17.【答题】若三角形的三边长分别为3,4,x-1,则x的取值范围是()A. 0<x<8B. 2<x<8C. 0<x<6D. 2<x<6【答案】B【分析】根据“三角形两边的和大于第三边”和“三角形两边的差小于第三边”可得第三条边的取值范围;当然,本题不要忘了第三条边长为(x-1).【解答】解:这里第三边长为x-1,根据三角形三边关系,可得,即,选B.18.【答题】如图,过A、B、C、D、E五个点中任意三点画三角形,(1)其中以AB为一边可以画出______个三角形;(2)其中以C为顶点可以画出______个三角形.【答案】3 6【分析】(1)根据以AB为一边,分别得出符合题意的三角形即可;(2)根据以C为顶点,分别得出符合题意的三角形即可.【解答】解:(1)其中以AB为一边可以画出3个三角形为:△ABE,△ABD,△ABC;(2)其中以C为顶点可以画出6个三角形为:△ABC,△BCD,△BCE,△ADC,△DEC,△ACE.故答案为:(1)3;(2)6.19.【答题】一个三角形的周长为81cm,三边长的比为2:3:4,则最长边比最短边长______ cm.【答案】18【分析】本题考查了一元一次方程在三角形中的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.【解答】解:设三角形的三边长为2x,3x,4x,由题意,得2x+3x+4x=81,解得x=9,则三角形的三边长分别为:18cm,27cm,36cm,∴,最长边比最短边长:36-18=18(cm).20.【答题】小华要从长度分别是5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是______ cm、______ cm、______ cm(按照从小到大的顺序填写).【答案】6 1116【分析】按顺序写出4种取法,然后根据三角形的三边关系再判断;判断是注意技巧,即符合“两条较短边长的和大于较大的边长”的就能组成三角形.【解答】解:从这四根小木棒取出三根有以下取法:①5cm,6cm,11cm;②5cm,6cm,16cm;③5cm,11cm,16cm;④6cm,11cm,16cm,一共有4种选法.其中,①5+6=11,不能;②5+6<16,不能;③5+11=16,不能;④6+11<16,能.综上,能摆成三角形的只有④.。
章节测试题1.【题文】如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.【答案】不是,理由见解析.【分析】考查了三角形的角平分线的定义,三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.【解答】解:根据三角形的角平分线的定义,可知:①平分三角形的一个内角;②是一条线段,一个端点是三角形的顶点,另一点在这个顶点的对边上.而此题中AD 满足①,但点D不在BC边上,故不满足②.所以,AD不是△ABC的角平分线.2.【题文】如图,AD为△ABC的中线,BE为△ABD的中线.若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?【答案】4【分析】首先根据三角形的中线把三角形的面积分成相等的两部分可得△EBD的面积是10,再利用三角形的面积公式进而得到BD边上的高.【解答】解:∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD=S△ABC,S△BDE=S△ABD,∴S△BDE=×S△ABC=S△ABC,∵△ABC的面积为40,∴S△BDE=×40=10,设△BDE中BD边上的高为x,∵BD=5,∴×5•x=10,解得x=4,故△BDE中BD边上的高为4.3.【题文】已知:△ABC中,AB=AC,BD是AC边上的中线,如果D点把三角形ABC的周长分为12cm和15cm两部分,求此三角形各边的长.【答案】8厘米,8厘米,11厘米或10厘米,10厘米,7厘米【分析】本题D点把三角形ABC的周长分成两部分(AB+AD)和(BC+CD),题中未说明12cm和15cm分别是哪一部分,因此要分类讨论.【解答】解:∵AB=AC,BD是AC边上的中线,∴AB=2AD=2CD,∴AB+AD=3AD.①当AB与AD的和是12厘米时,AD=12÷3=4(厘米),所以AB=AC=2×4=8(厘米),BC=12+15-8×2=12+15-16=11(厘米);②当AB与AD的和是15厘米时,AD=15÷3=5(厘米),所以AB=AC=2×5=10(厘米),BC=12+15-10×2=12+15-20=7(厘米).所以三角形的三边可能是8厘米,8厘米,11厘米或10厘米,10厘米,7厘米.4.【题文】如图:(1)画出△ABC的BC边上的高线AD;(2)画出△ABC的角平分线CE.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)利用钝角三角形高线作法延长BC进而作出高线即可;(2)利用角平分线作法得出CE即可.解:(1)如图所示:AD即为所求;(2)如图所示:CE即为所求.5.【题文】已知AD为△ABC的中线,AB=5 cm,且△ACD的周长比△ABD的周长少2 cm,求AC的长度.【答案】3cm【分析】由AD是△ABC的中线可得CD=BD,从而可得C△ABD-C△ACD=(AB+AD+BD)-(AC+AD+CD)=AB-AC=2,由AB=5,可解得AC=3(cm).【解答】解:∵AD为△ABC的中线,∴BD=CD.∵△ACD的周长比△ABD的周长少2 cm,∴(AB+BD+AD)-(AC+AD+CD)=AB-AC=2 cm,∴AC=AB-2=5-2=3(cm).6.【题文】如图,在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,BE的长为多少?【答案】9【分析】由已知易得:S △ABC=AC BE=BC AD,代入BC=12,AC=8,AD=6即可解得BE的长.【解答】解:∵在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,∴S △ABC=BC AD ==36,又∵S△ABC=AC·BE,∴×8×BE=36,解得:BE=9.7.【题文】如图,D是△ABC中BC边上的一点,DE∥AC交AB于点E,若∠EDA=∠EAD,试说明AD是△ABC的角平分线.【答案】见解析【分析】由DE∥AC交AB于点E可得∠CAD=∠EDA,结合∠EDA=∠EAD,可得∠CAD=∠EAD,即可得到结论.【解答】解:∵DE∥AC,∴∠EDA=∠CAD.∵∠EDA=∠EAD,∴∠CAD=∠EAD.∴AD是△ABC的角平分线.8.【题文】如图,在△ABC中,AB=AC,P是BC边上任意一点,PF⊥AB于点F,PE⊥AC于点E,BD为△ABC的高线,BD=8,求PF+PE的值.【答案】8【分析】连接AP,根据S△ABC=S△ABP+S△ACP列式整理即可得解;【解答】解:连结P A,由图形可知:S△ABC=S△ABP+S△ACP,即AC·BD=AB·PF+AC·PE,∵AB=AC,∴BD=PF+PE,∴PF+PE=8.9.【题文】如图,在△ABC中,∠B = 50º,∠C = 70º,AD是∠BAC的角平分线,AE是高,求∠EAD的度数。
章节测试题1.【答题】如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,则∠DAE=______°.【答案】14【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC 的度数,AE是角平分线,有∠EAC=∠BAC,故∠EAD=∠EAC-∠DAC.【解答】解:∵在△ABC中,AE是∠BAC的平分线,且∠B=42°,∠C=70°,∴∠BAE=∠EAC=(180°-∠B-∠C)=(180°-42°-70°)=34°.在△ACD中,∠ADC=90°,∠C=70°,∴∠DAC=90°-70°=20°,∠EAD=∠EAC-∠DAC=34°-20°=14°.故答案是:14°.2.【答题】如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=______°.【答案】15【分析】先根据三角形内角和定理计算出∠ACB=180°-∠A-∠B=90°,再根据三角形的高和角平分线的定义得到∠BCE=∠ACB=45°,∠BDC=90°,于是可计算出∠BCD=30°,然后利用∠DCE=∠BCE-∠BCD进行计算即可.【解答】解:∵∠A=30°,∠B=60°,∴∠ACB=180°-∠A-∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°-∠B=30°,∴∠DCE=∠BCE-∠BCD=45°-30°=15°.故答案为:15°.3.【答题】如图,在△ABC中,AD是△ABC的高,AE是∠BAC的角平分线,已知∠BAC=82°,∠B=40°,则∠DAE=______°.【答案】9【分析】由∠BAC=82°,∠B=40°,先利用AD是△ABC的高,求得∠BAD的度数;∠DAE=∠BAD-∠BAE;∠BAE=∠BAC.问题可求.【解答】解:∵AD⊥BC,∠B=40°,∴∠BAD=90°-40°=50°,∵AE是△ABC的角平分线,∴∠BAE=∠BAC=41°,∴∠DAE=∠BAD-∠BAE=50°-41°=9°.4.【答题】如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34°.则∠DAE的大小是______度.【答案】18【分析】根据三角形内角和定理求得∠BAC的度数,再根据角平分线的定义可求得∠BAE的度数,由三角形内角和定理可求得∠BAD的度数,从而不难求得∠DAE的度数.【解答】解:∵△ABC中,∠B=70°,∠C=34°.∴∠BAC=180°-(70°+34°)=76°.∵AE平分∠BAC,∴∠BAE=38°.∵Rt△ABD中,∠B=70°,∴∠BAD=20°.∴∠DAE=∠BAE-∠BAD=38°-20°=18°5.【答题】如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,且∠B=40°,∠C=60°,则∠EAD=______度.【答案】10【分析】根据三角形的内角和定理及角平分线的性质求解.【解答】解:∵在△ABC中,AE是∠BAC的平分线,且∠B=40°,∠C=60°,∴∠BAE=∠EAC=(180°-∠B-∠C)=(180°-40°-60°)=40°.在△ACD中,∠ADC=90°,∠C=60°,∴∠DAC=180°-90°-60°=30°,∠EAD=∠EAC-∠DAC=40°-30°=10°.6.【答题】在△ABC中,∠ABC和∠ACB的平分线交于点I,若∠A=60°,则∠BIC=______°.【答案】120【分析】由∠A=60°可知∠ABC+∠ACB=120°,∠ABC与∠ACB的平分线交于点I,可求∠IBC+∠ICB的度数,再利用三角形内角和定理求∠BIC.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,又∵∠ABC与∠ACB的平分线交于点I,∴∠IBC+∠ICB=(∠ABC+∠ACB)=60°,∴∠BIC=180°-(∠IBC+∠ICB)=120°.故答案为:120°.7.【答题】如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=______°.【答案】115【分析】求出∠ABC+∠ACB=130°,根据角平分线定义得出∠OBC=∠ABC,∠OCB=∠ACB,求出∠OBC+∠OCB=×(∠ABC+∠ACB)=65°,根据三角形的内角和定理得出∠BOC=180°-(∠OBC+∠OCB),代入求出即可.【解答】解;∵∠A=50°,∴∠ABC+∠ACB=180°-50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=×(∠ABC+∠ACB)=×130°=65°,∴∠BOC=180°-(∠OBC+∠OCB)=115°,故答案为:115.8.【答题】如图,△ABC中,AB=AC,∠BAC与∠BCA的平分线AD、CD交于点D,若∠B=70°,则∠ADC=______°.【答案】125【分析】根据三角形内角和以及∠B的度数,先求出(∠BAC+∠BCA),然后根据角平分线的性质求出(∠DAC+∠ACD),从而再次利用三角形内角和求出∠ADC.【解答】解:∵AD、CD是∠BAC与∠BCA的平分线,∴∠ADC=180°-(∠DAC+∠ACD)=180°-(∠BAC+∠BCA)=180°-(180°-∠B)=90°+∠B=125°.9.【答题】如图,∠1=∠2,∠3=∠4,∠A=100°,则x=______°.【答案】140【分析】根据三角形内角和定理、角平分线的定义求得.【解答】解:∵∠1=∠2,∠3=∠4,∴∠2+∠4=(∠ABC+∠ACB)=(180°-∠A)=×80°=40°,∴x=180°-(∠2+∠4)=180°-40°=140°.10.【答题】如图,点O是△ABC的两条角平分线的交点,且∠A=40°,则∠BOC=______°.【答案】110【分析】先根据三角形内角和定理得出∠ABC+∠ACB的度数,再由角平分线的定义得出∠1=∠2,∠3=∠4,求出∠2+∠4的度数,然后根据三角形内角和定理得出∠BOC 的度数.【解答】解:∵△ABC中,∠A=40°,∴∠ABC+∠ACB=180°-∠A=180°-40°=140°,∵OB、OC分别是∠ABC、∠ACB的平分线,∴∠1=∠2=∠ABC,∠3=∠4=∠ACB,∴∠2+∠4=(∠ABC+∠ACB)=×140°=70°,∴∠BOC=180°-(∠2+∠4)=180°-70°=110°.故答案为:110.11.【答题】如图,△ABC中,∠ABC与∠ACB的平分线相交于D,若∠A=50°,则∠BDC=______°.【答案】115【分析】根据角平分线的性质与三角形的内角和定理求解.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=130°.∵∠ABC与∠ACB的平分线相交于D,∴∠DBC+∠DCB=65°,∴∠BDC=115°.12.【答题】如图,△ABC中,∠ABC和∠ACB的平分线交于点O,若∠BOC=120°,则∠A=______°.【答案】60【分析】在△OBC中,根据三角形的内角和定理得到∠1+∠4=180°-∠BOC=180°-120°=60°,由角平分线的性质得到∠1=∠2,∠3=∠4,则∠1+∠2+∠3+∠4=2×60°=120°,再在△ABC中,根据三角形的内角和定理进行计算即可求出∠A.【解答】解:如图,∵∠BOC=120°,∴∠1+∠4=180°-∠BOC=180°-120°=60°,而∠ABC和∠ACB的平分线交于点O,∴∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=2×60°=120°,∴∠A=180°-(∠1+∠2+∠3+∠4)=180°-120°=60°.故答案为60.13.【答题】如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=______°.【答案】40【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【解答】解:在△BDC中,∵∠BDC=110°,∴∠DBC+∠BCD=180°-110°=70°,∵BE、CF都是△ABC的角平分线,∴∠ABC+∠ACB=2(∠DBC+∠BCD)=2×70°=140°,在△ABC中,∠A=180°-(∠ABC+∠ACB)=180°-140°=20°.故答案为:40.14.【答题】如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A 的大小是______°.【答案】56【分析】先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.【解答】解:∵△BOC中,∠BOC=118°,∴∠1+∠2=180°-118°=62°.∵BO和CO是△ABC的角平分线,∴∠ABC+∠ACB=2(∠1+∠2)=2×62°=124°,在△ABC中,∠A=180°-(∠ABC+∠ACB)=180°-124°=56°.故答案为:56.15.【答题】如图,AB∥CD,直线EF与AB,CD分别相交于E,F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30°,则∠PFC=______°.【答案】60【分析】由于PE是角平分线,那么可知∠AEF=60°,而AB∥CD,于是可求∠EFD,而PF⊥PE,那么∠PFE可求,那么就容易求出∠PFC.【解答】∵EP平分∠AEF,∠PEF=30°,∴∠AEF=60°.又∵AB∥CD,∴∠EFD=∠AEF=60°.∵FP⊥EP,∴∠PFE=90°-30°=60°,∴∠PFC=180°-∠PFE-∠EFD=60°.故答案为:60.16.【答题】如图,AB∥CD,∠BAC的平分线和∠ACD的平分线交于点E,则∠AEC 的度数是______度.【答案】90【分析】利用平行线的性质计算.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,又∵∠BAC的平分线和∠ACD的平分线交于点E,即∠CAE=∠BAC,∠ACE=∠ACD;∴∠CAE+∠ACE=90°.在△ACE中根据三角和内角和定理得到:∠E=90°.17.【答题】如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A. 90°﹣αB. 90°+αC. αD. 360°﹣α【答案】C【分析】先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.选C.18.【答题】一个正方形和两个等边三角形的位置如图所示,∠3=55°,则∠1+∠2=______.【答案】95°【分析】根据平角及正方形及等边三角形的性质,分别用∠1、∠2、∠3表示出∠BAC、∠ABC、∠ACB,再根据三角形的内角和等于180°可求出∠1+∠2=150°﹣∠3,由∠3=55°即可求出∠1+∠2.【解答】解:如图所示:∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠3=55°,∴∠1+∠2=150°﹣55°=95°.故答案是:95°.19.【题文】△ABC中,∠B=30°,AD为边BC上的高,且∠DAC=20°,请画出符合条件的图形,并直接写出∠BAC度数.【答案】见解答.【分析】分两种情形分别画出图形即可解决问题.【解答】解:当高在△ABC的外部时,如图1中,∵AD⊥BD,∴∠ADB=90°,∴∠BAD=90°﹣∠B=60°,∴∠BAC=∠BAD﹣∠CAD=60°﹣20°=40°.当高在△ABC的内部时,如图2中,∵AD⊥BD,∴∠ADB=90°,∴∠BAD=90°﹣∠B=60°,∴∠BAC=∠BAD=∠CAD=60°+20°=80°.综上所述,满足条件的∠BAC的值为80°或40°.20.【题文】如图,在△ABC中,AD是高,AE,BF分别是∠BAC,∠ABC的角平分线,它们相交于点O,∠BAC=50°,∠C=∠BAC+20°,求∠DAC和∠BOA的度数.【答案】∠DAC=20°,∠BOA=125°.【分析】求出∠C,根据三角形内角和定理求出∠ABC,根据角平分线的定义求出∠BAE和∠ABF,根据高求出∠ADC,根据三角形内角和定理求出即可.【解答】解:∠BAC=50°,∠C=∠BAC+20°,∴∠C=70°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=180°﹣∠C﹣∠ADC=20°;∵∠BAC=50°,∠C=70°,∴∠ABC=180°﹣∠BAC﹣∠C=60°,∵AE、BF分别是∠BAC、∠ABC的角平分线,∴∠BAE=∠BAC=25°,∠ABF=ABC=30°,∴∠BOA=180°﹣∠BAE﹣∠ABF=180°﹣25°﹣30°=125°,∴∠DAC=20°,∠BOA=125°.。
认识三角形
锐角三角形 (acute triangle ) 三个内角都是锐角
直角三角形 (right triangle ) 有一个内角是直角
钝角三角形 (obtuse triangle ) 有一个内角是钝角
练习2:
观察三角形,并把它们的标号填入相应的括号内:
锐角三角形( ) 直角三角形( ) 钝角三角形( ) 四、猜想结论:
简单介绍直角三角形和表示方法,Rt △。
思考:直角三角形中的两个锐角有什么关系? 结论:直角三角形的两个锐角互余。
五、课堂小结:
1.三角形的三个内角的和等于180°; 2.三角形按角分为三类:
(1)锐角三角形;(2)直角三角形;(3)钝角三角形。
3.直角三角形的两个锐角互余。
六、检测练习:
1.选择:三角形三个内角中,锐角最多可以是( )。
A .0个 B .1个 C .2个 D .3个 2.在空白处填入“锐角”、“直角”或“钝角”:
(1)如果三角形的三个内角都相等,那么这个三角形是 三角形;
B
C
D
(2)如果三角形的两个内角都小于40°,那么这个三角形是三角形。
第二课时
教学目标
1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;
2.结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。
教学重点三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。
教学难点灵活运用三角形三边关系解决一些实际问题。
教学过程
一、新课:
(一)分别量出这三角形三边的长度,并计算任意两边之和以及任意两边之差。
你发现了什么?
结论:三角形任意两边之和大于第三边
三角形任意两边之差小于第三边。
例:有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?长度为7cm的木棒呢?
(二)巩固练习:
1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形吗?为什么?(单位:cm)(1)1,3,3
(四)巩固练习:
AD 是△ABC 的角平分线(D 在BC 所在直线上),那么∠BAD=_______=21
______。
AE
是△ABC 的中线(E 在BC 所在直线上),那么BE=___________=_______BC 。
第四课时
教学目标
1.通过观察、想象、推理、交流等活动,发展空间观念、推理能力和
有条理地表达能力;
2.了解三角形的高,并能在具体的三角形中作出它们。
教学重点 在具体的三角形中作出三角形的高。
教学难点
三角形内画出钝角三角形的三条高。
教学过程
第一环节:回顾与思考 活动内容:
1.你还记得“过一点画已知直线的垂线”吗?
2.过三角形的一个顶点,你能画出它的对边的垂线吗?
活动目的:让学生先回忆过一直线的垂线,然后再引出三角形高的定义,同时为下面作三角形的高线做准备,培养学生善于找到新知识与旧知识的联系,体会学习是一个连续的过程。
第二环节:做一做
活动内容:每人准备一个锐角三角形纸片。
(1)你能画出这个三角形的三条高吗? (2)你能用折纸的办法得到它们吗?
(3)这三条高之间有怎样的位置关系?将你的结果与同伴进行交流.
活动目的:使学生从理论上明确对它有了更深的认识,会画出和折出锐角三角形的三条高,并能说出它们的位置关系,从而发展学生空间观念,培养动手能力。
第三环节:议一议
活动内容:
(1)在纸上画出一个直角三角形。
画出直角三角形的三条高,它们有怎样的位置关系?将你的结果与同伴进行交流.
(2)在纸上画出一个钝角三角形。
你能折出钝角三角形的三条高吗?你能画出钝角三角形的三条高吗?钝角三角形的三条高交于一点吗?它们所在的直线交于一点吗?将你的结果与同伴进行交流。
活动目的:由锐角三角形的三角形,再到钝角三角形的高,便于学生从“活动”的角度研究几何。
通过折、画活动使学生多动脑,并使学生学会对新旧知识进行对比。
第四环节:练习
分别指出下图中△ABC的三条高。
第五环节:课堂小结
活动内容:总结本节的重点内容和应注意的问题。
顶点和垂足之间的线段叫做三角形的高。
三角形的三条高所在直线交于一点
活动目的:使学生对三角形高线的认识上升一个高度.
活动效果:学生通过自己的思考、归纳、总结本节课所学的知识要点,并敢于提出问题,说出自己的困惑,激发了学生的学习兴趣。