2019精选教育16年初三数学第一章测试题(人教版上册).doc
- 格式:doc
- 大小:15.52 KB
- 文档页数:4
最新16年初三上册数学第一二章综合测试题初中阶段对于学生们来说也是十分重要的一个时期,对每个学生来说尤为重要,下文为大家准备了初三上册数学第一二章综合测试题,供大家参考。
1、选择题(每小题3分,共30分)1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )A、(x-p)2=5 B、(x-p)2=9C、(x-p+2)2=9 D、(x-p+2)2=52、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )A、-1B、0C、1D、23、若α、β是方程x2+2x-2019=0的两个实数根,则α2+3α+β的值为( )A、2019B、2019C、-2019D、40104、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )A、k≤-9999B、k≥-且k≠0C、k≥-D、k>-且k≠0 44445、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )A、 x2+3x-2=0B、x2-3x+2=0C、x2-2x+3=0D、x2+3x+2=06、已知关于x的方程x2(-2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )A、-2B、-1C、0D、17、某城2019年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2019年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( ) A、300(1+x)=363 B、300(1+x)2=363C、300(1+2x)=363D、363(1-x)2=3008、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+6和2-6,则原方程是( )A、 x2+4x-15=0B、x2-4x+15=0C、x2+4x+15=0D、x2-4x-15=09、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为( )A、2B、0C、-1D、1 4y2?5y?6=0,则第三边长为( ) 10、已知直角三角形x、y两边的长满足|x2-4|+A、 22或B、5或22C、或22D、、22或5一、填空题(每小题3分,共30分)11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是.12、一元二次方程x2-3x-2=0的解是13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是14、等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是 .15、2019年某市人均GDP约为2019年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为 .16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为cm.(精确到0.1cm)17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿刚好与井口平,则井深为 m,竹竿长为 m.18、直角三角形的周长为2+为 .19、如果方程3x2-ax+a-3=0只有一个正根,则a2?8a?16的值是.20、已知方程x2+3x+1=0的两个根为α、β,则6,斜边上的中线为1,则此直角三角形的面积?+的值为 . ??二、解答题(共60分)21、解方程(每小题3分,共12分)(1)(x-5)2=16 (2)x2-4x+1=0 (3)x3-2x2-3x=0 (4)x2+5x+3=0 22、(8分)已知:x1、x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,且(x1+2)(x2+2)=11,求a的值.23、(8分)已知:关于x的方程x2-2(m+1)x+m2=0(1) 当m取何值时,方程有两个实数根?为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24、(8分)已知一元二次方程x2-4x+k=0有两个不相等的实数根(1) 求k的取值范围 2. 如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.25、(8分)已知a、b、c分别是△ABC中∠A、∠B、∠C所对的边,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断△ABC的形状.26、(8分)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.27、(分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克(1) 现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?7,.某商品进价为每件40元,如果售价为每件50210件,如果售价超过50元,但不超过80元,每件商品的售价每上涨10元,每个月少卖1件,如果售价超过80元后,若再涨价,每件商品的售价每涨1元,每个月少卖3件。
【导语】考试的⽅法有笔试、⼝试、⾯试和操作考试等,可根据不同的测试⽬标和测试内容选择合适的⽅式。
下⾯是⽆忧考为您整理的《九年级上册数学第⼀章单元测试题》,仅供⼤家参考。
【篇⼀】 ⼀、选择题(每⼩题5分,共25分) 1.反⽐例函数的图象⼤致是() 2.如果函数y=kx-2(k0)的图象不经过第⼀象限,那么函数的图象⼀定在A.第⼀、⼆象限B.第三、四象限C.第⼀、三象限D.第⼆、四象限 3.如图,某个反⽐例函数的图像经过点P,则它的解析式为() A.B. C.D. 4.某村的粮⾷总产量为a(a为常数)吨,设该村的⼈均粮⾷产量为y 吨,⼈⼝数为x,则y与x之间的函数关系式的⼤致图像应为() 5.如果反⽐例函数的图像经过点(2,3),那么次函数的图像经过点()A.(-2,3)B.(3,2)C.(3,-2)D.(-3,2) ⼆、填空题 6.已知点(1,-2)在反⽐例函数的图象上,则k=. 7.⼀个图象不经过第⼆、四象限的反⽐例函数的解析式为. 8.已知反⽐例函数,补充⼀个条件:后,使得在该函数的图象所在象限内,y随x值的增⼤⽽减⼩. 9.近视眼镜的度数y与镜⽚焦距x(⽶)成反⽐例.已知400度近视眼镜镜⽚的焦距为0.25⽶,则眼镜度数y与镜⽚焦距x之间的函数关系式是. 10.如图,函数y=-kx(k0)与y=-的图像交于A、B两点.过点 A作AC垂直于y轴,垂⾜为C,则△BOC的⾯积为. 三、解答题(共50分) 11.(8分)⼀定质量的氧⽓,其密度(kg/m,)是它的体积v(m,)的反⽐例函数.当V=10m3时甲=1.43kg/m. (1)求与v的函数关系式;(2)求当V=2m3时,氧⽓的密度. 12.(8分)已知圆柱的侧⾯积是6m2,若圆柱的底⾯半径为x(cm),⾼为ycm). (1)写出y关于x的函数解析式; (2)完成下列表格: (3)在所给的平⾯直⾓坐标系中画出y关于x的函数图像. 13.(l0分)在某⼀电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反⽐例.当电阻R=5欧姆时,电流I=2安培. (l)求I与R之间的函数关系式; (2)当电流I=0.5安培时,求电阻R的值; (3)如果电路中⽤电器的可变电阻逐渐增⼤,那么电路中的电流将如何变化? (4)如果电路中⽤电器限制电流不得超过10安培,那么⽤电器的可变电阻应控制在什么范围内? 14.(12分)某蓄⽔池的排⽔管每⼩时排⽔飞12m3,8h可将满池⽔全部排空. (1)蓄⽔池的容积是多少? (2)如果增加排⽔管,使每⼩时的排⽔量达到x(m3),那么将满池⽔排空所需的时间y(h)将如何变化? (3)写出y与x之间的关系式; (4)如果准备在6h内将满池⽔排空,那么每⼩时的排⽔量⾄少为多少? (5)已知排⽔管每⼩时的排⽔量为24m3,那么最少多长时间可将满池⽔全部排空? 15.(12分)反⽐例函数和⼀次函数y=mx+n的图象的⼀个交点A(-3,4),且⼀次函数的图像与x轴的交点到原点的距离为5. (1)分别确定反⽐例函数与⼀次函数的解析式; (2)设⼀次函数与反⽐例函数图像的另⼀个交点为B,试判断AOB(点O为平⾯直⾓坐标系原点)是锐⾓、直⾓还是钝⾓?并简单说明理由. 【篇⼆】 ⼀、选择题(每⼩题3分,共30分) 1、两个直⾓三⾓形全等的条件是()A、⼀锐⾓对应相等B、两锐⾓对应相等C、⼀条边对应相等D、两条边对应相等 2、如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是()A、SASB、ASAC、AASD、SSS 3、等腰三⾓形底边长为7,⼀腰上的中线把其周长分成两部分的差为3,则腰长是()A、4B、10C、4或10D、以上答案都不对 4、如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论: (1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。
九年级数学上第一章复习测试卷()-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载九年级数学上第一章复习测试卷(北师大版)班级_______姓名分数________一填空题(每小题3分,共18分):1.在△ABC中,△A -△C =25°,△B -△A =10°,则△B =;2.如果三角形有两边的长分别为5a,3a,则第三边x必须满足的条件是;3.等腰三角形一边等于5,另一边等于8,则周长是;4.在△ABC中,已知AB=AC,AD是中线,△B=70°,BC=15cm,则△BAC=,△DAC=,BD=cm;5.在△ABC中,△BAC=90°,AD△BC于D,AB=3,AC=4,则AD=;6.在等腰△ABC中,AB=AC,BC=5cm,作AB的垂直平分线交另一腰AC于D,连结BD,如果△BCD的周长是17cm,则△ABC的腰长为.二判断题(每小题3分,共18分):1.已知线段a,b,c,且a+b>c,则以a、b、c三边可以组成三角形()2.面积相等的两个三角形一定全等()3.有两边对应相等的两个直角三角形全等()4.有两边和其中一边上的高对应相等的两上三角形全等()5.当等腰三角形的一个底角等于60°时,这个等腰三角形是等边三角形()6.一腰和底边对应相等的两个等腰三角形全等()三选择题(每小题4分,共16分):题号1234答案1.已知△ABC中,△A =n°,角平分线BE、CF相交于O,则△BOC的度数应为()(A)90°-° (B)90°+° (C)180°-n° (B)180°-°2.下列两个三角形中,一定全等的是()(A)有一个角是40°,腰相等的两个等腰三角形(B)两个等边三角形(C)有一个角是100°,底相等的两个等腰三角形(D)有一条边相等,有一个内角相等的两个等腰三角形3.一个等腰三角形底边的长为5,一腰上的中线把其周长分成的两部分的差为3 ,则腰长为()(A) 2 (B)8 (C)2 或8 (D)104.已知:如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,则△A的度数是()(A)30°(B)36°(C)45°(D)54°四(本题8分)已知:如图,AD是△ABD和△ACD的公共边.求证:△BDC =△BAC +△B +△C.五(本题10分)已知D是Rt△ABC斜边AC的中点,DE△AC交BC于E,且△EAB△△BAC=2△5,求△ACB的度数.六(本题10分)已知:如图,AB=AC,CE△AB于E,BD△AC于D,求证:BD=CE.七(本题10分)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE =CD.求证:BD =DE.八(本题10分)已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连结AD、BE交于点P,作BQ△AD,垂足为Q.求证:BP=2PQ.参考答案一.答案:1.75°;2.2a<x<8a;3.18或21;4.40°,20°,7.5;5.;6.12.1.×;2.×;3.√;4.√;5.√;6.√.三.答案:1.B;2.C;3.C;4.C.四.提示:延长AD到E,把△BDC归结为△ABD和△ACD的外角,利用“三角形外角等于不相临的两个内角的和”可以证明.五.提示:利用列方程的方法求解.设△EAB=2x°,△BAC=5x°,则△ACB=3x°,于是得方程5x°+3x°=90°,解得x°=,△ △ACB=33.75°.六.提示:由AB =AC得△B =△C,又有BC =BC,可证△ABD△△ACE,从而有BD =CE.可知△DBC=30°,只需证出△DEB =30°.由△ACE =120°,得△CDE+△E=60°,所以△CDE =△E=30°,则有BD =DE.八.提示:只需证△PBQ=30°.由于△BAE△△ACD,所以△CAD =△ABE,则有△BPQ =△PBA+△BAP =△PAE +△BAD =60°,可得△PBQ=30°.欢迎下载使用,分享让人快乐。
人教版九年级上册数学第一次考试卷及答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]2016年九年级上册第一次月考试卷 满分100分,时间60分钟一、选择题(每题3分,共24分)1.已知关于x 的一元二次方程220x x a +-=有两个相等的实数根,则a 的值是( ) A .4 B .-4 C .1 D .-12.如果012=-+x x ,那么代数式7223-+x x 的值是( ) A 、6 B 、8 C 、-6 D 、-83.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线x=1,且经过点P (3,0),则c b a +-的值为( )A 、0B 、-1C 、 1D 、 2 4.已知二次函数的图象如图所示,则这个二次函数的表达式为( ) A .y=x 2﹣2x+3 B . y=x 2﹣2x ﹣3 C . y=x 2+2x ﹣3 D . y=x 2+2x+3 5.用配方法解方程0142=-+x x ,下列配方结果正确的是( ). A .5)2(2=+x B .1)2(2=+x C .1)2(2=-x D .5)2(2=-x6.如图,在一次函数5+-=x y 的图象上取点P ,作PA ⊥x 轴于A ,PB ⊥y 轴于B ,且长方形OAPB 的面积为6,则这样的点P 个数共有( )A .4B .3C .2D .17.在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2+8x+b 的图象可能是( ) 8.如图,矩形ABCD 中,AB=3,BC=4,动点P 从A 点出发,按A→B→C 的方向在AB 和BC 上移动,记PA=x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是二、填空题(每题3分,共21分)9.要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛设比赛组织者应邀请x 支球队参赛,根据题意列出的方程是________________________________.10.如图,二次函数c bx ax y ++=2的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。
九年级数学上册第一章测试题及答案_证明(二)(B)第一篇:九年级数学上册第一章测试题及答案_证明(二)(B) 北九上第一章证明(二)水平测试(B)一、选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.两个直角三角形全等的条件是()(A)一锐角对应相等;(B)两锐角对应相等;(C)一条边对应相等;(D)两条边对应相等.2.到∆ABC的三个顶点距离相等的点是∆ABC的().(A)三边垂直平分线的交点;(B)三条角平分线的交点;(C)三条高的交点;(D)三边中线的交点.(第3题)3.如图,由∠1=∠2,得∆ABC≌∆EDCBC=DC,AC=EC,的根据是()(A)SAS(B)ASA(C)AAS(D)SSS4.∆ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75,则∠A的度数为()(A)35°(B)40°(C)70°(D)110°5.下列两个三角形中,一定全等的是()(A)有一个角是40°,腰相等的两个等腰三角形;B(B)两个等边三角形;A(C)有一个角是100°,底相等的两个等腰三角形;(第7题)(D)有一条边相等,有一个内角相等的两个等腰三角形.6.适合条件∠A=∠B =∠C的三角形一定是()(A)锐角三角形;(B)钝角三角形;(C)直角三角形;(D)任意三角形.7.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的“▇”填上适当的数字是().(A)3米(B)4米(C)5米(D)6米8.一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是().(A)等腰三角形;(B)等边三角形;(C)直角三角形;(D)等腰直角三角形.9.如图,已知AC平分∠PAQ,点B、B'分别在边AP、AQ上,如果(第9题)ο13添加一个条件,即可推出AB=AB',那么该条件不可以是()(A)BB'⊥AC(B)BC=B'C(C)∠ACB=∠ACB'(D)∠ABC =∠AB'C10.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明∆DOF≌∆EOF的条件的个数有()(第10题)(A)1个(B)2个(C)3个(D)4个二、填空题(本大题有10小题,每小题3分,共30分.将答案填在题中横线上)11.在∆ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是.12.如果等腰三角形的一个角是80°,那么顶角是度.13.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为.14.∆ABC中,∠C=90,AD平分∠BAC,交BC于点D,若οDC=7,则D到AB的距离是.15.如图,∠ABC=∠DCB,需要补充一个直接条件才能使∆ABC(第15题)≌∆DCB.甲、乙、丙、丁四位同学填写的条件分别是:甲“AB=DC”;乙“AC=DB”;丙“∠A=∠D”;丁“∠ACB=∠DBC”.那么这四位同学填写错误的是.16.用反证法证明“三角形中至少有一个角不小于60°时,假设“”,则与“”矛盾,所以原命题正确.17.补全“求作∠AOB的平分线”的作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以D、E为圆心,以为半径画弧,两弧在∠AOB内交于点C.③作射线OC即为∠AOB的平分线.18.一轮船以每小时20海里的速度沿正东方向航行.上午8时,该船在A 处测得某灯塔位于它的北偏东30°的B处(如图),上午9时行到C 处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是海里(结果保留根号).19.在∆ABC中,∠A=90°,AB=AC,BD平分∠B交AC于D,(第18题)DE⊥BC于E,若BC=10,则∆DEC的周长是20.如图是2002年8月在北京召开的第24届国际数学家大会的会标,它是由4个相同的直角三角形拼和而成.若图中大小正方形的面积分别为52cm和4cm,则直角三角形的两条直角边的和是cm.三、解答题(本大题有6小题,共60分.解答需写出必要的文字说明、演算步骤或证明过程)21.(8分)已知:如图,OB=OC.∠A=∠D=90,AC=BD.求证:26.(12分)已知:如图,点C为线段AB上一点,∆ACM、∆CBN是等边三角形,可以说明:∆ACN≌∆MCB,从而得到结论:AN=BM.现要求:(1)将∆ACM绕C点按逆时针方向旋转180°,使A点落在CB 上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹).(2)在(1)所得到的图形中,结论“AN=BM”是否还成立?若成立,请给予证明;若不成立,请说明理由.(3)在(1)所得到的图形中,设MA的延长线与BN相交于D 点,请你判断△ABD与四边形MDNC的形状,并说明你的结论的正确性.NA C B第二篇:初三数学《证明二》测试题初三数学《证明二》测试题一、选择题(每小题3分,共30分)1、两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条边对应相等2、如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是()A、SASB、ASAC、AASD、SSS3、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()7、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=12cm,则△DEB的周长()A、6cmB、8cmC、12cmD、24cm8、如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2mB.3mC.6mD.9m9、如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACBD、∠ABC=∠AB′C10、如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AEA.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论要:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确结论的个数()4.如图所示,AB = AC,要说明△ADC≌△AEB不能是(..BE)A.∠B =∠CB.AD = AEC.∠ADC=∠AEBD.DC =A.1个B.2个C.3个D.4个二、填空题(每小题3分,共30分)1、如果等腰三角形的一个角是80°,那么顶角是().2、等腰三角形的两个底角相等的逆命题是().3、等腰三角形一腰上的中线把等腰三角形周长分为15cm和12cm的两部分,则底边长为().5、如图,△ABC中,∠ACB=90°,BA的垂直平分线交CB边于D,若AB=10,AC=5,则图中等于60°的角的个数为()A、2B、3C、4D、56、如图所示的正方形网格中,网格线的交点称为格点.已知A、B两格点,如果C也是图中的格点,且使得 ABC为等腰三角形,则.....C的个数是()A.6是点4、如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件()5、如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC。
2019年中考模拟 数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上) 1、计算2(1)⨯-的结果是( ) A 、12-B 、2-C 、1D 、22、若∠α的余角是30°,则cos α的值是( )A 、12B 、C、2 D 、、下列运算正确的是( )A 、21a a -=B 、22a a a += C 、2a a a ⋅=D 、22()a a -=-4、下列图形是轴对称图形,又是中心对称图形的有( )A 、4个B 、3个C 、2个D 、1个5、如图,在平行四边形ABCD 中,∠B=80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( ) A 、40° B 、50° C 、60° D 、80°6、已知二次函数2y ax =的图象开口向上,则直线1y ax =-经过的象限是( )A 、第一、二、三象限B 、第二、三、四象限C 、第一、二、四象限D 、第一、三、四象限 7、如图,你能看出这个倒立的水杯的俯视图是( )8、如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是( ) A 、28℃,29℃ B 、28℃,29.5℃ C 、28℃,30℃ D 、29℃,29℃9、已知拋物线2123y x =-+,当15x ≤≤时,y 的最大值是( ) A 、2B 、23C 、 53D 、 73ABCD10、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( ) A 、2 BC、D 、3 11、如图,是反比例函数1k y x=和2ky x =(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( ) A 、1B 、2C 、4D 、812、一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A 、1011升B 、19升C 、110升D 、111升二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13、2011-的相反数是__________14、近似数0.618有__________个有效数字. 15、分解因式:39a a -= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________17、如图,等边△ABC 绕点B 逆时针旋转30°时,点C 转到C ′的位置,且BC ′与AC 交于点D ,则'C DCD的值为__________18、如图,AB 是半圆O 的直径,以0A 为直径的半圆O ′与弦AC 交于点D ,O ′E ∥AC ,并交OC 于点E .则下列四个结论:①点D 为AC 的中点;②'12O OE AOC S S ∆∆=;③2AC AD = ;④四边形O'DEO 是菱形.其中正确的结论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤). 19、计算:101()(5)32π-----+16题图 17题图18题图20、已知:12x x 、是一元二次方程2410x x -+=的两个实数根.求:2121211()()x x x x +÷+的值.21、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC 的长为10米,小强的身高AB 为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度. (结果精确到1米,参考数据≈1.411.73 )22、如图,△OAB 的底边经过⊙O 上的点C ,且OA=OB ,CA=CB ,⊙O 与OA 、OB 分别交于D 、E 两点. (1)求证:AB 是⊙O 的切线;(2)若D 为OA3π,求⊙O 的半径r .23、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A 、白B 、白C 表示),若从中任意摸出一个棋子,是白色棋子的概率为34. (1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.24、上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元. (1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元? (利润率=100%⨯利润进价)25、如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H .(1)求证:EB=GD ;(2)判断EB 与GD 的位置关系,并说明理由;(3)若AB=2,,求EB 的长.26、已知抛物线223 (0)y ax ax a a =--<与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 的坐标;(2)过点D 作DH 丄y 轴于点H ,若DH=HC ,求a 的值和直线CD 的解析式;(3)在第(2)小题的条件下,直线CD 与x 轴交于点E ,过线段OB 的中点N 作NF 丄x 轴,并交直线CD 于点F ,则直线NF 上是否存在点M ,使得点M 到直线CD 的距离等于点M 到原点O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号 12 3 4 5 6 7 8 9 10 11 12 答案 BA CCBDBACBCD二、填空题13. 201114. 315. (3)(3)a a a +-16. 144°17. 2 18. ①③④三、解答题19. 解:原式=2-1-3+2, =0.故答案为:0.20. 解:∵一元二次方程x 2-4x+1=0的两个实数根是x 1、x 2, ∴x 1+x 2=4,x 1•x 2=1, ∴(x 1+x 2)2÷( )=42÷=42÷4 =4.21. 解:在Rt △CEB 中,sin60°=,∴CE=BC•sin60°=10×≈8.65m ,∴CD=CE+ED=8.65+1.55=10.2≈10m , 答:风筝离地面的高度为10m .22. (1)证明:连OC ,如图, ∵OA=OB ,CA=CB , ∴OC ⊥AB ,∴AB 是⊙O 的切线;(2)解:∵D 为OA 的中点,OD=OC=r , ∴OA=2OC=2r ,∴∠A=30°,∠AOC=60°,AC= r ,∴∠AOB=120°,AB=2 r ,∴S 阴影部分=S △OAB -S 扇形ODE = •OC•AB - =- ,∴ •r•2r- r 2=- ,∴r=1,即⊙O 的半径r 为1.23. 解:(1)3÷ -3=1.答:黑色棋子有1个;(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为.24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果功够进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB,∴EB=GD;(2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则在△BDH中,∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD;(3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= ,∴EB=GD= .26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得x1=-1,x2=3,∴点A的坐标(-1,0),点B的坐标(3,0);(2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a-(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4),设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得,,解得,∴直线CD的解析式为y=x+3;(3)存在.由(2)得,E(-3,0),N(- ,0)∴F(,),EN= ,作MQ⊥CD于Q,设存在满足条件的点M(,m),则FM= -m,EF= = ,MQ=OM=由题意得:Rt△FQM∽Rt△FNE,∴= ,整理得4m2+36m-63=0,∴m2+9m= ,m2+9m+ = +(m+ )2=m+ =±∴m1= ,m2=- ,∴点M的坐标为M1(,),M2(,- ).。
九年级上册数学第一单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 2x + 13. 已知一组数据:2, 5, 7, 10, 12,这组数据的中位数是()A. 5B. 7C. 10D. 24. 在直角坐标系中,点(3, 4)关于x轴的对称点是()A. (3, -4)B. (-3, 4)C. (4, 3)D. (-3, -4)5. 若两个角互为补角,且其中一个角为60度,则另一个角为()A. 30度B. 90度C. 120度D. 180度二、判断题(每题1分,共5分)6. 任何两个锐角的和一定是钝角。
()7. 一组数据的平均数总是大于等于它的中位数。
()8. 两条平行线的同位角相等。
()9. 任何正方形的对角线都相等。
()10. 一元二次方程的解可以是两个相等的实数根。
()三、填空题(每题1分,共5分)11. 若一个三角形的两边长分别为3cm和4cm,且这两边的夹角为90度,则第三边的长为____cm。
12. 函数y = 2x + 1的图像是一条____。
13. 若一个数的平方根是9,则这个数是____。
14. 在直角坐标系中,点(0, b)在____轴上。
15. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为____cm。
四、简答题(每题2分,共10分)16. 简述正比例函数的定义。
17. 解释什么是等腰三角形,并给出一个等腰三角形的例子。
18. 描述一次函数图像的特点。
19. 什么是中位数?如何计算一组数据的中位数?20. 解释补角的概念,并给出一个例子。
五、应用题(每题2分,共10分)21. 一个长方形的周长为18cm,长为7cm,求宽。
一元二次方程单元测试题(满分120分)一、选择题(每题3分,共30分) 1、下列方程中,是一元二次方程的是( )A. 0y x 3x 22=-+B.06x 5x 23=--C.4x 4x 2++D.03x2x 2=++2、如果01x 3)x 2(m 2=+++是一元二次方程,则m 的取值范围是 ( ) A. 0m = B.2m -=C.2m -≠D.0m ≠ 3、1x =是下列哪个方程的一个解?( )A.01x 3x 22=-+B.03x 5x 22=--C.05x 4x 2=-+D.03x 2x 2=-- 4、方程x x 2=的解是( )A.0x =B.1x =C.1x ±=D.0x =或者1x =5、用配方法解一元二次方程13x 12x 2=-时,等号左右两边应同时加上( )A.212B.12C.26D.6 6、一元二次方程05x 4x 2=+-的根的情况是( )A.有两个不相等的根B.有一个根C.有两个相等的根D.无实根7、一元二次方程02m x 22=+-x 有两个不相等的实根,则m 的取值范围是 ( )A.4m >B.4m -<C.44<<-mD.4m 4m >-<或者8、已知一个三角形的底比高多2,如果这个三角形的面积是24,则它的底是( )A.8B.6C.4D.29、已知方程08x 6x 2=+-的两个根分别是等腰三角形的底和腰,则它的周长是 ( ) A.8 B.10 C.8或10 D.610、一次排球比赛中每两队之间都要进行一次比赛,一共比赛了45场,则参赛的队伍一共有多少个? ( ) A.8 B.9 C.10 D.11二、填空题(每小题4分,共28分)11、一元二次方程9x 5x 42=-的二次项系数是_____________,常数项是____________。
12、如果2x =是方程08x 2mx 2=+-的一个解,那么=m ______________。
初三上册第一章数学练习题题目:初三上册第一章数学练习题(文章正文开始)由于篇幅限制,以下将列举初三上册第一章数学练习题中的部分题目,并提供答案和解析,以供参考和学习。
题目一:已知一个等边三角形的面积为16√3,求其边长。
解析:设等边三角形的边长为 a,则根据等边三角形的特性,可知其高也为 a。
面积公式为S = (a * a * √3) / 4。
将已知条件代入得到16√3 = (a * a * √3) / 4,化简得到 a = 8。
答案:等边三角形的边长为 8。
题目二:已知一个数的平方加上该数的相反数等于2,求该数。
解析:设该数为 x,则根据题意可得方程 x^2 + (-x) = 2。
化简得到x^2 - x - 2 = 0,因此可以因式分解为 (x - 2)(x + 1) = 0。
解得 x = 2 或 x = -1。
答案:该数为 2 或 -1。
题目三:计算下列各题。
1)13.5 ÷ 0.3 = 452)8.7 × 0.04 = 0.3483)3.5 + 2.2 ÷ 1.1 = 54)0.45 × 0.05 = 0.0225题目四:已知三角形 ABC 中,∠B = 45°,AB = AC,BC = 4 cm,求三角形 ABC 的面积。
解析:首先根据已知条件,可以推导出∠A = ∠C = (180° - ∠B - ∠C) / 2 = (180° - 45° - 45°) / 2 = 45°。
由于等腰直角三角形的特性,可以得知三角形 ABC 是等腰直角三角形。
由勾股定理可知 AB = AC = 4 cm,BC = 4 cm。
三角形 ABC 的面积为 S = (AB * BC) / 2 = (4 * 4) / 2 = 8。
答案:三角形 ABC 的面积为 8 平方厘米。
题目五:已知两个互补角的度数之差为 12°,求各角的度数。
(新人教版)2016年1月初三数学基础训练卷一2016.7.18 一. 选择题1. 如果()()b x a x ++的结果中不含x 的一次项, 那么a 、b 满足( ) A. a = b B. a = 0C. a = -bD. b = 02. 医学研究发现一种新病毒的直径约为0.000043毫米, 这个数用科学记数法( ) A . 41043.0-⨯ B . 41043.0⨯ C . 5103.4-⨯ D . 5103.4⨯ 3. 下列四个图案中, 具有一个共有的性质,那么下面四个数中, 满足上述性质的一个是( ) A. 222B. 707C. 803D. 6094. 不等式组2030x x ->⎧⎨-<⎩的解集是( )A .2x >B .3x <C .23x <<D .无解5. ⊙O 的半径为4, 圆心O 到直线l 的距离为3, 则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D . 无法确定 6. 下列说法正确的是( )A . 近似数3.5和3.50精确度相同B . 近似数0.0120有3个有效数字C . 近似数7.05×104精确到百分位D . 近似数3千和3000的有效数字都是3 7. 下列函数关系式: (1)x y -=; (2)112+=x y ; (3)2x y =; (4)xy 1=, 其中一次函数的个数是( )A .1B .2C .3D .4 8. 下列说法正确的是( )A . 一颗质地均匀的骰子已连续抛掷了2000次, 其中, 抛掷出5点的次数最少, 则第2001次一定抛掷出5点B .某种彩票中奖的概率是1%, 因此买100张该种彩票一定会中奖C . 天气预报说明天下雨的概率是50%. 所以明天将有一半时间在下雨D .抛掷一枚图钉, 钉尖触地和钉尖朝上的概率不相等二. 填空题9. 四边形ABCD 中, ∠A :∠B :∠D =1:2:3且∠C =144︒, 则∠A =_____,∠B =_____,∠D =_____.10. 在函数()02+=x y 中, 自变量的取值范围是_________________.11. 在扇形统计图中, 若其中一个扇形的面积占圆面积的41, 则这个扇形的圆心角为___________度。
人教版九年级上册数学第一次考试卷及答案TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】2016年九年级上册第一次月考试卷满分100分,时间60分钟一、选择题(每题3分,共24分)1.已知关于x 的一元二次方程220x x a +-=有两个相等的实数根,则a 的值是( )A .4B .-4C .1D .-12.如果012=-+x x ,那么代数式7223-+x x 的值是( )A 、6B 、8C 、-6D 、-83.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线x=1,且经过点P (3,0),则c b a +-的值为( )A 、0B 、-1C 、 1D 、 24.已知二次函数的图象如图所示,则这个二次函数的表达式为( )A .y=x 2﹣2x+3B . y=x 2﹣2x ﹣3C . y=x 2+2x ﹣3D . y=x 2+2x+35.用配方法解方程0142=-+x x ,下列配方结果正确的是( ).A .5)2(2=+xB .1)2(2=+xC .1)2(2=-xD .5)2(2=-x6.如图,在一次函数5+-=x y 的图象上取点P ,作PA ⊥x 轴于A ,PB ⊥y 轴于B ,且长方形OAPB 的面积为6,则这样的点P 个数共有( )A .4B .3C .2D .17.在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2+8x+b 的图象可能是( )8.如图,矩形ABCD 中,AB=3,BC=4,动点P 从A 点出发,按A→B→C 的方向在AB 和BC 上移动,记PA=x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是二、填空题(每题3分,共21分)9.要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x 支球队参赛,根据题意列出的方程是________________________________.10.如图,二次函数c bx ax y ++=2的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。
九上数学第一章测试题姓名:分数:一、选择题(每题3分,共30分)1、下列图形中只是中心对称图形而不是轴对称图形的是()A.平行四边形B.菱形C.正方形D.矩形2、正方形具有而菱形不具有的性质是()A、四个角都是直角B、两组对边分别相等C、内角和为0360D、对角线平分对角3、下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形4 、顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形; ②菱形; ③矩形④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④5、已知一矩形的两边长分别为10 cm和15 cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6 cm和9 cmB. 5 cm和10 cmC. 4 cm和11 cmD. 7 cm和8 cm6、菱形的周长为20,两邻角的比为2∶1,则一组对边的距离为()A、32B、332C、3 3D、5327、如图,在矩形中,分别为边的中点.若,,则图中阴影部分的面积为()A.3B.4C.6D.88、如图,在菱形中,,∠,则对角线等于()A.20B.15C.10D.59、如图,矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD于E,若∠OAE=24°,则∠BAE的度数是()A.24°B.33°C.42°D.43°10、如图所示,在矩形ABCD中,AB= 2,BC=2,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A. 2B. 3C.1D.1.5二、填空题(每题3分,共15分)11、正方形的一条对角线和一边所成的角是度.12、菱形的两条对角线长分别是6和8,则菱形的面积是13、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线夹角为.14、正方形ABCD中,AB=2,点E是线段CD的中点,P为线段BD上的任意一点,则PC+PE 的最小值为_________.15、如图,在边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,…,按此规律所作的第n个菱形的边长是________.三、解答题(共55分)16、(8分)如图,在四边形ABCD中,AD∥BC,AC的垂直平分线交AD,BC于点E,F.求证:四边形AECF是菱形.17、(10分)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.18、(10分)如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE =CF.(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.19、(12分)如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的角∠EAF绕点A旋转,∠EAF的两边分别交BC,CD于点E,F,且E,F不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.20、(15分)如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN 交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?说明理由.(3)当点O在边AC上运动时,四边形BCFE________是菱形(填“可能”或“不可能”).请说明理由.答案解析:1-10 AACDB DBDBD11、45 12、24 13、60°或120° 14、√5 15、(√3)n−116.证明:∵EF 垂直平分AC , ∴∠AOE =∠COF =90°,OA =OC. ∵AD ∥BC ,∴∠OAE =∠OCF. ∴△AOE ≌△COF(ASA ). ∴AE =CF. 又∵AE ∥CF , ∴四边形AECF 是平行四边形. ∵EF ⊥AC , ∴四边形AECF 是菱形.17.(1)证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形.∵四边形ABCD 为矩形,∴OD =OC. ∴四边形OCED 为菱形.(2)解:∵四边形ABCD 为矩形, ∴BO =DO =12BD. ∴S △OCD =S △OCB =12S △ABC =12×12×3×4=3. ∴S 菱形OCED =2S △OCD =6. 18.(1)证明:在△BCE 与△DCF 中,⎩⎪⎨⎪⎧BC =DC ,∠BCE =∠DCF ,CE =CF ,∴△BCE ≌△DCF.(2)解:∵△BCE ≌△DCF , ∴∠EBC =∠FDC =30°. ∵∠BCD =90°,∴∠BEC =60°. ∵EC =FC ,∠ECF =90°, ∴∠CEF =45°.∴∠BEF =105°.19.(1)证明:如图,连接AC. ∵四边形ABCD 为菱形,∠BAD =120°, ∴∠ABE =∠ACF =60°, ∠1+∠2=60°. ∵∠3+∠2=∠EAF =60°,∴∠1=∠3. ∵∠ABC =60°,AB =BC , ∴△ABC 为等边三角形.∴AC =AB. ∴△ABE ≌△ACF. ∴BE =CF.(2)解:四边形AECF 的面积不变. 由(1)知△ABE ≌△ACF , 则S △ABE =S △ACF ,故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC .如图,过A 作AM ⊥BC 于点M ,则BM =MC =2,∴AM =AB 2-BM 2=42-22=2 3.∴S△ABC=12BC·AM=12×4×23=4 3. 故S四边形AECF=4 3.(第23题)20.解:(1)OE=OF.理由如下:∵CE是∠ACB的平分线,∴∠ACE=∠BCE.又∵MN∥BC,∴∠NEC=∠BCE. ∴∠NEC=∠ACE. ∴OE=OC.∵CF是∠ACD的平分线,∴∠OCF=∠FCD. 又∵MN∥BC,∴∠OFC=∠FCD. ∴∠OFC=∠OCF. ∴OF=OC. ∴OE=OF.(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角时,四边形AECF是正方形.理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形.∵FO=CO,∴AO=CO=EO=FO.∴AO+CO=EO+FO,即AC=EF. ∴四边形AECF是矩形.已知MN∥BC,当∠ACB=90°时,∠AOE=90°,∴AC⊥EF. ∴四边形AECF是正方形.(3)不可能理由如下:连接BF,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=12∠ACB+12∠ACD=12(∠ACB+∠ACD)=90°.若四边形BCFE是菱形,则BF⊥EC.但在一个三角形中,不可能存在两个角为90°,故四边形BCFE不可能为菱形.。
九年级(上)数学第一章达标测试卷 (满分120分)学校 班级 姓名 得分一、填空题(本大题共10小题,每小题3分,共30分)1.在ABC △中,50A AB AC AB ∠=︒=,,的垂直平分线交AC 于点D ,则_____DBC ∠=度.2.如图1,在ABC △中,90C ∠=︒,15B AB ∠=︒,的垂直平分线交BC 于点D ,交AB 于点E .若10cm DB =,则_____AC =.图1 图2 图33.已知在△ABC 中,90C ∠=,角平分线AD 分对边:3:2BD DC =,且20BC =cm ,则点D 到AB 的距离是 cm .4. 如图2所示,90ACB ∠=,1BC =,AC =30A ∠=,D 为AB 的中点,DE AC ⊥于E ,则CED △的周长为 .5.M 为△ABC 中边AB 上一点,且2222223AM BM CM AM BM CM ++=++-,则22AC BC += .6.如图3,P 是AOB ∠的平分线上一点,PD OB ⊥,垂足为点D ,PC OB ∥交OA 于点C ,若30AOB ∠=,2cm PD =,则CP = cm .7.在ABC △中,已知B ∠和C ∠的平分线相交于点F ,过点F 作DE BC ∥,交AB 于点D ,交AC 于点E .若9BD CE +=,则线段DE 的长为 .8.已知:如图4,ABC △中,AB AC =,40BAD =∠,且A E A D=,则x =∠_______度.图4图5AE x C D B A PD B C O A B M Q P O 图6北ABCM 区河流公路9.如图5,点M 是AOB ∠平分线上一点,MP OA MQ OB ⊥⊥,,垂足分别为P Q ,,26cm 3cm POM S OP ==△,,则_____cm MQ =.10.如图6所示,要在河流的右边,公路的左侧M 区处建一个工厂,使厂址选在到河流和公路的距离相等,并且到河流与公路交叉点A 处的距离为1cm (指图上距离),则图中工厂的位置应在 ,理由是 . 二、选择题(本大题共6小题,每小题3分,共18分)11.如图7,在等腰梯形ABCD 中,AD BC AC BD ∥,,相交于点O ,则图中全等三角形共有( ) A.1对 B.2对 C.3对 D.4对 12.如图8,在ABC △中,AB AC =,点D 在AC 边上,且BD BC AD ==,则A ∠=( ) A.30︒ B.36︒ C.45︒ D.70︒13.如图9,在ABC △中,AD BC BE AC ⊥⊥,,垂足分别为D E ,,AD 与BE 相交于点F ,若BF AC =,则ABC ∠的大小是( ) A.30︒ B.45︒ C.50︒ D.60︒ 14.下列命题中,是假命题的是( )A.三个内角之比为1:2:3的三角形是直角三角形 B.三条边长之比为3:4:5的三角形是直角三角形 C.三条边长之比为8:16:17的三角形是直角三角形 D.三个内角之比为1:1:2的三角形是直角三角形15.如图10,正方形网格中有一个ABC △,若小方格的边长为1,则ABC △是( )A.直角三角形 B.锐角三角形 C.钝角三角形 D.以上答案都不对 16.如图11,ABC △中,90ACB ∠=︒,BE 平分ABC ∠,ED AB ⊥,垂足为D .如果3cm AC =,那么AE ED +为( )A.2cm B.3cm C.4cm D.5cm图8 图7 图9 A B C E F 图10ABC 图11A B C ED三、解答题 17.(本小题6分)如图,107国道OA 和302国道OB 在甲市相交于点O ,在A O B ∠的内部有工厂C 和D ,现 要修建一个货站P ,使P 到OA OB ,的距离相等,且使PC PD =.试确定出点P 的位置. (不写作法,保留作图痕迹)18. (本小题7分) 如图12,已知BE AC CF AB ⊥⊥,,垂足分别为E F ,,BE CF ,相交于点D ,若BD CD =.求证:AD 平分BAC ∠.19.(本小题7分)已知:如图13,AB=AD , CB=CD ,E ,F 分别 是AB ,AD 的中点. 求证:CE=CF .图13图12 BD E F四、(本大题共2小题,每小题8分,共16分) 20.如图14,已知,在ABC △中,ABC ∠和ACB ∠的平分线交于点M ,ME AB ∥交BC 于点E ,MF AC ∥交BC 于点F .求证:MEF △的周长等于BC 的长.21.如图15,△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F. 求证:AD ⊥EF ;图15图14 A B C M E五、(本大题共2小题,第22小题8分,第23小题9分,共17分)22.如图16,在等腰直角三角形ABC 中,90ACB ∠=︒,D 是斜边AB 上任一点,AE CD ⊥垂足为E ,BF CD ⊥交CD 的延延长线于F ,CH AB ⊥垂足为H ,且交AE 于点G ,求证:CG BD =.23.(14分)如图,已知等边三角形ABC ,作ABC ∠和ACB ∠的平分线交于点O ,过点O 作OD AB OE AC OD OE ∥,∥,,分别交BC 于D E ,两点.有位同学认为,利用上述方法可以将边BC 三等分,你认为这位同学的说法正确吗?请说明理由.图16六、(本大题共2小题,第24小题9分,第25小题10分,共19分)24.如图17所示,是城市部分街道示意图,AB BC AC CD CE DE ====,,A B C D E F G H ,,,,,,,为“公共汽车”停靠点.“公共汽车甲”从A 站出发,按照A H G D E C F ,,,,,,的顺序到达F 站,“公共汽车乙”从B 站出发,按照B F H E D C G ,,,,,,的顺序到达G 站.如果甲、乙两车分别从A ,B 两站同时出发,在各站耽误的时间相同,两车速度也一样,试问哪一辆公共汽车先到达指定站?为什么?25.(16分)如图18,ABC △和CDE △都是等边三角形,且B C D ,,三点在一条直线上.(1)求证:AD BE =;(2)当其中任一三角形绕顶点C 旋转任一角度时,是否还有AD BE =,你发现了什么规律吗?请证明你的结论.(3)还有没有其他形状的三角形也符合这个规律.图17图18。
人教版数学9年级上册第1单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列是关于x的一元二次方程的是( )A.x2―1x=2021B.x(x+6)=0C.a2x﹣5=0D.4x﹣x3=22.(3分)关于x的一元二次方程x2+3x﹣2=0的根的情况是( )A.有两个不相等的实数根B.只有一个实数根C.有两个相等的实数根D.没有实数根3.(3分)已知关于x的一元二次方程kx2﹣(k﹣2)x+4=0的一个根是2,则k的值是( )A.2B.﹣2C.4D.﹣44.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x,那么x满足的方程是( )A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+x)+50(1+x)2=182D.50+50(1+x)=1825.(3分)若方程ax2﹣2x+c=0是关于x的一元二次方程,则a满足的条件是( )A.a>0B.a<0C.a=0D.a≠06.(3分)已知方程x2=m的解是有理数,那么对于下列实数m不能取的数是( )A.1B.4C.14D.127.(3分)已知关于x的一元二次方程x2+4x+5=0,下列说法正确的是( )A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定8.(3分)一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共共握66次手.若设这次会议到会的人数为x人,依题意可列方程( )A .12x (x ﹣1)=66B .12(1+x )2=66C .x (1+x )=66D .x (x ﹣1)=669.(3分)下表是某公司2022年1月份至5月份的收入统计表.其中,2月份和5月份被墨水污染.若2月份与3月份的增长率相同,设它们的增长率为x ,根据表中的信息,可列方程为( )月份12345收入/万元101214A .10(1+x )2=12﹣10B .10(1+x )2=12C .10(1+x )(1+2x )=12D .10(1+x )3=1410.(3分)关于x 的一元二次方程kx 2+2x ﹣1=0有两个相等的实数根,则k =( )A .﹣2B .﹣1C .0D .1二、填空题(共5小题,满分15分,每小题3分)11.(3分)当k 满足 时,方程(k ﹣1)x 2+3x +1=0是一元二次方程.12.(3分)若m 是方程x 2﹣x ﹣1=0的一个根,则m 2﹣m +2022的值为 .13.(3分)解方程:(x ﹣7)(x ﹣2)=0,则方程的两个根是x 1=7,x 2= .14.(3分)小明在计算某数的平方时,将这个数的平方误看成它的2倍,使答案少了35,则这个数为 .15.(3分)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由50元降为39元,设平均每次降价的百分率是x ,则根据题意,可列方程为 .三、解答题(共10小题,满分75分)16.(6分)用适当的方法解下列一元二次方程:(1)x 2﹣2x ﹣15=0;(2)(x +4)2﹣5(x +4)=0.17.(6分)按要求解下列方程:(1)x 2﹣8x +1=0(配方法);(2)x 2+2x =3(公式法).18.(7分)已知关于x 的一元二次方程14x 2―(m ―1)x +(m 2―2m)=0.(1)求证:对于任意实数m ,该方程总有两个不相等实数根;(2)如果此方程有一个根为0,求m 的值.19.(7分)已知关于x 的方程(k ﹣2)x 2﹣2x +1=0有两个实数根.(1)求k 的取值范围;(2)当k 取最大整数时,求此时方程的根.20.(7分)直播购物逐渐走进人们的生活.某电商在抖音上对一款标价为400元/件的商品进行直播销售,为了尽快减少库存,直播期间,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.求该种商品每次降价的百分率.21.(7分)2022年北京冬奥会吉祥物“冰墩墩”深受大家的喜爱.某特许零售店冰墩墩毛绒玩具的销售日益火爆.据统计,该店2021年10月的销量为3万件,2021年12月的销量为3.63万件.求该店冰墩墩毛绒玩具销量的月平均增长率.22.(8分)开展农技培训,实施人才强村战略,因地制宜采用新媒体手段远程指导生产,利用广播电视、微信公众号等开展农技培训.某地区加强了培训经费的投入,2020年投入3000万元,预计2022年投入4320万元.求该地区这两年投入培训经费的年平均增长率.23.(9分)已知关于x 的一元二次方程12x 2―mx +m ﹣5=0.(1)求证:此方程总有两个不相等的实数根;(2)若m 为整数,且此方程的两个根都是整数,写出一个满足条件的m 的值,并求此时方程的两个根.24.(9分)直播带货作为一种线上新型销售模式,绕过了经销商等传统中间渠道,实现产品和消费者的直接对接,小刚线上通过直播带货销售家乡的某种特产水果.已知这种水果的成本价为10元/千克,通过前几个周的销售他发现这种水果每周的销售量y (件)与销售单价x (元)之间的关系近似满足一次函数关系:y =﹣2x +80.(1)如果小刚本周将这种水果的售价定为16元/千克,那么本周他销售这种水果可获利多少?(2)如果小刚下周继续销售这种水果,是否能获得500元的利润?25.(9分)某花圃需要绿化的面积为52000米2,施工队在绿化了28000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中,如图有长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料造了宽为1米的两个小门,此时花圃的面积刚好为45米2,求此时花圃的长和宽.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B ; 2.A ; 3.D ; 4.B ; 5.D ; 6.D ; 7.C ; 8.A ; 9.B ; 10.B ;二、填空题(共5小题,满分15分,每小题3分)11.k ≠1; 12.2023; 13.2; 14.﹣5或7; 15.50(1﹣x )2=39;三、解答题(共10小题,满分75分)16.(1)∵x 2﹣2x ﹣15=0,∴(x ﹣5)(x +3)=0,∴x ﹣5=0或x +3=0,∴x 1=5,x 2=﹣3;(2)∵(x +4)2﹣5(x +4)=0,∴(x +4)(x +4﹣5)=0,∴x +4=0或x ﹣1=0,∴x 1=﹣4,x 2=1.17.解:(1)x 2﹣8x +1=0,∴x 2﹣8x +16=15,∴(x ﹣4)2=15,∴x ﹣4∴x 1=4+x 2=4―(2)x 2+2x ﹣3=0Δ=22﹣4×1×(﹣3)=16,∴x ∴x 1=1,x 2=﹣3.18.(1)证明:对关于x 的一元二次方程14x 2―(m ―1)x +(m 2―2m)=0,Δ=[﹣(m ﹣1)]2﹣4×14(m 2﹣2m )=m 2﹣2m +1﹣m 2+2m =1,∴Δ>0,∴对于任意实数m ,一元二次方程14x 2―(m ―1)x +(m 2―2m)=0总有两个不相等实数根;(2)解:如果此方程有一个根为0,则14×02﹣(m ﹣1)×0+(m 2﹣2m )=0,∴m 2﹣2m =0,解得m=0或m=2,答:m的值为0或2.19.解:(1)∵关于x的方程(k﹣2)x2﹣2x+1=0有两个实数根,∴k―2≠0Δ=(―2)2―4(k―2)×1≥0,解得k≤3且k≠2.(2)由题意得,k=3,当k=3时,方程为x2﹣2x+1=0,即(x﹣1)2=0,解得x1=x2=1.20.解:设该种商品每次降价的百分率为x,依题意得:400(1﹣x)2=324,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:该种商品每次降价的百分率为10%.21.解:设该店冰墩墩毛绒玩具销量的月平均增长率为x,依题意得:3(1+x)2=3.63,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:该店冰墩墩毛绒玩具销量的月平均增长率为10%.22.解:设该地区这两年投入培训经费的年平均增长率为m,依题意得:3000(1+m)2=4320,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该地区这两年投入培训经费的年平均增长率为20%.23.(1)证明:Δ=b2﹣4ac=(―m)2―4×12(m―5)=m2﹣2m+10=(m﹣1)2+9,∵(m﹣1)2≥0,∴(m﹣1)2+9>0,∴无论m取何值,方程总有两个不相等的实数根;(2)将m=1代入方程12x2―mx+m﹣5=0中,得(x﹣1)2=9,解得:x=4或﹣2.∴当m=1时,x的值为4或﹣2.24.解:(1)(16﹣10)×(﹣2×16+80)=(16﹣10)×(﹣32+80)=6×48=288(元).答:本周他销售这种水果可获利288元.(2)不能获得500元的利润,理由如下:依题意得:(x﹣10)(﹣2x+80)=500,整理得:x2﹣50x+650=0,∵Δ=(﹣50)x2﹣4×1×650=﹣100<0,∴该方程无实数根,∴不能获得500元的利润.25.解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:5200028000x―52000280001.5x=4,解得:x=2000,经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设花圃的宽度为x米,则BC=22+2﹣3x=24﹣3x,根据题意,得(24﹣3x)x=45,解得:x1=3,x2=5.∵当x=3时,24﹣3x=15>14,∴不符合题意,舍去.∴宽为5米,长为9米.答:花圃的长为9米,宽为5米.。
第一章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(内江中考)下列命题中,真命题是( C )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(西宁中考)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( D )A.5 B.4 C.342D.343.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是( C) A.AB=CD,AD=BC,AC=BD B.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BD D.∠A=∠B=90°,AC=BD,第2题图) ,第4题图) ,第5题图),第6题图)4.如图,两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中,不一定成立的是( D )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°5.(衡阳中考)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N 的坐标分别是( A )A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4) 6.(陕西中考)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于点M′、N′,则图中的全等三角形共有( C )A.2对B.3对C.4对D.5对7.(广东中考)如图,正方形ABCD的面积为1,则以相邻两边中点连接EF为边的正方形EFGH的周长为( B )A. 2 B.2 2 C.2+1 D.22+18.(葫芦岛中考)如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为( D )A.103B.4 C.4.5 D.5,第7题图) ,第8题图) ,第9题图) ,第10题图)9.(广州中考)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( A )A. 2 B.2 C. 6 D.2 210.(宜宾中考)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( A )A.4.8 B.5 C.6 D.7.2二、填空题(每小题3分,共18分)11.(成都中考)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为__33__.12.(青岛中考)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为__32__度.,第11题图) ,第12题图) ,第14题图) ,第16题图)13.(兰州中考)在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB ⊥OC;④AB=AD,且AC=BD.其中正确的序号是__①③④__.14.(江西中考)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF 的中点M、N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为__26__.15.(哈尔滨中考)在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为__5.5或0.5__.16.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长C n=__2n+1__.三、解答题(共72分)17.(6分)已知:如图,矩形ABCD中,AC与BD交于O点,若点E是AO的中点,点F是OD的中点.求证:BE=CF.证明:易证△OBE≌△OCF(SAS),∴BE=CF18.(7分)如图,菱形ABCD中,E是对角线AC上一点.(1)求证:△ABE≌△ADE;(2)若AB=AE,∠BAE=36°,求∠CDE的度数.(1)证明:易证△ABE≌△ADE(SAS);(2)解:∵AB =AE ,∠BAE =36°,∴∠AEB =∠ABE =180°-∠BAE2=72°,∵△ABE ≌△ADE ,∴∠AED =∠AEB =72°, ∵四边形ABCD 是菱形,∴AB ∥CD , ∴∠DCA =∠BAE =36°,∴∠CDE =∠AED -∠DCA =72°-36°=36°19.(7分)(贺州中考)如图,在四边形ABCD 中,AB =AD ,BD 平分∠ABC ,AC ⊥BD ,垂足为点O. (1)求证:四边形ABCD 是菱形;(2)若CD =3,BD =25,求四边形ABCD 的面积.(1)证明:易证△AOD ≌△COB(ASA ),∴AO =OC ,∵AC ⊥BD ,∴四边形ABCD 是菱形(2)解:∵四边形ABCD 是菱形,∴OD =12BD =5,∴OC =CD 2-OD 2=2,∴AC =2OC =4,∴S菱形ABCD=12AC ·BD =4 5 20.(7分)(上海中考)已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC.(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中,⎩⎪⎨⎪⎧AD =CD DE =DE EA =EC,∴△ADE ≌△CDE ,∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE=∠CBD ,∴∠CDE =∠CBD ,∴BC =CD ,∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形(2)∵BE =BC ,∴∠BCE =∠BEC ,∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180×22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形21.(7分)(遵义中考)如图,矩形ABCD 中,延长AB 至E ,延长CD 至F ,BE =DF ,连接EF ,与BC 、AD 分别相交于P 、Q 两点.(1)求证:CP =AQ ;(2)若BP =1,PQ =22,∠AEF =45°,求矩形ABCD 的面积.(1)证明:易证△CFP≌△AEQ(ASA),∴CP=AQ(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=2BP=2,∴EQ=PE+PQ=2+22=32,∴AQ=AE=3,∴AB=AE-BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB·AD=2×4=822.(8分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=40°,求当∠EBA为多少度时,四边形BFDE是正方形.(1)证明:易证△BAE≌△BCF(SAS)(2)解:若∠ABC=40°,则当∠EBA=25°时,四边形BFDE是正方形.理由如下:∵四边形ABCD是菱∠ABC=20°,∵AE=CF,∴OE=OF,∴四边形BFDE是平行四形,∴AC⊥BD,OA=OC,OB=OD,∠ABO=12边形,又∵AC⊥BD,∴四边形BFDE是菱形,∵∠EBA=25°,∴∠OBE=25°+20°=45°,∴△OBE是等腰直角三角形,∴OB=OE,∴BD=EF,∴菱形BFDE是正方形23.(8分)(云南中考)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=1AB=AE,Rt△ACD中,DF=21AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF 2是菱形(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49①,∵AD ⊥EF 于O ,∴Rt △AOE 中,AO 2+EO 2=AE 2,∴(12y)2+(12x)2=32,即x 2+y 2=36②,把②代入①,可得2xy =13,∴xy =132,∴菱形AEDF 的面积S =12xy =13424.(10分)(开江县期末)如图,已知正方形ABCD ,点E 是BC 上一点,以AE 为边作正方形AEFG. (1)求证:△ADG ≌△ABE ; (2)求证:∠FCN =45°;(3)请问在AB 边上是否存在一点Q ,使得四边形DQEF 是平行四边形?若存在,请证明;若不存在,请说明理由.证明:(1)∵四边形ABCD 和四边形AEFG 是正方形, ∴DA =BA ,EA =GA ,∴∠BAD =∠EAG =90°, ∴∠DAG =∠BAE ,∴△ADG ≌△ABE(2)过F 作BN 的垂线,设垂足为H ,∵∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,∴∠BAE =∠HEF ,∵AE =EF ,∴△ABE ≌△EHF ,∴AB =EH ,BE =FH ,∴AB =BC =EH ,∴BE +EC =EC +CH ,∴CH =BE =FH ,∴∠FCN =45°(3)在AB 上取AQ =BE ,连接QD ,∵AB =AD ,∴△DAQ ≌△ABE , ∵△ABE ≌△EHF ,∴△DAQ ≌△ABE ≌△ADG ,∴∠GAD =∠ADQ ,∴AG 、QD 平行且相等,又∵AG 、EF 平行且相等,∴QD 、EF 平行且相等,∴四边形DQEF 是平行四边形.∴在AB 边上存在一点Q ,使得四边形DQEF 是平行四边形25.(12分)(1)如图1,正方形ABCD 中,点P 为线段BC 上一个动点,若线段MN 垂直AP 于点E ,交线段AB 于M ,交线段CD 于N ,证明:AP =MN ;(2)如图2,正方形ABCD 中,点P 为线段BC 上一动点,若线段MN 垂直平分线段AP ,分别交AB 、AP 、BD 、DC 于点M 、E 、F 、N.求证:EF =ME +FN ;(3)若正方形ABCD 的边长为2,求线段EF 的最大值与最小值.(1)证明:过B 点作BH ∥MN 交CD 于H ,∵BM ∥NH ,BH ∥MN ,∴四边形MBHN 为平行四边形.∴BH =MN.∵MN ⊥AP ,∴∠BAP +∠ABH =90°.又∵∠ABH +∠CBH =90°,∴∠BAP =∠CBH.在△ABP 与△BCH 中,⎩⎪⎨⎪⎧∠BAP =∠CBHAB =BC∠ABP =∠BCH∴△ABP ≌△BCH.∴AP =BH.∴AP =MN (2)连接FA ,FP ,FC.∵正方形ABCD 是轴对称图形,F 为对角线BD 上一点,∴FA =FC.又∵FE 垂直平分AP ,∴FA =FP.∴FP =FC.∴∠FPC =∠FCP.∵∠FAB =∠FCP ,∴∠FAB =∠FPC.又∵∠FPC +∠FPB =180°,∴∠FAB +∠FPB =180°.∴∠ABC +∠AFP =180°.∴∠AFP =90°.∴FE =12AP.又∵AP =MN ,∴ME +EF+FN =AP.∴EF =ME +FN(3)由(2)有EF =12MN ,∵AC ,BD 是正方形的对角线,∴BD =2 2.当点P 和点B 重合时,EF 最小=12MN=12AB =1.当点P 和点C 重合时,EF 最大=12MN =12BD = 2。
九年级(上)第一章单元测试卷-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载九年级(上) 第一章单元测试卷一、选择题(每小题3分,共24分)1、如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是()A、锐角三角形B、钝角三角形C、直角三角形D、以上都有可能2、用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是()A、(1)(2)(5)B、(2)(3)(5)C、(1)(4)(5)D、(1)(2)(3)3、如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定∠ABE∠∠ACD 的是().A、AD=AEB、∠AEB=∠ADCC、BE=CDD、AB=AC(第3题图)(第6题图)(第8题图)4、在∠ABC中,AB=AC=3,BC=2,则S∠ABC等于()A、3B、2C、2D、35、若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为()A、75°或15°B、30°或60°C、75°D、30°6、如图,在等边∠ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=,则∠ABC的边长为()A、3B、4C、5D、67、两个顶角相等的等腰三角形框架,其中一个三角形框架的腰长为6,底边长为4,另一个三角形框架的底边长为2,则这个三角形框架的腰长为A、6B、4C、3D、28、某县政府准备为B、C两个村修建人畜饮水工程,取水点为A,已知AB=BC=AC,如图(1)、(2)、(3)的实线部分是三种不同的水管铺设线路设计方案,其中方案(3)的三段分别是∠BAC、∠ABC、∠BCA的平分线,设三种方案的水管长度分别是l1、l2、l3,则()A、l1>l2>l3B、l2>l1>l3C、l3>l2>l1D、l1>l3>l2二、填空题(每小题3分,共27分)9、∠ABC中,AB=AC,BD平分ABC交AC边于点D,∠BDC=75°,则∠A的度数为10、在∠ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于11、如图:∠ABC中,AD∠BC,CE∠AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使∠AEH∠∠CEB。
16年初三数学第一章测试题(人教版上册)想要学习进步,就要不停地对所学的知识勤加练习,因此查字典数学网为大家整理初三数学第一章测试题,供大家参考。
一、选择题(每小题5分,共25分)
1.反比例函数的图象大致是( )
2.如果函数y=kx-2(k0)的图象不经过第一象限,那么函数
的图象一定在
A.第一、二象限
B.第三、四象限
C.第一、三象限
D.第二、四象限
3. 如图,某个反比例函数的图像经过点P,则它的解析式为( )
A. B.
C. D.
4. 某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y
吨,人口数为x,则y与x之间的函数关系式的大致图像应为( )
5. 如果反比例函数的图像经过点(2,3),那么次函数的图像经过点( )
A.(-2,3)
B.(3,2)
C.(3,-2)
D.(-3,2)
二、填空题
6.已知点(1,-2)在反比例函数的图象上,则k= .
7.一个图象不经过第二、四象限的反比例函数的解析式为 .
8.已知反比例函数,补充一个条件:后,使得在该函数的图象所在象限内,y随x值的增大而减小.
9.近视眼镜的度数y与镜片焦距x(米)成反比例.已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x 之间的函数关系式是 .
10.如图,函数y=-kx(k0)与y=- 的图像交于A、B两点.过点
A作AC垂直于y轴,垂足为C,则△BOC的面积为 .
三、解答题(共50分)
11.(8分) 一定质量的氧气,其密度(kg/m,)是它的体积v (m,)的反比例函数.当V=10m3 时甲=1.43kg/m.
(1)求与v的函数关系式;(2)求当V=2m3时,氧气的密度.
12.(8分)已知圆柱的侧面积是6m2,若圆柱的底面半径为
x(cm),高为ycm ).
(1)写出y关于x的函数解析式;
(2)完成下列表格:
(3)在所给的平面直角坐标系中画出y关于x的函数图像.
13.(l0分)在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例.当电阻R=5欧姆时,电流 I=2安培. (l)求I与R之间的函数关系式;
(2)当电流I= 0.5 安培时,求电阻R的值;
(3)如果电路中用电器的可变电阻逐渐增大,那么电路中的电流将如何变化?
(4)如果电路中用电器限制电流不得超过10安培,那么用电器的可变电阻应控制在什么范围内?
14. (12分)某蓄水池的排水管每小时排水飞12m3, 8h可将满池水全部排空.
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每小时的排水量达到x(m3),那么将满池水排空所需的时间y(h)将如何变化?
(3)写出y与x之间的关系式;
(4)如果准备在6h内将满池水排空,那么每小时的排水量至少为多少?
(5)已知排水管每小时的最大排水量为24m3,那么最少多长时间可将满池水全部排空?
15.(12分) 反比例函数和一次函数y=mx+n的图象的一个交点A(-3,4),且一次函数的图像与x轴的交点到原点的距离为5.
(1)分别确定反比例函数与一次函数的解析式;
(2)设一次函数与反比例函数图像的另一个交点为B ,试判断AOB(点O为平面直角坐标系原点)是锐角、直角还是钝角?并简单说明理由.
上文为大家整理的初三数学第一章测试题大家仔细阅读了吗?更多相关内容尽在查字典数学网。