传热系数计算方法
- 格式:docx
- 大小:378.90 KB
- 文档页数:54
传热系数k的计算公式传热是物质内部或物质之间的热量传递过程,是热力学中的重要概念。
在工程领域中,传热是一个非常重要的问题,因为它涉及到许多工程应用,如热交换器、锅炉、冷却塔等。
传热系数k是一个重要的参数,它描述了热量在物质中的传递速率。
本文将介绍传热系数k的计算公式及其应用。
传热系数k的定义传热系数k是一个描述热量传递速率的参数,它表示单位时间内单位面积上的热量传递量与温度差之比。
传热系数k的单位是W/(m2·K),其中W表示热量,m2表示面积,K表示温度。
传热系数k越大,热量传递速率越快。
传热系数k的计算公式传热系数k的计算公式是:k = Q/(A×ΔT)其中,Q表示单位时间内传递的热量,A表示传热面积,ΔT表示温度差。
传热系数k的计算公式可以用于各种传热过程的计算,如对流传热、辐射传热和传导传热。
对流传热的传热系数k计算公式对流传热是指热量通过流体的传递过程。
对流传热的传热系数k可以通过下面的公式计算:k = h×L其中,h表示对流传热系数,L表示传热长度。
对流传热系数h是一个描述流体内部传热速率的参数,它表示单位时间内单位面积上的热量传递量与温度差之比。
对流传热系数h的单位是W/(m2·K),其中W表示热量,m2表示面积,K表示温度。
传热长度L是指热量传递的距离。
辐射传热的传热系数k计算公式辐射传热是指热量通过辐射的传递过程。
辐射传热的传热系数k可以通过下面的公式计算:k = εσ(T1+T2)(T1^2+T2^2)其中,ε表示辐射率,σ表示斯特藩-玻尔兹曼常数,T1和T2分别表示两个物体的温度。
辐射率ε是一个描述物体辐射能力的参数,它表示单位时间内单位面积上的辐射能量与温度差之比。
斯特藩-玻尔兹曼常数σ是一个物理常数,它表示单位时间内单位面积上的辐射能量与温度差的四次方之比。
传导传热的传热系数k计算公式传导传热是指热量通过物质内部的传递过程。
传导传热的传热系数k可以通过下面的公式计算:k = λA/L其中,λ表示热导率,A表示传热面积,L表示传热长度。
一、计算公式如下
1、围护结构热阻的计算
单层结构热阻
R=δ/λ
式中:δ—材料层厚度(m)
λ—材料导热系数[W/(m.k)]
多层结构热阻
R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m2.k/w)δ1、δ2、---δn—各层材料厚度(m)
λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻
R0=Ri+R+Re
式中: Ri —内表面换热阻(m2.k/w)(一般取0.11) Re—外表面换热阻(m2.k/w)(一般取0.04) R —围护结构热阻(m2.k/w)
3、围护结构传热系数计算
K=1/ R0
式中: R0—围护结构传热阻
外墙受周边热桥影响条件下,其平均传热系数的计算
Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:
Km—外墙的平均传热系数[W/(m2.k)]
Kp—外墙主体部位传热系数[W/(m2.k)]
Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m2.k)]
Fp—外墙主体部位的面积
Fb1、Fb2、Fb3—外墙周边热桥部位的面积。
热工计算公式及参数热工计算是指通过一系列公式和参数来计算热量、功率、效率等热力学参数的过程。
热工计算在工程设计、能源管理和热力学研究等领域起着重要的作用。
本文将介绍一些常用的热工计算公式和参数。
1.热功率计算公式:热功率(Q)是表示单位时间内传输的热量的物理量。
常用的热功率计算公式如下:Q=m×c×ΔT其中,Q表示热功率,m表示物体的质量,c表示物体的比热容,ΔT表示物体的温度变化。
2.传热系数计算公式:传热系数(k)是表示单位时间内在单位面积上传输的热量的物理量。
常用的传热系数计算公式如下:k=Q/(A×ΔT)其中,k表示传热系数,Q表示传输的热量,A表示传热面积,ΔT表示温度差。
3.热效率计算公式:热效率(η)是指燃烧设备、热交换设备或热动力系统中实际产生的热量与理论上可能产生的最大热量之比。
常用的热效率计算公式如下:η=(实际产生的热量/理论可能产生的最大热量)×100%4.压力与体积关系公式:热工系统中的工质一般按照多种状态方程进行描述,其中最常用的是理想气体状态方程:PV=nRT其中,P表示压力,V表示体积,n表示物质的摩尔数,R表示气体常数,T表示温度。
5.比容与温度关系公式:比容(v)是指单位质量的物质占据的体积。
对于理想气体,比容与温度的关系可以用热力学公式来表示:v=(R×T)/P其中,v表示比容,R表示气体常数,T表示温度,P表示压力。
6.热辐射传热计算公式:热辐射传热是指两个物体之间通过热辐射方式传输热量的过程。
常用的热辐射传热计算公式如下:Q=ε×σ×A×(T1^4-T2^4)其中,Q表示传输的热量,ε表示发射率,σ表示热辐射常数,A表示辐射面积,T1和T2分别表示两个物体的温度。
7.热导率计算公式:热导率(λ)是指单位时间内通过单位厚度、单位面积的热流量。
常用的热导率计算公式如下:λ=(Q×L)/(A×ΔT)其中,λ表示热导率,Q表示传输的热量,L表示传热路径的长度,A表示传热的面积,ΔT表示温度差。
传热系数计算公式传热系数(heat transfer coefficient)是指单位时间内通过单位面积的热量传递量与传热温差之比,它是描述传热性能的一个重要参数。
传热系数的计算公式根据传热模式的不同而有所区别,下面将介绍几种常见的传热模式以及相应的传热系数计算公式。
1.对流传热:对流传热是指流体与固体界面之间的热量传递。
对流传热系数的计算公式常用的有:- 强制对流 (forced convection):强制对流是指通过外部力量将流体强制对流,比如流体在管内流动、气体通过风扇增加流动速度等。
强制对流传热系数可由下式表示:h=Nu×k/d其中,h表示传热系数,Nu表示Nusselt数,k表示流体的热传导率,d表示流体流动路径的特征长度。
- 自然对流 (natural convection):自然对流是指无外部力量参与的情况下,流体的密度梯度引起流动。
对于自然对流,传热系数的计算公式可由下式表示:h=Nu×k/L其中,h表示传热系数,Nu表示Nusselt数,k表示流体的热传导率,L表示体积的特征长度。
这里的Nu值可以通过实验或者经验关联公式来计算。
2. 导热传热(conduction heat transfer):导热传热是指通过固体内部的分子热传导完成的热量传递。
在导热传热中,传热系数可以通过傅里叶热传导定律来计算:q=-k×A×∇T/d其中,q表示单位时间内通过单位面积的热量传递量,k表示固体的热传导率,A表示传热面积,∇T表示温度梯度,d表示固体的厚度。
3. 辐射传热(radiation heat transfer):辐射传热是指通过电磁波辐射完成的热量传递。
辐射传热系数的计算公式比较复杂,其中一个常用的经验公式是斯特藩-玻尔兹曼定律:q=ε×σ×A×(T1^4-T2^4)其中,q表示单位时间内通过单位面积的热量传递量,ε表示物体的辐射率,σ为斯特藩-玻尔兹曼常数(约为 5.67×10^-8W/(m^2·K^4)),A表示传热面积,T1和T2分别表示物体的温度。
常见墙壁传热系数计算值本文将介绍常见墙壁传热系数的计算方法。
传热系数是描述材料导热性能的重要参数,对于建筑中墙壁的隔热设计至关重要。
常见墙壁结构常见的墙壁结构包括砖墙、混凝土墙、外墙保温系统等。
不同结构的墙壁由于材料的不同,其传热系数也会有所差异。
传热系数计算方法墙壁的传热系数可以通过以下公式计算:\[U = \frac{1}{R}\]其中,\(U\) 是传热系数,\(R\) 是热阻。
对于不同的墙壁结构,热阻可以通过以下公式计算:1. 对于砖墙:\[R = \frac{1}{h_1} + \frac{t_1}{\lambda_1} + \frac{1}{h_2} \]其中,\(h_1\) 是室内换热系数,\(t_1\) 是砖墙厚度,\(\lambda_1\) 是砖的热导率,\(h_2\) 是室外换热系数。
2. 对于混凝土墙:\[R = \frac{1}{h_1} + \frac{t_1}{\lambda_1} +\frac{t_2}{\lambda_2} + \frac{1}{h_2}\]其中,\(h_1\) 是室内换热系数,\(t_1\) 是混凝土墙厚度,\(\lambda_1\) 是混凝土的热导率,\(t_2\) 是保温层厚度,\(\lambda_2\) 是保温材料的热导率,\(h_2\) 是室外换热系数。
3. 对于外墙保温系统:\[R = \frac{1}{h_1} + \frac{t_1}{\lambda_1} +\frac{t_2}{\lambda_2} + \frac{t_3}{\lambda_3} + \frac{1}{h_2} \]其中,\(h_1\) 是室内换热系数,\(t_1\) 是保温层厚度,\(\lambda_1\) 是保温材料的热导率,\(t_2\) 是保护层厚度,\(\lambda_2\) 是保护材料的热导率,\(t_3\) 是外墙厚度,\(\lambda_3\) 是外墙材料的热导率,\(h_2\) 是室外换热系数。
传热系数K值计算传热系数(K值)是描述物体传热性能的一个参数,表示单位时间内单位面积上的热量传递量与温度差之间的比值。
在工程和科学研究中,计算传热系数是非常重要的。
本文将介绍传热系数(K值)的计算方法及其应用。
传热系数的计算方法通常有实验方法和理论方法。
实验方法是通过实验测量得到传热系数,常用的实验方法包括热平衡法、加热丝法、测定空气对流传热系数的干球温度法等。
热平衡法是一种常用的实验方法,该方法通过在被测物体表面加热,测量加热后物体表面的温度变化来计算传热系数。
具体步骤如下:1.在被测物体的表面用加热器加热,并测量加热器表面的温度变化;2.同时,在被测物体的表面用温度计测量温度变化;3.通过测量数据计算传热系数。
理论方法是通过数学模型来计算传热系数。
常用的理论方法包括对流传热模型、传热方程等。
对于常见的传热问题,可以使用理论模型来计算传热系数。
对于对流传热问题,可以使用对流传热模型来计算传热系数。
对流传热系数与流体的性质(如动力粘度、密度等)相关,一般通过测量流体的性质以及流体流动速度、温度等来计算对流传热系数。
传热系数的计算还与传热方式有关,常见的传热方式包括导热、对流传热和辐射传热。
导热系数是描述固体导热性能的参数,可以通过实验测量得到。
对流传热系数是描述流体流动过程中热量传递性能的参数,可以通过实验或理论模型计算得到。
辐射传热系数是描述热辐射传导过程中热量传递性能的参数,可以通过实验测量得到。
传热系数的计算还与被测物体的形状和表面状态有关。
通常情况下,平整的表面上的传热系数比粗糙表面上的传热系数要大,这是因为平整表面上的气体流动速度较大。
在实际工程中,传热系数的计算是非常重要的。
正确认识和计算传热系数对于工程设计和优化具有重要的意义。
基于传热系数的计算结果,可以进行材料的选择和设计优化。
比如,在建筑设计中,正确计算建筑外墙的传热系数有助于提高建筑的节能性能;在化工过程设计中,合理确定传热系数能够优化设备的传热效果。
传热系数计算散热器是一种热交换器,其热工计算的基本公式为传热方程式,其表达式为:Ф=KAΔt m(6-1)Ф为传热量单位:WK为传热系数单位:W/(m2·℃)A 为传热面积单位:㎡Δt m为冷热流体间的对数平均温差单位:℃从《车辆冷却传热》[4]上可知,以散热器空气侧表面为计算基础,散热器传热系数计算公式为:K=(β/h1+(β×λ管) +(1/η0×h2)+ R f)-1(6-2)式中:β为肋化系数,其等于空气侧所有表面积之和/水侧换热面积h1为水侧表面传热系数单位:W/(m2·℃)h2为空气侧表面传热系数单位:W/(m2·℃)λ管为散热管材料导热系数单位:W/(m2·℃)R f为散热器水侧和空气侧的总热阻单位:(m2·℃)/Wη0为肋壁总效率,其表达式为:η0=1-(×(1-ηf))/A2(6-3)A22为空气侧二次换热面积,单位:㎡A2 为空气侧所有表面积之和,单位:㎡ηf为肋片效率ηf=th(m×h f)/ (m×h f)(6-4)th为双曲线函数h f为散热带的特性尺寸,即散热管一侧的肋片高度m为散热带参数,表达式为:m=((2×h2)/(δ2×λ2))0.5 (6-5)h2为空气侧传热系数单位:W/(m2·℃)δ2为散热带壁厚单位:mλ2为散热带材料导热系数单位:W/(m2·℃)从《传热学》上可知,表面传热系数h的公式为:h= Nu×/de 单位:W/(m2·℃) (6-6)λ为流体的热导率,对散热器,即为空气热导率de为换热面的特性尺度,对散热器,求气侧换热系数时,因空气外掠散热管,故特性尺度为散热管外壁的当量直径, 单位m由《传热学》[2]中外掠管束换热实验知,流体横掠管束时,对其第一排管子来说,换热情况与横掠但管相仿。
Nu m=C×Re (6-7) 式中C、为常数,数值见《传热学》[3]表5.2Re=Va×de/νa (6-8)Va 为空气流速单位m/sνa为空气运动粘度单位m2/s。
传热系数计算方法传热系数是指单位时间内传热量与单位面积温度差之比。
传热系数的计算可以通过多种方法进行,以下是几种常用的传热系数计算方法。
1.解析方法:解析方法是指通过分析传热过程的数学方程,推导出传热系数的解析表达式。
常见的解析方法有无限平板传热、层流传热、辐射传热等。
以无限平板传热为例,可以通过傅里叶传热定律推导出传热系数的表达式。
2.经验公式法:经验公式法是指通过大量实验数据,总结出统计规律,建立经验公式来计算传热系数。
经验公式法一般适用于已有的传热现象和材料。
例如,对于对流传热,可以使用劳森公式、普拉斯特公式等进行计算。
3.实验测定法:实验测定法是指通过实验手段来测量传热系数。
常用的实验方法有传热管法、平板传热法、圆柱传热法等。
在实验过程中,通过测量传热介质的温度和流量等参数,可以计算出传热系数。
4.数值计算法:数值计算法是指利用计算机进行传热过程的数值模拟,并通过模拟结果计算传热系数。
数值计算法包括有限元法、有限差分法、计算流体力学等。
这些方法可以模拟各种传热过程,具有较高的精度和计算效率。
在实际应用中,根据传热过程的特点和数据的可获得性,可以选择适合的传热系数计算方法。
需要注意的是,不同的传热过程和材料具有不同的特性,选择合适的方法是确保计算结果准确性的重要保证。
需要注意的是,传热系数的计算一般是在温度差稳定条件下进行的。
对于非稳态传热过程,需要进行额外的分析和计算。
总而言之,传热系数是传热过程的重要指标之一,通过合适的方法计算传热系数,可以帮助我们更好地理解和优化传热过程,提高能源利用效率。
围护结构平均传热系数计算公式标签:围护结构热阻的计算围护结构的传热阻围护结构传热系数计算一、计算公式如下1、围护结构热阻的计算单层结构热阻R=δ/λ式中:δ—材料层厚度(m)λ—材料导热系数[W/(m.k)]多层结构热阻R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn式中: R1、R2、---Rn—各层材料热阻(m2.k/w)δ1、δ2、---δn—各层材料厚度(m)λ1、λ2、---λn—各层材料导热系数[W/(m.k)]2、围护结构的传热阻R 0=Ri+R+Re式中: Ri—内表面换热阻(m2.k/w)(一般取0.11)Re—外表面换热阻(m2.k/w)(一般取0.04) R —围护结构热阻(m2.k/w)3、围护结构传热系数计算K=1/ R式中: R—围护结构传热阻外墙受周边热桥影响条件下,其平均传热系数的计算K m =(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3)/( Fp+ Fb1+Fb2+Fb3)式中: K m —外墙的平均传热系数[W/(m 2.k )] K p —外墙主体部位传热系数[W/(m 2.k )] K b1、K b2、K b3—外墙周边热桥部位的传热系数[W/(m 2.k )] F p —外墙主体部位的面积 F b1、F b2、F b3—外墙周边热桥部位的面积传热系数=1/(1/导热系数/材料厚度)+0.15。
导热系数传热系数热阻值概念及热工计算方法简述实用版)导热系数(thermal conductivity)是指材料在单位厚度下,单位横截面积上,单位温度梯度下导热流通过的热量。
它是材料传热性能的一个重要物理参数,用来描述材料导热的能力,单位为W/(m·K)。
传热系数(heat transfer coefficient)是指在单位时间内,单位面积上的热量传递速率和温度差之比。
传热系数是决定传热效果的关键参数,既包括传热介质的传热性能,也包括传热表面的影响。
传热系数取决于传热介质、传热表面的性质以及流体运动状态等因素,单位为W/(m²·K)。
热阻值(thermal resistance)是指导热性能中的阻力,是指导热系数与材料厚度之比。
热阻值越大,材料的导热能力越差,热阻值的倒数即为热传递系数。
热阻值用于描述传热材料、传热介质或传热结构的阻碍传热的能力,单位为m²·K/W。
在热工计算中,一般采用以下方法进行计算:1.导热系数的计算方法:-实验法:通过实验测量材料在恒定温度下的导热流量和温度梯度,计算出导热系数。
-经验法:根据材料的化学成分和结构特点,通过经验公式计算导热系数。
-理论法:根据材料的微观结构和热力学性质,运用统计物理学或分子动力学方法计算导热系数。
2.传热系数的计算方法:-实验法:通过实验测量传热介质上的温度变化和热流量,计算出传热系数。
-经验法:根据传热界面状态、流体性质和运动状态等因素,通过经验公式计算传热系数。
-理论法:根据传热介质、传热表面和流体的性质,运用传热学的基本原理和方程计算传热系数。
3.热阻值的计算方法:-单层材料的热阻值计算:将材料的导热系数与材料厚度相除即可。
-多层材料的热阻值计算:将每一层材料的热阻值相加,得到整个材料的热阻值。
-热阻值的加和法则:当多个材料层相连时,计算每个材料层的热阻值,再将热阻值加和。
当多个材料层并联时,计算每个材料层的热导率的倒数,再将倒数加和后再取倒数。
传热系数计算案例传热系数是描述热传导能力的物理量,是热传导过程的重要参数。
在工程领域中,准确地计算传热系数对于制定合理的工艺和设计方案至关重要。
下面以具体案例来说明传热系数的计算方法。
案例:工厂的生产车间内部需要供应恒定温度的空气。
假设车间内外温度差为20°C,车间内墙体材料为陶瓷砖(导热系数为0.8 W/(m·K)),厚度为10 cm,而车间外为自然通风状态。
首先,我们需要明确热传导的计算公式:Q=k·A·(T2-T1)/d其中,Q表示热传导的热流量,单位是瓦特(W);k表示材料的导热系数,单位是瓦特/(米·开尔文);A表示热传导的面积,单位是平方米(m^2);T2和T1分别表示两侧的温度,单位是开尔文(K);d表示热传导的距离,单位是米(m)。
上述案例中,我们需要计算车间内外墙体的传热系数。
首先,我们计算车间内侧墙体的传热系数。
根据该题目的描述,车间内外温度差为20°C,而车间内墙体材料为陶瓷砖(导热系数为0.8W/(m·K)),厚度为10 cm,则计算公式为:Q_in = k_in · A_in · (T_in - T_out) / d_in其中,Q_in表示车间内侧墙体的热传导热流量;k_in表示车间内侧墙体材料的导热系数;A_in表示车间内侧墙体的面积;T_in表示车间内侧墙体的温度;T_out表示车间外墙体的温度;d_in表示车间内侧墙体的厚度。
在此案例中,我们需要计算车间内侧墙体的传热系数。
假设车间内外墙体都是正方形,则车间内侧墙体的面积为:A_in = length × width其中,length和width分别表示车间内侧墙体的长度和宽度。
分别取length = 4 m,width = 3 m,则车间内侧墙体的面积为:A_in = 4 m × 3 m = 12 m^2代入题目数据,计算车间内侧墙体的传热系数:Q_in = 0.8 W/(m·K) × 12 m^2 × (T_in - T_out) / (10 cm)接下来,我们计算车间外侧墙体的传热系数。
传热系数计算公式传热系数是指单位时间内,单位面积的热量与温度差之间的比值。
它描述了物体传热的快慢程度,是传热过程的重要参数。
根据传热形式的不同,传热系数有不同的计算公式。
当传热方式是传导传热时,我们可以使用傅立叶定律计算传热系数。
傅立叶定律表示,通过单位面积传导的热量与温度梯度之间成正比,可以表示为:q = -kA(dT/dx)其中,q表示单位时间内传导的热量,k表示传导热系数,A表示传热面积,(dT/dx)表示温度梯度。
传导热系数k可以通过实验测量得到,也可以通过材料的性质计算得到。
当传热方式是对流传热时,我们可以使用庙卡定律计算传热系数。
庙卡定律表示,对流传热的热流密度与温度差之间成正比,可以表示为:q=hAΔT其中,q表示单位时间内传导的热量,h表示对流传热系数,A表示传热面积,ΔT表示温度差。
对流传热系数h可以通过实验测量得到,也可以通过流体的性质和流动情况计算得到。
对于辐射传热方式,我们可以使用斯特藩-玻尔兹曼定律计算传热系数。
斯特藩-玻尔兹曼定律表示,辐射传热的热流密度与温度之间成正比,可以表示为:q=εσA(T1^4-T2^4)其中,q表示单位时间内传导的热量,ε表示表面发射率,σ表示斯特藩-玻尔兹曼常数,A表示传热面积,T1和T2分别表示辐射体和接受体的温度。
表面发射率ε可以通过表面的材料性质计算得到。
总的来说,传热系数的计算公式和传热方式有关。
一般情况下,物体传热的方式是由传导、对流和辐射三种方式共同作用,因此传热系数是这三种传热系数的总和:h总=h传导+h对流+h辐射其中h传导、h对流和h辐射分别表示传导、对流和辐射传热系数。
在实际应用中,为了保持传热系数的连续性,可以通过换热系数来表示总的传热能力。
传热系数的计算是热力学和传热学中的重要内容,它影响着热工设备和系统的设计和运行。
通过合理地计算传热系数,可以提高热工设备的传热效率,减少能源损失,提高能源利用率。
因此,准确计算传热系数对于工程实际具有重要意义。
传热系数计算公式
传热系数计算公式
一、计算公式如下
1、围护结构热阻的计算
单层结构热阻
R=δ/ λ
式中:δ—材料层厚度( m)
λ—材料导热系数 [W/(m.k)]
多层结构热阻
R=R1+R2+---- Rn=δ1/ λ1+δ2/ λ2+ ---- +δn/ λn 式中: R1、 R2、---Rn —各层材料热阻( m2.k/w)
δ1 、δ2 、 ---δn—各层材料厚度( m)
λ1 、λ2 、 ---λn—各层材料导热系数 [W/(m.k)] 2、围护结构的传热阻
R0=Ri+R+Re
式中: Ri —内表面换热阻( m2.k/w)(一般取 0.11)Re—外表面换热阻( m2.k/w)(一般取 0.04)
R —围护结构热阻( m2.k/w)
3、围护结构传热系数计算
K=1/ R0
式中: R0 —围护结构传热阻
外墙受周边热桥影响条件下,其平均传热系数的计算
Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3)
式中:
Km—外墙的平均传热系数 [W/(m2.k) ]
Kp—外墙主体部位传热系数 [W/( m2.k)]
Kb1、Kb2、 Kb3—外墙周边热桥部位的传热系数 [W/( m2.k)] Fp—外墙主体部位的面积
Fb1、 Fb2、Fb3—外墙周边热桥部位的面积。
传热系数计算公式 Revised as of 23 November 2020
一、计算公式如下
1、围护结构热阻的计算?
单层结构热阻?
R=δ/λ?
式中:δ—材料层厚度(m)
λ—材料导热系数[W/]
多层结构热阻?
R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn?式中:
R1、R2、---Rn—各层材料热阻(w)
δ1、δ2、---δn—各层材料厚度(m)
λ1、λ2、---λn—各层材料导热系数[W/]
2、围护结构的传热阻?
R0=Ri+R+Re?
式中:Ri—内表面换热阻(w)(一般取)Re—外表面换热阻(w)(一般取)R—围护结构热阻(w)
3、围护结构传热系数计算?
K=1/R0
式中:R0—围护结构传热阻
外墙受周边热桥影响条件下,其平均传热系数的计算? Km=(KpFp+Kb1Fb1+Kb2Fb2+Kb3Fb3)/(Fp+Fb1+Fb2+Fb3) 式中:
Km—外墙的平均传热系数[W/()]
Kp—外墙主体部位传热系数[W/()]
Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/()]
Fp—外墙主体部位的面积?
Fb1、Fb2、Fb3—外墙周边热桥部位的面积?。
传热系数的计算
1. 对流传热系数的计算
对流传热系数主要取决于流体的性质、流动状态和物体的几何形状。
对于强制对流,常采用经验相关公式计算对流传热系数,如著名的牛顿公式。
对于自然对流,则可使用相似理论推导出的无因次相关公式。
2. 导热传热系数的计算
导热传热系数主要取决于固体材料的导热性能。
对于一维稳态导热,可根据傅里叶定律计算导热传热系数。
对于复杂的几何形状和非稳态情况,则需要采用数值计算方法求解。
3. 辐射传热系数的计算
辐射传热系数与物体的表面性质和温度有关。
通常可根据斯蒂芬-波尔兹曼定律计算辐射传热系数。
对于复杂的几何形状和环境,则需要考虑视因子的影响。
4. 综合传热系数的计算
在实际传热过程中,往往同时存在对流、导热和辐射等多种传热方式。
这种情况下需要综合考虑各种传热方式,计算总的传热系数。
传热系数的准确计算对于设计和优化传热设备、评估传热性能等具有重要意义。
同时,传热系数的计算也是传热学研究的一个重要内容。
传热系数计算范文传热系数是指单位时间内,在单位面积上,温度差别为单位温差时,通过单位面积的热量。
它是衡量传热能力的一个重要指标,用于描述物体之间的热量传递速率。
传热系数的计算涉及到各种传热过程,包括传导、对流和辐射。
在不同传热方式下,传热系数的计算方法各不相同。
1.传导热传输方式下的传热系数计算:传导热传输是通过材料内部的分子振动和碰撞来传递热量的过程。
传导热传输的传热系数计算可以使用著名的傅立叶热传导定律,即引导功率密度和温度梯度之间的关系。
传热系数=热导率/传热距离其中,热导率是材料的物理性质,描述了该材料传导热量的能力;传热距离是热量传递的距离。
2.对流热传输方式下的传热系数计算:对流热传输是通过流体的对流传递热量的过程,流体可以是气体或液体。
对流传热系数的计算需要考虑流体的速度、密度、粘度以及流体和固体的表面性质等因素。
流体对流传热系数=传热系数表达式传热系数表达式是由实验数据和流体特性参数计算得出,具体形式可根据具体的热传输问题进行选择,例如努塞尔数关系式、湍流对流传热关系式等。
3.辐射热传输方式下的传热系数计算:辐射热传输是通过电磁波的辐射传递热量的过程,不需要介质的存在。
辐射传热系数的计算是根据斯特藩-玻尔兹曼定律来进行的。
辐射传热系数=艾米塔尼常数*辐射率*(温度的四次方-环境温度的四次方)其中,艾米塔尼常数是一个经验参数,辐射率是物体表面辐射的能量占总能量的比例,温度是物体表面的温度,环境温度是周围环境的温度。
总之,传热系数的计算需要根据具体传热方式和参数来进行选择。
传热系数的准确计算可以帮助我们理解热传输的机理,优化传热设备的设计,并提高能源利用效率。
传热系数间接反映了不同材料之间热传递的能力空调工程上的K值计算对于空调工程上常采用的换热器而言,如果不考虑其他附加热阻,传热系数K值可以按照如下计算:K=1/(1/Aw+δ/λ+1/An) W/(㎡·°C)其中,An,Aw——内、外表面热交换系数,W/(㎡·°C)δ——管壁厚度,mλ——管壁导热系数,W/(m·°C)传热系数以往称总传热系数。
国家现行标准规范统一定名为传热系数。
传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1s通过1平方米面积传递的热量,单位是瓦/平方米·度(W/㎡·K,此处K可用℃代替)。
计算公式1、围护结构热阻的计算单层结构热阻R=δ/λ A (K/w)式中:δ—材料层厚度(m)λ—材料导热系数[W/(m.k)]多层结构热阻A—平壁的面积,m2R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn式中: R1、R2、---Rn—各层材料热阻(m2.k/w)δ1、δ2、---δn—各层材料厚度(m)λ1、λ2、---λn—各层材料导热系数[W/(m.k)]2、围护结构的传热阻R0=Ri+R+Re式中: Ri —内表面换热阻(m2.k/w)(一般取0.11)Re—外表面换热阻(m2.k/w)(一般取0.04)R —围护结构热阻(m2.k/w)3、围护结构传热系数计算K=1/ R0 (w/(m2.k))式中: R0—围护结构传热阻外墙受周边热桥影响条件下,其平均传热系数的计算Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3)式中:Km—外墙的平均传热系数[W/(m2.k)]Kp—外墙主体部位传热系数[W/(m2.k)]Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m2.k)]Fp—外墙主体部位的面积Fb1、Fb2、Fb3—外墙周边热桥部位的面积4、铝合金门窗的传热系数的计算Uw =(Af*Uf+Ag*Ug+Lg*Ψg)/(Af+Ag)式中:Uw —整窗的传热系数W/m2·KUg —玻璃的传热系数W/m2·KAg —玻璃的面积 m2Uf —型材的传热系数W/m2·KAf —型材的面积 m2Lg —玻璃的周长 mΨg —玻璃周边的线性传热系数W/m2·K。
传热系数计算!!传热系数是描述热量在单位时间和单位面积上从一个物体传递到另一个物体的能力。
在工程领域中,准确计算传热系数对于热设计和能量消耗的预测具有重要意义。
本文将以传热系数计算方法为中心,介绍几种常用且比较实用的计算方法。
传热系数常用的计算方法主要有经验公式法、理论法和实验法。
1.经验公式法:经验公式法是一种基于实际情况积累而形成的计算方法。
这些公式一般基于大量实验数据的统计结果,可以提供相对准确的传热系数计算值。
常用的经验公式法有:-定对数平均温差法:传热系数=Q/(S*(θ1-θ2))其中,Q为传热量,S为传热面积,θ1和θ2为两个接触表面的温度。
- Nusselt数法:传热系数= Nu * λ / L其中,Nu为Nusselt数,λ为流体的热导率,L为特征长度。
2.理论法:理论法是通过建立传热机理的数学模型,来计算传热系数。
这种方法一般需要对传热过程的基本原理和条件进行深入理解。
常用的理论法有:-边界层理论:根据边界层理论的分析,可以计算传热系数。
-热传导方程:通过解热传导方程,可以获得传热系数的计算结果。
3.实验法:实验法是通过实验来测量传热系数。
这种方法通常需要在特定的条件下进行实验,并测量传热量和相关参数,从而得到传热系数。
-热电偶法:通过测量物体表面的温度差,并计算传热系数。
-流体模型法:通过测量流体中的速度、温度等参数,可以得到传热系数的估算结果。
除了以上常用的计算方法,还可以利用计算机进行传热系数的自动计算。
计算机模拟可以基于各种传热模型和方程进行,通过数值计算得到传热系数的准确结果。
这种方法具有高精度和高效率的优点,特别适用于复杂的传热问题。
总结来说,在传热系数的计算中,经验公式法、理论法和实验法都是比较实用的方法。
根据具体问题的不同,选择合适的计算方法进行传热系数的估算是十分重要的。
此外,计算机模拟方法也是现代科技的发展趋势之一,可以有效地提高计算精度和工作效率。
中空玻璃6+6a+6的传热系数计算方法幕墙中空玻璃传热系数计算方法如下:1.公式P r=μc /λ式中μ——动态黏度,取1.761×10-5kg/(m?s);c——比热容,空气取1.008×103J/(kg?K)、氩气取0.519×103J/(kg?K);λ——导热系数,空气取2.496×10-2W/(m?K)、氩气取1.684×10-2W/(m?K)。
G r=9.81s 3ΔTρ2/Tmμ2式中s——中空玻璃的气层厚度(m);ΔT ——外片玻璃表面温差,取15K;ρ——密度,空气取1.232kg/m3、氩气取1.669 kg/m3;T m——玻璃的平均温度,取283K;μ——动态黏度,空气取1.761×10-5kg/(m?s)、氩气取2.164×10-5kg/(m?s)。
N u= 0.035(G r Pr)0.38,如计算结果Nu<1,取Nu=1。
H g= N u λ/s W/(m2?K)H T =4ζ(1/ε1+1/ε2-1)-1×Tm 3式中ζ——常数,取5.67×10-8 W/(m2?K4);ε1 ——外片玻璃表面的校正辐射率;ε2 ——内片玻璃表面的校正辐射率;ε1、ε2取值:普通透明玻璃ην>15% 0.837 (GB/T2680表4)真空磁控溅射镀膜玻璃ην≤15% 0.45 (GB/T2680表4)ην>15% 0.70 (GB/T2680表4)LOW-E镀膜玻璃ην>15% 应由试验取得,如无试验资料时可取0.09~0.115。
h s = h g + h T1/h t=1/h s+δ/ r1式中δ——两片玻璃总厚度;r1——玻璃热阻,取1(m?K)/W。
1/U=1/h e +1/h i+1/h t式中h e——玻璃外表面换热系数,取23(19)W/(m2?K);h i——玻璃内表面换热系数,取8(8.7)W/(m2?K)。