初中数学记忆口诀与学习方法
- 格式:doc
- 大小:39.00 KB
- 文档页数:7
巧用顺口溜熟记初中数学公式和规律数学公式和规律在初中阶段是非常重要的,它们是解题的基础和指导,也是理解数学概念和思维的关键。
然而,对于许多学生来说,记住这些公式和规律并不容易。
为了帮助学生更好地掌握数学知识,我整理了一些巧妙的顺口溜,通过这些顺口溜,学生能够轻松地记住一些重要的数学公式和规律。
一、顺口溜记代数公式:1. 一元二次方程求根法,b²-4ac你得掌握。
一大再小两个根,<0无实根,=0一个根。
2. x = (-b ± √(b²-4ac))/(2a)二次方程求解都留下。
3.(a+b)(a-b)=a²-b²平方差公式背下来。
4.a²-b²=(a-b)(a+b)平方差公式很容易。
5.二项式展开好简单,我的名字叫齐考公式。
(a+b)ⁿ = C(n,0)aⁿ + C(n,1)aⁿ⁻¹b + ... + C(n,n-1)abⁿ⁻¹ +C(n,n)bⁿ。
二、顺口溜记几何公式:1.长方形底乘高,得到面积的好帮手。
A=l×w,四边都相对。
2.正方形的面积,直接边长相乘。
A=s²,正方形停不住。
3.三角形面积公式,底边高你有。
A=1/2×b×h,底高更容易。
4.圆的面积公式,先半径,再面积。
A=πr²,记住吗?5.圆的弧长、扇形和正圆角,顺口溜心中藏。
L=2πr,S=1/2πr²,360度它很逆。
三、顺口溜记运算规律:1.交换律、结合律勿忘,运算啥都变得容。
a+b=b+a,a+(b+c)=(a+b)+ca×b=b×a,a×(b×c)=(a×b)×c。
2.分配律快记清,a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c,加减乘除好朋友。
初中数学公式速记口诀一、整数运算1.整数加减乘除,运算法则应知晓。
加减不变号,乘除定规则。
同号相减,异号相加,乘除规律应提取。
二、分数运算1.分数加减规则记,通分再运算更有效。
分数的加减要找同,通分后计算省时间。
分子分母最简约,通分结果精准度。
2.分数乘法要分纳,分子分母分别记忆。
分数相乘分子乘,分母分别要记住。
约分最大约,结果就能减小。
3.分数除法要安排,倒数乘法计算准确。
乘以倒数才好求,分子分母都要翻转。
三、百分数运算1.百分数转化快,小数运算不迷路。
将百分数除以100,等于所对应的小数。
2.小数转百分数,运算法则要明白。
给小数扩大100倍,再加上百分号。
3.百分数运算加减乘,同百分数乘除法相通。
加减乘法共一式,分子分母写在一起。
四、比例与倍数1.比例问题考透,先写列比再通约。
比例问题列式写,通约就是减负。
2.比例求一般项,分子分母别换。
求比例分子分母,列式形式不要变。
3.倍数要有个眼,能能就能找到。
两数的倍数有规律,能不能也能判断。
五、代数式运算1.代数式的加减法,同类项加法最简洁。
学习加减同类项,结果表达最简洁。
2.代数式的乘法,交换律先处理。
乘法学会交换律,结果计算最方便。
3.代数式的除法,乘以倒数最高效。
除法乘以逆元,计算就最方便。
六、平面图形1.点是平面基础,直线支配图形。
点是图形基础,直线引出边。
2.双曲线有四类,形状要了解清。
双曲线有四种类,图形特点记心底。
3.多边形分类别,了解特点在脑海。
多边形分类别,记住特点快解题。
4.圆是最特殊,性质记一记。
圆是特殊图形,要记住性质清清楚。
七、空间图形1.立体图形分类记,特点要清透明。
立体图形分类好,解题不成问题。
2.立体图形表面积,底面积加周长。
立体图形表面积,专门公式要统计。
底面积加周长,不用愁答案。
3.空间图形体积,底面积乘高得。
空间图形体积结构密,计算发现就在手。
八、数据统计1.数据整理分组频,频次最高孩子记。
统计数据分组频,频次最高记在心。
初一数学必背口诀大全1.天减地求,下借上补,差等于被减减。
解释:两个数相减时,先从上面的数借位,然后将被减数的位数补齐,最后各位相减。
2.退位相减多进一,借位借、项项借,当时减到头”。
3.借位不规范,退后再借一、(借位候,低位顶上来)4.乘法口诀太简单,横竖行列一个个看,交叉相乘来相乘,累加法完成做乘。
5.一分成二短除法,左右路口分出来,取商加最右数。
6.一倍是小数,十倍补0。
7.正负两相乘,结果变负。
8.乘法公式要记牢,两括包个正放在号,正括绕左边,负括绕右边,乘到末,符号放中,按个数,化简它。
9.整数个奇数个,正负不变,奇负偶正。
10.同质意义何千变,约分是看齐二眼。
11.讲真分母同乘秋,分子合并参与运算。
12.分数分母大,整数插前边。
13.分数比较求大小:相同分母,比较分子;分母不同,通分比较。
14.正四边形庭院净,乘积二等于矩形,八平方分别算,加起来就是周长。
矩形肋骨拿,秦九将与乘法。
15.正三角形面积,底高乘以一半;等腰三角形去,边积以二和;底高平行四边形,同样从半来。
16.任意三角形求面积,先求周长再找高,底乘高整除二17.转化五类分数,利用乘除化简,找到最简形,化整小数到真分数。
18.黄金分割开,正比例下,大比身高,小比后胸。
19.变化相等,正比例取;比值不变,反比例找。
20.速度相比看行程,时间看分数的本领。
21.面积求最大,质相同,周长不一样。
周长相等,面积大,形状就歪。
22.均分没变也没变,补数个数最关键。
这些口诀涵盖了初一数学中的很多重要知识点,希望能够帮助你更好地记忆和理解这些知识。
记住这些口诀并不是唯一的学习方法,结合理解和实践更加重要。
希望你能够在初一数学的学习中取得好成绩!加油!。
初中数学2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
初中数学3、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
初中数学4、一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
初中数学恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n初中数学5、平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
初中数学6、完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
初中数学7、因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
初中数学8、"代入"口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)初中数学单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
初中数学9、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
初中数学10、一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
初中数学11、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
初中数学12、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
初中数学方法口诀大全
首先我们来给大家介绍一些初中数学方法的口诀,这些口诀可以帮助同学们更好地掌握数学知识,提高数学成绩。
一、整式的加减法
1、同类项加减要化简,不同项只能换位运算。
2、运算后化简不可少,分开因式最后看。
3、加减同类项难不倒,独立存活24小时。
二、一元二次方程
1、正负判别法要精准,判定完毕再化简。
2、公式运用必须纯熟,考试带表你的美丑。
3、判别式告知根情况,一判即知方程形态。
三、三角函数
1、定义和性质要注意,简单重点都需关。
2、解三角函数常用有术,诱导公式更是好帮手。
3、求解问题分类解法,万变不离学科精神。
四、平面向量
1、概念和性质不可少,以大德之名呼之。
2、计算方法多种多样,小心计算不要出岔子。
3、共线共面右手法则,只需细心逆时针。
五、立体几何
1、各种体积面积勿混淆,分清图形再作算。
2、截面奥妙咀嚼透,运用积分易求解。
3、代入坐标先了解,补齐空洞再算式。
六、三点定线
1、注意点的先后顺序,判断规则别忘记。
2、对称轴斜率要牢记,平移依旧方便知。
3、图形变换用到多,优秀解题令人惊佩。
以上这些口诀是初中数学中常用的一些方法,同学们在学习的时候可
以根据这些口诀来整理思路、记忆知识点,从而更好地掌握数学知识。
初中数学六大记忆方法攻略数学是一门重要的科学学科,对于学生来说,记忆数学知识是非常关键的。
下面介绍一些初中数学的六大记忆方法攻略。
一、分批记忆法初中数学知识内容繁多,有很多公式和定理需要记忆。
使用分批记忆法可以将知识分成若干个部分,每次只记忆其中的一部分。
这样可以避免一次性记忆过多的内容而导致记忆混淆。
例如,在学习初中数学的代数知识时,可以将代数的基本运算记忆为一部分,代数方程的解法记忆为另一部分,依此类推。
通过将知识分批记忆,可以减轻负担,提高记忆效果。
二、分类记忆法初中数学的知识可以细分为不同的分类,例如代数、几何、概率等,每个分类下又可以细分为更小的知识点。
使用分类记忆法可以将相似或相关的知识放在一起,利用关联记忆的方式更容易记忆。
例如,在学习初中数学的几何知识时,可以分类记忆各种几何图形的性质和定理,如三角形的性质、平行四边形的性质等。
通过将相关的知识放在一起,可以帮助记忆和理解。
三、归纳总结法初中数学的知识点众多,但其中很多规律和规则是可以归纳总结的。
使用归纳总结法可以将类似的知识点归纳在一起,形成一个整体的认知框架,这样更容易记忆和理解。
例如,在学习初中数学的数据分析时,可以将统计的基本概念和方法进行归纳总结,如频数、频率、平均数等。
通过归纳总结,可以将零散的知识点整理成一个有机的整体,便于记忆和运用。
四、联想记忆法五、反复复习法例如,在学习初中数学的二次函数时,可以通过多次的练习题来巩固和运用所学知识。
通过反复复习,可以强化记忆,形成扎实的数学基础。
六、应用实践法初中数学的知识点不仅仅是为了记忆和应试,更重要的是能够应用到实际问题中去。
通过将数学知识应用到实践中,可以加深记忆和理解。
例如,在解决实际问题时,可以运用到初中数学的知识,如应用速度的计算、物体运动的分析等。
通过将数学知识应用到实践中,可以加深对知识的记忆和理解。
综上所述,初中数学的六大记忆方法攻略包括分批记忆法、分类记忆法、归纳总结法、联想记忆法、反复复习法和应用实践法。
初中数学顺口溜(大全)有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零” 正好。
[注]“大”减“小”是指绝对值的大小。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b - a)2n 平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X 轴上y 为0,x 为0在Y 轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行 X 轴,纵坐标相等横不同;直线平行于Y 轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X 轴对称y 相反, Y 轴对称,x 前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成 y=k(x+0)+b、二次函数的解析式写成 y=a(x+h)2+k 的形式,则用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k 与b,作用之大莫小看, k 是斜率定夹角,b 与Y 轴来相见,k 为正来右上斜,x 增减y 增减; k 为负来左下展,变化规律正相反; k 的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由 a 断,c 与Y 轴来相见,b 的符号较特别,符号与 a 相关联;顶点位置先找见, Y 轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
数学学习之初中数学知识点记忆口诀(下)1.整数口诀:正数整,负数扔,相加正,相减难。
正加正,负加负,正减负,负减正。
2.分数口诀:分数通分相加减,分子单独相加减。
分子相同分母相加,分子相减分母相乘。
分母相同分子相加,分母相减分子相乘。
3.百分数口诀:百分数变小数,除以100。
小数变百分数,乘以100。
百分数相互转化,在原数基础上除以100或乘以100。
4.比例口诀:连比例须相等,连续必成倍。
反比例交叉乘,乘积常等于15.数字的约数和倍数口诀:约数是核心,倍数是翻倍。
6.整式口诀:同底同指数,相乘相加。
同底异指数,指数相加。
7.一次函数口诀:斜率为正,上升走。
斜率为负,下降走。
8.二次函数口诀:开口向上,a为正。
开口向下,a为负。
9.平面图形的性质口诀:圆内外,全称扇。
角相等,全称等。
三角形,全称棱。
四边形,全称形。
圆柱体,全称切。
平行线,全称互。
10.几何证明口诀:两边等于一边,全称三角形全等。
两角等于一角,全称三角形全等。
全称边角边全等。
全称角边角全等。
11.数据统计口诀:平均数,加和除个数即可求。
中位数,排列后中间的即可求。
众数是重复最多的。
12.直线、平面和空间几何口诀:平行线,有且只有一条公共垂线。
空间直线和平面,有且只有一条公共垂线。
13.三角函数口诀:正弦值取纵边,余弦值取横边。
正切值等于纵横比,余切值是横纵比。
14.几何运动口诀:等腰三角形旋转变,底面积全等。
直线旋转画圆、圆心保持不变。
15.平方数口诀:个位是0、1、5、6,平方尾数。
个位是2、3、7、8,加4再平方。
个位是4、9,加上1、9再平方。
以上是一些中学数学知识点记忆的口诀,通过这些口诀可以帮助你记忆和理解数学的知识点,提高数学学习的效果。
初中数学全册知识解题口诀
初中数学全册的知识解题口诀可以根据不同的知识点进行总结和归纳,以下是一些常见的口诀:
1. 有理数运算口诀:
加减同符号,异号取差;
乘除同异号,正负搞清楚。
2. 分式运算口诀:
分式加减乘除,通分后统一;
简化约分要留心,结果要最简约。
3. 代数式展开口诀:
二次方差异平方差,三项立方多分配;
公式记牢运用好,展开式无难求。
4. 相似三角形口诀:
角对角相等,边比例相同;
直角三角形,斜边比较长。
5. 平行线口诀:
平行线交剖线,对应角相等;
内错外错交,内角互补补。
6. 勾股定理口诀:
勾股定理要记清,直角边顺序定;
斜边平方等于和,直角边平方和。
7. 平面图形周长和面积口诀:
周长加边长,面积乘底高;
圆的周长很简单,直径乘π别犹豫。
这些口诀可以帮助初中学生记忆和运用数学知识,提供了一种简明扼要的总结方式,帮助学生更好地理解和解题。
初中数学顺口溜(大全)有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
[注]“大”减“小”是指绝对值的大小。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b - a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
最简根式的条件:最简根式三条件,号不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y 轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
《初中数学知识点记忆口诀》初中数学知识点记忆口诀一、数与式数是数,式是式,是数化式很正式。
二、整数整数正负分,负负得正是原因。
三、有理数整数和分数是有理数,有理数无穷多。
四、正数的相反数正人都有相反数,符号相反数一样。
五、相反数定义两个数差绝对值,和为零就成了。
六、绝对值无论正负值都去绝对,用线根直接开。
七、数轴负数在左边,正数在右边,零在中间。
八、分数两个数相除就是分数,分数很特殊很简单。
九、最简分数分子分母消掉因子,最简分数万年新。
十、整数的乘法规则同号相乘积正,异号相乘积负。
十一、整数的除法规则同号相除商正,异号相除商负。
十二、一次运算(四则运算综合运算,优先级从高到低为括号、乘除、加减)括号开头四则行,先乘除后加减。
十三、二次运算从左向右添加符号,运算符合逐渐运。
十四、运算法则(加减法与乘除法之间运算)特殊规则要记牢,加减法与乘除交换。
十五、整式定义整数、字母、常数基,加减乘积都是。
十六、同类项只看字母、消系数,同类项加减不犯愁。
十七、和差化积和差化积变法好,字母消系数快快洗。
十八、公式推导一眼看就通透,公式推导得更高。
十九、因式分解共因子提过头,每项因式吐得干净。
二十、根式包含根号称根式,含有定理要活用。
二十一、积非整定和积根号,分子因数,整数定,和根号。
二十二、平方根定义正数×正数等于根号2,负数×负数也有根号。
二十三、开平方不完全平方别遗漏,中间隔成去括号。
二十四、定理斜杠记号急则括号,得则标斜线。
二十五、乘方定义(积之方等于方之积)中间添加符号,用指数标贵。
二十六、基本乘方公式(两个乘方之积等于同基数,指数相加)加法要换称,指数不方。
二十七、整式的乘方(幂等言不冒冷汗,素数指数朝天伸)分数书写嘱咐你,加减顺变底数转。
二十八、左乘左乘右乘都很好,左乘更能形象表。
二十九、右乘定理扣掉最后一个基数,后面补上基数给。
三十、除法定理第一部分算得出,余下的写一行。
三十一、分式定义数分数理解式,除法分数大正式。
初中数学公式记忆口诀有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】大减小是指绝对值的大小。
有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法那么同号得正异号负,一项为零积是零。
合并同类项说起合并同类项,法那么千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法那么去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程未知闹别离,别离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化1还没好。
求得未知须检验,回代值等才算了。
解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正那么正负就负,异那么需添幂符号。
因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是根底。
同式相乘假设出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是根底。
二次三项式的因式分解先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
初中数学顺口溜01.有理数运算有理数加减,统称代数和。
同号取原号,绝对值相加。
异号相加减,先看绝对值,取大值符号,绝对值相减。
有理数乘除,同号得正号,异号是负号,绝对值乘除。
多数相乘除,偶负值是正,奇个负为负,绝对值乘除。
有理数乘方,正数任次方,结果都为正。
负数分奇偶,偶次方是正,奇次方得负。
02.合并同类项同类项必两一样,字母一样指数同。
同类合并依法那么,扎实代数根本功。
先求系数代数和,字母指数不改动。
03.添括号去括号法那么括号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
04.因式分解一提二套三分组,十字相乘法不俗。
四种方法假设不行,拆项添项再重组。
或可公式法求根,繁式适用换元试。
分解二次三项式,先用完全平方式,十字相乘是其次,求根分解要记住。
05.比和比例两数相除也叫比,两比相等叫比例。
外项积等项积,等积可化八比例。
分别交换外项,比例变形叫更比。
同时交换外项,相对原式叫倒比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
前项和比后项和,比值不变叫等比。
同式平方等异积,比例中项在这里。
商定变量成正比,积定变量是反比。
06.求比值四数是否成比例,递增递减先排序。
两端积等中间积,四数一定成比例。
四式是否成比例,升或降幂先排序。
两端积等中间积,四式同样成比例。
解比例式三求一,外项积等项积。
07.实数定义域实数讲究定义域,四项原那么须注意。
负数不能开平方,分母为零无意义。
分数指数底数正,切记零无零次幂。
满足多个不等式,不等式组求解集。
08. 解一元一次不等式先去分母去括号,常量移项到右边。
注意移项改正负,整理合并同类项。
系数化1要注意,乘除负数变方向。
09.一元一次不等式组解集同大取大,同小取小。
大小小大取中间,大大小小是无解。
10.用公式法解一元二次方程首先化成一般式,确定参数a b c 。
运用求根判别式,有无实根便得知。
套用公式根,假设无实根要点题。
11.用配方法解一元二次方程左未右已先别离,其次系数化为1。
初中数学学习方法之口诀(顺口溜)大全【导读】:古人云:凡会学习者,学习得法,则事半功倍;凡不得法者,则事倍功半。
数学亦如此。
1.有理数的加法运算:同号相加一边倒;异号相加"大"减"小",符号跟着大的跑;绝对值相等"零"正好。
[注]"大"减"小"是指绝对值的大小。
2.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
3.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
4.一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
5.恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n6.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
7.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
8.因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
9."代入"口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)10.单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
11.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
初中数学记忆顺口溜大全1、有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好.【注】“大”减“小”是指绝对值的大小.2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样.3、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.4、一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.5、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变.(a-b)2n+1=-(b-a)2n+1,(a-b)2n=(b-a)2n6、平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.7、完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.8、因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.9、“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)10、单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.11、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了.12、一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.13、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.14、分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊.15、最简根式的条件:最简根式三条件,幂指、根指号内不把分母含,(数)(数)要互质,幂指比根指小一点.16、特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上 y 为 0,x 为0 在 y 轴.17、象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.18、平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行 x 轴,纵坐标相等横不同;直线平行于 y 轴,点的横坐标仍照旧.19、对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x 轴对称 y 相反,y 轴对称,x 前面添负号;原点对称最好记,横纵坐标变符号.20、自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.21、函数图象的移动规律:若把一次函数解析式写成 y?k(x?0)?b,二次函数的解析式写成y?a(x?h)2?k的形式,则可用下面的口诀(此处符号编辑错误)左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.22、一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数 k 与 b,作用之大莫小看,k 是斜率定夹角,b 与 y 轴来相见,k 为正来右上斜,x 增减 y 增减;k 为负来左下展,变化规律正相反;k 的绝对值越大,线离横轴就越远.23、二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由 a 断,c 与 y 轴来相见,b 的符号较特别,符号与 a 相关联;顶点位置先找见,y 轴作为参考线,左同右异中为 0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.24、反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k 为正,图在一、三(象)限,k 为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.25、巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.26、三角函数的增减性:正增余减特殊三角函数值记忆:首先记住 30 度、45度、60 度的正弦值、余弦值的分母都是 2、正切、余切的分母都是 3,分子记口诀“123,321,三九二十七”既可.27、平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.28、梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.29、添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.30、圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.31、圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.32、正多边形诀窍歌:份相等分割圆,n 值必须大于三,依次连接各分点,内接正 n 边形在眼前.经过分点做切线,切线相交 n 个点.n 个交点做顶点,外切正 n 边形便出现.正 n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果 n 值为偶数,中心对称很方便.正 n 边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形 2n 个整,依此计算便简单.33、函数学习口决:正比例函数是直线,图象一定过原点,k 的正负是关键,决定直线的象限,负 k 经过二四限,x 增大 y 在减,上下平移 k 不变,由引得到一次线,向上加 b 向下减,图象经过三个限,两点决定一条线,选定系数是关键.反比例函数双曲线,待定只需一个点,正 k 落在一三限,x 增大 y 在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y 的顺序可交换.二次函数抛物线,选定需要三个点,a 的正负开口判,c 的大小 y 轴看,△的符号最简便,x 轴上数交点,a、b 同号轴左边,抛物线平移 a 不变,顶点牵着图象转,三种形式可变换,配方法作用最关键.34、实数定义域:实数讲究定义域,四项原则须注意。
初中数学助记口诀有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
【注】“大”减“小”是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
初中数学公式记忆口诀一、代数基础公式1.同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;不同底数幂相乘,指数相加再把底数放在前面;不同底数幂相除,指数相减再把底数放在前面。
2.a的m次方与a的n次方,指数相加成a的m+n次方;a的m次方与b的m次方,底数相同就是a的m次方。
3.平方的平方是四次方,立方的立方是六次方。
4.分式加减很简单,将分母相同再加减。
5.分式相乘很轻松,将分子分母相乘。
6.分式相除要注意,分子乘以分母倒。
7.平方差公式记住,两平方相减两次方。
8.和差化积很重要,两个数相加相减就可以。
9.看是不是相反数,互为倒数记住。
10.分式的运算要约,最大公约数约到底。
二、方程与不等式1.开平方只留一个符号,方程右边也开放。
2.方程求根普遍法,两边同时加减移项法。
3.方程只有两项,两项系数交换。
4.得到最简分数,最大公约约到底。
5.分式方程思路清,通分消分运算简。
三、平方根和勾股定理1.辅助判断平方根,中间数法选择标准。
2.勾股定理绝不差,两边平方边最长。
四、比例与相似1.比例记住基本要,等比记分数。
2.善用等比的性质,单个全等也行。
3.相似多运利用,定理各较重。
五、线性函数与一次函数1.研究函数首看导,线性的导是定值。
2.函数给的表明式,分形单项的常数项。
3.已知函数求函数,带入关系条件。
六、二次函数与抛物线1.二次函数性态顶,开口纵轴往下。
2.方程转移到左边,零点交接即。
3.最值只看a符号,负号则为正最大值。
4.求顶点坐标别忘,纵坐标直接带入。
七、统计与概率1.概率都有范围,介于0和1之间。
2.抽样必得标准差,离散程度能调和。
3.结果对应模式查,频数代表样本量。
4.排列组合方法清,适应条件做处理。
5.求百分比很简单,对应数字相乘。
八、三角形与平行四边形1.三角形边角关联连,一样面积既是等。
2.正弦定理记弦数,余弦定理记邻边。
3.画图标注数边心,题目求谁看清楚。
4.平行四边形记所有,二等边的角相同。
[方剂趣味记忆歌诀]歌诀记忆法初中数学学习方法以下是对数学学习中歌诀记忆法的讲解内容,同学们认真看看下面的知识。
歌诀记忆法就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。
比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。
”再如,小数点位置移动引起数的大小变化,“小数点请你跟我走,走路先要找准‘左’和‘右’;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找‘0’拉拉钩。
”采用这种方法来记忆,学生不仅喜欢记,而且记得牢。
上面对歌诀记忆法知识的学习,同学们都能很好的掌握了吧,希望同学们在考试中取得优异成绩。
初中数学解题方法之常用的公式下面是对数学常用的公式的讲解,同学们认真学习哦。
对于常用的公式如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。
总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。
你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。
初中数学解题方法之学会画图数学的解题中对于学会画图是有必要的,希望同学们很好的学会画图。
学会画图画图是一个翻译的过程。
读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。
这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。
有些题目,只要分析图一画出来,其中的关系就变得一目了然。
尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
初中数学学习口诀总结有理数的加法运算:同号相加一边倒;异号相加"大"减"小",符号跟着大的跑;绝对值相等"零"正好。
[注]"大"减"小"是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
"代入"口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
初中数学记忆口诀与学习方法
01
有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
[注]“大”减“小”是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b - a)2n+1(a-b)2n=(b - a)2n
平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),
就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
02
“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)。
单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
03
最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b 与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
04
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。
图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。
正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
三角函数的增减性:正增余减。
特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。
平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。
对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。
梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
初中数学基本学习方法
1.主动预习
预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
因此,要注意培养自学能力,学会看书。
如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。
抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
2.主动思考
很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。
主要原因还是听课过程中不思考惹的祸。
除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。
靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!
3.善于总结规律
解答数学问题总的讲是有规律可循的。
在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:
(1)本题最重要的特点是什么?
(2)解本题用了哪些基本知识与基本图形?
(3)本题你是怎样观察、联想、变换来实现转化的?
(4)解本题用了哪些数学思想、方法?
(5)解本题最关键的一步在哪里?
(6)你做过与本题类似的题目吗?在解法、思路上有什么异同?
(7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?
把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,孩子解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。
4.扩宽解题思路
数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。
5.必须要有错题本
说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。
错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。
有很多学霸都是因为积极使用了错题本,而考取了高分。
6.“1x5”学习法
“1×5”学习法,就是做一道题,要从五个方面思考,这点可以结合前面说到的“总结规律”“拓展思路”。
五个方面分别为:
①这道题考查的知识点是什么。
②为什么要这样做。
③我是如何想到的。
④还可以怎样做,有其它方法吗?
⑤一题多变看看它有几种变化的形式。
千万不要觉得麻烦,学习习惯的培养最难的就是最初的一个月,这就像火箭升空一样,最难的就是点火起飞阶段,一旦养成了良好的数学学习习惯和思维方式,在今后的学习中就会非常的轻松。
7.独立完成作业
现在很多学生用一些APP来帮助写作业,找个照片就有答案,或者是抄袭其他同学的作业,这可以分两种情况来说,一种是为了图快、求速度,如果经常这样会养成不良的审题习惯,容易走马观花、粗心大意。
还有一种是为了图方便,这会导致同学们养成“怕麻烦”的心理,一旦题目有些难度,自己就开始心烦意乱,思路模糊,因此,大家一定要养成良好的独立完成作业的习惯。