2015-2016学年人教版八年级数学上期末试卷
- 格式:doc
- 大小:629.50 KB
- 文档页数:17
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
某某省某某市单县2015-2016学年度八年级数学上学期期末考试试题一、选择题(本题共10小题,每小题3分,共30分)1.下列命题中,假命题是()A.两条直角边对应相等的两个直角三角形全等B.有一个角是60°的等腰三角形是等边三角形C.顶角相等的两个等腰三角形全等D.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等2.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元3.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A.BC=EF B.∠A=∠D C.AC∥DF D.AC=DF4.某次射击训练中,一小组的成绩如下表所示:环数789人数23已知该小组的平均成绩为8.1环,那么成绩为8环的人数是()A.5人B.6人C.4人D.7人5.如图,在△ABC中,AB=AC,O为△ABC内一点,且OA=OB=OC,过点O作AC的垂线交AC,AB于点E,F,则图中全等的三角形的对数是()A.1对B.2对C.3对D.4对6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠AFB C.∠BED D.∠ABF7.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=38.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个9.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB 于点G,下列说法正确的是()A.∠2+∠3>∠1 B.∠2+∠3<∠1 C.∠2+∠3=∠1D.无法判断10.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500二、填空题(本题共10小题,每小题3分,共30分)11.如图,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品是.12.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是.13.计算+的结果为.14.如图,有一条直的宽纸带,按如图折叠,则∠1的度数为.15.如图,在△ABC中,∠C=90°,BC=40,AD是∠BAC的平分线交BC于D,DE⊥AB,且DE:DB=3:5,则DB的长为.16.已知=,则=.17.观察下列等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,若1+3+5+7+…+2015=n2,则n=.18.计算÷(1﹣)的结果是.19.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.20.对于两个不相等的有理数a,b,我们规定符号Max{a,b}表示a,b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{﹣,}=的解为.三、解答题(满分60分)21.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,分别交AB,AC于点E,D.(1)若∠ADE=40°,求∠DBC的度数;(2)若△ABC与△DBC的周长分别是40cm,24cm,求AB的长.22.(1)求作:△ABC,使AB=AC=a,∠B=∠α(保留作图痕迹,不写作法);(2)解方程:=﹣.23.已知,如图,AB∥CD,E是AB的中点,CE=DE,求证:AC=BD.24.某校要从新入学的两名体育特长生李勇、X浩中挑选一人参加校际跳远比赛,在跳远专项测试以及以后的6次跳远选拔赛中,他们的成绩(单位:cm)如下表所示:专项测试和6次跳远选拔赛成绩平均数方差李勇603 589 602 596 604 612 608 602 X浩596 578 596 628 590 631 595 (1)把X浩同学7次测试成绩的平均数,李勇同学7次测试成绩的方差填在表格相应位置出.(方差的结果保留一位小数)(2)请你分析两人成绩的特点.(3)经查阅历届比赛的资料,成绩若达到6.00m,就很可能得到冠军,你认为应选去参数夺冠军比较有把握.(4)以往的该项最好成绩的记录是6.15m,若想要打破记录,你认为应选去参赛.25.如图,∠ABC=90°,D、E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:△AFM≌△DFC;(2)AD与MC垂直吗?并说明理由.26.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票,下面是两个小伙伴的对话:小亮:如果今天看演出,我们每人一X票,正好会差两X票的钱.小颖:过两天就是“儿童节”了,那时候来看这场演出,票价会打六折,我们每人一X票,还能剩72元钱呢!根据对话的内容,请你求出小伙伴的人数.某某省某某市单县2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.下列命题中,假命题是()A.两条直角边对应相等的两个直角三角形全等B.有一个角是60°的等腰三角形是等边三角形C.顶角相等的两个等腰三角形全等D.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等【考点】命题与定理.【分析】利用全等三角形的判定、等边三角形的判定分别判断后即可确定正确的选项.【解答】解:A、两条直角边对应相等的两个直角三角形全等,正确,是真命题;B、有一个角是60°的等腰三角形是等边三角形,正确,是真命题;C、顶角相等的两个等腰三角形相似但不全等,故错误,是假命题;D、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等,正确,是真命题,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定等知识,属于基础定理,难度不大.2.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元【考点】众数;中位数.【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.【解答】解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选C.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).3.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A.BC=EF B.∠A=∠D C.AC∥DF D.AC=DF【考点】全等三角形的判定.【分析】要使△ABC≌△DEF,已知AB=ED,BE=CF,具备了两条边对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:可添加AC=DF,或AB∥DE或∠B=∠DEF,证明添加AC=DF后成立,∵BE=CF,∴BC=EF,又AB=DE,AC=DF,∴△ABC≌△DEF.故选D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.4.某次射击训练中,一小组的成绩如下表所示:环数789人数23已知该小组的平均成绩为8.1环,那么成绩为8环的人数是()A.5人B.6人C.4人D.7人【考点】加权平均数.【专题】图表型.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数,据此列出方程,再求解.【解答】解:设成绩为8环的人数是x人,由题意得(7×2+8x+9×3)÷(2+x+3)=8.1,解得:x=5人.故选A.【点评】本题主要考查了平均数的概念.一组数据的平均数等于所有数据的和除以数据的个数.5.如图,在△ABC中,AB=AC,O为△ABC内一点,且OA=OB=OC,过点O作AC的垂线交AC,AB于点E,F,则图中全等的三角形的对数是()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.【解答】解:∵AB=AC,D是BC的中点,∴∠CAD=∠BAD,AD⊥BC,∴OC=OB,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS);同理:△COD≌△BOD,在△AOC和△AOB中,,∴△OAC≌△OAB(SSS);∵EF是AC的垂直平分线,∴OA=OC,∠OEA=∠OEC=90°,在Rt△OAE和Rt△OCE中,,∴Rt△OAE≌Rt△OCE(HL).故选D.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及全等三角形的判定与性质.注意垂直平分线上任意一点,到线段两端点的距离相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠AFB C.∠BED D.∠ABF【考点】全等三角形的判定与性质.【分析】利用“边边边”求出△ABC和△DEB全等,再根据全等三角形对应角相等可得∠ACB=∠DBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和解答.【解答】解:在△ABC和△DEB中,∵,∴△ABC≌△DEB(SSS),∴∠ACB=∠DBE,在△BCF中,由三角形的外角性质得,∠ACB+∠DBE=∠A FB,∴∠ACB=∠AFB.故选B.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和,难点在于准确确定出全等三角形的对应角.7.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3【考点】分式方程的增根.【分析】方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【解答】解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④A C=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.9.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB 于点G,下列说法正确的是()A.∠2+∠3>∠1 B.∠2+∠3<∠1 C.∠2+∠3=∠1D.无法判断【考点】三角形的外角性质;平行线的性质.【分析】根据角平分线的定义得到∠1=∠ECF,根据平行线的性质得到∠F=∠ECF,根据三角形的外角的性质列式计算即可.【解答】解:∵CE平分∠ACD,∴∠1=∠ECF,∵FG∥CE,∴∠F=∠ECF,∵∠FCD=∠3+∠BAC,∠BAC=∠2+∠F,∴∠FCD=∠3+∠2+∠F,∴∠1+∠ECF=∠3+∠2+∠F,∴∠2+∠3=∠1,故选:C.【点评】本题考查的是三角形的外角的性质、平行线的性质以及角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.10.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500【考点】由实际问题抽象出分式方程.【分析】根据“今后项目的数量﹣今年项目的数量=20”得到分式方程.【解答】解:∵今后项目的数量﹣今年的数量=20,∴﹣=20.故选:A.【点评】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到等量关系是解决问题的关键.二、填空题(本题共10小题,每小题3分,共30分)11.如图,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品是书.【考点】轴对称图形.【分析】根据轴对称图形的性质得出这个单词,进而得出答案.【解答】解:如图所示:这个单词是BOOK,所指的物品是书.故答案为:书.【点评】此题主要考查了轴对称图形的性质,正确得出单词的名称是解题关键.12.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是 2.8 .【考点】方差;众数.【分析】根据众数的概念,确定x的值,再求该组数据的方差.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]==2.8.故答案为:2.8.【点评】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.13.计算+的结果为 1 .【考点】分式的加减法.【专题】计算题;分式.【分析】原式第一项约分后,两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.如图,有一条直的宽纸带,按如图折叠,则∠1的度数为75°.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据平行线的性质得出∠EDC=∠EFA=30°,∠1+∠BDC=180°,根据折叠求出∠EDB=75°,代入求出即可.【解答】解:∵AB∥CD,∴∠EDC=∠EFA=30°,∠1+∠BDC=180°,根据折叠得出∠EDB=(180°﹣30°)=75°,∵∠BFD=∠EFA=30°,∴∠1=180°﹣75°﹣30°=75°,故答案为:75°.【点评】本题考查了翻折变换,平行线的性质的应用,能灵活运用平行线的性质进行推理是解此题的关键.15.如图,在△ABC中,∠C=90°,BC=40,AD是∠BAC的平分线交BC于D,DE⊥AB,且DE:DB=3:5,则DB的长为25 .【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD,根据比例求出CD的长,即可得解.【解答】解:∵AD是∠BAC的平分线交BC于D,∠C=90°,DE⊥AB,∴CD=DE,∵BC=40,DE:DB=3:5,∴CD=×40=15,∴DE=CD=15,∴BD=BC﹣CD=25,故答案为:25.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.16.已知=,则=.【考点】比例的性质.【分析】直接利用已知将原式变形得出a,b的关系,进而得出答案.【解答】解:∵=,∴6a+3b=3a+5b,则3a=2b,故a=b,故==.故答案为:.【点评】此题主要考查了比例的性质,得出a,b的关系是解题关键.17.观察下列等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,若1+3+5+7+…+2015=n2,则n= 1008 .【考点】规律型:数字的变化类.【分析】通过观察题中给定的等式发现存在1+3+5+…+2n﹣1=n2的规律,令2015=2n﹣1,即可求得结论.【解答】解:观察1=12;1+3=22;1+3+5=32;1+3+5+7=42,可知,1+3+5+…+2n﹣1=n2,∴2015=2n﹣1,∴n=÷2=1008.故答案为:1008.【点评】本题考查了数字的变换,解题的关键是发现1+3+5+…+2n﹣1=n2的规律.18.计算÷(1﹣)的结果是.【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为8 cm.【考点】轴对称-最短路线问题;线段垂直平分线的性质;等腰三角形的性质.【专题】探究型.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.20.对于两个不相等的有理数a,b,我们规定符号Max{a,b}表示a,b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{﹣,}=的解为x=1或x=﹣3 .【考点】解分式方程.【专题】新定义;分式方程及应用.【分析】分类讨论﹣与的大小,利用题中的新定义化简,求出解即可.【解答】解:当﹣<时,方程整理得:=,去分母得:3﹣x=2x,解得:x=1,经检验x=1是分式方程的解;当﹣>时,方程整理得:﹣=,去分母到:x﹣3=2x,解得:x=﹣3,经检验x=﹣3是分式方程的解.故答案为:x=1或x=﹣3.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.三、解答题(满分60分)21.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,分别交AB,AC于点E,D.(1)若∠ADE=40°,求∠DBC的度数;(2)若△ABC与△DBC的周长分别是40cm,24cm,求AB的长.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)由DE垂直平分AB,根据线段垂直平分线的性质,可得∠AED=∠BED=90°,DA=DB,又由∠ADE=40°,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得答案;(2)由△ABC与△DBC的周长分别是40cm,24cm,易得AB=△ABC与△DBC的周长的差.【解答】解:(1)∵DE垂直平分AB,∴∠AED=∠BED=90°,DA=DB,∵∠ADE=40°,∴∠A=∠ABD=50°,又∵AB=AC,∴∠ABC=(180°﹣50°)÷2=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°;(2)∵△ABC的周长表示为:AB+BC+CA,△DBC的周长表示为BD+BC+CD,∴(AB+BC+CA)﹣(BD+BC+CD)=AB+BC+CA﹣BD﹣BC﹣CD=AB+CA﹣BD﹣CD=AB+CA﹣DA﹣CD=AB,∵△ABC与△DBC的周长分别为40cm,24cm,∴AB=16cm.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.22.(1)求作:△ABC,使AB=AC=a,∠B=∠α(保留作图痕迹,不写作法);(2)解方程:=﹣.【考点】作图—复杂作图;解分式方程.【分析】(1)直接利用作一角等于已知角的方法进而结合已知线段得出答案;(2)首先找出最简公分母,进而去分母,解方程求出答案.【解答】解:(1)如图所示,△ABC即为所求作的三角形;(2)方程两边都乘x(x+1),得4x+2=3x﹣(x+1),解这个一元一次方程,得:x=﹣,经检验x=﹣是原方程的解.所以原方程的解是x=﹣.【点评】此题主要考查了复杂作图以及分式方程的解法,正确掌握作一角等于已知角的方法是解题关键.23.已知,如图,AB∥CD,E是AB的中点,CE=DE,求证:AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用SAS证明△AEC≌△BED,即可得到AC=BD.【解答】证明:∵CE=DE,∴∠ECD=∠EDC,∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∴∠AEC=∠BED,又∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED.∴AC=BD.【点评】本题考查了等腰三角形的性质、全等三角形的性质定理与判定定理,解决本题的关键是证明△AEC≌△BED.24.某校要从新入学的两名体育特长生李勇、X浩中挑选一人参加校际跳远比赛,在跳远专项测试以及以后的6次跳远选拔赛中,他们的成绩(单位:cm)如下表所示:专项测试和6次跳远选拔赛成绩平均数方差李勇603 589 602 596 604 612 608 60249.4 X浩596 578 596 628 590 631 595602 (1)把X浩同学7次测试成绩的平均数,李勇同学7次测试成绩的方差填在表格相应位置出.(方差的结果保留一位小数)(2)请你分析两人成绩的特点.(3)经查阅历届比赛的资料,成绩若达到6.00m,就很可能得到冠军,你认为应选李勇去参数夺冠军比较有把握.(4)以往的该项最好成绩的记录是6.15m,若想要打破记录,你认为应选X浩去参赛.【考点】方差;算术平均数.【分析】(1)根据众数、方差的概念计算即可;(2)从众数、方差等角度分析即可;(3)根据方差,从成绩的稳定性方面分析;(4)从最高成绩方面进行分析,超过6.15米的破纪录的可能性大.【解答】解:(1)X浩成绩的平均数为:(596+578+596+628+590+631+595)÷7=602cm,李勇的方差为:s2=[(603﹣602)2+(589﹣602)2+…+(608﹣602)2]2;填表如下:专项测试和6次跳远选拔赛成绩平均数方差李勇603 589 602 596 604 612 608 602 X浩596 578 596 628 590 631 595 602 (2)从成绩的平均数来看,两人的“平均水平”相同,从成绩的方差来看,李勇的成绩比X浩的稳定;(3)在跳远专项测试以及之后的6次跳远选拔赛中,李勇有5次成绩超过6米,而X浩只有两次超过6米,从成绩的方差来看,李勇的成绩比X浩的稳定,选李勇更有把握夺冠;(4)X浩有两次成绩为6.31米和6.28米,超过6.15米,而李勇没有一次达到6.15米,故选X浩.故答案为602,49.4;李勇;X浩.【点评】本题考查了方差及算术平均数的计算方法,此题结合实际问题考查了平均数、方差等方面的知识,体现了数学来源于生活、服务于生活的本质.25.如图,∠ABC=90°,D、E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB 相交于点M.(1)求证:△AFM≌△DFC;(2)AD与MC垂直吗?并说明理由.【考点】全等三角形的判定与性质;平行线的判定与性质.【专题】证明题.【分析】(1)易证△ADE、△AFD、△DFE为等腰直角三角形,从而可得AF=DF,∠AFM=∠DFC=90°,根据同角的余角相等可得∠AMF=∠DCF,根据AAS即可得到△AFM≌△DFC;(2)由于AD⊥DE,要证AD⊥DE,只需证DE∥MC,只需证∠ACM=∠AED=45°,只需证△MFC为等腰直角三角形即可.【解答】证明:(1)∵AD⊥DE,AD=DE,点F是AE的中点,∴∠AFM=∠DFC=90°,AF=DF,∠DEA=∠DAE=45°.∵∠ABC=∠AFM=90°,∴∠AMF+∠MAC=90°,∠DCF+∠MAC=90°,∴∠AMF=∠DCF.在△AFM和△DFC中,∴△AFM≌△DFC;(2)AD⊥MC.理由如下:由(1)知,△AFM≌△DFC,∴FM=FC.∴△FMC是等腰直角三角形,∴∠FCM=45°.∵∠FED=45°,∴∠FED=∠FCM,∴DE∥MC.∵AD⊥DE,∴AD⊥MC.【点评】本题主要考查了等腰直角三角形的判定与性质、直角三角形斜边上的中线等于斜边的一半、全等三角形的判定与性质、平行线的判定与性质等知识,考查了分析问题与解决问题的能力.26.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票,下面是两个小伙伴的对话:小亮:如果今天看演出,我们每人一X票,正好会差两X票的钱.小颖:过两天就是“儿童节”了,那时候来看这场演出,票价会打六折,我们每人一X票,还能剩72元钱呢!根据对话的内容,请你求出小伙伴的人数.【考点】分式方程的应用.【分析】设小伙伴的人数为x人,根据图中所给的信息可得小伙伴的人数为:,根据小伙伴的人数不变,列方程求解.【解答】解:设小伙伴的人数为x人,根据题意,得+2=,解得x=8.经检验x=8是原方程的根且符合题意.答:小伙伴的人数为8人.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.。
八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C. D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△A BC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,即x≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)【解答】解:A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C. D.【解答】解:原式==x+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,顶角∠B=80°;当∠B=∠C为底角时,2(x+30)+x=180°,解得x=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)=x2﹣2x﹣24+4﹣9x2=﹣8x2﹣2x﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为x元/m3,则2016年1月起居民用水价格为(1+)x元/m3.…(1分)依题意得:﹣=5.解得x=1.8.检验:当x=1.8时,(1+)x≠0.所以,原分式方程的解为x=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.。
某某省某某市惠城区2015-2016学年八年级数学上学期期末考试试题一.选择题(本大题共10个小题,每小题3分,共30分)1.下列长度的线段能组成一个三角形的是()A.15cm、10cm、7cm B.4cm、5cm、10cmC.3cm、8cm、5cm D.3cm、3cm、6cm2.八边形的外角和为()A.180°B.360°C.900°D.1260°3.如图,∠1=∠2,PD⊥OA于D,PF⊥OB于F,下列结论错误的是()A.PD=PF B.OD=OF C.∠DPO=∠FPO D.PD=OD4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或175.一个多边形的内角和是900°,这个多边形的边数是()A.7 B.8 C.9 D.106.下列图形中,是轴对称图形的有()个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2 B.3 C.4 D.57.下列运算正确的是()A.a3b3=(ab)3B.a2a3=a6C.a6÷a3=a2D.(a2)3=a58.下面的多项式在实数X围内能因式分解的是()A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+19.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b210.已知,则的值是()A.B.﹣C.2 D.﹣2二.填空题(本大题共6个小题,每小题4分,共24分)11.如图,△ABC中,AB=AC,AD⊥BC,BD=5,则CD=.12.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.13.计算:(4x3y﹣8xy3)÷(﹣2xy)=.14.化简=.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.16.已知a﹣b=1,a2+b2=25,则ab=.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.如图,网格图中的每小格均是边长是1的正方形,△ABC的顶点均在格点上,请完成下列各题:(1)在平面直角坐标系中画出△A1B1C1,使它与△ABC关于x轴对称;(2)写出△A1B1C1三个顶点的坐标.18.解分式方程:.19.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.求∠ECB的度数.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 ﹣2 ﹣3 …输出答案 1 1(2)请将题中计算程序用代数式表达出来,并给予化简.21.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.22.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.先化简,再求值:,其中a=,b=.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ACB的平分线交AD于点E,交AB 于点F,FG⊥BC于点G.求证:AE=FG.25.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.2015-2016学年某某省某某市惠城区八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.下列长度的线段能组成一个三角形的是()A.15cm、10cm、7cm B.4cm、5cm、10cmC.3cm、8cm、5cm D.3cm、3cm、6cm【考点】三角形三边关系.【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:A、10+7>15,能组成三角形,故此选项正确;B、4+5<10,不能组成三角形,故此选项错误;C、3+5=8,不能组成三角形,故此选项错误;D、3+3=6,不能组成三角形,故此选项错误;故选:A.【点评】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.八边形的外角和为()A.180°B.360°C.900°D.1260°【考点】多边形内角与外角.【分析】根据多边形的外角和等于360°进行解答.【解答】解:八边形的外角和等于360°.故选B.【点评】本题主要考查了多边形的外角和定理,多边形的外角和等于360°,与边数无关.3.如图,∠1=∠2,PD⊥OA于D,PF⊥OB于F,下列结论错误的是()A.PD=PF B.OD=OF C.∠DPO=∠FPO D.PD=OD【考点】角平分线的性质.【分析】根据角平分线性质得出PF=PD,根据勾股定理推出OF=OD,根据三角形内角和定理推出∠DPO=∠FPO.【解答】解:A、∵∠1=∠2,PD⊥OA,PF⊥OB,∴PE=PD,正确,故本选项错误;B、∵PD⊥OA,PF⊥OB,∴∠PFO=∠PDO=90°,∵OP=OP,PF=PD,∴由勾股定理得:OF=OD,正确,故本选项错误;C、∵∠PFO=∠PDO=90°,∠POB=∠POA,∴由三角形的内角和定理得:∠DPO=∠FPO,正确,故本选项错误;D、根据已知不能推出PD=OD,错误,故本选项正确;故选D.【点评】本题主要考查平分线的性质,三角形的内角和,熟练掌握角平分线的性质是解题的关键.4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.5.一个多边形的内角和是900°,这个多边形的边数是()A.7 B.8 C.9 D.10【考点】多边形内角与外角.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:A【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.6.下列图形中,是轴对称图形的有()个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2 B.3 C.4 D.5【考点】轴对称图形.【专题】几何图形问题.【分析】根据轴对称图形的概念判断各图形即可求解.【解答】解:根据轴对称图形的定义可知:①角的对称轴是该角的角平分线所在的直线;②线段的对称轴是线段的垂直平分线;③等腰三角形的对称轴是底边的高所在的直线;⑤圆的对称轴有无数条,是各条直径所在的直线,故轴对称图形共4个.故选C.【点评】本题考查轴对称图形的知识,注意掌握轴对称图形的判断方法:图形沿一条直线折叠后,直线两旁的部分能够互相重合.7.下列运算正确的是()A.a3b3=(ab)3B.a2a3=a6C.a6÷a3=a2D.(a2)3=a5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】A、原式利用积的乘方运算法则变形得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=(ab)3,正确;B、原式=a5,错误;C、原式=a3,错误;D、原式=a6,错误,故选A.【点评】此题考查了同底数幂的乘法,除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.下面的多项式在实数X围内能因式分解的是()A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+1【考点】实数X围内分解因式.【分析】利用因式分解的方法,分别判断得出即可.【解答】解;A、x2+y2,无法因式分解,故A选项错误;B、x2﹣y,无法因式分解,故B选项错误;C、x2+x+1,无法因式分解,故C选项错误;D、x2﹣2x+1=(x﹣1)2,故D选项正确.故选:D.【点评】此题主要考查了公式法分解因式,熟练应用公式是解题关键.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b2【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10.已知,则的值是()A.B.﹣C.2 D.﹣2【考点】分式的化简求值.【专题】计算题.【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.【解答】解:∵,∴﹣=,∴,∴=﹣2.故选D.【点评】解答此题的关键是通分,认真观察式子的特点尤为重要.二.填空题(本大题共6个小题,每小题4分,共24分)11.如图,△ABC中,AB=AC,AD⊥BC,BD=5,则CD= 5 .【考点】等腰三角形的性质.【分析】由已知条件,根据等腰三角形“三线合一”的性质,可得CD=BD=5.【解答】解:∵AB=AC∴∠ABD=∠ACD∵AD⊥BC∴∠ADC=∠ADB=90°∴CD=BD=5.故填5.【点评】此题主要考查等腰三角形“三线合一”的性质.题目思路比较直接,属于基础题.12.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【考点】全等三角形的判定.【专题】开放型.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.13.计算:(4x3y﹣8xy3)÷(﹣2xy)= ﹣2x2+4y2.【考点】整式的除法.【分析】直接利用整式的除法运算法则化简求出答案.【解答】解:(4x3y﹣8xy3)÷(﹣2xy)=﹣2x2+4y2.故答案为:﹣2x2+4y2.【点评】此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.14.化简= 1 .【考点】分式的加减法.【专题】计算题.【分析】首先把两个分式的分母变为相同再计算.【解答】解:原式=﹣==1.故答案为:1.【点评】此题考查的知识点是分式的加减法,关键是先把两个分式的分母化为相同再计算.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产200 台机器.【考点】分式方程的应用.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得: =.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.【点评】此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.16.已知a﹣b=1,a2+b2=25,则ab= 12 .【考点】完全平方公式.【专题】计算题.【分析】根据完全平方公式得到(a﹣b)2=a2﹣2ab+b2,再把a﹣b=1,a2+b2=25整体代入,然后解关于ab的方程即可.【解答】解:∵(a﹣b)2=a2﹣2ab+b2,∴1=25﹣2ab,∴ab=12.故答案为12.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了整体思想的运用.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.如图,网格图中的每小格均是边长是1的正方形,△ABC的顶点均在格点上,请完成下列各题:(1)在平面直角坐标系中画出△A1B1C1,使它与△ABC关于x轴对称;(2)写出△A1B1C1三个顶点的坐标.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接即可;(2)根据网格结构写出顶点的坐标.【解答】解:(1)所作图形如图所示:;(2)坐标为:A1(﹣1,﹣4)、B1(﹣2,﹣2)、C1(0,﹣1).【点评】本题考查了根据轴对称变化作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.18.解分式方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边乘以(x+2)(x﹣2),得x(x+2)﹣8=(x+2)(x﹣2),解这个方程,得x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.求∠ECB的度数.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理求出∠ACB的度数,根据线段垂直平分线的性质得到EA=EC,求出∠ACE的度数,计算即可.【解答】解:∵AB=AC,∠A=36°∴∠ACB=∠B==72°,又∵DE是AC的垂直平分线,∴EA=EC,∴∠ACE=∠A=36°∴∠ECB=∠ACB﹣∠ACE=36°.【点评】本题考查的是线段的垂直平分线的性质和三角形内角和定理以及等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 ﹣2 ﹣3 …输出答案 1 1(2)请将题中计算程序用代数式表达出来,并给予化简.【考点】整式的除法.【分析】(1)根据计算程序把数据代入即可求出答案;(2)把n代入计算程序后列出代数式化简即可.【解答】解:(1)输入n 3 ﹣2 ﹣3 …输出答案 1 1 1 1…(2)(n2+n)÷n﹣n(n≠0)=﹣n=n+1﹣n=1.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系,读表,明确计算程序是正确解答本题的前提.21.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BE D;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.【点评】本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.22.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【考点】分式方程的应用.【专题】应用题.【分析】设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同,列方程求解.【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得: =,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同.三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.先化简,再求值:,其中a=,b=.【考点】分式的化简求值;分母有理化.【专题】计算题.【分析】首先把除法运算转化成乘法运算,能因式分解的先因式分解,进行约分,然后进行减法运算,最后代值计算.【解答】解:原式=﹣=﹣==,当a=,b=时,原式==.【点评】本题的关键是正确进行分式的通分、约分,并准确代值计算.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ACB的平分线交AD于点E,交AB 于点F,FG⊥BC于点G.求证:AE=FG.【考点】等腰三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据角平分线上的点到两边的距离相等可得:FG=FA;则只要在确定FA与AE的关系即可确定AE与FG之间的关系;在直角三角形AFC中∠AFC+∠ACF=90°,在直角三角形CDE中,∠DEC+∠ECD=90°,根据角平分线的性质可知:∠ACF=∠DCE,则∠AFC=∠DEC,又知∠AEF=∠DEC,则∠AFC=∠AEF,所以AE=FA,则AE=FG.【解答】证明:∵CF平分∠ACB,FA⊥AC,FG⊥BC∴FG=FA∵∠AFC+∠ACF=90°,∠DEC+∠ECD=90°,且∠ACF=∠ECD∴∠AFC=∠DEC∵∠AEF=∠DEC∴∠AFC=∠AE F∴AE=FA∴AE=FG.【点评】本题主要考查了等腰三角形的判定和性质,角平分线的性质;解题时利用了AF这个中间量进行了等量代换是解答本题的关键.25.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)欲证明AD=BE,只要证明△ACD≌△BAE即可.(2)由α=∠ABE+∠BAP=∠CAD+∠BAP即可得出结论.(3)在RT△PBQ中,利用30度角的性质即可知道PB=2PQ,由此可以解决问题.【解答】(1)证明:∵△ABC为等边三角形,∴AC=AB,∠C=∠BAC=60°在△ACD和△BAE中,,∴△ACD≌△BAE,∴AD=BE.(2)解:不变.由(1)可知:△ACD≌△BAE,∴∠CAD=∠ABE,∵α=∠ABE+∠BAP=∠CAD+∠BAP=60°,(3)解:在△PBQ中,∠PBQ=90°﹣∠PBQ=30°,∴BP=2PQ=6,∴AD=BE=BP+PE=6+1=7.【点评】本题考查全等三角形的判定和性质、直角三角形30度角的性质等知识,解题的根据利用全等三角形的性质,属于中考常考题型.。
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
某某省潍坊市寿光市2015-2016学年度八年级数学上学期期末考试试题一、选择题(每小题3分,共36分,在每小题给出的4个选项中,只有一个是符合题目要求的.)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.代数式,,,8﹣,中,分式的个数为()A.1个B.2个C.3个D.4个3.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号220 225 230 235 240 245 250数量(双) 3 5 10 15 8 3 2对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数 C.中位数D.方差4.面积相等的两个三角形()A.必定全等 B.必定不全等C.不一定全等D.以上答案都不对5.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定6.在▱ABCD中,∠A:∠B:∠C=2:3:2,则∠D的度数为()A.36° B.60° C.72° D.108°7.下列分式中,是最简分式的是()A.B.C.D.8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=19.如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE 的长就是A、B的距离,这里判断△ACB≌△ECD的理由是()A.SAS B.ASA C.AAS D.SSS10.如果方程有增根,那么m的值为()A.1 B.2 C.3 D.无解11.如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A,B间的距离.有关他这次探究活动的描述错误的是()A.S△CMN=S△ABC B.CM:CA=1:2C.MN∥AB D.AB=24m12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF二、填空题(每小题4分,共24分)13.命题“同位角相等,两直线平行”的逆命题是:.14.若分式的值为零,则x的值为.15.如图,在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.2015~2016学年度八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩.17.若已知一组数据x1,x2…,x n的平均数为x,方差为S2,那么另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数为,方差为.18.在▱ABCD中,AB、BC、CD三条边的长度分别为(a﹣3)cm、(a﹣4)cm、(9﹣a)cm,则这个平行四边形的周长为cm.三、解答题(10分+10分+8分+10分+10分+12分=60分)19.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.20.同学们,期2016届中考试的时候我们考了一个关于轴对称的图案设计问题,大家答得不错,开动脑筋,挑战一下下面这个题吧!相信你会做得更好!(1)下面图均为4的网格,每个小正方形的边长为1,观察阴影部分组成的图案,请写出这四个图案都具有的两个共同特征:(2)借助下面的网格,请设计三个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与①~④的图案不能重合)21.先化简代数式:,然后选取一个使原式有意义的x的值代入求值.22.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.23.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.24.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?某某省潍坊市寿光市2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分,在每小题给出的4个选项中,只有一个是符合题目要求的.)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.【点评】轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.代数式,,,8﹣,中,分式的个数为()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】根据分式的定义直接判断得出即可.【解答】解:只有,,8﹣,符合分式的定义,一共有3个.故选:C.【点评】此题主要考查了分式的定义,准确把握分式定义是解题关键.3.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号220 225 230 235 240 245 250数量(双) 3 5 10 15 8 3 2对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数 C.中位数D.方差【考点】统计量的选择;众数.【分析】众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【解答】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选B.【点评】考查了众数、平均数、中位数和标准差意义,比较简单.4.面积相等的两个三角形()A.必定全等 B.必定不全等C.不一定全等D.以上答案都不对【考点】全等三角形的判定.【分析】两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边和对应高不一定相等,故面积相等的两个三角形不一定全等.【解答】解:因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.故选C.【点评】本题考查了全等三角形的判定.解答此题需要熟悉三角形的面积公式.5.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定【考点】角平分线的性质;平行线之间的距离.【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥B C于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.在▱ABCD中,∠A:∠B:∠C=2:3:2,则∠D的度数为()A.36° B.60° C.72° D.108°【考点】平行四边形的性质.【分析】首先根据题意画出图形,然后由四边形ABCD是平行四边形,可得对角相等,邻角互补,又由在▱ABCD中,∠A:∠B:∠C=2:3:2,即可求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AD∥BC,∴∠C+∠D=180°,∵∠A:∠B:∠C=2:3:2,∴∠D=×180°=108°.故选D.【点评】此题考查了平行四边形的性质.注意结合题意画出图形,利用图形求解是关键.7.下列分式中,是最简分式的是()A.B.C.D.【考点】最简分式.【专题】探究型.【分析】将选项中式子进行化简,不能化简的选项即是所求的最简分式.【解答】解:,,,不能化简.故选D.【点评】本题考查最简分式,解题的关键是明确最简分式的定义.8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【考点】作图—基本作图;坐标与图形性质;角平分线的性质.【专题】压轴题.【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b 的数量关系.【解答】解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,故选:B.【点评】此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.9.如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE 的长就是A、B的距离,这里判断△ACB≌△ECD的理由是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】根据已知条件分析,题目中给出了三角形的边相等,两条垂线,可得一对角相等,加上图形中的对顶角相等,条件满足了ASA,答案可得.【解答】解:∵AB⊥BC,DE⊥BC,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,要根据已知选择方法.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如果方程有增根,那么m的值为()A.1 B.2 C.3 D.无解【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣3),得x=3m.∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3.m=x=1,故选:A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.11.如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A,B间的距离.有关他这次探究活动的描述错误的是()A.S△CMN=S△ABC B.CM:CA=1:2C.MN∥AB D.AB=24m【考点】三角形中位线定理.【专题】应用题.【分析】根据三角形中位线定理可得MN∥AB,MN=AB,然后可得△CMN∽△CAB,根据相似三角形面积比等于相似比的平方,线段的中点定义进行分析即可.【解答】解:∵AC,BC的中点M,N,∴MN∥A B,MN=AB,∴△CMN∽△CAB,∴S△M:S△ACB=(MN:AB)2,∴S△M:S△ACB=4:1,∴S△CMN=S△ABC,故A描述错误;∵M是AC中点,∴CM:CA=1:2,故B描述正确;∵AC,BC的中点M,N,∴MN∥AB,故C描述正确;∵MN的长为12m,MN=AB,∴AB=24m,故D描述正确,故选:A.【点评】此题主要考查了三角形的中位线,以及相似三角形的性质,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【考点】正方形的判定;线段垂直平分线的性质.【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.二、填空题(每小题4分,共24分)13.命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.【考点】命题与定理.【分析】把一个命题的题设和结论互换就得到它的逆命题.【解答】解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.若分式的值为零,则x的值为﹣2 .【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得|x|﹣2=0,x﹣2≠0,由|x|﹣2=0,解得x=2或x=﹣2,由x﹣2≠0,得x≠2,综上所述,得x=﹣2,故答案为:﹣2.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.如图,在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=35°.【考点】等腰三角形的性质.【专题】计算题.【分析】根据AD=AE,BD=EC,∠ADB=∠AEC=105°,可知△ADB≌△AEC,可得出AB=AC,根据等腰三角形的性质即可解答.【解答】解:∵AD=AE,BD=EC,∠ADB=∠AEC=105°,∴△ADB≌△AEC,∴AB=AC,∴∠B=∠C=40°,在△AEC中,∠CAE+∠C+∠AEC=180°,∴∠CAE=180°﹣40°﹣105°=35°,故答案为:35°.【点评】本题考查了等腰三角形的性质,属于基础题,关键是先求出AB=AC,再根据等腰三角形等边对等角的关系即可.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.2015~2016学年度八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩90分.【考点】加权平均数.【分析】根据加权平均数的计算公式求解即可.【解答】解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,95这三个数的平均数,对平均数的理解不正确.17.若已知一组数据x1,x2…,x n的平均数为x,方差为S2,那么另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数为3x﹣2 ,方差为9S2.【考点】方差;算术平均数.【分析】一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;一组数据中的每一个数都变为原数的n倍,它的方差变为原数据的n2倍;依此规律求解即可.【解答】解:∵一组数据x1,x2…,x n的平均数为x,方差为S2,∴另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数=(3x1﹣2+3x2﹣2+…+3x n﹣2)=[3(x1+x2+…+x n)﹣2n]=3x﹣2,原来的方差S2=[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],现在的方差s2=[(3x1﹣2﹣3x+2)2+(3x2﹣2﹣3x+2)2+…+(3x n﹣2﹣3x+2)2]=[9(x1﹣x)2+9(x2﹣x)2+…+9(x n﹣x)2]=9S2.故答案为3x﹣2,9S2.【点评】本题考查了平均数与方差,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.18.在▱ABCD中,AB、BC、CD三条边的长度分别为(a﹣3)cm、(a﹣4)cm、(9﹣a)cm,则这个平行四边形的周长为10 cm.【考点】平行四边形的性质;解一元一次方程.【分析】根据平行四边形的对边相等可列出方程,从而解出a,这样就可得出各边的长,继而得出周长.【解答】解:∵平行四边形的对边相等,当a﹣3=9﹣a时a﹣3=9﹣a,解得:a=6cm,即得AB=3cm、BC=2cm、CD=3cm、DA=2cm,∴平行四边形ABCD的周长是:AB+BC+CD+DA=10cm;当a﹣4=9﹣a时,a=6.5cm,即得AB=3.5cm、BC=2.5cm、CD=2.5cm、DA=2.5cm,∴AB≠BC=CD=DA,∴四边形不是平行四边形,故答案为10【点评】本题考查平行四边形的性质,需要熟练掌握平行四边形对边相等的性质,如果不能看出哪两组边为对边,可以画出草图,这样有助于分析.三、解答题(10分+10分+8分+10分+10分+12分=60分)19.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先根据∠BAC=∠DAE得出∠BAD=∠CAE,再根据全等三角形的判定得出△ABD≌△ACE,解答即可.【解答】证明:∵∠BAC=∠DAE∴∠BAD=∠CAE∵∠ABD=∠ACE,AB=AC∵在△ABD与△ACE中,∴△ABD≌△ACE(ASA)∴BD=CE.【点评】本题考查了全等三角形的判定与性质,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.20.同学们,期2016届中考试的时候我们考了一个关于轴对称的图案设计问题,大家答得不错,开动脑筋,挑战一下下面这个题吧!相信你会做得更好!(1)下面图均为4的网格,每个小正方形的边长为1,观察阴影部分组成的图案,请写出这四个图案都具有的两个共同特征:(2)借助下面的网格,请设计三个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与①~④的图案不能重合)【考点】利用轴对称设计图案.【分析】(1)观察发现四个图形都是轴对称图形;(2)根据轴对称图形的特点设计图案即可.【解答】解:(1)这四个图案都具有的两个共同特征是:都是轴对称图形;(2)如图:.【点评】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.21.先化简代数式:,然后选取一个使原式有意义的x的值代入求值.【考点】分式的化简求值.【专题】开放型.【分析】先算小括号里的,小括号里面的先对第二项的分母分解因式,然后找出两项分母的最简公因式(x﹣1)(x+1),对小括号里的第一项的分子分母都乘以x﹣1,第二项不变,然后根据同分母相加减的法则,分母不变.只把分子相加减,再把除法统一成乘法,约分化为最简.注意化简后,代入的数不能使分母的值为0.【解答】解:===x2+1;当x=0时,原式的值为1.说明:只要x≠±1,且代入求值正确,均可记满分.【点评】分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.注意化简后,代入的数不能使分母的值为0.22.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.【考点】分式方程的应用.【专题】行程问题.【分析】设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.根据题意,知小汽车所用的时间比公共汽车所用的时间少3小时﹣20分=小时,列方程求解.【解答】解:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.依题意,得,解,得x=20.经检验x=20是原方程的根,且符合题意.∴3x=60.答:公共汽车和小汽车的速度分别是20公里/时,60公里/时.【点评】找到合适的等量关系是解决问题的关键.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.此题中关键是弄清两车的时间关系.23.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.【考点】平行四边形的性质;全等三角形的判定.【专题】证明题.【分析】根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF即可.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是根据平行四边形的性质得出AO=CO.24.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?【考点】方差.【分析】(1)利用平均数计算公式、中位数解答即可;(2)先求出方差,根据方差的大小再确定哪段台阶路走起来更舒服;(3)要使台阶路走起来更舒服,就得让方差变得更小.【解答】解:(1)将甲、乙两台阶高度值从小到大排列如下,甲:10,12,15,17,18,18;乙:14,14,15,15,16,16;甲的中位数是:(15+17)÷2=16,平均数是:(10+12+15+17+18+18)=15;乙的中位数是:(15+15)÷2=15,平均数是:(14+14+15+15+16+16)=15;故两台阶高度的平均数相同,中位数不同;(2)=[(10﹣15)2+(12﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(18﹣15)2]=,=[(14﹣15)2+(14﹣15)2+(15﹣15)2+(15﹣15)2+(18﹣15)2+(18﹣15)2]=,∵乙台阶的方差比甲台阶方差小,∴乙台阶上行走会比较舒服;(3)修改如下:为使游客在两段台阶上行比较舒服,需使方差尽可能小,最理想应为0,同时不能改变台阶数量和台阶总体高度,故可使每个台阶高度均为15cm(原平均数),使得方差为0.【点评】此题主要考查了方差在实际生活中的应用,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.。
2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。
2.本卷是试题卷,不能答题。
答题必须写在答题卡上。
解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
人教版八年级上册数学期末试题一、单选题1.要使分式7x x -有意义,则x 的取值范围是( ) A .7x = B .7x > C .7x < D .7x ≠2.下列图形中不是轴对称图形的是( )A .B .C .D .3.下列运算正确的是( )A .428x x x =B .235m m m +=C .933x x x ÷=D .32264()a b a b -=-4.下列命题中,不正确的是( )A .有一个外角是120°的等腰三角形是等边三角形B .一条线段可以看成是以它的垂直平分线为对称轴的轴对称图形C .等腰三角形的对称轴是底边上的中线D .等边三角形有3条对称轴5.满足下列条件的三条线段,,a b c 能构成三角形的是( )A .::1:2:3a b c =B .4,9a b a b c +=++=C .3,4,5a b c ===D .::1:1:2a b c =6.在平面直角坐标系中,点A (-2,3)关于y 轴对称的点的坐标( )A .(2,3)B .(2,-3)C .(-2,-3)D .(3,2) 7.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两型号机器人的单价和为140万元.若设甲型机器人每台x 万元,根据题意,所列方程正确的是( ) A .360480140x x =- B .360480140x x=- C .360480140x x += D .360480140x x -= 8.已知:如图,∠1=∠2,则不一定能使∠ABD∠∠ACD 的条件是( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA 9.如图,∠ABC 中,12AB BC AC ===cm ,现有两点M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度为1cm/s ,点N 的速度为2cm/s .当点N 第一次到达B 点时,M 、N 同时停止运动.点M 、N 运动( )s 后,可得到等边三角形∠AMN .A .4B .6C .8D .不能确定 10.如图,已知∠1=∠2,要得到结论ABC∠ADC ,不能添加的条件是( )A . BC =DCB .∠ACB =∠ACDC .AB =AD D .∠B =∠D二、填空题11.数据0.000000005用科学记数法表示为______.12.当x =______时,分式21628x x --的值为0.13.因式分解ab 3-4ab =_____.14.已知2m a =,32n b =,m ,n 为正整数,则5102m n +=______.15.化简:()2184416x x x ⎛⎫-⋅+= ⎪--⎝⎭__________. 16.如图,∠AEB∠∠DFC ,AE∠CB ,DF∠BC ,垂足分别为E 、F ,且AE=DF ,若∠C=28°,则∠A=__________.17.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.18.若方程4x 2+(m+1)x+1=0的左边可以写成一个完全平方式,则m 的值为__. 19.如图,在∠ABC 中,14AB =,8BC =,AM 平分∠BAC ,15BAM ∠=︒,点D 、E 分别为线段AM 、AB 上的动点,则BD DE +的最小值是______.20.如图,已知30PMQ ∠=︒,点123,,A A A ...在射线MQ 上,点123,,B B B ...均在射线MP 上,112223334,,A B A A B A A B A △△△...均为等边三角形,若11MA =,则202120212022A B Az △的边长为__________.三、解答题21.先化简再求值22121(1)24x x x x ++-÷+-,其中x= -3.22.解方程:21133x x x x =+++.23.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?24.如图,已知∠ABC 和线段DE ,求作一点P ,使点P 到∠ABC 两边的距离相等,且使PD =PE .(不写作法,保留作图痕迹)25.如图,在∠ABC 中,D 是AB 上一点,CF//AB ,DF 交AC 于点E ,DE EF =.(1)求证:ADE CFE ≌(2)若5AB =,3CF =,求BD 的长.26.如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,在建立平面直角坐标系后,∠ABC 的顶点均在格点上,点 C 的坐标为(0,-1),(1)写出A,B 两点的坐标;(2)画出∠ABC 关于y 轴对称的∠A1B1C1;(3)求出∠ABC 的面积.27.如图,已知点D,E分别是ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∠BC.(1)求证:ABC是等腰三角形(2)作∠ACE的平分线交AF于点G,若40∠=,求∠AGC的度数.B28.某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?29.列方程解应用题:一批学生志愿者去距学校8km的老人院参加志愿服务活动,一部分学生骑自行车先走,过了15min后,其余学生乘汽车出发,结果他们同时到达.已知骑车学生的速度是汽车速度的一半,求骑车学生的速度.30.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A 、a 2﹣2ab+b 2=(a ﹣b )2B 、a 2﹣b 2=(a+b )(a ﹣b )C 、a 2+ab=a (a+b )(2)应用你从(1)选出的等式,完成下列各题:∠已知x 2﹣4y 2=12,x+2y=4,求x ﹣2y 的值.∠计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣2119)(1﹣2120).参考答案1.D【分析】直接利用分式有意义的条件分析得出答案. 【详解】解:要使分式7x x -有意义, 则70x -≠,解得:7x ≠.故选:D .【点睛】本题主要考查了分式有意义的条件,正确把握定义是解题关键.2.B【分析】根据轴对称图形的定义,即可一一判定.【详解】解:等腰三角形、等腰梯形、矩形都是轴对称图形,直角三角形不一定是轴对称图形,故选:B .【点睛】本题考查了轴对称图形的定义,轴对称图形:如果把一个图形沿某条直线对折,对折后图形的一部分与另一部分完全重合,我们把具有这样性质的图形叫做轴对称图形,这条直线叫做对称轴.3.B【分析】计算出各个选项中的式子的结果,本题得以解决.【详解】2428x x x =,故选项A 错误;235m m m +=,故选项B 正确;936x x x ÷=,故选项C 错误;32264()a b a b -=,故选项D 错误;故选B .【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.4.C【分析】根据等边三角形的判定定理、轴对称图形的概念判断即可.【详解】解:A 、一个三角形的外角是120°,则内角为60°,∠这个等腰三角形是等边三角形,本选项说法正确,不符合题意;B 、一条线段可以看成是以它的垂直平分线为对称轴的轴对称图形,本选项说法正确,不符合题意;C 、等腰三角形的对称轴是底边上的中线所在的直线,本选项说法错误,符合题意;D 、等边三角形有3条对称轴,本选项说法正确,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断以及等边三角形的判定,轴对称图形的概念等知识,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A.设,,a b c 分别为,2,3(0)x x x x >,则有a b c +=,不符合三角形的三边关系,故不能构成三角形;B.当4a b +=时,5,45c =<,不符合三角形的三边关系,故不能构成三角形;C.当3a =,4b =,5c =时,345+>,符合三角形的三边关系,故能构成三角形;D.设,,a b c 分别为,,2(0)x x x x >,则有a b c +=,不符合三角形的三边关系,故不能构成三角形.故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.6.A【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点A (-2,3)关于y 轴对称点的坐标是(2,3).故选:A .【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.A【分析】甲型机器人每台x 万元,根据360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,列出方程即可.【详解】解:设甲型机器人每台x 万元,根据题意,可得360480140x x=-, 故选:A .【点睛】本题考查的是分式方程,解题的关键是熟练掌握分式方程.8.B【分析】利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.【详解】A 、∠∠1=∠2,AD 为公共边,若AB=AC ,则∠ABD∠∠ACD (SAS );故A 不符合题意;B 、∠∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定∠ABD∠∠ACD ;故B 符合题意;C 、∠∠1=∠2,AD 为公共边,若∠B=∠C ,则∠ABD∠∠ACD (AAS );故C 不符合题意;D 、∠∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则∠ABD∠∠ACD (ASA );故D 不符合题意.故选:B .9.A【分析】设点M ,N 运动t 秒时,得到等边三角形AMN ,表示出AM ,AN 的长,根据60A ∠=︒ ,只要AM AN =,三角形AMN 就是等边三角形.【详解】解:设点M ,N 运动t 秒时,得到等边三角形AMN ,如图所示,则AM t =,2BN t =, ∠12AB BC AC ===,∠122AN AB BN t =-=-,∠AMN ∆是等边三角形,∠AM AN =,即122t t =-,解得4t =,∠点M ,N 运动4秒时,得到等边三角形AMN .故选:A【点睛】本题考查了等边三角形的性质和判定,根据题意分析出AM AN =时得到等边三角形AMN 是解题的关键.10.A【分析】根据全等三角形的判定方法,逐项判断即可求解.【详解】解:根据题意得:AC AC = ,∠1=∠2,A 、当BC =DC 时,是边边角,不能得到结论ABC∠ADC ,故本选项符合题意;B 、当∠ACB =∠ACD 时,是角边角,能得到结论ABC∠ADC ,故本选项不符合题意; C 、当AB =AD 时,是边角边,能得到结论ABC∠ADC ,故本选项不符合题意; D 、当∠B =∠D 时,是角角边,能得到结论ABC∠ADC ,故本选项不符合题意; 故选:A【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.11.9510-⨯【分析】根据绝对值小于1的数用科学记数法表示即可,把一个绝对值小于1的数数表示为10n a -⨯(1≤|a|< 10, n 为正整数)的形式,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定,不为0的数字前面有几个0,-n 就是负几.【详解】解:90.0000000052 10-=⨯,故选:B .【点睛】此题主要考查了用科学记数法表示绝对值小于1的数,一般形式为10n a -⨯(1≤|a|< 10, n 为正整数), n 为由原数左边起第一个不为零的数字前面的0的个数所决定,熟练掌握科学记数法表示绝对值小于1的数的方法是解题的关键.12.-4【分析】根据分式等于0可知2160x -=,且280x -≠.求出x 即可.【详解】根据题意可知2160280x x ⎧-=⎨-≠⎩,解得:4x =-.故答案为:-4.【点睛】本题考查分式的值为零的条件:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.13.ab (b+2)(b -2).【详解】试题解析:ab 3-4ab=ab (b 2-4)=ab (b+2)(b -2).考点:提公因式法与公式支的综合运用.14.52a b【分析】直接利用幂的乘方运算法则以及同底数幂的乘法运算法则计算得出答案.【详解】解:∠2m=a ,32n=b=25n ,m ,n 为正整数,∠25m+10n=(2m)5×(25n)2=a5b2,故答案是:a5b2.【点睛】本题主要考查了幂的乘方运算以及同底数幂的乘法运算,解题的关键是正确掌握相关运算法则.15.1【分析】先将小括号内的式子进行通分计算,然后再算括号外面的.【详解】解:218()(4)416x x x -⋅+-- 48(4)(4)(4)x x x x +-=⋅++- 4(4)(4)(4)x x x x -=⋅++- 1=,故答案为:1.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.16.62°【详解】∠∠AEB∠∠DFC ,∠∠C=∠B=28°,∠AE∠CB ,∠∠AEB=90°,∠∠A=62°.故答案为62°.17.6【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角的个数,即多边形的边数.【详解】解:∠一个正多边形的一个内角是120º,∠这个正多边形的一个外角为:180º-120º=60º,∠多边形的外角和为360º,∠360º÷60º =6,则这个多边形是六边形.故答案为:6.【点睛】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.18.-5或3【分析】利用完全平方公式的结构特征判断即可求出m 的值.【详解】解:∠4x 2+(m+1)x+1可以写成一个完全平方式,∠4x 2+(m+1)x+1=(2x±1)2=4x 2±4x+1,∠m+1=±4,解得:m =-5或3,故答案为:-5或3.【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.19.7【分析】作E关于AM的对称点E',连接DE',根据角平分线的性质以及轴对称的性质,垂线段最短,进而根据含30度角的直角三角形的性质求解即可.【详解】∴如图,作E关于AM的对称点E′,连接DE′,∠ED=E′D∠BD+DE≥BE′,当B,D,E′共线,且BE′∠AC时,BD+DE最小∠AM平分∠BAC,∠E′在AC上,∠AM平分∠BAC,∠BAM=15°,∠∠BAE′=30°∠AB=14,BE′∠AC∠BE′=12AB=7故答案为:7.【点睛】本题考查了角平分线的定义,轴对称的性质求最短距离,垂线段最短,含30度角的直角三角形的性质,正确的作出图形是解题的关键.20.22020.【详解】解:∠∠A1B1A2为等边三角形,∠∠B1A1A2=60°,∠∠PMQ=30°,∠∠MB1A1=∠B1A1A2-∠PMQ=30°,∠∠MB1A1=∠PMQ,∠A 1B 1=MA 1=1,同理可得:A 2B 2=MA 2=2,A 3B 3=MA 3=4=22,A 4B 4=MA 4=23,…∠∠A 2021B 2021A 2022的边长=22020,故答案为:22020.21.52. 【详解】原式221(1)2(2)(2)x x x x x +-+=÷++- 21(2)(2)·2(1)x x x x x ++-=++ 21x x -=+. 当3x =-时,原式325312--==-+ 22.32x =- 【分析】分式方程两边同乘3(x+1),解出x 的解,再检验解是否满足.【详解】解:方程两边都乘()31x +,得:()3231x x x -=+, 解得:32x =-, 经检验32x =-是方程的解, ∴原方程的解为32x =-. 【点睛】本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验. 23.135度.【详解】试题分析:首先由题意得出等量关系,即这个多边形的内角和比四边形的内角和多540°,由此列出方程解出边数,进一步可求出它每一个内角的度数.解:设这个多边形边数为n ,则(n ﹣2)•180=360+720,解得:n=8,∠这个多边形的每个内角都相等,∠它每一个内角的度数为1080°÷8=135°.答:这个多边形的每个内角是135度.24.见解析.【分析】作线段DE 的垂直平分线MN ,作∠ABC 的角平分线BO 交MN 于点P ,点P 即为所求.【详解】如图,点P 即为所求.【点睛】本题主要考查了线段垂直平分线与角平分线的画图,熟练掌握相关方法是解题关键.25.(1)见解析(2)2BD =【分析】(1)由题意易得,A ECF ADE F ∠=∠∠=∠,然后问题可求证;(2)由(1)可得3AD CF ==,然后问题可求解.(1)证明:∠CF//AB ,∠,A ECF ADE F ∠=∠∠=∠,在ADE ∆和CFE ∆中,A ECF ADE F DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ADE CFE ≌(AAS );(2)解:∠ADE CFE ∆∆≌,CF=3,∠3AD CF ==,∠532BD AB AD =-=-=.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质及判定是解题的关键.26.(1) A (-1,2),B (-3,1).(2)见解析;(3)见解析【分析】(1)根据 A ,B 的位置写出坐标即可;(2)分别画出 A ,B ,C 的对应点 A 1,B 1,C 1 即可;利用分割法求面积即可;【详解】(1)由题意 A (-1,2),B (-3,1).(2)如图∠A1B1C1 即为所求.(3)S ABC =3×3 -12×1×2 -12×1×3 -12×2×3= 3.527.(1)证明见解析;(2)70AGC ∠=【分析】(1)根据角平分线的定义,得到∠DAF=∠CAF ,又根据//BC AF ,得到∠DAF=∠ABC ,∠CAG=∠ACB ,进一步得到∠ABC=∠ACB ,即可证明ABC 是等腰三角形;(2)在ACG 中,分别求得ACG ∠和CAG ∠的度数,利用三角形内角和求解即可.【详解】(1)证明:∠AF 是∠DAC 的角平分线∠∠DAF=∠CAF又∠//BC AF∠∠DAF=∠ABC ,∠CAG=∠ACB∠∠ABC=∠ACB∠AB=AC∠ABC 是等腰三角形(2)∠CG 是∠ACE 的角平分线∠∠ACG=∠ECG又∠40B ∠=,∠ACB=∠B∠40ACB ∠= ∠∠ACG=∠ECG=()118040702⨯-= 又∠∠CAG=∠ACB∠∠AGC=180407070--=【点睛】本题考查等腰三角形的判定,平行线的性质,角平分线的定义等相关知识点,牢记知识点是解题关键.28.10米【分析】设原计划每天铺设管道x 米,根据等量关系:铺设120米管道的时间+铺设(300﹣120)米管道的时间=27天,可列方程求解.【详解】解:设原计划每天铺设管道x 米, 依题意得:12030012027(120%)x x-+=+, 解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.考点:分式方程的应用.29.骑车学生的速度16㎞/h .【分析】设骑车学生的速度为xkm/h ,则汽车速度为2xkm/h ,根据骑车所用时间- 15分钟=汽车所用时间,列方程x x 81842,解方程即可. 【详解】解:设骑车学生的速度为xkm/h ,则汽车速度为2xkm/h,根据题意得:x x 81842, 方程两边都乘以4x 得:x 3216, 解得16x =,经检验得16x =是原方程的根,且符合题意,答:骑车学生的速度16㎞/h .【点睛】本题考查列分式方程解行程问题应用题,掌握列分式方程解行程问题应用题方法与步骤,抓住等量关系:骑车所用时间- 15分钟=汽车所用时间列方程是解题关键.30.(1)B;(2)∠3;∠21 40.【分析】(1)根据两个图形中阴影部分的面积相等,即可列出等式;(2)∠把x2﹣4y2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=4代入即可求解;∠利用(1)的结论化成式子相乘的形式即可求解.【详解】(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)∠∠x2﹣4y2=(x+2y)(x﹣2y),∠12=4(x﹣2y)得:x﹣2y=3;∠原式=(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14) (1)119)(1+119)(1﹣120)(1+120)13243518201921 22334419192020 =⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯=1 2×21 20=21 40.。
2015-2016学年河南省商丘市柘城县八年级上期末数学试卷一、填空题(每小题4分,共24分)1.H7N9病毒的长度约为0.000065mm,用科学记数法表示数0.000065为______.2.若4x2+2(k﹣3)x+9是完全平方式,则k=______.3.若关于x的方程=﹣1无解,则a=______.4.某公路急转弯处设立了一面圆形大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为______.5.如图,△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为______.6.对于实数a,b,c,d,规定一种运算=ad﹣bc,如=1×(﹣2)﹣0×2=﹣2,那么当=27时,则x=______.二、填空题(每小题4分,共32分)7.若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.48.下列美丽的图案中,是轴对称图形的是()A.B.C. D.9.下列运算正确的是()A.a+2a2=3a3B.(a3)2=a6 C.a3•a2=a6D.a6÷a2=a310.下列各式,分解因式正确的是()A.a2﹣b2=(a﹣b)2B.a2﹣2ab+b2=(a﹣b)2C.D.xy+xz+x=x(y+z)11.如图,在△ABC中,∠ABC=120°,若DE、FG分别垂直平分AB、BC,那么∠EBF的度数为()A.30°B.45°C.60°D.75°12.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()A.﹣=20 B.﹣=20C.﹣=0.5 D.﹣=0.513.如图,根据计算正方形ABCD的面积,可以说明下列哪个等式成立()A.(a+b)2=a2+2ab+b2 B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.a(a﹣b)=a2﹣ab14.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为()A.2m+6 B.3m+6 C.2m2+9m+6 D.2m2+9m+9三、解答题(本大题有7个小题,共44分)15.先化简,再求值:(+)÷,其中x=2.16.解方程:.17.用乘法公式计算:(1)2016×2014;(2)(3a+2b﹣1)(3a﹣2b+1)18.分解因式:(1)6x(a﹣b)+4y(b﹣a)(2)9(a+b)2﹣25(a﹣b)2.19.如图,已知△ABC和△CEF是两个不等的等边三角形,且有一个公共顶点C,连接AF 和BE,线段AF和BE有怎样的大小关系?证明你的猜想.20.杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?21.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.2015-2016学年河南省商丘市柘城县八年级(上)期末数学试卷参考答案与试题解析一、填空题(每小题4分,共24分)1.H7N9病毒的长度约为0.000065mm,用科学记数法表示数0.000065为 6.5×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:H7N9病毒的长度约为0.000065mm,用科学记数法表示数0.000065为6.5×10﹣5,故答案为:6.5×10﹣5.2.若4x2+2(k﹣3)x+9是完全平方式,则k=9或﹣3.【考点】完全平方式.【分析】将原式转化为(2x)2+2kx+32,再根据4x2+2(k﹣3)x+9是完全平方式,即可得到4x2+2(k﹣3)x+9=(2x±3)2,将(2x±3)2展开,根据对应项相等,即可求出k的值.【解答】解:原式可化为(2x)2+2(k﹣3)x+32,又∵4x2+2(k﹣3)x+9是完全平方式,∴4x2+2(k﹣3)x+9=(2x±3)2,∴4x2+2(k﹣3)x+9=4x2±12x+9,∴2(k﹣3)=±12,解得:k=9或﹣3.故答案为:9或﹣3.3.若关于x的方程=﹣1无解,则a=﹣2.【考点】分式方程的解.【分析】先将分式方程化为整式方程,用含x的式子表示a的值,然后根据分式方程无实数根,得出x的值,继而求出a的值.【解答】解:=﹣1,去分母化成整式方程得:2x+a﹣2=0,所以a=2﹣2x,因为关于x的方程=﹣1无解,所以x=2,所以a=2﹣2×2=﹣2.故答案为:﹣2.4.某公路急转弯处设立了一面圆形大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为E6395.【考点】镜面对称.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的图片中的数字与“E6395”成轴对称,则该车牌照的部分号码为E6395.故答案为:E6395.5.如图,△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为40°.【考点】等腰三角形的性质.【分析】根据等边对等角可得∠B=∠ADB,∠C=∠CAD,再根据三角形的一个外角等于与它不相邻的两个内角的和解答.【解答】解:∵AB=AD=DC,∴∠B=∠ADB=80°,∠C=∠CAD,由三角形的外角性质得,∠ADB=∠C+∠CAD=2∠C=80°,∴∠C=40°.故答案为:40°.6.对于实数a,b,c,d,规定一种运算=ad﹣bc,如=1×(﹣2)﹣0×2=﹣2,那么当=27时,则x=22.【考点】多项式乘多项式.【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x的方程,利用多项式乘多项式的运算法则及平方差公式化简合并即可求出x的值.【解答】解:∵=27,∴(x+1)(x﹣1)﹣(x+2)(x﹣3)=27,∴x2﹣1﹣(x2﹣x﹣6)=27,∴x2﹣1﹣x2+x+6=27,∴x=22;故答案为:22.二、填空题(每小题4分,共32分)7.若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.4【考点】分式的值为零的条件.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:由x2﹣4=0,得x=±2.当x=2时,x2﹣x﹣2=22﹣2﹣2=0,故x=2不合题意;当x=﹣2时,x2﹣x﹣2=(﹣2)2﹣(﹣2)﹣2=4≠0.所以x=﹣2时分式的值为0.故选C.8.下列美丽的图案中,是轴对称图形的是()A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形定义,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,结合定义可得答案.【解答】解:根据轴对称图形的概念知A、B、C都不是轴对称图形,只有D是轴对称图形.故选D.9.下列运算正确的是()A.a+2a2=3a3B.(a3)2=a6 C.a3•a2=a6D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】本题涉及乘方、同底数幂的乘法,同底数幂的除法等几个考点.在计算时,需要针对每个考点分别进行计算,然后根据运算法则求得计算结果.【解答】解:A、a+2a2=3a3,不能相加,故选项错误;B、(a3)2=a6,正确;C、a3•a2=a5,故选项错误;D、a6÷a2=a4,故选项错误.故选B.10.下列各式,分解因式正确的是()A.a2﹣b2=(a﹣b)2B.a2﹣2ab+b2=(a﹣b)2C.D.xy+xz+x=x(y+z)【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】分别利用公式法以及提取公因式法分解因式判断得出即可.【解答】解:A、a2﹣b2=(a+b)(a﹣b),故此选项错误;B、a2﹣2ab+b2=(a﹣b)2,故此选项正确;C、x2+x3=x2(1+x),故此选项错误;D、xy+xz+x=x(y+z+1),故此选项错误;故选:B.11.如图,在△ABC中,∠ABC=120°,若DE、FG分别垂直平分AB、BC,那么∠EBF的度数为()A.30°B.45°C.60°D.75°【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质求出AE=BE,BF=CF,推出∠A=∠ABE,∠C=∠CBF,根据三角形内角和定理求出∠A+∠C的度数,即可求出∠ABE+∠CBF的度数,就能求出答案.【解答】解:∵DE、FG分别垂直平分AB、BC,∴AE=BE,BF=CF,∴∠A=∠ABE,∠C=∠CBF,∵∠A+∠C+∠ABC=180°,∠ABC=120°,∴∠A+∠C=60°,∴∠ABE+∠CBF=60°,∴∠EBF=120°﹣60°=60°,故选C.12.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()A.﹣=20 B.﹣=20C.﹣=0.5 D.﹣=0.5【考点】由实际问题抽象出分式方程.【分析】设原价每瓶x元,根据某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,可列方程.【解答】解:设原价每瓶x元,﹣=20.故选B.13.如图,根据计算正方形ABCD的面积,可以说明下列哪个等式成立()A.(a+b)2=a2+2ab+b2 B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.a(a﹣b)=a2﹣ab【考点】完全平方公式的几何背景.【分析】根据正方形ABCD的面积=边长为a的正方形的面积+两个长为a,宽为b的长方形的面积+边长为b的正方形的面积,即可解答.【解答】解:根据题意得:(a+b)2=a2+2ab+b2,故选:A.14.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为()A.2m+6 B.3m+6 C.2m2+9m+6 D.2m2+9m+9【考点】因式分解-运用公式法.【分析】首先求出大正方形面积,进而利用图形总面积不变得出等式求出答案.【解答】解:∵(2m+3)2=4m2+12m+9,拼成的长方形一边长为m,∴[4m2+12m+9﹣(m+3)2]÷m=3m+6.故另一边长为:3m+6.故选:B.三、解答题(本大题有7个小题,共44分)15.先化简,再求值:(+)÷,其中x=2.【考点】分式的化简求值.【分析】先将括号内的第一项约分,再进行同分母分式的加法运算,再将除法转化为乘法,进行化简,最后将x=2代入.【解答】解:(+)÷=(+)•=•=x﹣1,当x=2时,运算=2﹣1=1.16.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同乘最简公分母3(x+1),得:3x﹣(3x+3)=2x解得:x=﹣,检验:当x=﹣时,3(x+1)=3×(﹣+1)=﹣≠0,则原方程的解为x=﹣.17.用乘法公式计算:(1)2016×2014;(2)(3a+2b﹣1)(3a﹣2b+1)【考点】平方差公式.【分析】(1)原式变形后,利用平方差公式计算即可得到结果;(2)原式利用平方差公式,以及完全平方公式化简,计算即可得到结果.【解答】解:(1)原式=×=20152﹣1=4060225﹣1=4060224;(2)原式=9a2﹣(2b﹣1)2=9a2﹣4b2+4b﹣1.18.分解因式:(1)6x(a﹣b)+4y(b﹣a)(2)9(a+b)2﹣25(a﹣b)2.【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】(1)直接提取公因式2(a﹣b),进而得出答案;(2)直接利用平方差公式分解因式,进而得出答案.【解答】解:(1)6x(a﹣b)+4y(b﹣a)=2(a﹣b)(3x﹣2y);(2)9(a+b)2﹣25(a﹣b)2=[3(a+b)﹣5(a﹣b)][3(a+b)+5(a﹣b)]=(﹣2a+8b)(8a﹣2b)=4(4b﹣a)(4a﹣b).19.如图,已知△ABC和△CEF是两个不等的等边三角形,且有一个公共顶点C,连接AF 和BE,线段AF和BE有怎样的大小关系?证明你的猜想.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】先利用等边三角形的性质得到AC=BC,CE=CF,∠ACB=60°,∠ECF=60°,再利用“SAS”证明△ACF≌△BCE,然后根据全等三角形的性质得AF=BE.【解答】解:AF=BE.理由如下:∵△ABC和△CEF是两个不等的等边三角形,∴AC=BC,CE=CF,∠ACB=60°,∠ECF=60°,在△ACF和△BCE中,∴△ACF≌△BCE,∴AF=BE.20.杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?【考点】分式方程的应用;一元一次不等式组的应用.【分析】(1)设动漫公司第一次购x套玩具,那么第二次购进2x套玩具,根据第二次比第一次每套进价多了10元,可列方程求解.(2)根据利润=售价﹣进价,根据且全部售完后总利润率不低于20%,这个不等量关系可列方程求解.【解答】解:(1)设动漫公司第一次购x套玩具,由题意得:=10,解这个方程,x=200经检验x=200是原方程的根.∴2x+x=2×200+200=600答:动漫公司两次共购进这种玩具600套.(2)设每套玩具的售价y元,由题意得:≥20%,解这个不等式,y≥200答:每套玩具的售价至少是200元.21.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.【考点】完全平方公式的几何背景.【分析】(1)直接把两个正方形的面积相加或利用大正方形的面积减去两个长方形的面积;(2)利用面积相等把(1)中的式子联立即可;(3)注意a,b都为正数且a>b,利用(2)的结论进行探究得出答案即可.【解答】解:(1)两个阴影图形的面积和可表示为:a2+b2或(a+b)2﹣2ab;(2)a2+b2=(a+b)2﹣2ab;(3)∵a,b(a>b)满足a2+b2=53,ab=14,∴①(a+b)2=a2+b2+2ab=53+2×14=81∴a+b=±9,又∵a>0,b>0,∴a+b=9.②∵a4﹣b4=(a2+b2)(a+b)(a﹣b),且∴a﹣b=±5又∵a>b>0,∴a﹣b=5,∴a4﹣b4=(a2+b2)(a+b)(a﹣b)=53×9×5=2385.2016年9月29日。
某某省某某市香洲区2015-2016学年八年级数学上学期期末试题一、选择题(共10小题,每小题3分,满分30分)1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是( )A.B.C.D.2.下列计算正确的是( )A.x6÷x3=x8B.x3+x2=x6C.(x2)3=x5D.x2•x3=x53.下列各组长度线段能组成三角形的是( )A.1cm,3cm,5cm B.1cm,1cm,2cm C.1cm,2cm,3cm D.1cm,2cm,2cm4.已知等腰三角形中一个角等于100°,则这个等腰三角形的底角等于( )A.100°B.40° C.50° D.100°或40°5.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是( ) A.B.C.D.6.一个多边形的内角和是720°,这个多边形的边数是( )A.4 B.5 C.6 D.77.如图,△ACB≌△A′CB′,∠A′CB=30°,∠A′CB′=70°,则∠ACA′的度数是( )A.20° B.30° C.35° D.40°8.若分式中的x、y的值都变为原来的3倍,则此分式的值( )A.不变 B.是原来的3倍 C.是原来的D.是原来的一半9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+b)(a﹣2b)=a2﹣ab﹣2b210.如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,则∠2的度数等于( )A.50° B.30° C.20° D.15°二、填空题(共6小题,每小题4分,满分24分)11.在平面直角坐标系中,点M(1,2)关于y轴对称点的坐标为__________.12.当x__________时,分式有意义.13.分解因式:x3﹣xy2=__________.14.计算:2﹣2×46=__________.15.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为__________.16.如图,在△ABC中(AB<BC),在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为3,则△BPC的面积为__________.三、解答题(共9小题,满分66分)17.计算:(x+1)(x﹣1)+2x(x+1)﹣3x2.18.解方程:+=1.19.已知:如图,点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且BF=CE.求证:∠B=∠C.20.先化简,再求值:(1﹣)÷,其中x=3.21.如图,△ABC中,∠CAB=60°,∠B=30°.(1)作∠CAB的平分线与CB交于点D(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若CD=1,求DB的长.22.某超市购进草莓,第一次购进了1000元的草莓,很快售完,第二次又购进了800元的草莓,因为第二次购进的草莓个头小,所以单价只有第一次购进草莓的一半,但是质量比第一次多了30公斤,问这两次购进草莓的单价分别是多少?23.如图△ABC中,∠B=60°,∠C=78°,点D在AB边上,点E在AC边上,且DE∥BC,将△ADE沿DE折叠,点A对应点为F点.(1)若点A落在BC边上(如图1),求证:△BDF是等边三角形;(2)若点A落在三角形外(如图2),且CF∥AB,求△CEF各内角的度数.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题候总用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=__________.(2)因式分解:(a+b)(a+b﹣4)+4(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.25.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:AE=AF.(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME,判断△DEM的形状,并说明理由.2015-2016学年某某省某某市香洲区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意.D、不是轴对称图形,不符合题意;故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列计算正确的是( )A.x6÷x3=x8B.x3+x2=x6C.(x2)3=x5D.x2•x3=x5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x6÷x3=x6﹣3=x3,选项错误;B、不是同类项,不能合并,选项错误;C、(x2)3=x6,故选项错误;D、x2•x3=x5,故选项正确.故选D.【点评】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.下列各组长度线段能组成三角形的是( )A.1cm,3cm,5cm B.1cm,1cm,2cm C.1cm,2cm,3cm D.1cm,2cm,2cm 【考点】三角形三边关系.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、1+3<5,不能组成三角形,故此选项错误;B、1+1=2,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、1+2>2,能够组成三角形,故此选项正确.故选:D.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.已知等腰三角形中一个角等于100°,则这个等腰三角形的底角等于( ) A.100°B.40° C.50° D.100°或40°【考点】等腰三角形的性质.【分析】先确定100°的内角是顶角,再根据等腰三角形两底角相等列式计算即可得解.【解答】解:根据三角形的内角和定理,100°的内角是顶角,所以,两个底角为:(180°﹣100°)=40°,故选B.【点评】本题考查了等腰三角形的性质,判断出100°的内角是顶角是解题的关键.5.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是( ) A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】找到经过顶点A且与BC垂直的AD所在的图形即可.【解答】解:A、没有经过顶点A,不符合题意;B、高AD交BC的延长线于点D处,符合题意;C、垂足没有在BC上,不符合题意;D、AD不垂直于BC,不符合题意.故选B.【点评】过三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫做高.6.一个多边形的内角和是720°,这个多边形的边数是( )A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选C.【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.7.如图,△ACB≌△A′CB′,∠A′CB=30°,∠A′CB′=70°,则∠ACA′的度数是( )A.20° B.30° C.35° D.40°【考点】全等三角形的性质.【分析】根据全等三角形的对应角相等求出∠ACB的度数,结合图形计算即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′=70°,∴∠ACA′=∠ACB﹣∠A′CB=40°故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键》8.若分式中的x、y的值都变为原来的3倍,则此分式的值( )A.不变 B.是原来的3倍 C.是原来的D.是原来的一半【考点】分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变,可得答案.【解答】解:分式中的x、y的值都变为原来的3倍,则此分式的值原来的,故选:C.【点评】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+b)(a﹣2b)=a2﹣ab﹣2b2【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10.如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,则∠2的度数等于( )A.50° B.30° C.20° D.15°【考点】平行线的性质.【分析】如图,由平行可知∠2=∠3,又可求得∠A=30°,结合外角的性质可求得∠2.【解答】解:如图所示,∵a∥b,∴∠3=∠2,∵∠B=60°,∴∠A=30°,∴∠3=∠1+∠A=20°+30°=50°,∴∠2=50°,故选A.【点评】本题主要考查平行线的性质及外角的性质,掌握两直线平行同位角相等是解题的关键.二、填空题(共6小题,每小题4分,满分24分)11.在平面直角坐标系中,点M(1,2)关于y轴对称点的坐标为(﹣1,2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2),故答案为:(﹣1,2).【点评】本题考查了关于y轴的对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.12.当x≠﹣2时,分式有意义.【考点】分式有意义的条件.【分析】根据分式的意义的条件:分母不等于0,就可以求解.【解答】解:根据题意得:x+2≠0,解得:x≠﹣2,故答案是:≠﹣2.【点评】本题主要考查了分式有意义的条件是分母不等于0.13.分解因式:x3﹣xy2=x(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出答案.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.14.计算:2﹣2×46=1024.【考点】负整数指数幂.【专题】计算题;推理填空题.【分析】首先根据负整数指数幂的运算方法,求出2﹣2的值是多少;然后根据有理数的乘方的运算方法,求出算式2﹣2×46的值是多少即可.【解答】解:2﹣2×46=×46=1024.故答案为:1024.【点评】此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.15.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.【考点】多边形内角与外角.【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数的3倍,即可得方程:x+3x=180,解此方程即可求得答案.【解答】解:设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数的3倍,∴这个正多边形的一个内角为:3x°,∴x+3x=180,解得:x=45,∴这个多边形的边数是:360°÷45°=8.故答案为:8.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用.16.如图,在△ABC中(AB<BC),在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为3,则△BPC的面积为.【考点】角平分线的性质.【分析】根据等腰三角形三线合一的性质可得AP=PD,然后根据等底等高的三角形面积相等求出△BPC的面积等于△ABC面积的一半,代入数据计算即可得解.【解答】解:∵BD=BA,BP是∠ABC的平分线,∴AP=PD,∴S△BPD=S△ABD,S△CPD=S△ACD,∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,∵△ABC的面积为3,∴S△BPC=×3=.故答案为:.【点评】本题考查了等腰三角形三线合一的性质,三角形的面积,利用等底等高的三角形的面积相等求出△BPC的面积与△ABC的面积的关系是解题的关键.三、解答题(共9小题,满分66分)17.计算:(x+1)(x﹣1)+2x(x+1)﹣3x2.【考点】整式的混合运算.【专题】计算题;整式.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:原式=x2﹣1+2x2+2x﹣3x2=2x﹣1.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.解方程:+=1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.已知:如图,点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且BF=CE.求证:∠B=∠C.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由中点的定义得出BD=CD,由HL证明Rt△BDF≌Rt△CDE,得出对应角相等即可.【解答】证明:∵点D是△ABC的边BC的中点,∴BD=CD,∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在Rt△BDF和Rt△CDE中,,∴Rt△BDF≌Rt△CDE(HL),∴∠B=∠C.【点评】本题考查了全等三角形的判定与性质、线段中点的定义;由HL证明Rt△BDF≌Rt△CDE是解决问题的关键.20.先化简,再求值:(1﹣)÷,其中x=3.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•(x﹣1)2+3x﹣4=(x﹣2)(x﹣1)+3x﹣4=x2﹣3x+2+3x﹣4=x2﹣2,当x=3时,原式=9﹣2=7.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图,△ABC中,∠CAB=60°,∠B=30°.(1)作∠CAB的平分线与CB交于点D(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若CD=1,求DB的长.【考点】作图—复杂作图.【分析】(1)首先以A为圆心,小于AC长为半径画弧,交AC、AB与于M、N,再分别以M、N长为半径画弧,两弧交于点E,再作射线AE,交BC于D;(2)利用三角形内角和定理可得∠C=90°,然后再根据直角三角形的性质:30°角所对的直角边等于斜边的一半可得AD=2CD,再根据等角对等边可得BD长.【解答】解:(1)如图所示:(2)∵∠CAB=60°,∠B=30°,∴∠C=90°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°,∴AD=2CD=2,∠B=∠DAB,∴DB=2.【点评】此题主要考查了复杂作图,以及直角三角形的性质,关键是掌握角平分线的作法,以及30°角所对的直角边等于斜边的一半.22.某超市购进草莓,第一次购进了1000元的草莓,很快售完,第二次又购进了800元的草莓,因为第二次购进的草莓个头小,所以单价只有第一次购进草莓的一半,但是质量比第一次多了30公斤,问这两次购进草莓的单价分别是多少?【考点】分式方程的应用.【分析】设第一次购进的蓝莓的单价是x元,则第二次购进蓝莓的单价为0.5x元,根据第二次购买数量比第一次多了30公斤,可得出方程,解出即可.【解答】解:设第一次购进的蓝莓的单价是x元,则第二次购进蓝莓的单价为0.5x,由题意得+30=,解得:x=200经检验x=200是原分式方程的解.0.5x=100答:第一次购进的蓝莓的单价是200元,第二次购进蓝莓的单价为100元.【点评】本题考查了分式方程的应用,解答本题的关键是找到等量关系,注意分式方程要检验.23.如图△ABC中,∠B=60°,∠C=78°,点D在AB边上,点E在AC边上,且DE∥BC,将△ADE沿DE折叠,点A对应点为F点.(1)若点A落在BC边上(如图1),求证:△BDF是等边三角形;(2)若点A落在三角形外(如图2),且CF∥AB,求△CEF各内角的度数.【考点】翻折变换(折叠问题).【分析】(1)利用平行线的性质得出∠ADE=60°,再利用翻折变换的性质得出∠ADE=∠EDF=60°,进而得出∠BDF=60°即可得出答案;(2)利用平行线的性质结合(1)中所求得出∠2,∠5+∠6的度数即可得出答案.【解答】(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠EDF=60°,∴∠BDF=60°,∴△BDF是等边三角形;(2)解:如图2,由(1)得:∠1=60°,∵CF∥AB,∴∠2+∠3=60°,∠B=∠6=60°,∵∠B=60°,∠C=78°,∴∠A=∠3=42°,∴∠2=60°﹣42°=18°,∴∠5+∠6=60°+78°=138°,∴∠4=∠180°﹣18°﹣138°=24°.【点评】此题主要考查了翻折变换的性质以及平行线的性质和等边三角形的判定以及三角形内角和定理等知识,正确利用翻折变换的性质得出∠ADE=∠EDF是解题关键.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题候总用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2.(2)因式分解:(a+b)(a+b﹣4)+4(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.【考点】因式分解的应用.【分析】(1)把(x﹣y)看作一个整体,直接利用完全平方公式因式分解即可;(2)令A=a+b,代入后因式分解后代入即可将原式因式分解;(3)将原式转化为(n2+3n)[(n+1)(n+2)]+1,进一步整理为(n2+3n+1)2,根据n为正整数得到n2+3n+1也为正整数,从而说明原式是整数的平方.【解答】解:(1)1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2;(2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,故(a+b)(a+b﹣4)+4=(a+b﹣2)2;(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2,∵n为正整数,∴n2+3n+1也为正整数,∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.【点评】本题考查了因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.25.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:AE=AF.(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME,判断△DEM的形状,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等即可得出结论;(2)过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,得出∠DEM=90°即可;【解答】(1)证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)解:△DEM是直角三角形;理由如下:word过点E作EH⊥AB于H,如图所示:则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴∠DEM=90°,∴△DEM是直角三角形.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质;熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键.21 / 21。
2015-2016学年某某省某某市包河区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.2.点(﹣2,3)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数y=的自变量x的取值X围是()A.x≠﹣2 B.x≥﹣2 C.x>﹣2 D.x<﹣24.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形5.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.6.下列各图中,能表示y是x的函数的是()A.B.C.D.7.下列命题中真命题是()A.三角形按边可分为不等边三角形,等腰三角形和等边三角形B.等腰三角形任一个内角都有可能是钝角或直角C.三角形的一个外角大于任何一个内角D.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等8.若一次函数y=(m﹣1)x+m2﹣1的图象通过原点,则m的值为()A.m=﹣1 B.m=1 C.m=±1 D.m≠19.设三角形三边之长分别为3,8,1﹣2a,则a的取值X围为()A.3<a<6 B.﹣5<a<﹣2 C.﹣2<a<5 D.a<﹣5或a>210.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、填空题(共5小题,每小题4分,满分20分)11.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B 度数为.12.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.13.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为.14.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.15.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于万个.三、解答题(共3小题,满分21分)16.夏令营组织学员到某一景区游玩,老师交给同学一X画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)17.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为.18.如图,点F、C在BE上,BF=CE,∠A=∠D,∠B=∠E.求证:AB=DE.四、解答题(共1小题,满分9分)19.小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是m/分,点B的坐标是;(2)线段AB所表示的y与x的函数关系式是;(3)试在图中补全点B以后的图象.五、解答题(共1小题,满分9分)20.如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P 沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.六、解答题(共1小题,满分11分)21.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?2015-2016学年某某省某某市包河区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.点(﹣2,3)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣2,3)所在的象限是第二象限,故选B.3.函数y=的自变量x的取值X围是()A.x≠﹣2 B.x≥﹣2 C.x>﹣2 D.x<﹣2【考点】函数自变量的取值X围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得:x+2≥0,解得x≥﹣2.故选:B.4.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.【解答】解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选B.5.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC 的高,再结合图形进行判断.【解答】解:线段BE是△ABC的高的图是选项D.故选D.6.下列各图中,能表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】在坐标系中,对于x的取值X围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B正确.故选:B.7.下列命题中真命题是()A.三角形按边可分为不等边三角形,等腰三角形和等边三角形B.等腰三角形任一个内角都有可能是钝角或直角C.三角形的一个外角大于任何一个内角D.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等【考点】命题与定理.【分析】利用三角形的分类、等腰三角形的性质、三角形的外角的性质及三角形的内心的性质分别判断后即可确定正确的选项.【解答】解:A、三角形按边可分为不等边三角形,等腰三角形,故错误,是假命题;B、等腰三角形任一个内角都有可能是钝角或直角,错误,是假命题;C、三角形的一个外角大于任何一个不相邻的内角,故错误,是假命题;D、三角形三条内角平分线相交于一点,这点到三角形三边的距离相等,正确,是真命题,故选D.8.若一次函数y=(m﹣1)x+m2﹣1的图象通过原点,则m的值为()A.m=﹣1 B.m=1 C.m=±1 D.m≠1【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的定义及函数图象经过原点的特点列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2﹣1的图象经过原点,∴0=0+m2﹣1,m﹣1≠0,即m2=1,m≠1解得,m=﹣1.故选A.9.设三角形三边之长分别为3,8,1﹣2a,则a的取值X围为()A.3<a<6 B.﹣5<a<﹣2 C.﹣2<a<5 D.a<﹣5或a>2【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:由题意得:8﹣3<1﹣2a<8+3,解得:﹣5<a<﹣2,故选:B.10.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64【考点】等边三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二、填空题(共5小题,每小题4分,满分20分)11.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B 度数为30°.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到DA=DB,得到∠B=∠DAB,根据角平分线的定义得到∠DAB=∠DAC,根据三角形内角和定理计算即可.【解答】解:∵DE是△ABC的AB边的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠B=∠DAB=∠DAC,又∠C=90°,∴∠B=30°,故答案为:30°12.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=﹣2x+2 .【考点】一次函数图象与几何变换.【分析】注意平移时k的值不变,只有b发生变化.向上平移3个单位,b加上3即可.【解答】解:原直线的k=﹣2,b=﹣1;向上平移3个单位长度得到了新直线,那么新直线的k=﹣2,b=﹣1+3=2.因此新直线的解析式为y=﹣2x+2.故答案为:y=﹣2x+2.13.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为10°.【考点】轴对称的性质;三角形的外角性质.【分析】根据轴对称的性质可知∠CA′D=∠A=50°,然后根据外角定理可得出∠A′DB.【解答】解:由题意得:∠CA′D=∠A=50°,∠B=40°,由外角定理可得:∠CA′D=∠B+∠A′DB,∴可得:∠A′DB=10°.故答案为:10°.14.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是 4 .【考点】线段垂直平分线的性质.【分析】由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.【解答】解:∵AB=AC,D是BC的中点,∴∠CAD=∠BAD,AD⊥BC,∴OC=OB,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS);同理:△COD≌△BOD,在△AOC和△AOB中,,∴△OAC≌△OAB(SSS);∵EF是AC的垂直平分线,∴OA=OC,∠OEA=∠OEC=90°,在Rt△OAE和Rt△OCE中,,∴Rt△OAE≌Rt△OCE(HL).故答案为:4.15.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于 1 万个.【考点】一次函数的应用.【分析】结合函数图象,设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据企业供应的足球数=库存+每日产量×生产天数,得出关于x、a的二元一次方程组,解方程组即可得出结论.【解答】解:∵(6﹣2)÷(4﹣2)=2,∴设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据题意可得:,解得:.∴每家企业供应的足球数量a=1万个.故答案为:1.三、解答题(共3小题,满分21分)16.夏令营组织学员到某一景区游玩,老师交给同学一X画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)【考点】作图—应用与设计作图.【分析】延长DB、CA交于点O,作∠DOC或∠DOC的外角的平分线,再作线段BC的垂直平分线,两线的交点就是所求的点.【解答】解:如图所示,点E或E′就是所求的点.17.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为(a﹣3,b+2).【考点】作图-平移变换.【分析】(1)根据坐标系可得B点坐标,再根据关于y轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A、B、C三点平移后的对应点位置,然后再连接即可;(3)根据△AOB的平移可得P的坐标为(a,b),平移后横坐标﹣3,纵坐标+2.【解答】解:(1)B点关于y轴的对称点坐标为(﹣3,2),故答案为:(﹣3,2);(2)如图所示:(3)P的坐标为(a,b)平移后对应点P1的坐标为(a﹣3,b+2).故答案为:(a﹣3,b+2).18.如图,点F、C在BE上,BF=CE,∠A=∠D,∠B=∠E.求证:AB=DE.【考点】全等三角形的判定与性质.【分析】欲证明AB=DE,只要证明△ABC≌△DEF即可.【解答】证明:∵BF=CE,∴BF+CF=CE+CF即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.四、解答题(共1小题,满分9分)19.小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是60 m/分,点B的坐标是(9,120);(2)线段AB所表示的y与x的函数关系式是y=20x﹣60 ;(3)试在图中补全点B以后的图象.【考点】一次函数的应用.【分析】(1)由图象可知,当x=0时,y=60,即可得到弟弟1分钟走了60m;分别求出x=9时,哥哥走的路程,弟弟走的路程,即可得到兄弟两人之间的距离,即可解答;(2)利用待定系数法求出解析式,即可解答;(3)根据点B的坐标为(9,120),此时小明到达终点,弟弟离小明的距离为120米,弟弟到终点的时间为:120÷60=2(分),画出图形即可.【解答】解:(1)由图象可知,当x=0时,y=60,∵弟弟走得慢,先走1分钟后,小明才出发,∴弟弟1分钟走了60m,∴弟弟步行的速度是60米/分,当x=9时,哥哥走的路程为:80×9=720(米),弟弟走的路程为:60+60×9=600(米),兄弟两人之间的距离为:720﹣600=120(米),∴点B的坐标为:(9,120),故答案为:60,120;(2)设线段AB所表示的y与x的函数关系式是:y=kx+b,把A(3,0),B(9,120)代入y=kx+b得:解得:∴y=20x﹣60,故答案为:y=20x﹣60.(3)如图所示;五、解答题(共1小题,满分9分)20.如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P 沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.【考点】两条直线相交或平行问题.【分析】(1)当函数图象相交时,y1=y2,即﹣2x+6=x,再解即可得到x的值,再求出y的值,进而可得点A的坐标;当y1>y2时,图象在直线AB的右侧,进而可得答案;(2)由直线l2:y2=﹣2x+6求得B的坐标,然后根据三角形面积即可求得;(3)根据题意求得P的纵坐标,代入两直线解析式求得横坐标,即为符合题意的P点的坐标.【解答】解:(1)∵直线l1与直线l2相交于点A,∴y1=y2,即﹣2x+6=x,解得x=2,∴y1=y2=2,∴点A的坐标为(2,2);观察图象可得,当x>2时,y1>y2;(2)由直线l2:y2=﹣2x+6可知,当y=0时,x=3,∴B(3,0),∴S△AOB=×3×2=3;(3)∵△POB的面积是△AOB的面积的一半,∴P的纵坐标为1,∵点P沿路线O→A→B运动,∴P(1,1)或(,1).六、解答题(共1小题,满分11分)21.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【考点】全等三角形的判定与性质;一元一次方程的应用.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.【解答】解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;word(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.21 / 21。
八年级(上)期末数学试卷一.精心选一选(本大题共10小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Ⅱ的答题栏内.相信你一定能选对!)1.下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形2.已知△ABC≌△DEF,∠A=50°,∠E=60°.那么∠C等于()A.30°B.50°C.60°D.70°3.把分式中的x、y都扩大3倍,那么分式的值是()A.扩大3倍 B.缩小3倍 C.不变 D.缩小原来的4.下列各式正确的是()A.b•b5=b5B.(a2b)2=a2b2C.a6÷a3=a2D.a+2a=3a5.如图,点A和点D都在线段BC的垂直平分线上.连接AB,AC,DB,DC.如果∠1=20°,∠2=50°.那么∠BAC比∠BDC()A.大40°B.小40°C.大30°D.小30°6.下列分式中,是最简分式的是()A.B.C.D.7.一个多边形的外角和与它的内角和的比为1:3,这个多边形的边数是()A.9 B.8 C.7 D.68.如果9a2﹣ka+4是完全平方式,那么k的值是()A.﹣12 B.6 C.±12 D.±69.已知分式,下列分式中与其相等的是()A.B.C.D.10.在一次数学课上,李老师出示一道题目:如图,在△ABC中,AC=BC,AD=BD,∠A=30°,在线段AB上求作两点P,Q,使AP=CP=CQ=BQ.明明作法:分别作∠ACD和∠BCD的平分线,交AB于点P,Q.点P,Q就是所求作的点.晓晓作法:分别作AC和BC的垂直平分线,交AB于点P,Q.点P,Q就是所求作的点.你认为明明和晓晓作法正确的是()A.明明 B.晓晓 C.两人都正确D.两人都错误二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个三角形的三边长分别是3,6,x.那么整数x可能是.(填一种情况即可)12.齐鲁网2015年12月7日讯,中国科学院和中国工程院院士增选名单正式出炉,中国海洋大学山东微山县籍宋微波教授,当选中国科学院生命科学和医学学部院士,他主要从事海洋纤毛虫领域的研究.纤毛虫作为原生动物中特化程度最高且最为复杂的一个门,是单细胞真核生物,具有高度的形态和功能多样性,其最小个体大约有0.00002米.那么其中数据0.00002用科学记数法表示为.13.一个等腰三角形的一个角为80°,则它的顶角的度数是.14.若x2+bx+c=(x+5)(x﹣3),则点P(b,c)关于y轴对称点的坐标是.15.如果的解为正数,那么m的取值范围是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程.)16.计算:(1);(2);(3)(π﹣3.14)0﹣2﹣2.17.(1)化简:3(x﹣y)2﹣(2x+y)(x﹣2y);(2)先化简分式:,然后在0,1,2,3中选择一个你喜欢的a值,代入求值.18.如图,在△ABC中,AD,CE是高线,AF是角平分线,∠BAC=∠AFD=80°.(1)求∠BCE的度数;(2)如果AD=6,BE=5.求△ABC的面积.19.作图与证明:(1)读下列语句,作出符合题意的图形(要求:使用直尺和圆规作图,保留作图痕迹).①作线段AB;②分别以A,B为圆心,以AB长为半径作弧,两弧在线段AB的同侧交于点C;③连接AC,以点C为圆心,以AB长为半径作弧,交AC延长线于点D;④连接BD,得△ABD.(2)求证:△ABD是直角三角形.20.本学期马上就要结束了,班主任刘老师打算花50元买笔记本,花150元买钢笔,用来奖励本学期综合表现较好的前若干名同学.已知钢笔每只比笔记本每本贵16元,刘老师能买到相同数量的笔记本和钢笔吗?班委会上,班长和团支部书记都帮助刘老师进行了计算,他们假设刘老师能买到相同数量的笔记本和钢笔,分别设未知数并列出了方程:班长:;团支部书记:.(1)填空:班长所列方程中x的实际意义是;团支部书记所列方程中y的实际意义是.(2)你认为刘老师能买到相同数量的笔记本和钢笔吗?请说明理由.21.先阅读下面的内容,然后再解答问题.例:已知m2+2mn+2n2﹣2n+1=0.求m和n的值.解:∵m2+2mn+2n2﹣2n+1=0,∴m2+2mn+n2+n2﹣2n+1=0.∴(m+n)2+(n﹣1)2=0.∴.解这个方程组,得:.解答下面的问题:(1)如果x2+y2﹣8x+10y+41=0成立.求(x+y)2016的值;(2)已知a,b,c为△ABC的三边长,若a2+b2+c2=ab+bc+ca,试判断△ABC的形状,并证明.22.已知:在△ABC中,∠ACB=90°,AC=BC,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1).求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2).那么图中是否存在与AM 相等的线段?若存在,请写出来并证明;若不存在,请说明理由.参考答案与试题解析一.精心选一选(本大题共10小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Ⅱ的答题栏内.相信你一定能选对!)1.下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形【考点】三角形的稳定性;多边形.【分析】根据三角形具有稳定性解答.【解答】解:具有稳定性的图形是三角形.故选A.【点评】本题考查了三角形具有稳定性,是基础题,需熟记.2.已知△ABC≌△DEF,∠A=50°,∠E=60°.那么∠C等于()A.30°B.50°C.60°D.70°【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠B的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=60°,∴∠C=180°﹣∠A﹣∠B=70°,故选:D.【点评】本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.3.把分式中的x、y都扩大3倍,那么分式的值是()A.扩大3倍 B.缩小3倍 C.不变 D.缩小原来的【考点】分式的基本性质.【分析】根据分子分母都乘以(或除以)同一个不为零的数或整式,结果不变,可得答案.【解答】解:分式中的x、y都扩大3倍,那么分式的值不变.故选:C.【点评】本题考查了分式的基本性质,分子分母都乘以(或除以)同一个不为零的数或整式,结果不变.4.下列各式正确的是()A.b•b5=b5B.(a2b)2=a2b2C.a6÷a3=a2D.a+2a=3a【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、积的乘方等于乘方的积,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.如图,点A和点D都在线段BC的垂直平分线上.连接AB,AC,DB,DC.如果∠1=20°,∠2=50°.那么∠BAC比∠BDC()A.大40°B.小40°C.大30°D.小30°【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到AB=AC,DB=DC,由等腰三角形的性质得到∠ABC=∠ACB,∠DBC=∠2=50°,根据三角形的内角和得到∠BAC=40°,∠BDC=80°,即可得到结论.【解答】解:∵点A和点D都在线段BC的垂直平分线上,∴AB=AC,DB=DC,∴∠ABC=∠ACB,∠DBC=∠2=50°,∴∠ABC=∠ACB=∠1+∠DBC=70°,∴∠BAC=40°,∠BDC=80°,∴∠BAC比∠BDC小40°,故选B.【点评】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段垂直平分线的性质是解题的关键.6.下列分式中,是最简分式的是()A.B.C.D.【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、=;B、=;C、=;D、的分子、分母都不能再分解,且不能约分,是最简分式;故选D.【点评】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.7.一个多边形的外角和与它的内角和的比为1:3,这个多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形的对角线.【分析】多边形的外角和是360度,根据内角和与外角和的比是3:1,则内角和是1080度,根据n 边形的内角和定理即可求得.【解答】解:内角和是3×360=1080°.设多边形的边数是n,根据题意得到:(n﹣2)•180=1080.解得n=8.故选:B.【点评】本题考查多边形的内角和计算公式和多边形的外角和定理.根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.8.如果9a2﹣ka+4是完全平方式,那么k的值是()A.﹣12 B.6 C.±12 D.±6【考点】完全平方式.【分析】根据两数的平方和加上或减去两数积的2倍等于两数和或差的平方,即可得到k的值.【解答】解:∵9a2﹣ka+4=(3a)2±12a+42=(3a±2)2,∴k=±12.故选C.【点评】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.9.已知分式,下列分式中与其相等的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分子、分母、分式的符号任意改变两项的符号,分式的值不变,可得答案.【解答】解:=﹣=,故A正确.故选:A.【点评】本题考查了分式的基本性质,分子、分母、分式的符号任意改变两项的符号,分式的值不变.10.在一次数学课上,李老师出示一道题目:如图,在△ABC中,AC=BC,AD=BD,∠A=30°,在线段AB上求作两点P,Q,使AP=CP=CQ=BQ.明明作法:分别作∠ACD和∠BCD的平分线,交AB于点P,Q.点P,Q就是所求作的点.晓晓作法:分别作AC和BC的垂直平分线,交AB于点P,Q.点P,Q就是所求作的点.你认为明明和晓晓作法正确的是()A.明明 B.晓晓 C.两人都正确D.两人都错误【考点】角平分线的性质;线段垂直平分线的性质.【分析】根据等腰三角形的性质得到∠B=∠A=30°,CD⊥AB,由三角形的内角和得到∠ACD=∠BCD=60°,明明作法:如图1,根据角平分线的定义得到∠ACP=∠BCQ=30°,求得∠A=∠ACP,∠B=∠BCQ,由等腰三角形的判定得到AP=PC,BQ=CQ,根据全等三角形的性质得到AP=BQ,于是得到AP=CP=CQ=BQ;故明明作法正确;晓晓作法:如图2,根据线段垂直平分线的性质得到AP=PC,BQ=CQ,推出△APC≌△BCQ,根据全等三角形的性质得到AP=BQ,求得AP=CP=CQ=BQ,于是得到晓晓作法正确.【解答】解:∵AC=BC,AD=BD,∴∠B=∠A=30°,CD⊥AB,∴∠AC D=∠BCD=60°,明明作法:如图1,∵CP平分∠ACD,CQ平分∠BCD,∴∠ACP=∠BCQ=30°,∴∠A=∠ACP,∠B=∠BCQ,∴AP=PC,BQ=CQ,在△ACP与△BCQ中,,∴△APC≌△BCQ,∴AP=BQ,∴AP=CP=CQ=BQ;∴明明作法正确;晓晓作法:如图2,∵分别作AC和BC的垂直平分线,交AB于点P,Q,∴AP=PC,BQ=CQ,在△ACP与△BCQ中,,∴△APC≌△BCQ,∴AP=BQ,∴AP=CP=CQ=BQ,∴晓晓作法正确,故选C.【点评】本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定和性质,等腰三角形的性质,正确的画出图形是解题的关键.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个三角形的三边长分别是3,6,x.那么整数x可能是5.(填一种情况即可)【考点】三角形三边关系.【分析】首先根据三角形的三边关系确定x的取值范围,再确定x的值.【解答】解:根据三角形的三边关系可得:6﹣3<x<6+3,即3<x<9,∵x为整数,∴x=5.故答案为:5.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.12.齐鲁网2015年12月7日讯,中国科学院和中国工程院院士增选名单正式出炉,中国海洋大学山东微山县籍宋微波教授,当选中国科学院生命科学和医学学部院士,他主要从事海洋纤毛虫领域的研究.纤毛虫作为原生动物中特化程度最高且最为复杂的一个门,是单细胞真核生物,具有高度的形态和功能多样性,其最小个体大约有0.00002米.那么其中数据0.00002用科学记数法表示为2×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00002=2×10﹣5,故答案为:2×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.一个等腰三角形的一个角为80°,则它的顶角的度数是80°或20°.【考点】等腰三角形的性质.【分析】等腰三角形一内角为80°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当80°角为顶角,顶角度数即为80°;(2)当80°为底角时,顶角=180°﹣2×80°=20°.故答案为:80°或20°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.若x2+bx+c=(x+5)(x﹣3),则点P(b,c)关于y轴对称点的坐标是(﹣2,﹣15).【考点】关于x轴、y轴对称的点的坐标;因式分解-十字相乘法等.【分析】先利用多项式的乘法展开再根据对应项系数相等确定出b、c的值,然后根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵(x+5)(x﹣3)=x2+2x﹣15,∴b=2,c=﹣15,∴点P的坐标为(2,﹣15),∴点P(2,﹣15)关于y轴对称点的坐标是(﹣2,﹣15).故答案为:(﹣2,﹣15).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.如果的解为正数,那么m的取值范围是m<1且m≠﹣3.【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.【解答】解:去分母得,1+x﹣2=﹣m﹣x,∴x=,∵方程的解是正数∴1﹣m>0即m<1,又因为x﹣2≠0,∴≠2,∴m≠﹣3,则m的取值范围是m<1且m≠﹣3,故答案为m<1且m≠﹣3.【点评】本题考查了分式方程的解,由于我们的目的是求m的取值范围,根据方程的解列出关于m 的不等式,另外,解答本题时,易漏掉m≠﹣2,这是因为忽略了x﹣2≠0这个隐含的条件而造成的,这应引起同学们的足够重视.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程.)16.计算:(1);(2);(3)(π﹣3.14)0﹣2﹣2.【考点】分式的混合运算;零指数幂;负整数指数幂.【分析】(1)分母不变,直接把分子相加减即可;(2)先算乘方,再算乘法即可;(3)分别根据0指数幂及负整数指数幂的计算法则计算出各数,再根据有理数的减法进行计算.【解答】解:(1)原式==1;(2)原式==;(3)原式=1﹣=.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.17.(1)化简:3(x﹣y)2﹣(2x+y)(x﹣2y);(2)先化简分式:,然后在0,1,2,3中选择一个你喜欢的a值,代入求值.【考点】分式的化简求值;整式的混合运算.【专题】计算题;分式.【分析】(1)原式利用完全平方公式及平方差公式化简,去括号合并即可得到结果;(2)原式第一项利用除法法则变形,约分后合并得到最简结果,把a=2代入计算即可求出值.【解答】解:(1)原式=3(x2﹣2xy+y2)﹣(2x2﹣4xy+xy﹣2y2)=3x2﹣6xy+3y2﹣2x2+4xy﹣xy+2y2=x2﹣3xy+5y2;(2)原式=•+=a﹣(﹣a)=2a,当a=2时,原式=2×2=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.如图,在△ABC中,AD,CE是高线,AF是角平分线,∠BAC=∠AFD=80°.(1)求∠BCE的度数;(2)如果AD=6,BE=5.求△ABC的面积.【考点】三角形内角和定理;三角形的面积;含30度角的直角三角形.【分析】(1)先由直角三角形的性质求出∠ADF的度数,再由角平分线的性质求出∠BAF的度数,故可得出∠BAD的度数,再由直角三角形的性质即可得出结论;(2)由(1)知,∠BCE=30°,故可得出BC=2BE,再由三角形的面积公式即可得出结论.【解答】解:(1)∵AD,CE是高线,∴∠BEC=∠ADB=∠ADC=90°.∴∠DAF=90°﹣∠AFD=90°﹣80°=10°.∵AF平分∠BAC,∴∠BAF=∠BAC=×80°=40°.∴∠BAD=∠BAF﹣∠DAF=40°﹣10°=30°.∵∠BAD+∠B=90°,∠BCE+∠B=90°,∴∠BCE=∠BAD=30°.(2)在Rt△BCE中,∵∠BCE=30°,∴BC=2BE=2×5=10.∴S△ABC=BC•AD=×10×6=30.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.19.作图与证明:(1)读下列语句,作出符合题意的图形(要求:使用直尺和圆规作图,保留作图痕迹).①作线段AB;②分别以A,B为圆心,以AB长为半径作弧,两弧在线段AB的同侧交于点C;③连接AC,以点C为圆心,以AB长为半径作弧,交AC延长线于点D;④连接BD,得△ABD.(2)求证:△ABD是直角三角形.【考点】作图—复杂作图.【专题】作图题.【分析】(1)根据题中要求,先确定C点,使CA=CB,再在AC的延长线上截取CD=AC,然后连结BD得到△ABD;(2)利用作法得到AB=AC=BC=CD,根据圆的定义得到点B在以AD为直径的圆上,然后根据圆周角定理可判断△ABD是直角三角形.【解答】(1)解:如图,△ABD为所作;(2)证明:连接BC,如图,由作图可得AB=AC=BC=CD,∴点B在以AD为直径的圆上,∴∠ABD=90°,∴△ABD是直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.20.本学期马上就要结束了,班主任刘老师打算花50元买笔记本,花150元买钢笔,用来奖励本学期综合表现较好的前若干名同学.已知钢笔每只比笔记本每本贵16元,刘老师能买到相同数量的笔记本和钢笔吗?班委会上,班长和团支部书记都帮助刘老师进行了计算,他们假设刘老师能买到相同数量的笔记本和钢笔,分别设未知数并列出了方程:班长:;团支部书记:.(1)填空:班长所列方程中x的实际意义是钢笔的单价;团支部书记所列方程中y的实际意义是所买笔记本的本数.(2)你认为刘老师能买到相同数量的笔记本和钢笔吗?请说明理由.【考点】分式方程的应用.【分析】(1)根据钢笔每只比笔记本每本贵16元结合所列方程可得x的实际意义是钢笔单价,y的实际意义是所买笔记本的本数;(2)首先假设刘老师能买到相同数量的笔记本和钢笔,设笔记本每本z元,则钢笔每只(z+16)元.根据题意,得,解出z的值,然后再计算出,根据实际问题可得笔记本的本数必须为整数,故刘老师不能买到相同数量的笔记本和钢笔.【解答】解:(1)班长所列方程中x的实际意义是:钢笔的单价;团支部书记所列方程中y的实际意义是:所买笔记本的本数;(2)假设刘老师能买到相同数量的笔记本和钢笔.设笔记本每本z元,则钢笔每只(z+16)元.根据题意,得.解这个方程,得z=8,经检验z=8是所列方程的解.∴,而笔记本的本数必须为整数,∴z=8不符合实际题意.∴刘老师不能买到相同数量的笔记本和钢笔.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中等量关系,列出方程,注意分式方程必须检验.21.先阅读下面的内容,然后再解答问题.例:已知m2+2mn+2n2﹣2n+1=0.求m和n的值.解:∵m2+2mn+2n2﹣2n+1=0,∴m2+2mn+n2+n2﹣2n+1=0.∴(m+n)2+(n﹣1)2=0.∴.解这个方程组,得:.解答下面的问题:(1)如果x2+y2﹣8x+10y+41=0成立.求(x+y)2016的值;(2)已知a,b,c为△ABC的三边长,若a2+b2+c2=ab+bc+ca,试判断△ABC的形状,并证明.【考点】配方法的应用;非负数的性质:偶次方.【专题】阅读型.【分析】(1)根据完全平方公式把原式化为(x﹣4)2+(y+5)2=0的形式,根据非负数的性质求出x、y,代入代数式根据乘方法则计算即可;(2)根据完全平方公式把原式化为(a﹣b)2+(b﹣c)2+(c﹣a)2=0的形式,根据非负数的性质进行解答即可.【解答】解:(1)∵x2+y2﹣8x+10y+41=0,∴x2﹣8x+16+y2+10y+25=0.∴(x﹣4)2+(y+5)2=0.∴x﹣4=0且y+5=0.∴x=4,y=﹣5.∴(x+y)2016=[4+(﹣5)]2016=1.(2)∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca.∴a2﹣2ab+b2+b2﹣2bc+c2+c2﹣2ca+a2=0.∴(a﹣b)2+(b﹣c)2+(c﹣a)2=0.∴a﹣b=0且b﹣c=0且c﹣a=0.∴a=b=c.∴△ABC是等边三角形.【点评】本题考查的是配方法的应用和非负数的性质的应用,正确根据完全平方公式进行配方是解题的关键.22.已知:在△ABC中,∠ACB=90°,AC=BC,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1).求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2).那么图中是否存在与AM 相等的线段?若存在,请写出来并证明;若不存在,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据题意得到三角形ABC为等腰直角三角形,且CD为斜边上的中线,利用三线合一得到CD垂直于AB,且CD为角平分线,得到∠CAE=∠BCG=45°,再利用同角的余角相等得到一对角相等,AC=BC,利用ASA得到△AEC与△CGB全等,利用全等三角形的对应边相等即可得证.(2)图中存在与AM相等的线段,AM=CE.先证出∠CEB=∠CMA,再由AAS证明△BCE≌△ACM,即可解答.【解答】解:(1)∵点D是AB的中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.∴∠CAE=∠BCG.∵BF⊥CE,∴∠CBG+∠BCF=90°.∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,,∴△AEC≌△CGB(ASA).∴AE=CG.(2)图中存在与AM相等的线段,AM=CE.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°.∴∠CMA=∠BEC.∵AC=BC,∠ACM=∠CBE=45°,在△CAM和△BCE中,,∴△CAM≌△BCE(AAS).∴AM=CE.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法是解决问题的关键.。
2015-2016学年四川省成都市武侯区八年级(上)期末数学试卷一、选择题1.(3分)在函数y=中,自变量x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2 2.(3分)下列实数中是无理数的是()A.B.0.212121C.3πD.3.(3分)若点P(x,y)在第四象限内,且满足|x|=5,|y|=3,则点P的坐标是()A.(5,﹣3)B.(﹣5,3)C.(5,3)D.(﹣5,﹣3)4.(3分)估算的值在()A.5﹣6之间B.6﹣7之间C.7﹣8之间D.8﹣9之间5.(3分)如图,OA=OB,BC=1,则数轴上点A所表示的数为()A.B.C.D.﹣3.56.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁7.(3分)下列四个命题中,真命题有()①6的平方根是±②三角形的一个外角大于任何一个内角③一组数据中最大数据与最小数据的差称为极差,它是刻画数据离散程度的一个统计量④凡是定理都可以作为公理.A.1个B.2个C.3个D.4个8.(3分)将△ABC的三个顶点的纵坐标保持不变,横坐标分别乘以﹣1,一次连接新的这些点,则所得三角形与原三角形的位置关系是()A.关于y轴对称B.关于x轴对称C.关于原点对称D.原三角形向x轴的负方向平移一个单位即为所得三角形9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)10.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y只,则所列方程组正确的是()A.B.C.D.二、填空题11.(3分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=.12.(3分)若正比例函数y=kx的图象与一次函数y=2x﹣5的图象互相平行,则该正比例函数的表达式为.13.(3分)如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.14.(3分)将等宽的直条型纸片按照如图中的方式进行折叠,若∠1=58°,则∠2=.三、解答题15.(1)计算:;(2)计算:(3)解方程组:.16.如图,AB长为2,BC长为4,AF长为10,求正方形CDEF的周长.17.已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:AE∥FP.18.武侯区某校开展了“我阅读我快乐”活动,王华调查了本校40名学生本学期购买课外书的费用情况,数据如下表:(1)这40名学生本学期购买课外书的费用的众数是,中位数是,(2)求这40名学生本学期购买课外书的平均费用;(3)若该校共有学生1000名,试估计该校本学期购买课外书费用在50元以上(含50元)的学生有多少名?19.如图,在平面直角坐标系中,直线l1:y=x与直线y2:y=kx+b相交于点A,点A的横坐标为4,直线l2交y轴负半轴于点B,且OA=OB.(1)求点B的坐标及直线l2的函数表达式;(2)现将直线l1沿y轴向上平移5个单位长度,交y轴于点C,交直线l2于点D,试求△BCD的面积.20.在长方形ABCD中,点E是AD的中点,将△ABE沿BE折叠后得到对应的△GBE,将BG延长交直线DC于点F.(1)如果点G在长方形ABCD的内部,如图①所示.Ⅰ)求证:GF=DF;Ⅱ)若DF=DC,AD=4,求AB的长度.(2)如果点G在长方形ABCD的外部,如图②所示,DF=kDC(k>1).请用含k 的代数式表示的值.一、填空题21.(3分)方程组的解是.22.(3分)如图,已知圆柱底面的周长为24cm,高为5cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的长度至少长cm.23.(3分)在实数范围内,若y=﹣3x+1,则y2015的个位数字是.24.(3分)如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,顶点B的纵坐标为2,∠B=60°,OC=AC,点P是斜边DB上的一个动点,则△PAC的周长的最小值为.【说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.】25.(3分)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线l n⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…,A n;函数y=2x的图象与直线l1,l2,l3,…,l n分别交于点B1,B2,B3,…,B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积A nB n B n﹣1的面积记作S n,那么S2015=.记作S3,…,四边形A n﹣1二、解答题26.某商店销售功能相同的A、B两种品牌的计算器,A品牌计算器的成本价为每个20元,B品牌计算器的成本价为每个25元,且销售3个A品牌和2个B 品牌的计算器的价格为185元,销售2个A品牌和1个B品牌的计算器的价格为110元.(1)分别求这两种品牌计算器的销售单价;(2)春节前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按照原价的八折销售;B品牌计算器5个以上,从第6个开始按照原价的七折销售.设销售x个A品牌的计算器的利润为y1元,销售x各B品牌的计算器的利润为y2元.(I)分别求y1,y2与x之间的函数表达式;(Ⅱ)某单位准备到该商店购买同一品牌的计算器,且购买数量超过5个,试问:商店要想获得较大的利润,应选择推销哪种品牌的计算器给该单位呢?并说明理由.27.(1)如图①,O是等边△ABC内一点,OA=6,OB=8,OC=10,将线段BO绕点B逆时针旋转60°得到线段BO',连结线段OO',AO',试判断△AOO'的形状.(2)点D是以AB为斜边的等腰直角三角形ABC内一点,且BD=1,CD=2,AD=3.(Ⅰ)求∠BDC的度数;(Ⅱ)求△ABC的面积.28.如图,过A(﹣4,0),两点的直线与直线y=﹣x交于点C,平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿戈轴向左平移,到C点时停止.直线l分别交线段BC,OC于点D,E,以DE为边向右侧作等边△DEF.设△DEF与△BCO重叠部分图形的周长为m,直线l的运动时间为t(秒).(1)求C点坐标;(2)当点F落在y轴上时,求相应的时间t的值;(3)求m与t之间的关系式.【说明:不考虑直线l平移过程中“起点”与“终点”时的情况.】2015-2016学年四川省成都市武侯区八年级(上)期末数学试卷参考答案与试题解析一、选择题1.(3分)在函数y=中,自变量x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2【分析】根据二次根式被开方数非负即可得出关于x的一元一次不等式,解不等式即可得出结论.【解答】解:∵x+2≥0,∴m≥﹣2.故选:B.2.(3分)下列实数中是无理数的是()A.B.0.212121C.3πD.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,0.212121,﹣是有理数,3π是无理数,故选:C.3.(3分)若点P(x,y)在第四象限内,且满足|x|=5,|y|=3,则点P的坐标是()A.(5,﹣3)B.(﹣5,3)C.(5,3)D.(﹣5,﹣3)【分析】先根据P点的坐标判断出x,y的符号,进而求出x,y的值,即可求得答案【解答】解:∵点P(x,y)在第四象限,∴x>0,y<0,又∵|x|=5,|y|=3,∴点P(x,y)坐标中,x=5,y=﹣3,∴P点的坐标是(5,﹣3).故选:A.4.(3分)估算的值在()A.5﹣6之间B.6﹣7之间C.7﹣8之间D.8﹣9之间【分析】求出7=,8=,即可求出的范围,即可得出答案.【解答】解:∵7=,8=,∴7<<8,即的值在7﹣8之间.故选:C.5.(3分)如图,OA=OB,BC=1,则数轴上点A所表示的数为()A.B.C.D.﹣3.5【分析】根据勾股定理,可得OB的长,根据等量代换,可得答案.【解答】解:OB==,OA=OB=,A点表示的数是﹣.故选:C.6.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的成绩最稳定.【解答】解:∵=0.65,=0.55,=0.50,=0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故选:D.7.(3分)下列四个命题中,真命题有()①6的平方根是±②三角形的一个外角大于任何一个内角③一组数据中最大数据与最小数据的差称为极差,它是刻画数据离散程度的一个统计量④凡是定理都可以作为公理.A.1个B.2个C.3个D.4个【分析】根据平方根的概念、三角形的外角性质、极差的概念、定理与公理的概念进行判断即可.【解答】解:①6的平方根是±;是真命题;②三角形的一个外角大于任何一个内角;是假命题;③一组数据中最大数据与最小数据的差称为极差,它是刻画数据离散程度的一个统计量;真命题;④凡是定理都可以作为公理.假命题;故选:B.8.(3分)将△ABC的三个顶点的纵坐标保持不变,横坐标分别乘以﹣1,一次连接新的这些点,则所得三角形与原三角形的位置关系是()A.关于y轴对称B.关于x轴对称C.关于原点对称D.原三角形向x轴的负方向平移一个单位即为所得三角形【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:将△ABC的三个顶点的纵坐标保持不变,横坐标分别乘以﹣1,则所得三角形与原三角形的位置关系是关于y轴对称,故选:A.9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【分析】根据一次函数性质逐项判断即可.【解答】解:∵y=x+6中k=1>0,∴y随x的增大而增大,故A正确;令x=0可得y=6,令y=0可求得x=﹣6,∴直线与x轴交于点(﹣6,0),与y轴交于点(0,6),∴函数图象与x轴的正方向成45°角,故B、C正确;D错误;故选:D.10.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y只,则所列方程组正确的是()A.B.C.D.【分析】首先明确生活常识:一只鸡有一个头,两只脚;一只兔有一个头,四只脚.此题中的等量关系为:①鸡的只数+兔的只数=36只;②2×鸡的只数+4×兔的只数=100只.【解答】解:如果设鸡为x只,兔为y只.根据“三十六头笼中露”,得方程x+y=36;根据“看来脚有100只”,得方程2x+4y=100.即可列出方程组.故选:C.二、填空题11.(3分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=﹣1.【分析】根据二元一次方程的定义,可得答案.【解答】解:由题意,得m+2=1,解得m=﹣1,故答案为:﹣1.12.(3分)若正比例函数y=kx的图象与一次函数y=2x﹣5的图象互相平行,则该正比例函数的表达式为y=2x.【分析】根据两直线平行,则自变量系数相同,即k值相同得出结论.【解答】解:由题意得:k=2则该正比例函数的表达式为:y=2x;故答案为:y=2x.13.(3分)如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【解答】解:∵直线y=ax+b和直线y=kx交点P的坐标为(﹣4,﹣2),∴关于x,y的二元一次方程组组的解为.故答案为.14.(3分)将等宽的直条型纸片按照如图中的方式进行折叠,若∠1=58°,则∠2=64°.【分析】先根据平行线的性质,得出∠1=∠4=58°,根据折叠的性质,得出∠3=∠4=58°,最后根据平角计算∠2的度数.【解答】解:由矩形的对边平行,可得∠1=∠4=58°,由折叠可得,∠3=∠4=58°,∴∠2=180°﹣2×58°=64°,故答案为:64°.三、解答题15.(1)计算:;(2)计算:(3)解方程组:.【分析】(1)首先进行各项的化简,然后合并同类项即可;(2)首先进行各项的化简,然后合并同类项即可;(3)根据x的系数互为相反数,利用加减消元法求解.【解答】解:(1)=+6=;(2)计算:=+3+12﹣5=(3)解:原方程可化为:,①+②得:4y=28,∴y=7,把y=7代入①得x=3,∴方程组的解为:.16.如图,AB长为2,BC长为4,AF长为10,求正方形CDEF的周长.【分析】在直角△ABC中,根据勾股定理即可求得AC2,然后在直角△ACF中求得FC,根据正方形CDEF的周长=4FC即可求解.【解答】解:在直角△ABC中,AC2=AB2+BC2=(2)2+42=28,在直角△ACF中,FC2=AF2+AC2=102+28=128.∴CF=8,而正方形CDEF的周长=4CF=32.17.已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:AE∥FP.【分析】先根据题意得出AB∥CD,故可得出∠BAP=∠APC,再由∠1=∠2即可得出∠EAP=∠APF,进而可得出结论.【解答】证明:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC.∵∠1=∠2,∴∠EAP=∠APF,∴AE∥FP.18.武侯区某校开展了“我阅读我快乐”活动,王华调查了本校40名学生本学期购买课外书的费用情况,数据如下表:(1)这40名学生本学期购买课外书的费用的众数是50,中位数是50,(2)求这40名学生本学期购买课外书的平均费用;(3)若该校共有学生1000名,试估计该校本学期购买课外书费用在50元以上(含50元)的学生有多少名?【分析】(1)众数就是出现次数最多的数,中位数就是大小处于中间位置的数,根据定义判断即可;(2)根据40名学生本学期购买课外书的总费用除以总人数,求得平均费用;(3)利用学校总人数1000乘以本学期购买课外书花费50元以上(含50元)的学生所占的比例即可求解.【解答】解:(1)这次调查获取的样本数据的众数是50元,这次调查获取的样本数据的中位数是50元,故答案是:50,50;(2)平均数为:×(6×20+10×30+12×50+8×80+4×100)=51.5(元);(3)调查的总人数是40人,其中购买课外书花费50元以上(含50元)的学生有24人,∴该校本学期购买课外书费用在50元以上(含50元)的学生有:1000×=600(人).19.如图,在平面直角坐标系中,直线l1:y=x与直线y2:y=kx+b相交于点A,点A的横坐标为4,直线l2交y轴负半轴于点B,且OA=OB.(1)求点B的坐标及直线l2的函数表达式;(2)现将直线l1沿y轴向上平移5个单位长度,交y轴于点C,交直线l2于点D,试求△BCD的面积.【分析】(1)利用直线l1的解析式求出点A的坐标,再根据勾股定理求出OA的长度,从而可以得到OB的长度,根据图象求出点B的坐标,然后利用待定系数法列式即可求出直线l2的函数表达式;(2)求得平移后的解析式,进而求得交点D的坐标,代入三角形的面积公式进行计算即可得解.【解答】解:(1)∵点A的横坐标为4,∴y=×4=3,∴点A的坐标是(4,3),∴OA==5,∵OA=OB,∴OB=2OA=10,∴点B的坐标是(0,﹣10),设直线l2的表达式是y=kx+b,则,解得,∴直线l2的函数表达式是y=x﹣10;(2)将直线l1沿y轴向上平移5个单位长度得y=x+5,解得交点的横坐标为6,=×BC•x D=×(10+5)×6=45.∴S△BCD20.在长方形ABCD中,点E是AD的中点,将△ABE沿BE折叠后得到对应的△GBE,将BG延长交直线DC于点F.(1)如果点G在长方形ABCD的内部,如图①所示.Ⅰ)求证:GF=DF;Ⅱ)若DF=DC,AD=4,求AB的长度.(2)如果点G在长方形ABCD的外部,如图②所示,DF=kDC(k>1).请用含k 的代数式表示的值.【分析】(1)、Ⅰ)、求简单的线段相等,可证线段所在的三角形全等,即连接EF,证△EGF≌△EDF即可;Ⅱ)、可设DF=x,BC=y;进而可用x表示出DC、AB的长,根据折叠的性质知AB=BG,即可得到BG的表达式,由(1)证得GF=DF,那么GF=x,由此可求出BF的表达式,进而可在Rt△BFC中,根据勾股定理求出x、y的比例关系,即可得到的值,代值即可得出结论;(2)方法同(2).【解答】解:(1)、Ⅰ)、连接EF,根据翻折的性质得,∠EGF=∠D=90°,EG=AE=ED,EF=EF,在Rt△EGF和Rt△EDF中,,∴Rt△EGF≌Rt△EDF(HL),∴GF=DF;Ⅱ)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=2DF,∴CF=x,DC=AB=BG=2x,∴BF=BG+GF=3x;在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2∴y=2x,∴=;∵AD=4,∴AB=2(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y,∵AB=DC==,∴BF=BG+GF=(+1)x在Rt△BCF中,BC2+CF2=BF2,即y2+[(k﹣1)x]2=[(+1)x]2∴y=,∴==2.一、填空题21.(3分)方程组的解是.【分析】利用①+②可消去z,再与方程②组成二元一次方程组,再求解即可.【解答】解:在方程组中,①+③可得:3x+2y=43④,由②、④组成二元一次方程组,由②可得x=y+1,代入④可得:3(y+1)+2y=43,解得y=8,∴x=y+1=9,把x、y的值代入①可得:9+8+z=23,解得z=6,∴原方程组的解为.故答案为:.22.(3分)如图,已知圆柱底面的周长为24cm,高为5cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的长度至少长26cm.【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为24cm,圆柱高为5cm,∴AB=5cm,BC=BC′=12cm,∴AC2=52+122=169,∴AC=13cm,∴这圈金属丝的周长最小为2AC=26cm.故答案为:26.23.(3分)在实数范围内,若y=﹣3x+1,则y2015的个位数字是3.【分析】首先利用二次根式有意义的条件得出x,y的值,进而利用尾数特征求出答案.【解答】解:由题意可得:|x|﹣2=0,2﹣x≠0,解得:x=﹣2,则y=7,∵71=7,72=49,73=343;74=2401;75=16807,∴个位数每4个一循环,∵2015÷4=503…3,∴y2015的个位数字是:3.故答案为:3.24.(3分)如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,顶点B的纵坐标为2,∠B=60°,OC=AC,点P是斜边DB上的一个动点,则△PAC的周长的最小值为2+4.【说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.】【分析】作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案.【解答】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵顶点B的纵坐标为2,∠B=60°,∴AB=2,OA=6,由勾股定理得:OB=4,由三角形面积公式得:×OA×AB=×OB×AM,∴AM=3,∴AD=2×3=6,∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=AD=3,由勾股定理得:DN=3,∵C(1,0),∴CN=AC﹣AN=4﹣3=1,在Rt△DNC中,由勾股定理得:DC==2,即PA+PC的最小值是2,∴△PAC周长的最小值为:2+4.故答案为:2+4.25.(3分)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线l n⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…,A n;函数y=2x的图象与直线l1,l2,l3,…,l n分别交于点B1,B2,B3,…,B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积A nB n B n﹣1的面积记作S n,那么S2015=.记作S3,…,四边形A n﹣1【分析】根据题意可知所求的面积等于梯形的面积,然后根据题目中数据和图形即可解答本题.【解答】解:由题意可得,S2015==,故答案为:.二、解答题26.某商店销售功能相同的A、B两种品牌的计算器,A品牌计算器的成本价为每个20元,B品牌计算器的成本价为每个25元,且销售3个A品牌和2个B 品牌的计算器的价格为185元,销售2个A品牌和1个B品牌的计算器的价格为110元.(1)分别求这两种品牌计算器的销售单价;(2)春节前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按照原价的八折销售;B品牌计算器5个以上,从第6个开始按照原价的七折销售.设销售x个A品牌的计算器的利润为y1元,销售x各B品牌的计算器的利润为y2元.(I)分别求y1,y2与x之间的函数表达式;(Ⅱ)某单位准备到该商店购买同一品牌的计算器,且购买数量超过5个,试问:商店要想获得较大的利润,应选择推销哪种品牌的计算器给该单位呢?并说明理由.【分析】(1)设A品牌计算器的销售单价为m元/个,B品牌计算器的销售单价为n元/个,根据“销售3个A品牌和2个B品牌的计算器的价格为185元,销售2个A品牌和1个B品牌的计算器的价格为110元.”即可列出关于m、n的二元一次方程组,解之即可得出结论;(2)(I)根据“利润=销售额﹣成本”即可得出y1,y2与x之间的函数表达式;(II)分别令y1<y2、y1=y2以及y1>y2,求出x的取值范围,此题得解.【解答】解:(1)设A品牌计算器的销售单价为m元/个,B品牌计算器的销售单价为n元/个,根据题意,得:,解得:.答:A品牌计算器的销售单价为35元/个,B品牌计算器的销售单价为40元/个.(2)(I)根据题意得:y1=35×0.8x﹣20x=8x.当0≤x≤5时,y2=40x﹣25x=15x;当6≤x时,y2=(40﹣25)×5+[40×0.7﹣25]×(x﹣5)=3x+60.∴y2=.(II)当y1<y2时,有8x<3x+60,解得:x<12;当y1=y2时,有8x=3x+60,解得:x=12;当y1>y2时,有8x>3x+60,解得:x>12.∴当6≤x<12时,选择推销B品牌的计算器获得的利润高;当x=12时,选择推销A、B品牌的计算器获得的利润一样多;当x>12时,选择推销A品牌的计算器获得的利润高.27.(1)如图①,O是等边△ABC内一点,OA=6,OB=8,OC=10,将线段BO绕点B逆时针旋转60°得到线段BO',连结线段OO',AO',试判断△AOO'的形状.(2)点D是以AB为斜边的等腰直角三角形ABC内一点,且BD=1,CD=2,AD=3.(Ⅰ)求∠BDC的度数;(Ⅱ)求△ABC的面积.【分析】(1)利用旋转的性质得BO=BO′,∠OBO′=60°,则△OBO′为等边三角形,所以OO′=OB=8,则可判断△ABC为等边三角形,所以∠ABC=60°,BA=BC,接着利用旋转的定义可把△BOC绕点B逆时针旋转60°得到△BO′A,于是得到AO′=CO=10,然后根据勾股定理的逆定理可判断△AOO'为直角三角形,∠AOO′=90°;(2)(Ⅰ)将△CBD绕点B顺时针旋转90°得到△CAD′,如图②,根据旋转的性质得∠DCD′=90°,∠CD′A=∠CDB,CD′=CD=2,AD′=BD=1,则可判断△CDD′为等腰直角三角形,所以∠CD′D=45°,DD′=CD=2,然后根据勾股定理的逆定理可判断△ADD'为直角三角形,∠AD′D=90°;则∠AD′C=135°,所以∠BDC=135°;(Ⅱ)利用△CDD′为等腰直角三角形得到∠CDD′=45°,再判断点B、D、D′共线得到△BD′A为直角三角形,然后利用△ABC的面积=S△CDD′+S△BD′A进行计算.【解答】解:(1)∵线段BO绕点B逆时针旋转60°得到线段BO',∴BO=BO′,∠OBO′=60°,∴△OBO′为等边三角形,∴OO′=OB=8,∵△ABC为等边三角形,∴∠ABC=60°,BA=BC,∴△BOC绕点B逆时针旋转60°得到△BO′A,∴AO′=CO=10,在△AOO′中,∵AO′=10,AO=6,OO′=8,而62+82=102,∴OA2+OO′2=AO′2,∴△AOO'为直角三角形,∠AOO′=90°;(2)(Ⅰ)将△CBD绕点B顺时针旋转90°得到△CAD′,如图②,∴∠DCD′=90°,∠CD′A=∠CDB,CD′=CD=2,AD′=BD=1,∴△CDD′为等腰直角三角形,∴∠CD′D=45°,DD′=CD=2,在△ADD′中,AD=3,AD′=1,DD′=2,而12+(2)2=32,∴D′A2+AD2=DD′2,∴△ADD'为直角三角形,∠AD′D=90°;∴∠AD′C=135°,∴∠BDC=135°;(Ⅱ)∵△CDD′为等腰直角三角形,∴∠CDD′=45°,而∠BDC=135°;∴∠CDD′+∠BDC=180°,∴点B、D、D′共线,∴△BD′A为直角三角形,∴△ABC的面积=S△CDD′+S△BD′A=×2×2+×1×(1+2)=+.28.如图,过A(﹣4,0),两点的直线与直线y=﹣x交于点C,平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿戈轴向左平移,到C点时停止.直线l分别交线段BC,OC于点D,E,以DE为边向右侧作等边△DEF.设△DEF与△BCO重叠部分图形的周长为m,直线l的运动时间为t(秒).(1)求C点坐标;(2)当点F落在y轴上时,求相应的时间t的值;(3)求m与t之间的关系式.【说明:不考虑直线l平移过程中“起点”与“终点”时的情况.】【分析】(1)根据待定系数法求出直线AB的解析式,再利用方程组求出交点坐标C.(2)设E(t,﹣t),则D(﹣t,﹣t+4),推出DE=﹣2t+4,由△DFE是等边三角形,可得点F坐标(﹣4t+6,2),当点F在y轴上时,﹣4t+6=0,解方程即可解决问题.(3)分两种情形讨论①当0<t≤1.5时,重叠部分四边形DMNE.②当1.5<t <2时,重叠部分是△DEF.分别计算即可.【解答】解:(1)设直线AB的解析式为y=kx+b则有,解得,∴直线AB的解析式为y=x+4,由解得,∴点C坐标(﹣2,2).(2)如图1中,作FH⊥DE于H.设E(﹣t,t),则D(﹣t,﹣t+4),∴DE=﹣2t+4,∵△DFE是等边三角形,∴FH=DE=﹣3t+6,∴点F坐标(﹣4t+6,2),当点F在y轴上时,﹣4t+6=0,∴t=1.5,∴t=1.5s时,点F在y轴上.(3)如图2中,①当0<t≤1.5时,重叠部分四边形DMNE,m=3(﹣2t+4)﹣FM=﹣6t+12﹣(﹣4t+6)=﹣t+8.②当1.5<t<2时,重叠部分是△DEF,m=3(﹣2t+4)=﹣6t+12.综上所述,m=.。
某某省资阳市简阳市养马中学2015-2016学年八年级数学上学期质检试题一、选择题(每题3分,共30分)1.下列四副图案中,不是轴对称图形的是( )A.B.C.D.2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D 的坐标为( )A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)3.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b24.下列各式从左到右的变形中,是因式分解的是( )A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+)D.2x2﹣8y2=2(x+2y)(x﹣2y)5.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4 B.8 C.﹣8 D.±86.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( ) A.+=B.﹣=C.+10= D.﹣10=7.式子有意义的x的取值X围是( )A.x≥﹣且x≠1B.x≠1 C.D.8.下列计算正确的是( )A.=﹣3 B.=7 C.=2D.=×9.已知关于x的分式方程+=1的解是非负数,则m的取值X围是( )A.m>2 B.m≥2 C.m≥2且m≠3D.m>2且m≠310.在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,第2013个三角形的以A2013为顶点的内角的度数为( )A.B.C.D.二、填空题(每题3分,共30分)11.若的值在两个整数a与a+1之间,则a=__________.12.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是__________.13.若分式的值为0,则x的值为__________.14.若等腰三角形的边长分别为2和6,则它的周长为__________.15.已知x(x+3)=1,则代数式2x2+6x+2017的值为__________.16.计算:(x3y)﹣1•(x2y)2=__________.17.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于__________.18.实数a在数轴上的位置如图,化简+|a﹣2|=__________.19.当x<3时,﹣|x﹣6|=__________.20.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为__________.三、计算题(每小题3分,共9分)21.利用乘法公式计算:982﹣22.22.计算:(1)﹣()﹣1﹣+|﹣2|(2)÷3×.四、解答题23.先化简再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)+5xy],其中(x﹣2)2+|y+1|=0.24.先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.26.海门某公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.求购买该品牌一个台灯、一个手电筒各需要多少元?27.八年级数学课上,朱老师出示了如下框中的题目.小聪与同桌小明讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE__________DB(填“>”,“<”或“=”).(2)特例启发•解答题目解:题目中,AE与DB的大小关系是:AE__________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论•设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=1,则CD=__________(请你直接写出结果).28.在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,点D在线段BC的延长线上移动,若∠BAC=40°,则∠DCE=__________°.(2)设∠BAC=m,∠DCE=n.①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.2015-2016学年某某省资阳市简阳市养马中学八年级(上)质检数学试卷一、选择题(每题3分,共30分)1.下列四副图案中,不是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D 的坐标为( )A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.【解答】解:∵△ABC与△DEF关于y轴对称,A(﹣4,6),∴D(4,6).故选:B.【点评】此题主要考查了关于y轴对称点的性质,准确记忆横纵坐标的关系是解题关键.3.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b2【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.4.下列各式从左到右的变形中,是因式分解的是( )A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+)D.2x2﹣8y2=2(x+2y)(x﹣2y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、是整式的乘法,故B错误;C、没把一个多项式转化成几个整式积的形式,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选;D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.5.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4 B.8 C.﹣8 D.±8【考点】完全平方式.【分析】一个二项式的平方的形式我们就可以想到完全平方公式,16=42,由此来推算一次项的系数.【解答】解:∵(x±4)2=x2±8x+16,所以m=±2×4=±8.故选D.【点评】这道题考我们的逆向思维,关键是我们能够反过来利用完全平方公式确定未知数.6.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( ) A.+=B.﹣=C.+10= D.﹣10=【考点】由实际问题抽象出分式方程.【专题】行程问题;压轴题.【分析】设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,根据“小军乘小车上学可以从家晚10分钟出发”列出方程解决问题.【解答】解:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,由题意得,﹣=.故选:B.【点评】此题考查列分式方程解应用题,找出题中蕴含的等量关系是解决问题的关键.7.式子有意义的x的取值X围是( )A.x≥﹣且x≠1B.x≠1 C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.8.下列计算正确的是( )A.=﹣3 B.=7 C.=2D.=×【考点】二次根式的性质与化简.【分析】根据二次根式的性质,可判断A、B,根据二次根式的除法,可判断C,根据二次根式的乘法,可判断D.【解答】解:A、=3,故A错误;B、==5,故B错误;C、,故C错误;D、=×,故D正确.故选:D.【点评】本题考查了二次根式的性质与化简,二次根式的性质、二次根式的乘除发是解题关键.9.已知关于x的分式方程+=1的解是非负数,则m的取值X围是( ) A.m>2 B.m≥2 C.m≥2且m≠3D.m>2且m≠3【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的X围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.10.在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,第2013个三角形的以A2013为顶点的内角的度数为( )A.B.C.D.【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A n的度数,进而可得出结论.【解答】解:∵在△ABA1中,∠B=52°,AB=A1B,∴∠BA1A===64°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===32°;同理可得,∠DA3A2=16°,∠EA4A3=8°,∴∠A n=,∴A2013为顶点的内角的度数===故选B.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键二、填空题(每题3分,共30分)11.若的值在两个整数a与a+1之间,则a=2.【考点】估算无理数的大小.【专题】计算题.【分析】利用”夹逼法“得出的X围,继而也可得出a的值.【解答】解:∵2=<=3,∴的值在两个整数2与3之间,∴可得a=2.故答案为:2.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.12.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是﹣32.【考点】平方差公式.【专题】计算题.【分析】由题目可发现x2﹣y2=(x+y)(x﹣y),然后用整体代入法进行求解.【解答】解:∵x+y=﹣4,x﹣y=8,∴x2﹣y2=(x+y)(x﹣y)=(﹣4)×8=﹣32.故答案为:﹣32.【点评】本题考查了平方差公式,由题设中代数式x+y,x﹣y的值,将代数式适当变形,然后利用“整体代入法”求代数式的值.13.若分式的值为0,则x的值为0.【考点】分式的值为零的条件;解一元二次方程-因式分解法.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x2﹣x=0,|x|﹣1≠0,由x2﹣x=0,得x(x﹣1)=0,∴x=0或x=1,由|x|﹣1≠0,得|x|≠1,∴x≠±1,综上,得x=0,即x的值为0.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.若等腰三角形的边长分别为2和6,则它的周长为14.【考点】等腰三角形的性质.【分析】题目给出等腰三角形有两条边长为2和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:假设以2为等腰三角形的腰长,则三角形的各边长分别为2,2,6,不符合两边之和大于第三边;所以腰长只能为6,等腰三角形的周长为6+6+2=14.故填14.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.已知x(x+3)=1,则代数式2x2+6x+2017的值为2019.【考点】代数式求值.【专题】计算题.【分析】原式前两项变形后,把已知等式代入计算即可求出值.【解答】解:∵x(x+3)=1,∴原式=2x(x+3)+2017=2+2017=2019.故答案为:2019.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.计算:(x3y)﹣1•(x2y)2=xy.【考点】负整数指数幂.【分析】根据积的乘方,可化成同底数幂的乘除法,根据同底数幂的乘除法,可得答案.【解答】解:原式=x﹣3y﹣1•x4y2=x﹣3+4y﹣1+2=xy,故答案为:xy.【点评】本题考查了负整指数幂,利用了积的乘方,同底数幂的乘法.17.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于7或11.【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】因为已知条件给出的15或12两个部分,哪一部分是腰长与腰长一半的和不明确,所以分两种情况讨论.【解答】解:根据题意,①当15是腰长与腰长一半时,AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当12是腰长与腰长一半时,AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故填7或11.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确给出哪一部分长要一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.18.实数a在数轴上的位置如图,化简+|a﹣2|=1.【考点】二次根式的性质与化简;实数与数轴.【分析】利用数轴得出a的取值X围,进而化简求出即可.【解答】解:∵由实数a在数轴上的位置如图,∴1<a<2,∴+|a﹣2|=+|a﹣2|=a﹣1+2﹣a=1.故答案为:1.【点评】此题主要考查了二次根式的性质与化简,正确开平方去绝对值得出是解题关键.19.当x<3时,﹣|x﹣6|=﹣3.【考点】二次根式的性质与化简.【专题】计算题.【分析】原式利用二次根式的性质化简,再利用绝对值的代数意义计算即可.【解答】解:∵x<3,即x﹣3<0,x﹣6<0,∴原式=|x﹣3|﹣|x﹣6|=﹣x+3+x﹣6=﹣3,故答案为:﹣3【点评】此题考查了二次根式的性质与化简,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键.20.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为15°、30°、75°、120°.【考点】等腰三角形的判定.【分析】分别根据当AB=BP1时,当AB=AP3时,当AB=AP2时,当AP4=BP4时,求出答案即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴当AB=BP1时,∠BAP1=∠BP1A=30°,当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×30°=15°,当AB=AP2时,∠ABP2=∠AP2B=×(180°﹣30°)=75°,当AP4=BP4时,∠BAP4=∠ABP4,∴∠AP4B=180°﹣30°×2=120°,∴∠APB的度数为:15°、30°、75°、120°.故答案为:15°、30°、75°、120°.【点评】此题主要考查了等腰三角形的判定,利用分类讨论得出是解题关键.三、计算题(每小题3分,共9分)21.利用乘法公式计算:982﹣22.【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式计算即可.【解答】解:原式=(98+2)×(98﹣2)=9600.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.22.计算:(1)﹣()﹣1﹣+|﹣2|(2)÷3×.【考点】二次根式的混合运算;负整数指数幂.【专题】计算题.【分析】(1)根据负整数指数幂和绝对值的意义得到原式=2﹣4﹣+2﹣,然后合并即可;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=2﹣4﹣+2﹣=﹣2;(2)原式=1•••=•2a=a.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.记住负整数指数幂的意义.四、解答题23.先化简再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)+5xy],其中(x﹣2)2+|y+1|=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=3x2y﹣2x2y+6xy﹣3x2y﹣5xy=﹣2x2y+xy,∵(x﹣2)2+|y+1|=0,∴x﹣2=0,y+1=0,即x=2,y=﹣1,则原式=8﹣2=6.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.24.先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】首先把分式进行化简,然后计算分式的除法,最后代入a、b的值计算即可.【解答】解:原式=ab(a+1)÷=ab(a+1)÷(a+1)=ab,则当a=+1,b=﹣1时,原式=(+1)(﹣1)=3﹣1=2.【点评】本题考查了分式的化简求值,解这类题的关键是利用分解因式的方法化简分式.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.【考点】分母有理化.【专题】阅读型.【分析】(1)运用第二种方法求解,(2)先把每一个加数进行分母有理化,再找出规律后面的第二项和前面的第一项抵消,得出答案,【解答】解:(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点评】本题主要考查了分母有理化,解题的关键是找准有理化因式.26.海门某公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.求购买该品牌一个台灯、一个手电筒各需要多少元?【考点】二元一次方程组的应用.【分析】设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程.【解答】解:设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元.【点评】本题考查了方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.27.八年级数学课上,朱老师出示了如下框中的题目.小聪与同桌小明讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE=DB (填“>”,“<”或“=”).(2)特例启发•解答题目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作E F∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论•设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=1,则CD=2或4(请你直接写出结果).【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)当E为中点时,过E作EF∥BC交AC于点F,则可证明△BDE≌△FEC,可得到AE=DB;(2)类似(1)过E作EF∥BC交AC于点F,可利用AAS证明△BDE≌△FEC,可得BD=EF,再证明△AEF是等边三角形,可得到AE=EF,可得AE=DB;(3)分点E在AB上和在BA的延长线上,类似(2)证得全等,再利用平行得到.【解答】解:(1)如图1,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(3)因为AE=1,△ABC的边长为3,所以E点可能在线段AB上,也可能在BA的延长线上,当点E在AB时,同(2)可知BD=AE=1,则CD=BC+BD=1+3=4,当点E在BA的延长线上时,如图3,过点E作EF∥BC,交CA的延长线于点F,则∠F=∠FCB=∠B=60°,∠FEC+∠ECD=∠FEC+∠EDC=180°,∴∠EDB=∠FEC,且ED=EC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴EF=BD,又可判定△AEF为等边三角形,∴BD=EF=AE=1,∴CD=BC﹣BD=3﹣1=2,故答案为:2或4.【点评】本题主要考查全等三角形的判定和性质及等边三角形的性质和判定,利用全等得到BD=EF,再找EF和AE的关系是解题的关键.28.在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,点D在线段BC的延长线上移动,若∠BAC=40°,则∠DCE=40°.(2)设∠BAC=m,∠DCE=n.①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】常规题型.【分析】(1)可证△ABD≌△ACE,可得∠ACE=∠B,即可解题;(2)根据△ABD≌△ACE可分别求得∠BCE用m和用n分别表示,即可求得m、n的关系;(3)分两种情况分析,第1种,当D在线段BC的延长线上或反向延长线上时,第2种,当D在线段BC上时.【解答】解:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ACE=∠B,∵AB=AC,∠BAC=40°,∴∠ACE=∠B=70°,∴∠DCE=180°﹣70°﹣70°=40°;(2)∵△ABD≌△ACE(1)已证,∴∠ACE=∠B,∵AB=AC,∠BAC=m,∴∠ACE=∠B=∠ACB=,∴∠BCE=∠ACB+∠ACE=180°﹣m,∵∠BCE=180°﹣∠DCE=180°﹣n,∴m=n.(3)当D在线段BC的延长线上或反向延长线上时,m=n,当D在线段BC上时,m+n=180°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABD≌△ACE是解题的关键.。
江苏省扬州中学教育集团树人学校2015~2016学年度八年级上学期期末数学试卷一、选择题1.下列图形不一定是轴对称图形的是()A.直角三角形B.线段 C.角D.等腰梯形2.下列计算正确的是()A.=±3 B.=﹣2 C.=﹣7 D.=93.若x、y为实数,且,则y x的值为()A.6 B.8 C.9 D.124.如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍 C.缩小6倍 D.不变5.已知点(﹣1,y1),(2,y2)都在直线y=x+b上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较6.若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是()A.B.C.D.7.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.8.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0)C.(1,4)D.(8,3)二、填空题9.81的算术平方根是.10.角的对称轴是.11.的最简公分母是.12.已知△ABC的三边长a、b、c满足,则△ABC一定是三角形.13.点P(2,﹣3)关于x轴的对称点坐标为.14.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为.15.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.16.当m=时,关于x的分式方程=﹣1有增根.17.如图,函数y=﹣3x和y=kx+b的图象相交于点A(m,4),则关于x的不等式kx+b+3x>0的解集为.18.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.三、解答题19.解方程:(1)5x2﹣2=8;(2)计算:﹣()2﹣﹣|﹣4|.20.先化简,再在0,﹣1,2中选取一个适当的数代入求值.21.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.22.如图所示,四边形OABC是矩形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O 恰好落在BC边上的点E处,若△ECD的周长为4,△EBA的周长为12.(1)矩形OABC的周长为;(2)若A点坐标为(5,0),求线段AD所在直线的解析式.23.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.24.为加快西部大开发,某自治区决定新修一条公路,甲,乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲,乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成,问原来规定修好这条公路需多少长时间?25.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y轴的垂线,与坐标轴围成矩形OAPB周长的数值与面积的数值相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)(a>0)在直线y=﹣x+b(b为常数)上,求a,b的值.26.有甲、乙两个圆柱体的蓄水池,将甲池中的水以一定的速度注入乙池.甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,其中,甲蓄水池中水的深度y(米)与注水时间x(时)之间的函数关系式为y=﹣x+2.结合图象回答:(1)求出乙蓄水池中水的深度y与注水时间x之间的函数关系式;(2)交点A表示的实际意义是;(3)当乙蓄水池中水的体积是甲蓄水池中水的体积3倍时,求甲池中水的深度.(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.已知,ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点,G为EF的中点,延长CG与AB交于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=6,CH=10,求边AC的长.江苏省扬州中学教育集团树人学校2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题1.下列图形不一定是轴对称图形的是()A.直角三角形B.线段 C.角D.等腰梯形【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,针对四个选项进行分析即可.【解答】解:根据轴对称图形的定义可得B、C、D都是轴对称图形,只有A不一定是,故选:A.【点评】此题主要考查了轴对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列计算正确的是()A.=±3 B.=﹣2 C.=﹣7 D.=9【考点】立方根;算术平方根.【分析】利用平方根与立方根的定义求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、=3,故本选项错误;B、=﹣2,故本选项正确;C、=|﹣7|=7,故本选项错误;D、(﹣)2=3,故本选项错误.故选B.【点评】此题考查了平方根与立方根的定义.此题比较简单,注意熟记定义是解此题的关键.3.若x、y为实数,且,则y x的值为()A.6 B.8 C.9 D.12【考点】二次根式有意义的条件.【专题】计算题.【分析】运用二次根式有意义的条件,即,必须同时根号下部分大于等于0,即x﹣2≥0,且2﹣x≥0,得出x的值,再代入,求出y的值,从而得出y x的值.【解答】解:∵x、y为实数,且,∴根据二次根式有意义的条件,,必须同时有意义,即x﹣2≥0,且2﹣x≥0,同时满足x﹣2≥0,且2﹣x≥0,x只能等于2,∴把x=2代入,解得:y=3,∴y x=32=9.则y x的值为9,故选:C.【点评】此题主要考查了二次根式有意义的条件,以及乘方运算,解决问题的关键是根据,同时有意义,即x﹣2≥0,且2﹣x≥0,从而得出x的值.4.如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍 C.缩小6倍 D.不变【考点】分式的基本性质.【专题】应用题.【分析】把原分式中的x换成3x,把y换成3y进行计算,再与原分式比较即可.【解答】解:把原分式中的x换成3x,把y换成3y,那么==3×.故选A.【点评】本题考查了分式的基本性质,解题的关键是整体代入.5.已知点(﹣1,y1),(2,y2)都在直线y=x+b上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】运用一次函数的增减性:当k>0时,y随x的增大而增大,即可比较大小.【解答】解:因为>0,y随x的增大而增大,又﹣1<2,所以,y1<y2.故选C.【点评】本题考查了一次函数的增减性,对于一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.本题可以通过代值计算函数值,比较大小.6.若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是()A.B.C.D.【考点】一次函数的应用;一次函数的图象;等腰三角形的性质.【分析】根据三角形的周长列式并整理得到y与x的函数关系式,再根据三角形的任意两边之和大于第三边,任意两边之差小于第三边列式求出x的取值范围,即可得解.【解答】解:根据题意,x+2y=100,所以,y=﹣x+50,根据三角形的三边关系,x>y﹣y=0,x<y+y=2y,所以,x+x<100,解得x<50,所以,y与x的函数关系式为y=﹣x+50(0<x<50),纵观各选项,只有C选项符合.故选C.【点评】本题考查了一次函数的应用,主要利用了三角形的周长公式,难点在于利用三角形的三边关系求出底边x的取值范围.7.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选B.【点评】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.8.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0)C.(1,4)D.(8,3)【考点】规律型:点的坐标.【分析】根据反弹时反射角等于入射角画出点的运动轨迹,表示出点的坐标,总结规律得到答案.【解答】解:当点P第1次碰到矩形的边时,点P的坐标为(3,0),当点P第2次碰到矩形的边时,点P的坐标为(7,4),当点P第3次碰到矩形的边时,点P的坐标为(8,3),当点P第4次碰到矩形的边时,点P的坐标为(5,0),当点P第5次碰到矩形的边时,点P的坐标为(1,4),当点P第6次碰到矩形的边时,点P的坐标为(0,3),当点P第7次碰到矩形的边时,点P的坐标为(3,0),2016÷6=336,故当点P第2016次碰到矩形的边时,点P的坐标为:(0,3).故选:A.【点评】本题考查的是根据图形找出点的坐标的变化规律,正确理解题意、画出合适的示意图、表示出变化过程中各点的坐标、正确总结规律是解题的关键.二、填空题9.81的算术平方根是9.【考点】算术平方根.【分析】直接利用算术平方根的定义得出答案.【解答】解:81的算术平方根是:=9.故答案为:9.【点评】此题主要考查了算术平方根的定义,正确把握算术平方根的定义是解题关键.10.角的对称轴是角平分线所在的直线.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:沿角平分线所在的直线折叠后直线两旁的部分能够完全重合,所以角的对称轴是角平分线所在的直线.【点评】注意:对称轴必须说成直线.11.的最简公分母是12x3yz.【考点】最简公分母.【分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【解答】解:的最简公分母是12x3yz.故答案为:12x3yz.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.12.已知△ABC的三边长a、b、c满足,则△ABC一定是等腰直角三角形.【考点】等腰直角三角形;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根;勾股定理的逆定理.【分析】先根据非负数的性质求出a、b、c的值,再根据三角形的三边关系进行判断即可.【解答】解:∵△ABC的三边长a、b、c满足,∴a﹣1=0,b﹣1=0,c﹣=0,∴a=1,b=1,c=.∵a2+b2=c2,∴△ABC一定是等腰直角三角形.【点评】本题考查的知识点是:一个数的算术平方根与某个数的绝对值以及另一数的平方的和等于0,那么算术平方根的被开方数为0,绝对值里面的代数式的值为0,平方数的底数为0及勾股定理的逆定理.13.点P(2,﹣3)关于x轴的对称点坐标为(2,3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P(2,﹣3)关于x轴的对称点坐标为(2,3),故答案为:(2,3).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.14.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为12.【考点】勾股定理;直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2DE,再利用勾股定理列式计算即可得解.【解答】解:∵BE⊥AC,D为AB中点,∴AB=2DE=2×10=20,在Rt△ABE中,BE===12.故答案为:12.【点评】本题考查了勾股定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记性质与定理是解题的关键.15.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】根据二元一次方程组的解即为两直线的交点坐标解答.【解答】解:由图可知,方程组的解是.故答案为:.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.16.当m=6时,关于x的分式方程=﹣1有增根.【考点】分式方程的增根.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣3=0,求出x的值,代入整式方程即可求出m的值.【解答】解:去分母得:2x﹣m=﹣x+3,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:6﹣m=﹣3+3,解得:m=6,故答案为:6.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.如图,函数y=﹣3x和y=kx+b的图象相交于点A(m,4),则关于x的不等式kx+b+3x>0的解集为x>﹣.【考点】一次函数与一元一次不等式.【分析】先利用自变量函数解析式确定A点坐标,然后观察函数图象得到,当x>﹣时,直线y=kx+b都在直线y=﹣3x的上方,于是可得到关于x的不等式kx+b+3x>0的解集.【解答】解:把A(m,4)代入y=﹣3x得﹣3m=4,解得m=﹣,即A点坐标为(﹣,4),当x>﹣时,kx+b+3x>0,所以关于x的不等式kx+b+3x>0的解集为x>﹣.故答案为x>﹣【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.18.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为8cm.【考点】轴对称-最短路线问题;线段垂直平分线的性质;等腰三角形的性质.【专题】探究型.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题19.解方程:(1)5x2﹣2=8;(2)计算:﹣()2﹣﹣|﹣4|.【考点】实数的运算;平方根.【专题】计算题;实数.【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)原式利用平方根、立方根定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)方程整理得:x2=2,开方得:x=±;(2)原式=5﹣6+4﹣4=﹣1.【点评】此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.20.先化简,再在0,﹣1,2中选取一个适当的数代入求值.【考点】分式的化简求值.【专题】计算题.【分析】先根据分式混合运算的法则把原式进行化简,再在0,﹣1,2中选取一个适当的数代入求值即可.【解答】解:原式=(+)÷=×x(x﹣2)=x(x+3),∵x≠0,x≠2,∴当x=﹣1时,原式=﹣(﹣1+3)=﹣2.【点评】本题考查的是分式的化简求值,在解答此题时要注意x≠0,x≠2.21.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】(1)由y﹣3与x+5成正比例,设y﹣3=k(x+5),把x与y的值代入求出k的值,即可确定出y与x函数关系;(2)把x=5代入计算即可求出y的值.【解答】解:(1)设y﹣3=k(x+5),把x=2,y=17代入得:14=7k,即k=2,则y﹣3=2(x+5),即y=2x+13;(2)把x=5代入得:y=10+13=23.【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22.如图所示,四边形OABC是矩形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O 恰好落在BC边上的点E处,若△ECD的周长为4,△EBA的周长为12.(1)矩形OABC的周长为16;(2)若A点坐标为(5,0),求线段AD所在直线的解析式.【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】(1)根据折叠和矩形的性质得出AE=OA=BC,OD=DE,BC=OA,AB=OC,根据已知得出CE+CD+DE+AB+BE+AE=16,推出CE+BE+AB+OA+OD+CD=16即可.(2)根据勾股定理求出BE,求出CE,再利用勾股定理求得D 的坐标,待定系数法求出直线AD 的解析式即可.【解答】解:(1)∵以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,四边形OABC是矩形,∴AE=OA=BC,OD=DE,BC=OA,AB=OC,∵△ECD的周长为4,△EBA的周长为12,∴CE+CD+DE+AB+BE+AE=4+12=16,∴CE+BE+AB+OA+OD+CD=16,即矩形OABC的周长为16,故答案为:16.(2)∵矩形OABC的周长为16,∴2OA+2OC=16,∵A点坐标为(5,0),∴OA=5,∴OC=3,∵在Rt△ABE中,∠B=90°,AB=3,AE=OA=5,由勾股定理得:BE=4,∴CE=5﹣4=1,∴设DE=OD=x,则CD=3﹣x,∴CD2+CE2=DE2,即(3﹣x)2+12=x2,∴x=,∴D(0,),设直线AD的解析式为y=kx+b(k≠0),∵A(5,0),E(0,),∴,解得.∴线段AD所在直线的解析式为:y=﹣x+.【点评】本题考查的是一次函数综合题,涉及到勾股定理,矩形的性质,折叠的性质的应用,难度适中.23.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.【考点】勾股定理.【专题】作图题.【分析】(1)根据勾股定理画出边长为的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC、CD,求出△ACB是等腰直角三角形即可.【解答】解:(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,,;(3)如图3,连接AC,CD,则AD=BD=CD==,∴∠ACB=90°,由勾股定理得:AC=BC==,∴∠ABC=∠BA C=45°.【点评】本题考查了勾股定理,三角形的面积,直角三角形的判定的应用,主要考查学生的计算能力和动手操作能力.24.为加快西部大开发,某自治区决定新修一条公路,甲,乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲,乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成,问原来规定修好这条公路需多少长时间?【考点】分式方程的应用.【专题】工程问题.【分析】本题的等量关系为:工作时间=工作总量÷工作效率.由题意可知,甲队施工的总工程量+乙队总工程量=1,由此可列出方程求解.【解答】解:设原计划需x个月,则甲单独完成需要x个月,乙单独完成需要(x+6)个月,由题意得4×(+)+(x﹣4)×=1,解得:x=12,经检验:x=12是原方程的解,答:原来规定修好这条公路需12个月.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.25.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y轴的垂线,与坐标轴围成矩形OAPB周长的数值与面积的数值相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)(a>0)在直线y=﹣x+b(b为常数)上,求a,b的值.【考点】一次函数图象上点的坐标特征.【专题】新定义.【分析】(1)根据和谐点的定义,利用矩形的面积和周长公式进行证明即可;(2)利用和谐点的定义列出关于a的方程(a+3)×2=3a,由此可以求得a=6.然后把点P的坐标代入直线方程,通过方程来求b的值.【解答】解:(1)∵1×2≠2(1+2),4×4=2×(4+4),∴点M不是和谐点,点N是和谐点.(2)由题意得,(a+3)×2=3a,∴a=6,∴P(6,3),∵点P在直线y=﹣x+b上,∴代入得3=﹣6+b,解得,b=9.综上所述,a、b的值分别是6,9.【点评】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.26.有甲、乙两个圆柱体的蓄水池,将甲池中的水以一定的速度注入乙池.甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,其中,甲蓄水池中水的深度y(米)与注水时间x(时)之间的函数关系式为y=﹣x+2.结合图象回答:(1)求出乙蓄水池中水的深度y与注水时间x之间的函数关系式;(2)交点A表示的实际意义是当注水时间为小时,甲乙两水池的水面高度相同,为米;(3)当乙蓄水池中水的体积是甲蓄水池中水的体积3倍时,求甲池中水的深度.【考点】一次函数的应用.【分析】(1)如图,根据甲蓄水池的函数关系式求出放完水的时间,即函数图象与x轴的交点B,从而得到乙图象上的点C的坐标,然后利用待定系数法求一次函数解析式解答;(2)联立两函数解析式,解方程组即可得到交点A的坐标,根据交点的纵坐标相等可知,两水池的水面高度相等;(3)求出甲、乙两个蓄水池的底面积的比,再求出乙蓄水池中水的体积是甲蓄水池中水的体积3倍时的高度的比,然后根据两函数解析式列式求出x的值,然后代入甲求出相应的y的值即可.【解答】解:(1)如图,当y=0时﹣x+2=0,解得x=3.所以,点C的坐标为(3,4),设乙蓄水池中水的深度y与注水时间x之间的函数关系式为y=kx+b,则,解得.所以,函数关系式为y=x+1;(2)联立,解得.所以,交点A的坐标为(,),表示的实际意义是:当注水时间为小时,甲乙两水池的水面高度相同,为米,故答案为:当注水时间为小时,甲乙两水池的水面高度相同,为米;(3)∵甲水池的水降低2米时乙水池的水上升3米,∴甲、乙两个蓄水池的底面积的比为3:2,∴乙蓄水池中水的体积是甲蓄水池中水的体积3倍时的高度的比为9:2,∴x+1=(﹣x+2),解得x=2,把x=2代入y=﹣x+2得,y=米.答:甲池中水深米.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,联立两函数解析式求交点坐标,难点在于(3)求出甲、乙两蓄水池的底面积的比.(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)【考点】一次函数的应用;分段函数.【专题】压轴题;图表型.【分析】(1)根据销售记录每升利润为1元,所以销售利润为4万元时销售量为4万升;(2)设BC所对应的函数关系式为y=kx+b(k≠0),求出图象中B点和C点的坐标代入关系式中即可.(3)判断利润率最大,应该看倾斜度.【解答】解:解法一:(1)根据题意,当销售利润为4万元,销售量为4÷(5﹣4)=4(万升).答:销售量x为4万升时销售利润为4万元;设线段AB所对应的函数关系式为y=kx+b,则解得设线段BC所对应的函数关系式为y=mx+n,则解得(3)线段AB倾斜度最大,所以利润率最高.解法二:(1)根据题意,线段OA所对应的函数关系式为y=(5﹣4)x,即y=x(0≤x≤4).当y=4时,x=4.答:销售量为4万升时,销售利润为4万元.(2)设线段AB所对应的函数关系式为y=kx+b(k≠0),则解得设BC所对应的函数关系式为y=kx+b(k≠0),x=1(万升).又∵本月共销售10万升,∴本月总利润为:=11(万元).∴C点坐标为(10,11).将B点和C点坐标代入y=kx+b得方程组为:,解得:.(3)线段AB倾斜度最大,所以利润率最高.【点评】这是一道分段函数难度中上的考题,主要考查从图表获取信息和利用一次函数解决实际问题的能力.本题的关键是要仔细审题,找出数量变化与对应函数图象的关系,思考:险段AB,OA,BC对应的函数有哪些不同其根本原因是每升的成本,利润的变化,导致销售量的变化,正确计算出三种情形中的每升利润,是解决这一分段函数的重中之重.28.已知,ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点,G为EF的中点,延长CG与AB交于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=6,CH=10,求边AC的长.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)①连接CD,由直角三角形斜边上的中线性质得出CD=AD=BD,CD⊥AB,证出∠EDA=∠CDF,由ASA证明△ADE≌△CDF,即可得出结论;②连接CD、DG,由直角三角形斜边上的中线性质得出CG=EG=FG,DG=EG=FG,得出CG=DG,因此∠GCD=∠GDC,由角的互余关系得出∠GHD=∠HDG,证出GH=GD,即可得出结论;(2)分两种情况:①当E在线段AC上时,CG=GH=EG=GF,得出CH=EF=10,由(1)得出AE=CF=6,由勾股定理得出CE,即可得出结论;②当E在线段CA延长线上时,AC=EC﹣AE=8﹣6=2;即可得出结果.【解答】(1)①证明:连接CD,如图1所示:∵∠ACB=90°,AC=BC,D为AB的中点,∴CD=AD=BD,CD⊥AB,∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,。
2015-2016学年北京市朝阳区八年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.下列图形中,是轴对称图形的是()A. B. C. D.2.某种流感病毒的直径在0.00 000 012米左右,将0.00 000 012用科学记数法表示应为()A. B. C. D.3.下列长度的三根木棒能组成三角形的是()A. 3,4,8B. 4,4,8C. 5,6,10D. 6,7,144.点(-2,3)关于y轴对称的点的坐标是()A. B. C. D.5.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,DE⊥AB于点E,若CD=4,则DE的长为()A. 2B. 3C. 4D. 56.下列计算正确的是()A. B. C. D.7.将一副三角尺按如图方式进行摆放,则∠1的度数为()A. B. C. D.8.下列各式中,从左到右的变形是因式分解的是()A. B.C. D.9.如图1,某温室屋顶结构外框为△ABC,立柱AD垂直平分横梁BC,∠B=30°,斜梁AC=4m.为增大向阳面的面积,将立柱增高并改变位置,使屋顶结构外框变为△EBC (点E在BA的延长线上),立柱EF⊥BC,如图2所示,若EF=3m,则斜梁增加部分AE的长为()A. B. 1m C. D. 2m10.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)11.使分式有意义的x的取值范围是______.12.计算:=______.13.分解因式:5a2-10ab+5b2=______.14.如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE≌△ACD,添加的条件是:______.15.已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是______.16.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方左右两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.根据上面的规律,(a+b)4的展开式中各项系数最大的数为______;式子75+5×74×(-5)+10×73×(-5)2+10×72×(-5)3+5×7×(-5)4+(-5)5的值为______.三、计算题(本大题共1小题,共5.0分)17.已知x2-x=5,求(2x+1)2-x(5+2x)+(2+x)(2-x)的值.四、解答题(本大题共10小题,共47.0分)18.如图,点D在△ABC的BC边的延长线上,且∠A=∠B.(1)尺规作图:作∠ACD的平分线CE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,射线CE与线段AB的位置关系是______(不要求证明)19.计算:.20.计算:.21.已知:如图,点D在△ABC的BC边上,AC∥BE,BC=BE,∠ABC=∠E,求证:AB=DE.22.若一个多边形的内角和等于外角和的3倍,求这个多边形的边数.23.解分式方程:-=1.24.中华优秀传统文化积淀着中华民族最深层的精神追求和价值取向,特别是其中蕴含的丰富深厚的道德理念,为一代又一代中华儿女提供了精神归依和心灵居所,成为涵养社会主义核心价值观的重要源泉.为了培育和践行社会主义核心价值观,大力弘扬中华优秀传统文化,某校决定为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格是每套《水浒传》连环画价格的1.5倍,用3600元购买《水浒传》连环画的套数比用相同的钱数购买《三国演义》连环画的套数多10套.求每套《水浒传》连环画的价格.25.如图,在△ABC中,AB=AC,其中AD,BE都是△ABC的高.求证:∠BAD=∠CAD=∠EBC.26.阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a+b+c,abc,a2+b2,…含有两个字母a,b的对称式的基本对称式是a+b和ab,像a2+b2,(a+2)(b+2)等对称式都可以用a+b,ab表示,例如:a2+b2=(a+b)2﹣2ab.请根据以上材料解决下列问题:(1)式子①a2b2②a2﹣b2③中,属于对称式的是____(填序号);(2)已知(x+a)(x+b)=x2+mx+n.①若,求对称式的值;②若n=﹣4,直接写出对称式的最小值.27.在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是射线BD上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接AC.(1)当点C在线段BD上时,①若点C与点D重合,请根据题意补全图1,并直接写出线段AE与BF的数量关系为______;②如图2,若点C不与点D重合,请证明AE=BF+CD;(2)当点C在线段BD的延长线上时,用等式表示线段AE,BF,CD之间的数量关系(直接写出结果,不需要证明).答案和解析1.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.此题主要考查了轴对称图形,关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】解:0.00 000 012=1.2×10-7.故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:A、3+4<8,不能构成三角形;B、4+4=8,不能构成三角形;C、5+6>10,能够组成三角形;D、7+6<14,不能组成三角形.故选C.根据三角形的三边关系“任意两边之和大于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.【答案】B【解析】解:点(-2,3)关于y轴对称的点的坐标是(2,3),故选:B.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.5.【答案】C【解析】解:∵AD是∠CAB的平分线,∠C=90°,DE⊥AB,∴DE=DC=4.故选:C.根据角平分线的性质定理解答即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.【答案】A【解析】解:A、x2•x3=x5,正确;B、x2+x3,无法计算,故此选项错误;C、2x-3x=-x,故此选项错误;D、(2x)3=8x3,故此选项错误.故选:A.分别利用幂的乘方运算法则,以及合并同类项法则和同底数幂的乘法运算法则判断得出答案.此题主要考查了幂的乘方运算以及合并同类项和同底数幂的乘法运算,正确掌握运算法则是解题关键.7.【答案】C【解析】解:如图,∠1=∠2+∠3=90°+30°=120°,故选:C.根据三角形的一个外角等于和它不相邻的两个内角的和计算即可.本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.8.【答案】A【解析】解:因式分解的定义是指把一个多项式化成几个整式的积的形式,即等式的左边是一个多项式,等式的右边是几个整式的积,A、4x2-1=(2x+1)(2x-1),符合因式分解的定义,故本选项正确;B、等式的右边不是整式的积的形式,故本选项错误;C、等式的右边不是整式的积的形式,故本选项错误;D、等式的右边不是整式的积的形式,故本选项错误;故选A.判断一个式子是否是因是分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.本题考查了对因式分解的定义的理解和运用,注意:因式分解的定义是指把一个多项式化成几个整式的积的形式,即①等式的左边是一个多项式,②等式的右边是几个整式的积,③等式的左、右两边相等,题型较好,但是一道比较容易出错的题目.9.【答案】D【解析】解:∵立柱AD垂直平分横梁BC,∴AB=AC=4m,∵∠B=30°,∴BE=2EF=6m,∴AE=EB-AB=6-4=2(m).故选:D.直接利用∠B=30°,可得2EF=BE=6m,再利用垂直平分线的性质进而得出AB 的长,即可得出答案.此题主要考查了直角三角形的性质,关键是得出AB,BE的长.10.【答案】B【解析】【分析】此题考查了翻折变换(折叠问题),以及外角性质,熟练掌握折叠的性质是解本题的关键,由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:∠D=∠C=40°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+80°,则∠1-∠2=80°.故选B.11.【答案】x≠3【解析】解:分式有意义,则x-3≠0,解得x≠3.故答案为:x≠3.根据分式有意义,分母不为零列式进行计算即可得解.本题考查的知识点为:分式有意义,分母不为0.12.【答案】6x【解析】解:原式==6x.故答案为:6x.原式约分即可得到结果.此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.13.【答案】5(a-b)2【解析】解:原式=5(a2-2ab+b2)=5(a-b)2,故答案为:5(a-b)2原式提取公因式,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.【答案】∠B=∠C【解析】解:∠B=∠C,理由是:∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故答案为:∠B=∠C.添加条件是∠B=∠C,根据全等三角形的判定定理ASA推出即可,此题是一道开放型的题目,答案不唯一.本题考查了全等三角形的判定定理的应用,能理解全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.15.【答案】30°或120°【解析】解:当30°是等腰三角形的顶角时,顶角就是30°;当30°是等腰三角形的底角时,则顶角是180°-30°×2=120°.则该等腰三角形的顶角是30°或120°.故填30°或120°.分情况讨论:当30°是等腰三角形的顶角时或当30°是等腰三角形的底角时.再结合三角形的内角和是180°进行计算.本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.16.【答案】6;32【解析】解:根据题意得:(a+b)4的展开式中各项系数分别为1,4,6,4,1,即最大的数为6;75+5×74×(-5)+10×73×(-5)2+10×72×(-5)3+5×7×(-5)4+(-5)5=(7-5)5=32.故答案为:6;32.根据三角形的构造法则,确定出(a+b)4的展开式中各项系数最大的数;原式变形后,计算即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.【答案】解:原式=4x2+4x+1-5x-2x2+4-x2=x2-x+5,当x2-x=5时,原式=5+5=10.【解析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】(1)如图所示:(2)平行【解析】解:(1)如图所示:;(2)CE∥AB.∵CE平分∠ACD,∴∠ACE=∠ACD,∵∠A+∠B=∠ACD,∠A=∠B,∴∠A=∠ACD,∴∠A=∠ACE,∴AB∥CE.故答案为:平行.(1)以C为圆心,小于AC长为半径画弧,交AC、CD与M、N,再分别以M、N为圆心,大于MN长为半径,画弧,两弧交于点E,再画射线CE即可;(2)根据三角形内角与外角的关系可得∠A=∠ACD,根据角平分线的定义可得∠ACE=∠ACD,进而可得∠A=∠ACE,从而可判断出CE∥AB.此题主要考查了基本作图,以及平行线的判定,关键是掌握内错角相等,两直线平行.19.【答案】解:原式=-1+4=+3.【解析】分别进行绝对值的化简、零指数幂、负整数指数幂的运算,然后合并.本题考查了实数的运算,解答本题的关键是掌握绝对值的化简、零指数幂、负整数指数幂等运算法则.20.【答案】解:原式====.【解析】首先把分式进行通分,然后进行同分母的分式的加减即可求解.本题考查了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.21.【答案】证明:∵BE∥AC,∴∠C=∠DBE.在△ABC和△DEB中,,∴△ABC≌△DEB,∴AB=DE.【解析】先利用平行线的性质得∠C=∠DBE,再根据“ASA”可证明△ABC≌△DEB,然后根据全等三角形的性质可得AB=DE.本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在应用全等三角形的性质时主要是得到对应角相等或对应线段相等.22.【答案】解:设这个多边形是n边形,由题意得:(n-2)×180°=360°×3,解得:n=8.答:这个多边形的边数是8.【解析】根据多边形的外角和为360°,内角和公式为:(n-2)•180°,由题意可知:内角和=3×外角和,设出未知数,可得到方程,解方程即可.此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为360°.23.【答案】解:去分母得:x(x+2)-3=(x-1)(x+2),x2+2x-3=x2+x-2,x=1,检验:∵当x=1时,(x-1)(x+2)=0,∴x=1不是原分式方程的解,∴原分式方程无解.【解析】首先去分母、去括号、移项和合并同类项,最后系数化成1,再进行检验即可得到结果.本题主要考查了解分式方程的应用,解分式方程的关键是能把分式方程转化成整式方程.24.【答案】解:设每套《水浒传》连环画的价格是x元.由题意,得.解得x=120.检验:当x=120时,1.5x≠0.所以,原分式方程的解为x=120.答:每套《水浒传》连环画的价格是120元.【解析】设每套《水浒传》连环画的价格是x元.则《三国演义》连环画的价格是1.5x.根据“用3600元购买《水浒传》连环画的套数比用相同的钱数购买《三国演义》连环画的套数多10套”列出方程并解答.注意要验根.本题考查分式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.25.【答案】证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵BE⊥CE,AD⊥BC,∴∠BEC=∠ADC=90°,∴∠EBC+∠C=90°,∠CAD+∠C=90°,∴∠EBC=∠CAD,∴∠BAD=∠CAD=∠EBC.【解析】先根据等腰三角形三线合一的性质得出∠BAD=∠CAD,再由三角形的高的定义得出∠BEC=∠ADC=90°,根据直角三角形两锐角互余得到∠EBC+∠C=90°,∠CAD+∠C=90°,根据同角的余角相等得出∠EBC=∠CAD,等量代换得到∠BAD=∠CAD=∠EBC.本题考查了等腰三角形三线合一的性质,三角形的高的定义,直角三角形的性质,余角的性质,证明出∠BAD=∠CAD,∠EBC=∠CAD是解题的关键.26.【答案】(1)①③(2)①6.②.【解析】解:(1)式子①a2b2②a2-b2③中,属于对称式的是①③.故答案为①③;(2)∵x2+(a+b)x+ab=x2+mx+n∴a+b=m,ab=n.①a+b=-2,ab=,====6;②=a2++b2+=(a+b)2-2ab+=m2+8+=m2+,∵m2≥0,∴的最小值为.(1)根据对称式的定义进行判断;(2)①先得到a+b=-2,ab=,再变形得到==,然后利用整体代入的方法计算;②根据分式的性质变形得到=a2++b2+,再利用完全平方公式变形得到(a+b)2-2ab+,所以原式═m2+,然后根据非负数的性质可确定的最小值.本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.27.【答案】AE=BF【解析】解:(1)①如图1,∵BA=BC,∠EBD=60°,∴△ABC是等边三角形,∴AD=AB=BC,∠DAB=∠ABC=60°,∴∠EAD=∠FBD=120°,∵DE=DF,∴∠E=∠F,在△AEC与△BCF中,,∴△ADE≌△BDF,∴AE=BF;故答案为:AE=BF;②证明:在BE上截取BG=BD,连接DG,∵∠EBD=60°,BG=BD,∴△GBD是等边三角形.同理,△ABC也是等边三角形.∴AG=CD,∵DE=DF,∴∠E=∠F.又∵∠DGB=∠DBG=60°,∴∠DGE=∠DBF=120°,在△DGE与△DBF中,,∴△DGE≌△DBF,∴GE=BF,∴AE=BF+CD;(2)如图3,连接DG,由(1)知,GE=BF,AG=CD,∴AE=EG-AG;∴AE=BF-CD,如图4,连接DG,由(1)知,GE=BF,AG=CD,∴AE=AG-EG;∴AE=CD-BF.(1)①如图1,根据已知条件得到△ABC是等边三角形,由等边三角形的性质得到AD=AB=BC,∠DAB=∠ABC=60°,由邻补角的性质得到∠EAD=∠FBD=120°,推出△ADE≌△BDF,根据全等三角形的性质即可得到结论;②证明:在BE上截取BG=BD,连接DG,得到△GBD是等边三角形.同理,△ABC也是等边三角形.求得AG=CD,通过△DGE≌△DBF,得到GE=BF,根据线段的和差即可得到结论;(2)如图3,连接DG,由(1)知,GE=BF,AG=CD,根据线段的和差和等量代换即可得到结论;如图4,连接DG,由(1)知,GE=BF,AG=CD,根据线段的和差和等量代换即可得到结论.本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的性质,正确的作出辅助线是解题的关键.。
2015-2016学年人教版八年级数学上期末试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案属于轴对称图形的是( )A.B.C.D.2.点M(1,2)关于y轴对称点的坐标为( )A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)3.已知三角形两边长分别为7、11,那么第三边的长可以是( )A.2 B.3 C.4 D.54.下列计算正确的是( )A.(a3)2=a6 B.a•a2=a2C.a3+a2=a6D.(3a)3=9a35.一个多边形每个外角都等于36°,则这个多边形是几边形( )A.7 B.8 C.9 D.106.如图,已知△ABC中,∠A=75°,则∠1+∠2=( )A.335°B.255°C.155°D.150°7.下列从左到右的运算是因式分解的是( )A.2a2﹣2a+1=2a(a﹣1)+1 B.(x﹣y)(x+y)=x2﹣y2C.9x2﹣6x+1=(3x﹣1)2D.x2+y2=(x﹣y)2+2xy8.若等腰三角形的两边长分别为6和8,则周长为( )A.20或22 B.20 C.22 D.无法确定9.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为( )A.8 B.16 C.24 D.32二、填空题(本题共18分,每小题3分,共18分)11.科学家发现一种病毒的直径为0.0043微米,则用科学记数法表示为__________微米.12.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是__________.13.计算(π﹣3.14)0+=__________.14.若x2+mx+4是完全平方式,则m=__________.15.如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,则PD=__________.16.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=__________.三、解答题(本题共9小题,共102分,解答题要求写出文字说明,证明过程或计算步骤)17.计算:(1)(﹣a2)3•4a (2)2x(x+1)+(x+1)2.18.解下列分式方程:(1)=(2)+1=.19.(1)画出△ABC关于y轴对称的图形△A,B,C,;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)20.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.21.小鹏的家距离学校1600米,一天小鹏从家去上学,出发10分钟后,爸爸发现他的数学课本忘了拿,立即带上课本去追他,在学校门口追上了他,已知爸爸的速度是小鹏速度的2倍,求小鹏的速度.22.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)23.先化简代数式:+×,然后再从﹣2≤x≤2的范围内选取一个合适的整数代入求值.24.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.25.(14分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.2015-2016八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案属于轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念知A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.【点评】轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.点M(1,2)关于y轴对称点的坐标为( )A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.已知三角形两边长分别为7、11,那么第三边的长可以是( )A.2 B.3 C.4 D.5【考点】三角形三边关系.【分析】根据三角形的三边关系可得11﹣7<第三边长<11+7,再解可得第三边的范围,然后可得答案.【解答】解:设第三边长为x,由题意得:11﹣7<x<11+7,解得:4<x<18,故选:D.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.4.下列计算正确的是( )A.(a3)2=a6 B.a•a2=a2C.a3+a2=a6D.(3a)3=9a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】A、根据幂的乘方的定义解答;B、根据同底数幂的乘法解答;C、根据合并同类项法则解答;D、根据积的乘方的定义解答.【解答】解:A、(a3)2=a3×2=a6,故本选项正确;B、a•a2=a1+2=a3,故本选项错误;C、a3和a2不是同类项,不能合并,故本选项错误;D(3a)3=27a3,故本选项错误.故选A.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.5.一个多边形每个外角都等于36°,则这个多边形是几边形( )A.7 B.8 C.9 D.10【考点】多边形内角与外角.【专题】计算题.【分析】多边形的外角和是360°,又有多边形的每个外角都等于36°,所以可以求出多边形外角的个数,进而得到多边形的边数.【解答】解:这个多边形的边数是:=10.故答案是D.【点评】本题考查多边形的外角和,以及多边形外角的个数与其边数之间的相等关系.6.如图,已知△ABC中,∠A=75°,则∠1+∠2=( )A.335°B.255°C.155°D.150°【考点】多边形内角与外角;三角形内角和定理.【分析】先由三角形内角和定理得出∠B+∠C=180°﹣∠A=105°,再根据四边形内角和定理即可求出∠1+∠2=360°﹣105°=255°.【解答】解:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.【点评】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)•180°(n≥3且n为整数)是解题的关键.7.下列从左到右的运算是因式分解的是( )A.2a2﹣2a+1=2a(a﹣1)+1 B.(x﹣y)(x+y)=x2﹣y2C.9x2﹣6x+1=(3x﹣1)2D.x2+y2=(x﹣y)2+2xy【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:没把一个多项式转化成几个整式积的形式,故A错误;B、是整式的乘法,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:C.【点评】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.8.若等腰三角形的两边长分别为6和8,则周长为( )A.20或22 B.20 C.22 D.无法确定【考点】等腰三角形的性质;三角形三边关系.【分析】分6是腰长与底边两种情况分情况讨论,再利用三角形的三边关系判断是否能组成三角形.【解答】解:若6是腰长,则三角形的三边分别为6、6、8,能组成三角形,周长=6+6+8=20,若6是底边长,则三角形的三边分别为6、8、8,能组成三角形,周长=6+8+8=22,综上所述,三角形的周长为20或22.故选A.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.9.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA【考点】全等三角形的判定.【专题】压轴题.【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【解答】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A 不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选:B.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.10.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为( )A.8 B.16 C.24 D.32【考点】等边三角形的性质.【专题】规律型.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2得出答案.【解答】解:如图所示:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16;故选:B.【点评】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出规律A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2是解题关键.二、填空题(本题共18分,每小题3分,共18分)11.科学家发现一种病毒的直径为0.0043微米,则用科学记数法表示为4.3×10﹣3微米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0043=4.3×10﹣3.故答案为4.3×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是90°.【考点】三角形内角和定理.【分析】已知三角形三个内角的度数之比,可以设一份为k,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的最大角的度数.【解答】解:设三个内角的度数分别为k,2k,3k.则k+2k+3k=180°,解得k=30°,则2k=60°,3k=90°,这个三角形最大的角等于90°.故答案为:90°.【点评】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.13.计算(π﹣3.14)0+=10.【考点】负整数指数幂;零指数幂.【分析】根据零指数幂、负整数指数幂进行计算即可.【解答】解:原式=1+9=10,故答案为10.【点评】本题考查了负整数指数幂、零指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.14.若x2+mx+4是完全平方式,则m=±4.【考点】完全平方式.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【解答】解:中间一项为加上或减去x和2积的2倍,故m=±4,故填±4.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,则PD=3.【考点】角平分线的性质;含30度角的直角三角形.【分析】过点P作PE⊥OA于E,根据角平分线定义可得∠AOP=∠BOP=15°,再由两直线平行,内错角相等可得∠BOP=∠OPC=15°,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=30°,再根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:如图,过点P作PE⊥OA于E,∵∠AOB=30°,OP平分∠AOB,∴∠AOP=∠BOP=15°.∵PC∥OB,∴∠BOP=∠OPC=15°,∴∠PCE=∠AOP+∠OPC=15°+15°=30°,又∵PC=6,∴PE=PC=3,∵∠AOP=∠BOP,PD⊥OB于D,PE⊥OA于E,∴PD=PE=3,故答案为3.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及平行线的性质,作辅助线构造出含30°的直角三角形是解题的关键.16.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.【考点】完全平方公式.【专题】规律型.【分析】先认真观察适中的特点,得出a的指数是从1到0,b的指数是从0到5,系数一次为1,﹣5,10,﹣10,5,﹣1,得出答案即可.【解答】解:(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5,故答案为:a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.【点评】本题考查了完全平方公式的应用,解此题的关键是能读懂图形,有一点难度.三、解答题(本题共9小题,共102分,解答题要求写出文字说明,证明过程或计算步骤)17.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.【考点】整式的混合运算.【分析】(1)根据幂的乘方、同底数幂的乘法进行计算即可;(2)根据单项式乘以多项式以及完全平方公式进行计算即可.【解答】解:(1)原式=﹣a6•4a=﹣4a7;(2)原式=2x2+2x+x2+2x+1=3x2+4x+1.【点评】本题考查了整式的混合运算,熟记完全平方公式和幂的运算性质公式是解题的关键.18.解下列分式方程:(1)=(2)+1=.【考点】解分式方程.【专题】计算题.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x﹣1=1,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:3(x+1)+x2﹣1=x2,去括号得:3x+3+x2﹣1=x2,移项合并得:3x=﹣2,解得:x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(1)画出△ABC关于y轴对称的图形△A,B,C,;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(2)作点B关于x轴的对称点B',然后连接AB',与x轴的交点即为点P.【解答】解:(1)(2)所作图形如图所示:.【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.20.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.小鹏的家距离学校1600米,一天小鹏从家去上学,出发10分钟后,爸爸发现他的数学课本忘了拿,立即带上课本去追他,在学校门口追上了他,已知爸爸的速度是小鹏速度的2倍,求小鹏的速度.【考点】分式方程的应用.【分析】设小鹏的速度为x米/分,爸爸的速度为2x米/分,根据题意可得,走1600米爸爸比小鹏少用10分钟,据此列方程求解.【解答】解:设小鹏的速度为x米/分,爸爸的速度为2x米/分,由题意得,﹣=10,解得:x=80,经检验,x=80是原分式方程的解,且符合题意.答:小鹏的速度为80米/分.【点评】本题考查了分式方程的应用,解答本题的关键是读懂原题,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)【考点】线段垂直平分线的性质;等腰三角形的判定与性质.【分析】(1)先由AB=AC,∠A=36°,可求∠B=∠AC B==72°,然后由DE是AC的垂直平分线,可得AD=DC,进而可得∠ACD=∠A=36°,然后根据外角的性质可求:∠CDB=∠ACD+∠A=72°,根据等角对等边可得:CD=CB,进而可证△BCD是等腰三角形;(2)由(1)知:AD=CD=CB=b,由△BCD的周长是a,可得AB=a﹣b,由AB=AC,可得AC=a﹣b,进而得到△ACD的周长=AC+AD+CD=a﹣b+b+b=a+b.【解答】(1)证明:∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵DE是AC的垂直平分线,∴AD=DC,∴∠ACD=∠A=36°,∵∠CDB是△ADC的外角,∴∠CDB=∠ACD+∠A=72°,∴∠B=∠CDB,∴CB=CD,∴△BCD是等腰三角形;(2)解:∵AD=CD=CB=b,△BCD的周长是a,∴AB=a﹣b,∵AB=AC,∴AC=a﹣b,∴△ACD的周长=AC+AD+CD=a﹣b+b+b=a+b.【点评】此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.23.先化简代数式:+×,然后再从﹣2≤x≤2的范围内选取一个合适的整数代入求值.【考点】分式的化简求值.【专题】计算题.【分析】原式第二项约分后,两项通分并利用同分母分式的加法法则计算得到最简结果,把x=0代入计算即可求出值.【解答】解:原式=+===﹣,当x=0时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)由等边三角形的性质得出∠BAC=∠DAE,容易得出结论;(2)由△ABC和△ADE是等边三角形可以得出AB=BC=AC,AD=AE,∠ABC=∠ACB=∠BAC=∠DAE=60°,得出∠ABD=120°,再证明△ABD≌△ACE,得出∠ABD=∠ACE=120°,即可得出结论;【解答】解:(1)∠BAD=∠CAE;理由:∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,∴∠BAD=∠CAE;(2)∠DCE=60°,不发生变化;理由如下:∵△ABC是等边三角形,△ADE是等边三角形,∴∠DAE=∠BAC=∠ABC=∠ACB=60°,AB=AC,AD=AE.∴∠ABD=120°,∠BAC﹣∠BAE=∠DAE﹣∠BAE∴∠DAB=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ACE=∠ABD=120°.∴∠DCE=∠ACE﹣∠ACB=120°﹣60°=60°.【点评】本题考查了全等三角形的判定与性质以及等边三角形的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.25.(14分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】(1)求证AB=AC,就是求证∠B=∠C,可通过构建全等三角形来求.过点O分别作OE⊥AB于E,OF⊥AC于F,那么可以用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC 来实现;(2)思路和辅助线同(1)证得Rt△OEB≌Rt△OFC后,可得出∠OBE=∠OCF,等腰△ABC 中,∠ABC=∠ACB,因此∠OBC=∠OCB,那么OB=OC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)【点评】本题的关键是通过辅助线来构建全等三角形.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。