人工神经网络应用实例资料
- 格式:ppt
- 大小:202.01 KB
- 文档页数:243
神经网络的实际应用举例神经网络是模拟人类神经系统机制的计算模型。
它可以从大量数据中自主学习,分析和识别复杂的模式,被应用到许多领域,包括计算机视觉、语音识别、自然语言处理等。
下面介绍神经网络在实际应用中的几个典型案例:一、机器翻译机器翻译是指将一种语言的文本转换成另一种语言的文本。
以Google Translate为例,通过神经网络,将大量的双语数据进行学习和模型的训练,实现了高质量的机器翻译。
神经网络通过提取出源语言文本中的特征,转换成语义空间的向量,在目标语言中寻找最相似的向量,并根据这些向量生成目标语句。
同时,还可以实现实时的语音翻译功能。
二、人脸识别人脸识别技术在安全监控、智能家居等领域广泛使用。
以人脸识别门禁为例,首先通过摄像头捕捉到人脸图像,然后提取特征,将人脸图像转换成向量。
接着,将向量输入神经网络,通过模型识别出人脸的身份信息,最后与数据库中保存的人脸信息进行比对,从而判断身份是否匹配。
三、自动驾驶自动驾驶技术是当前人工智能技术最具代表性的一个领域。
以谷歌无人驾驶汽车为例,通过激光雷达、相机、雷达和GPS等传感器收集周围环境信息,并通过神经网络进行深度学习,实现对环境信息的感知和处理。
然后,结合交通规则和路况等条件,进行行驶决策,开展自主驾驶。
四、医疗影像分析医疗影像分析需要对大量医学图像进行处理和分析,如CT、MRI等。
因此,对于快速准确地分析疾病信息非常重要。
以肺癌识别为例,通过神经网络可以对肺部影像进行分割和预处理,提取肺结节的特征,进而诊断是否为恶性肿瘤。
综上,神经网络的实际应用非常广泛,除了上面所提到的应用领域外,还可以应用在音视频处理、推荐系统等领域,为我们带来越来越多的便捷和效率。
综述人工神经网络在地基沉降预测中的应用摘要:人工神经网络在近几年来发展迅速,在岩土工程界得到了广泛的应用,尤其在地基沉降预测方面取得了突出了成绩,本文将结合现有的一些工程实例来简单地综述一下人工神经网络在地基沉降预测方面的优越性。
关键词:人工神经网络地基沉降随着我国经济的发展,高速公路,高层建筑等作为基础建设的一部分,也得到了迅猛地发展。
这些基础建设中最首要的任务就是地基处理,因此对地基沉降预测就成了工程建设者需要解决的首要问题之一。
目前,对地基沉降预测的方法很多,除了传统的计算方法以外,还有可靠度分析法、沉降差法、FLAC有限差分法等。
近几年,随着人工神经网络方法在岩土工程界的应用,利用人工神经网络方法来预测地基的沉降已取得的比较显著的成绩,本文将结合前人的一些工程实例来综述人工神经网络在地基沉降预测中的优越性。
1人工神经网络的简介人工神经网络(Artificial Neural Network,简称ANN)[1]是集多种现代科学技术为一体的一门新兴实用科学技术。
神经网络反映了人脑功能的基本特性,是人脑的抽象、简化,模拟它的信息处理是由神经元之间的相互作用来实现的;知识与信息的存储表现为网络元件互连间分布式的物理联系;学习和识别取决于各神经元连接权值的动态变化过程。
人工神经网络正是在人类对其大脑神经网络认识理解的基础上人工构造的能够实瑰某种功能的神经网络。
它是理论化的人脑神经网络的数学模型,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。
它实际上是由大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。
2BP建模的基本思路2.1 BP神经网络原理[2]BP神经网络(Error Back – Propagation,简称EBP或BP神经网络模型)是一种具有三层或三层以上阶层结构的、采用多层前馈神经网络的误差逆传模型。
层间各神经元实现全连接,即下层的每一个单元与上层的每个单元都实现权连接,而每层神经元之间不连接。
人工神经网络在蕨类植物生长中的应用摘要:人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。
为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。
根据此特点结合蕨类植物的生长过程进行了蕨类植物生长的模拟。
结果表明,人工神经网络的模拟结果是完全符合蕨类植物的生长的,可有效的应用于蕨类植物的生长预测。
关键词:人工神经网络;蕨类植物;MATLAB应用一人工神经网络的基本特征1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。
这特别适于实时控制和动态控制。
各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。
2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。
只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。
因此人工神经网络是一种具有高度非线性的超大规模连续时间动力学系统。
3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。
作为神经元间连接键的突触,既是信号转换站,又是信息存储器。
每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。
信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。
4、具有联想存储功能:人的大脑是具有联想功能的。
比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。
用人工神经网络的反馈网络就可以实现这种联想。
神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。
在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。
5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。
BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。
在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。
多层感知机神经网络的研究始于50年代,但一直进展不大。
直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。
BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。
对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。
节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。
该算法的学习过程由正向传播和反向传播组成。
在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。
每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。
如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。
社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。
神经网络的实际应用举例神经网络是人工智能领域内的一个重要分支,它模拟了人脑的神经网络系统,能够通过学习实现对未知数据的处理和预测。
由于其优秀的性能,神经网络在多个领域内都得到了广泛的应用。
一、图像识别和分类神经网络在图像识别和分类领域内得到了广泛的应用。
利用卷积神经网络(Convolutional Neural Network, CNN)可以对图像进行预处理,加速操作速度,提高识别准确率。
例如,Facebook就利用CNN对用户上传的图片进行人脸识别和标记,以便进行搜索和分类。
二、自然语言处理自然语言处理(Natural Language Processing, NLP)是人工智能领域中的一个非常热门的分支,神经网络在其中也发挥了重要作用。
例如,利用递归神经网络(Recurrent Neural Network, RNN)可以对文字序列进行自然语言处理,用于自动翻译、自动摘要、情感分析等多个方面。
三、金融风险预测通过神经网络算法,可以对大数据进行处理和分析,实现金融风险预测的任务。
例如,银行可以利用神经网络对信用评估、欺诈检测、贷款拖欠等风险进行监测和预测,以提高风险控制的效率。
四、医学诊断神经网络在医学领域也得到了广泛的应用。
例如,利用深度学习网络可以对医学影像数据进行预处理和分析,对各种疾病进行快速、准确的诊断并提供治疗方案。
此外,神经网络还能够对大规模生物数据进行处理和分析,例如对基因序列进行分类和预测。
五、交通指挥交通指挥也是神经网络的另一个实际应用领域。
通过车辆地理位置信息和道路交通情况的数据,利用深度学习网络实时进行交通状况的预测和调度,能够有效地减少拥堵和减少车辆等待时间。
以上就是神经网络在实际应用方面的一些典型案例。
可以看出,该技术在信息处理、机器学习、医疗等众多领域内都有着广泛的应用前景,所以未来也必将和其他技术共同推动人工智能领域的发展。
人工神经网络的算法及其在化工中的应用摘要摘要数据挖掘技术是当今一项新兴技术,它综合运用人工智能、计算智能、模式识别、数理统计等先进技术从大量数据信息中挖掘和发现有价值和隐含的知识。
人工神经网络是由大量同时也是很简单的处理单元广泛连接构成的复杂网络系统。
它具有自学习、高容错和高度非线性描述能力等优点,使其在化工领域得到了广泛的应用。
这些应用主要包括:故障诊断、过程控制、物性估算、专家系统和建筑节能等。
但人工神经网络在化工领域的进一步应用还有赖于对化工领域问题的抽提(即符合神经网络的输入输出表达)及网络本身性能优化的进一步研究。
关键词:数据挖掘技术;人工神经网络;化工应用1 数据挖掘技术1.1数据挖掘技术概述化工生产在生产产品的同时,也产生大量关于生产过程的信息。
这些信息的有效利用极大地促进了化工生产的科学管理和生产优化,与此同时,日益积累的信息也带来了许多新的挑战和问题,如信息过量、信息真假难辨、信息安全隐患、信息矛盾等。
面对这一挑战,数据挖掘技术应运而生,并显示了强大的生命力。
[1]数据挖掘是一门交叉学科,涉及到机器学习、模式识别、统计学、智能数据库、知识获取、数据可视化、高性能计算机和专家系统等多个领域。
数据挖掘的两个高层次目标是预测和描述。
预测的基本任务包括分类、回归、时间序列分析和预测。
描述的基本任务包括聚类、总结、关联规则和序列发现。
数据库技术只是将数据有效地组织和存储在数据库中,并对这些数据作一些简单分析,大量隐藏在数据内部的有用信息无法得到。
而机器学习、模式识别、统计学等领域却有大量提取知识的方法,但没有和实际应用中的海量数据结合起来,很大程度上只是对实验数据或学术研究发挥作用。
数据挖掘从一个新的角度将数据库技术、机器学习、模式识别和统计学等领域结合起来,从更深层次中发掘存在于数据内部有效的、新颖的、具有潜在效用的乃至最终可理解的模式。
1.2 数据挖掘技术分类数据挖掘技术通常可以分为一下几种方法:[2](1) 数学统计方法数学统计方法主要用于完成总结知识和关联知识挖掘。
建筑管理中人工神经网络的应用分析摘要:人工神经网络在建筑管理当中的重要作用在近几年逐渐为人们所认识,其工作原理即通过模仿人脑在处理问题时的智能化信息体统,实现对人脑能力的最大化复制,进行学习、记忆等等信息处理的能力。
因为它具有自我组合、自我适应能力强、且能并行处理等特性,故此被广泛应用于各行各业当中。
人工神经网络能在很大程度上提高建筑管理的管理水平,且具有广阔的发展空间与良好的应用前景。
本文旨在透过几方面来对其应用做出阐述分析。
关键词:建筑管理人工神经网络模仿人脑人工智能人工神经网络(application of neural network)与人工智能(artificial intelligence)处于总分结构。
人工神经网络从属于人工智能系统,是其中一个分支领域。
它作为一款对非线性问题处理十分简便的工具,拥有极强的非线性映射能力与良好的适应能力及纠错能力。
在传统的语音与图像识别等领域外,人工神经网络在经济管理、专业工程等诸多领域都崭露了头脚,并获得广泛的认可。
我国首篇将人工神经网络应用与土木工程领域的文献始发于上世纪八十年代末期,随后即在建筑工程项目的管理当中逐渐为人们所广泛认知,下面,就几点对人工神经网络在建筑管理当中的应用作进一步分析。
一、人工神经网络在建筑管理应用中的预测作用1.费用预测方面。
人工神经网络在费用评估方面的应用,主要采用bp神经网络进行试验,通过对公路工程的样例进行试验,发现其比传统方法要更加保质保量。
塔雷克哈加西(1998年)等通过运用ms2excel表格对人工神经网络进行模拟,并在输入层和隐含层加入了偏置神经元来促进网络学习。
它的缺点是因网络学习过程中样本数据含有噪音,会对系统造成过度学习的谬误,这种问题运用规范化网络可以得到有效的解决。
在我国bp神经网络研究的历史上,相关方面的研究学者对其应用于建筑工程估价的能力有较高评价,其中不仅神经网络的特征归纳作用可从海量的工程资料当中寻找出工程项目与预算费用的规律关系,还因其具有高度纠错能力,可对工程资料当中因人为因素造成的偏差进行纠正。
人工神经网络原理及其应用1.人工神经网络的概念:人工神经网络是对人脑或生物神经网络若干基本特性的抽象和模拟。
2.生物神经网络:由中枢神经系统(脑和脊髓)及周围神经系统(感觉神经、运动神经等)所构成的错综复杂的神经网络,其中最主要的是脑神经系统。
3.人工神经网络原理:因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。
生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成,轴突是从细胞体向外伸出的细长部分,也就是神经纤维。
轴突是神经细胞的输出端,通过它向外传出神经冲动;树突是细胞体向外伸出的许多较短的树枝状分支。
它们是细胞的输入端,接受来自其它神经元的冲动。
突触是神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。
对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高,对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高。
当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。
细胞进入抑制状态,此时无神经冲动输出。
“兴奋”和“抑制”,神经细胞必呈其一。
人工神经网络的工作原理与生物神经网络原理类似,但却又不相同,其主要是通过建立一些数学模型,去模拟生物神经网络。
4.神经网络的结构:(1)前馈型:本层每个神经元只作用于下一层神经元的输入,不能直接作用于下下一层的神经元,且本层神经元之前不能互相租用。
(2)反馈型:即在前馈型的基础上,输出信号直接或间接地作用于输入信号。
5.神经网络的工作方式:(1)同步(并行)方式:任一时刻神经网络中所有神经元同时调整状态。
(2)异步(串行)方式:任一时刻只有一个神经元调整状态,而其它神经元的状态保持不变。
6.人工神经网络的应用:经过几十年的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功。