八年级上册数学期中测试题及答案
- 格式:pdf
- 大小:238.01 KB
- 文档页数:10
八年级上册期中试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 21B. 25C. 28D. 312. 一个等腰三角形的底边长为8cm,腰长为5cm,那么这个三角形的周长是?A. 18cmB. 20cmC. 22cmD. 24cm3. 下列哪个数是质数?A. 27B. 29C. 35D. 394. 一个正方形的边长为6cm,那么这个正方形的面积是?A. 24cm²B. 36cm²C. 48cm²D. 60cm²5. 下列哪个数是立方数?A. 64B. 125C. 216D. 343二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 两个等腰三角形的面积相等,那么它们的周长也相等。
()3. 两个负数相乘的结果是正数。
()4. 一个数的平方根有两个,它们互为相反数。
()5. 任何两个奇数相加的结果都是偶数。
()三、填空题(每题1分,共5分)1. 2的平方根是______。
2. 一个正方形的对角线长度是10cm,那么它的边长是______cm。
3. 下列各数中,最大的合数是______。
4. 一个等差数列的第1项是3,公差是2,那么第10项是______。
5. 一个圆的半径是4cm,那么这个圆的面积是______cm²。
四、简答题(每题2分,共10分)1. 请简述等差数列的定义。
2. 请简述勾股定理的内容。
3. 请简述因式分解的意义。
4. 请简述无理数的定义。
5. 请简述概率的意义。
五、应用题(每题2分,共10分)1. 小明从家到学校的距离是800m,他每分钟走60m,那么他到学校需要多少分钟?2. 一个长方体的长、宽、高分别是10cm、6cm、4cm,那么这个长方体的体积是多少cm³?3. 一个等边三角形的边长是12cm,那么这个三角形的面积是多少cm²?4. 一个数列的前5项分别是2、5、8、11、14,那么这个数列的第10项是多少?5. 一个圆的直径是14cm,那么这个圆的周长是多少cm?六、分析题(每题5分,共10分)1. 已知一个等差数列的第1项是3,公差是2,求这个数列的前10项之和。
试卷第1页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前八年级上册数学期中测试卷附答案学校:___________姓名:___________班级:___________考号:___________第Ⅰ卷(选择题)请点击修改第I 卷的文字说明评卷人 得 分一.选择题(共16小题)1.下列四个图形中,是轴对称图形的是( )A .B .C .D .2.如图,在△ABC 中,∠B=32°,∠BAC 的平分线AD 交BC 于点D ,若DE 垂直平分AB ,则∠C 的度数为( )A .90°B .84°C .64°D .58°3.如图,在△ABC 中,∠ACB=90°,分别以点A 和点B 为圆心,以相同的长(大于AB )为半径作弧,两弧相交于点M 和N 点,作直线MN 交AB 于点D ,交BC 于点E ,若AC=3,BC=4,则DE 等于( )A .2B .C .D .4.如图是一辆汽车车牌在水中的倒影,则该车的牌照号码是( )试卷第8页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .M9017102B .M2017109C .W5017109D .M20171065.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m +n 的值是( ) A .﹣5 B .﹣3 C .3D .16.若一个等腰三角形的两边长分别为2和4,则这个等腰三角形的周长是为( ) A .8B .10C .8或10D .6或127.如图,△ABC 中,AB=AC ,∠A=40°,点P 是△ABC 内一点,连结PB 、PC ,∠1=∠2,则∠BPC 的度数是( )A .110°B .130°C .140°D .120°8.等腰三角形一腰上的高与另一腰的夹角是50°,则这个等腰三角形的底角为( )A .70°B .20°C .70°或20°D .40°或140°9.如图,在△ABC 中,AB=AC ,D 为BC 中点,∠BAD=35°,则∠C 的度数为( )A .35°B .45°C .55°D .60°10.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上一个动点,若PA=3,则PQ 的最小值为( )A .B .2C .3D .211.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )试卷第1页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD12.如图,直线l 、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处13.如图,△ABC 中,BO ,CO 分别是∠ABC ,∠ACB 的平分线,∠A=50°,则∠BOC 等于( )A .110°B .115°C .120°D .130°14.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .15.下列长度的三根小木棒能构成三角形的是( ) A .2cm ,3cm ,5cm B .7cm ,4cm ,2cm C .3cm ,4cm ,8cm D .3cm ,3cm ,4cm16.一个多边形的每个内角均为120°,则这个多边形是( ) A .四边形 B .五边形 C .六边形 D .八边形试卷第8页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人 得 分二.填空题(共6小题)17.已知:如图,△ABC 中,BO ,CO 分别是∠ABC 和∠ACB 的平分线,过O 点的直线分别交AB 、AC 于点D 、E ,且DE ∥BC .若AB=6cm ,AC=8cm ,则△ADE 的周长为 .18.如图,已知AE ∥BD ,∠1=130°,∠2=30°,则∠C= 度.19.已知三角形的两边长分别为3和6,那么第三边长的取值范围是 . 20.如图是由射线AB ,BC ,CD ,DE ,EA 组成的平面图形,则∠1+∠2+∠3+∠4+∠5= .21.如图,小明从A 点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照这样走下去,他第一次回到出发地A 点时,一共走了 米.试卷第1页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………22.如图,AC=DC ,BC=EC ,请你添加一个适当的条件: ,使得△ABC ≌△DEC .评卷人 得 分三.解答题(共8小题)23.如图,在平面直角坐标系中,△ABC 的顶点A (0,1),B (3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B 2C 2,写出顶点A 2,B 2,C 2的坐标.24.如图,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .25.如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、试卷第8页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………D .求证:(1)∠ECD=∠EDC ; (2)OC=OD ;(3)OE 是线段CD 的垂直平分线.26.已知,如图所示,AB=AC ,BD=CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:DE=DF .27.如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证: (1)FC=AD ; (2)AB=BC +AD .28.如图,点C 是线段AB 上除点A 、B 外的任意一点,分别以AC 、BC 为边在线段AB 的同旁作等边△ACD 和等边△BCE ,连接AE 交DC 于M ,连接BD 交CE 于N ,连接MN . (1)求证:AE=BD ; (2)求证:MN ∥AB .试卷第1页,总8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………29.已知:如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ),解答问题:当t 为何值时,△PBQ 是直角三角形?30.(1)如图1,在△ABC 中,∠ABC 的平分线BF 交AC 于F ,过点F 作DF ∥BC ,求证:BD=DF .(2)如图2,在△ABC 中,∠ABC 的平分线BF 与∠ACB 的平分线CF 相交于F ,过点F 作DE ∥BC ,交直线AB 于点D ,交直线AC 于点E .那么BD ,CE ,DE 之间存在什么关系?并证明这种关系.(3)如图3,在△ABC 中,∠ABC 的平分线BF 与∠ACB 的外角平分线CF 相交于F ,过点F 作DE ∥BC ,交直线AB 于点D ,交直线AC 于点E .那么BD ,CE ,DE 之间存在什么关系?请写出你的猜想.(不需证明)试卷第8页,总8页八年级上册数学期中测试卷附答案参考答案与试题解析一.选择题(共16小题)1.下列四个图形中,是轴对称图形的是()A .B .C .D .【分析】根据轴对称图形的概念求解.【解答】解:D选项的图形是轴对称图形,A,B,C选项的图形不是轴对称图形.故选:D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE 垂直平分AB,则∠C的度数为()A.90°B.84°C.64°D.58°【分析】根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B=32°,根据角平分线的定义、三角形内角和定理计算即可.【解答】解:∵DE垂直平分AB,∴DA=DB,∴∠DAB=∠B=32°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=32°,∴∠C=180°﹣32°﹣32°﹣32°=84°,故选:B.【点评】本题考查的是线段的垂直平分线的性质、角平分线的定义,掌握线1本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
八年级上册期中数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果一个三角形的两边分别是5厘米和12厘米,那么第三边的长度可能是多少?A. 6厘米B. 7厘米C. 8厘米D. 18厘米3. 下列哪个数是质数?A. 21B. 23C. 25D. 274. 一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的周长是多少厘米?A. 22厘米B. 32厘米C. 34厘米D. 44厘米5. 下列哪个数是合数?A. 31B. 32C. 33D. 34二、判断题(每题1分,共5分)1. 任何一个偶数都能被2整除。
()2. 任何一个奇数都不是2的倍数。
()3. 一个三角形的两边之和一定大于第三边。
()4. 任何一个质数都有两个因数。
()5. 任何一个合数都至少有三个因数。
()三、填空题(每题1分,共5分)1. 2 + 3 = _____2. 5 2 = _____3. 4 × 6 = _____4. 18 ÷ 3 = _____5. 7² = ______四、简答题(每题2分,共10分)1. 请简述偶数和奇数的定义。
2. 请简述质数和合数的定义。
3. 请简述三角形的定义。
4. 请简述等腰三角形的定义。
5. 请简述周长的定义。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,请计算这个长方形的周长。
2. 一个等边三角形的边长是6厘米,请计算这个三角形的周长。
3. 一个正方形的边长是8厘米,请计算这个正方形的面积。
4. 一个圆的半径是5厘米,请计算这个圆的面积。
5. 一个长方体的长是10厘米,宽是5厘米,高是3厘米,请计算这个长方体的体积。
六、分析题(每题5分,共10分)1. 请分析并解答以下问题:一个长方体的长、宽、高分别是10厘米、5厘米、3厘米,请计算这个长方体的表面积。
八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。
答案:±42. 如果一个角的补角是120°,那么这个角是______。
答案:60°3. 一个数的绝对值是5,这个数可以是______。
答案:±54. 一个数的立方等于27,这个数是______。
答案:35. 一个数的倒数是1/3,那么这个数是______。
答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。
答案:x = 52. 已知一个角是45°,求它的补角。
B ′C ′D ′O ′A ′ODC BA(第4题)八年级上册数学期中考试试题及答案一、选择题(每小题3分,共30分)1.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°2.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<A D <7B .2<A D <14C .2.5<AD <5.5 D .5<A D <113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,D E ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .10 4.用直尺和圆规作一个角等于已知角的示意图如下,则说明 ∠A ′O ′B ′=∠AOB 的依据是 A .(S .S .S .)B .(S .A .S .) C .(A .S .A .)D .(A .A .S .5. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A.∠α=60º,∠α的补角∠β=120º,∠β>∠α B.∠α=90º,∠α的补角∠β=900º,∠β=∠α C.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角 (第3题)6. △ABC 与△A´B´C ´中,条件①AB = A´B´,②BC = B´C´,③AC =A´C´,④∠A=∠A´,⑤∠B =∠B´,⑥∠C =∠C´,则下列各组条件中不能保证△ABC ≌△A´B´C´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥7.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形( )A .7对B .6对C .5对D .4对 8.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,若△DEB 的周长为10cm,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm 9.如图,△ABC 与△BDE 均为等边三角形,A B <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE与CD 的大小关系为( )A .AE =CDB .A E >CDC .A E <CD D .无法确定10.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( )A .10°B .80°C .100°D .80°或100°CH EDC B A 一、填空题(每小题2分,共20分)11.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 12.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌△ ,理由是 .(第1题) (第2题) (第4题)13.已知△ABC ≌△DEF ,BC =EF =6cm,△ABC 的面积为18平方厘米,则EF 边上的高是 cm. 14.如图,AD 、A´D´分别是锐角△ABC 和△A´B´C´中BC 与B´C´边上的高,且AB = A´B´,AD = A´D´,若使△ABC≌△A´B´C´,请你补充条件 (只需填写一个你认为适当的条件)15. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形完全重合. 16. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度(第16题) (第17题) (第18题)17.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,则DN +MN 的最小值为__________.18.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠DAC :∠DAB =2:5,则∠DAC =___________.19.等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm,则底边BC 上的高为___________.20.锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第19题) (第20题)三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为 ,BAEDCE DABC1 2DA BC B´D´A´C´MND CBAFED CB A DC B A EDCBA你得到的一对全等三角形是∆ ∆≅ . 22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF , 已知:EG ∥AF , = , = , 求证: 证明:(第22题)23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明. ①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CF(第23题)24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式:①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明; (2)用序号再写出三个真命题(不要求证明); (3)真命题不止以上四个,想一想就能够多写出几个真命题EDAC 4321FBEA BD FC25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何?请予以证明.(第25题)26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF 、FB这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.28.如图a,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE. (1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现).EACFBEAC FB图a 图bOPAMN EB CD FACEFBD图①图②图③参考答案一、1.∠DBE , CA 2.△ACE , SAS, △ACD , ASA (或SAS )3. 64.CD =C´D´(或AC =A´C´,或∠C =∠C´或∠CAD =∠C´A´D´)5.平移,翻折6. 907. 108. 20º9.248- 10. 45二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择BD BC DAB CAB DE CE =∠=∠=、、等条件中的一个.可得到△ACE ≌△ADE 或△ACB≌△ADB 等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系 可选①AB =AC ,②DE =DF ,作为已知条件,③BE =CF 作为结论;推理过程为:∵EG ∥AF ,∴∠GED =∠CFD ,∠BGE =∠BCA ,∵AB =AC ,∴∠B =∠BCA ,∴∠B =∠BGE ∴BE =EG ,在△DEG 和△DFC 中,∠GED =∠CFD ,DE =DF ,∠EDG =∠FDC ,∴△DEG ≌△DFC ,∴EG =CF ,而EG =BE ,∴BE =CF ;若选①AB =AC ,③BE =CF 为条件,同样可以推得②DE =DF , 23.结合图形,认真分析所供选择的4个论断之间的内在联系 由④BE =CF 还可推得BC =EF ,根据三角形全等的判定方法,可选论断:①AB =DE ,②AC =DF ,④BE =CF 为条件,根据三边对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断③∠ABC =∠DEF ,同样可选①AB =DE ,③∠ABC =∠DEF ,④BE =CF 为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断②AC =DF . 24. (1)如果①②③,那么④⑤证明:如图,延长AE 交BC 的延长线于F 因为AD ∥BC 所以 ∠1=∠F 又因为∠AED =∠CEF ,DE =EC 所以△ADE ≌△FCE ,所以AD =CF ,AE =EF 因为∠1=∠F ,∠1=∠2 所以∠2=∠F 所以AB =BF .所以∠3=∠4 所以AD +BC =CF +BC =BF =AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④. (3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25. (1)观察结果是:当45°角的顶点与点C 重合,并将这个角绕着点C 在重合,并将这个角绕着点C 在∠ACB 内部旋转时,AE 、EF 、FB 中最长的线段始终是EF .(2)AE 、EF 、FB 三条线段能构成以EF 为斜边的直角三角形,证明如下:在∠ECF 的内部作∠ECG =∠ACE ,使CG =AC ,连结EG ,FG ,∴ΔACE ≌ΔGCE ,∴∠A =∠1,同理∠B =∠2,∵∠A +∠B =90°,∴∠1+∠2=90°, ∴∠EGF =90°,EF 为斜边.四、27.(1)FE 与FD 之间的数量关系为FE =FD (2)答:(1)中的结论FE=FD 仍然成立图① 图② 证法一:如图1,在AC 上截取AG =AE ,连接FG ∵ ∠1=∠2,AF =AF ,AE =AG ∴ △AEF ≌△AGF∴ ∠AFE =∠AFG ,FG =FE ∵ ∠B=60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线 ∴ ∠2+∠3=60°,∠AFE =∠CFD =∠AFG =60°∴ ∠CFG =60° ∵ ∠4=∠3,CF =CF ,∴ △CFG ≌△CFD ∴ FG =FD ∴ FE =FD 证法二:如图2,过点F 分别作F G ⊥AB 于点G ,FH ⊥BC 于点H ∵ ∠B =60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线 ∴ ∠2+∠3=60° ∴ ∠GEF =60°+∠1,FG =FH∵ ∠HDF =∠B +∠1 ∴ ∠GEF =∠HDF ∴ △EG F ≌△DHF ∴ FE =FD28. (1)AF =BE .证明:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60.∴△AFC ≌△BEC . ∴AF =BE . (2)成立. 理由:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形, ∴AC =BC ,CF =CE ,∠ACB =∠FCE =60°. ∴∠ACB -∠FCB =∠FCE -∠FCB. 即∠ACF =∠BCE . ∴△AFC ≌△BEC . ∴AF =BE . (3)此处图形不惟一,仅举几例.如图,(1)中的结论仍成立.图⑤(4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C, 则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.。
八年级上册数学期中测试卷一、选择题(每题3分,共30分)1.下列图形中,不是轴对称图形的是( )2.如果等腰三角形的两边长分别为3和6,那么它的周长为( ) A.9 B.12 C.15 D.12或153.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( ) A.(-2,-3) B.(2,-3) C.(-3,-2) D.(3,-2) 4.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A.6 B.7 C.8 D.95.如图,在△ABC中,边AC的垂直平分线交边AB于点D,∠A=50°,则∠BDC=( )A.50°B.100°C.120°D.130°6.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为( )A.40°B.45°C.60°D.70°7.如图,在△ABC中,∠C=90°,BC=35,∠BAC的平分线AD交BC于点D.若DC DB=25,则点D到AB的距离是( )A.10 B.15 C.25 D.208.如图,在△ABC中,AC=2,∠BAC=75°,∠ACB=60°,高BE与AD相交于点H,则DH的长为( )A.4 B.3 C.2 D.19.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F 是AD上的动点,E是AC边上一点.若AE=2,则EF+CF取得最小值时,∠ECF的度数为( )A.15°B.22.5°C.30°D.45°10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中正确的个数是( )A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.一木工师傅有两根木条,木条的长分别为40 cm和30 cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范围是____________.12.如图,在△ABC中,点D在边BC上,∠BAD=80°,AB=AD=DC,则∠C=________.13.如图,在△ABC中,AB=AC=6,BC=4.5,分别以A,B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是________.14.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA=________.15.由于木制衣架没有柔性,在挂置衣服的时候不大方便操作,小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图①,衣架杆OA=OB=18 cm,若衣架收拢时,∠AOB=60°,如图②,则此时A,B两点之间的距离是________ cm.16.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为________.17.如图,在2×2的正方形网格中,有一个以格点为顶点的△ABC,请你找出网格中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有________个.18.在△ABC中,AB=AC=12 cm,BC=6 cm,D为BC的中点,动点P从点B出发,以1 cm/s的速度沿B→A→C的方向运动.设运动时间为t s,当t=____________时,过点D,P两点的直线将△ABC的周长分成两部分,使其中一部分是另一部分的2倍.三、解答题(19~21题每题6分,23,24题每题8分,26题12分,其余每题10分,共66分)19.如图,在五边形ABCDE中,∠A=∠C=90°.求证∠B=∠DEF+∠EDG.20.如图,在△ABC中,AB=AC,∠BAC=120°,P是BC上一点,且∠BAP=90°,CP=4 cm.求BP的长.21. 已知:如图,点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D,E.求证OB=OC.22.如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1________,B1________,C1________;(3)求△A1B1C1的面积;(4)在y轴上画出点P,使PB+PC最小.23.如图,在等边三角形ABC中,AD⊥BC于点D,以AD为一边向右作等边三角形ADE,DE与AC交于点F.(1)试判断DF与EF的数量关系,并给出证明;(2)若CF的长为2 cm,试求等边三角形ABC的边长.24.如图,在等腰直角三角形ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC,交DE的延长线于点F,连接CF,交AD于点G.(1)求证AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.25.如图,把三角形纸片A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少(用含x或y的式子表示)?(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.26.如图,已知在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点.(1)如果点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,1 s后,△BPD与△CQP是否全等?请说明理由.②若点Q的运动速度与点P的运动速度不相等,则点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以第(1)题②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,经过多少时间,点P与点Q第一次在△ABC的哪条边上相遇?答案一、1.C 2.C 3.A 4.D 5.B 6.A7.A 8.D 9.C 10.D二、11.10<x <70 12.25° 13.10.5 14.55° 15.18 16.108°17.5 18.7或17三、19.证明:在五边形ABCDE 中,∠A +∠B +∠C +∠EDC +∠AED =180°×(5-2)=540°. ∵∠A =∠C =90°,∴∠B +∠AED +∠EDC =360°.又∵∠AED +∠DEF =180°,∠EDC +∠EDG =180°, ∴∠AED +∠EDC +∠DEF +∠EDG =360°. ∴∠B =∠DEF +∠EDG .20.解:∵AB =AC ,∠BAC =120°,∴∠B =∠C =12(180°-∠BAC )=30°.∵∠PAC =∠BAC -∠BAP =120°-90°=30°,∴∠C =∠PAC . ∴AP =CP =4 cm.在Rt △ABP 中,∵∠B =30°, ∴BP =2AP =8 cm.21.证明:∵点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB ,∴OE =OD ,∠BEO =∠CDO =90°. 在△BEO 与△CDO 中,⎩⎨⎧∠BEO =∠CDO ,OE =OD ,∠EOB =∠DOC ,∴△BEO ≌△CDO (ASA). ∴OB =OC .22.解:(1)△A 1B 1C 1如图所示.(2)(3,2);(4,-3);(1,-1)(3)△A1B1C1的面积=3×5-12×2×3-12×1×5-12×2×3=6.5.(4)如图,P点即为所求.23.解:(1)DF=EF.证明:∵△ABC是等边三角形,∴∠BAC=60°.又∵AD⊥BC,∴AD平分∠BAC.∴∠DAC=30°.∵△ADE是等边三角形,∴∠DAE=60°.∴∠DAF=∠EAF=30°.∴AF为△ADE的中线,即DF=EF.(2)∵AD⊥DC,∴∠ADC=90°.∵△ADE是等边三角形,∴∠ADE=60°.∴∠CDF=∠ADC-∠ADE=30°.∵∠DAF=∠EAF,AD=AE,∴AF⊥DE.∴∠CFD=90°.∴CD=2CF=4 cm.∵AD⊥BC,AB=AC,∴BD=CD,∴BC=2CD=8 cm.故等边三角形ABC 的边长为8 cm. 24.(1)证明:∵BF ∥AC ,∠ACB =90°,∴∠CBF =180°-90°=90°. ∵△ABC 是等腰直角三角形, ∠ACB =90°,∴∠ABC =45°. 又∵DE ⊥AB , ∴∠BDF =45°, ∴∠BFD =45°=∠BDF . ∴BD =BF .∵D 为BC 的中点, ∴CD =BD .∴BF =CD . 在△ACD 和△CBF 中,⎩⎨⎧AC =CB ,∠ACD =∠CBF =90°,CD =BF ,∴△ACD ≌△CBF (SAS). ∴∠CAD =∠BCF .∴∠CGD =∠CAD +∠ACF =∠BCF +∠ACF =∠ACB =90°. ∴AD ⊥CF .(2)解:△ACF 是等腰三角形.理由如下: 由(1)可知BD =BF . 又∵DE ⊥AB ,∴AB 是DF 的垂直平分线. ∴AD =AF .又由(1)可知△ACD ≌△CBF , ∴AD =CF ,∴AF =CF . ∴△ACF 是等腰三角形.25.解:(1)△EAD ≌△EA ′D ,其中∠EAD 与∠EA ′D ,∠AED 与∠A ′ED ,∠ADE与∠A ′DE 是对应角. (2)∵△EAD ≌△EA ′D ,∴∠A ′ED =∠AED =x ,∠A ′DE =∠ADE =y .∴∠AEA ′=2x ,∠ADA ′=2y . ∴∠1=180°-2x ,∠2=180°-2y . (3)规律为∠1+∠2=2∠A .理由:由(2)知∠1=180°-2x ,∠2=180°-2y , ∴∠1+∠2=180°-2x +180°-2y =360°-2(x +y ). ∵∠A +∠AED +∠ADE =180°, ∴∠A =180°-(x +y ). ∴2∠A =360°-2(x +y ). ∴∠1+∠2=2∠A .26.解:(1)①△BPD 与△CQP 全等.理由如下:运动1 s 时,BP =CQ =3×1=3(cm). ∵D 为AB 的中点,AB =10 cm , ∴BD =5 cm.∵CP =BC -BP =5 cm , ∴CP =BD .又∵AB =AC ,∴∠B =∠C . 在△BPD 和△CQP 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CQ ,∴△BPD ≌△CQP (SAS).②∵点Q 的运动速度与点P 的运动速度不相等, ∴BP ≠CQ . 又∵∠B =∠C ,∴两个三角形全等需BP =CP =4 cm ,BD =CQ =5 cm. ∴点P ,Q 运动的时间为4÷3=43(s).∴点Q 的运动速度为5÷43=154(cm/s).(2)设x s 后点Q 第一次追上点P .根据题意,得⎝ ⎛⎭⎪⎫154-3x =10×2.解得x =803.∴点P 共运动了3×803=80(cm). ∵△ABC 的周长为10×2+8=28(cm), 80=28×2+24=28×2+8+10+6,∴点P 与点Q 第一次在△ABC 的AB 边上相遇.八年级(上)期中数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的) 1.下列图形中不是轴对称图形的是( ) A .B .C .D .2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,1B .1,2,2C .1,2,3D .1,2,43.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )A .两点之间的线段最短B .长方形的四个角都是直角C .长方形是轴对称图形D .三角形有稳定性4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点5.等腰△ABC的两边长分别是2和5,则△ABC的周长是()A.9 B.9或12 C.12 D.7或126.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.97.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°9.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°10.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC 于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°11.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED12.如果一个三角形有两个外角(不在同一顶点)的和等于270°,则此三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形13.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍14.在直角坐标系中,O为坐标原点,已知A(2,2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有()A.4个B.3个C.2个D.1个二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是.16.如果一个n边形的内角和等于900°,那么n的值为.17.一个多边形的每一个外角都等于30°,则这个多边形的边数是.18.如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD= °.19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则△ABD的周长为cm.20.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于度.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)求图中x的值.22.(10分)已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小,写出作法.23.(10分)如图,在△ABC中;(1)作∠C的角平分线CE交AB于E(保留痕迹,不写作法),过点E分别作AC、BC的垂线EM、EN,垂足分别为M、N;(2)若EN=2,AC=4,求△ACE的面积.24.(8分)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.25.(10分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.26.(12分)学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)八年级(上)期中数学试卷参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2>2,能组成三角形,故B选项正确;C、1+2=3,不能组成三角形,故C选项错误;D、1+2<4,不能组成三角形,故D选项错误;故选:B.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.3.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答.【解答】解:用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【点评】本题考查了三角形具有稳定性在实际生活中的应用,是基础题.4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.5.等腰△ABC的两边长分别是2和5,则△ABC的周长是()A.9 B.9或12 C.12 D.7或12【考点】等腰三角形的性质;三角形三边关系.【分析】分为两种情况:①当腰是2时,②当腰是5时,看看三角形的三边是否符合三角形的三边关系定理,求出即可.【解答】解:分为两种情况:①当腰是2时,三边为2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此种情况不可能;②当腰是5时,三边为2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;故选C.【点评】本题考查了等腰三角形的性质和三角形三边关系定理的应用,注意要进行分类讨论.6.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.9【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n ﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=5,解得n=8.故这个多边形的边数是8.故选C.【点评】本题考查了多边形的对角线,如果一个多边形有n条边,那么经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【考点】翻折变换(折叠问题).【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.9.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°【考点】三角形内角和定理;角平分线的定义.【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.10.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.11.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.【解答】解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,∴BD=2CD,根据已知不能推出CD=DE,即只有D错误,选项A、B、C的答案都正确;故选:D.【点评】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.12.如果一个三角形有两个外角(不在同一顶点)的和等于270°,则此三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形【考点】三角形的外角性质.【分析】根据三角形的外角和是360°,则第三个外角是90°,则与其相邻的内角是90°,即该三角形一定是直角三角形.【解答】解:∵一个三角形的两个外角的和是270°,∴第三个外角是90°,∴与90°的外角相邻的内角是90°,∴这个三角形一定是直角三角形.故选B.【点评】本题考查了三角形内角和定理的应用,能求出∠BAC+∠ACB的度数是解此题的关键,注意:三角形的内角和等于180°.13.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍【考点】三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE +S△ACE=S△ABC,∴S△BCE =S△ABC,∵点F是CE的中点,∴S△BEF =S△BCE.∴△ABC的面积等于△BEF的面积的4倍.故选C.【点评】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.14.在直角坐标系中,O为坐标原点,已知A(2,2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有()A.4个B.3个C.2个D.1个【考点】等腰三角形的判定;坐标与图形性质.【分析】分三种情形考虑∠O为顶角,∠P为顶角,∠A为顶角即可解决问题.【解答】解:如图,△AOP为等腰三角形,则符合条件的点P的个数共有4个.故选A.【点评】本题考查等腰三角形的判定和性质、坐标与图形性质等知识,解题的关键是考虑问题要全面,不能漏解,属于基础题,中考常考题型.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是55°,55°或70°,40°.【考点】等腰三角形的性质.【分析】已知给出了一个内角是70°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.【解答】解:已知等腰三角形的一个内角是70°,根据等腰三角形的性质,当70°的角为顶角时,三角形的内角和是180°,所以其余两个角的度数是(180﹣70)×=55;当70°的角为底角时,顶角为180﹣70×2=40°.故填55°,55°或70°,40°.【点评】本题主要考查等腰三角形的性质以及三角形的内角和为180度.分类讨论是正确解答本题的关键.16.如果一个n边形的内角和等于900°,那么n的值为7 .【考点】多边形内角与外角.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=900°,然后解方程即可求解.【解答】解:设这个多边形的边数为n,则(n﹣2)•180°=900°,解得n=7.故答案为:7.【点评】本题考查了多边行的内角和定理:n边形的内角和为(n﹣2)•180°.17.一个多边形的每一个外角都等于30°,则这个多边形的边数是12 .【考点】多边形内角与外角.【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【解答】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点评】本题考查根据多边形的内角与外角.关键是明确多边形的外角和为360°.18.如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD= 19 °.【考点】三角形内角和定理.【分析】由三角形的高得出∠ADC=90°,求出∠ADC,由三角形内角和定理求出∠BAC,由角平分线求出∠EAC,即可得出∠EAD的度数.【解答】解:∵△ABC中,AD是BC边上的高,∴∠ADC=90°,∴∠DAC=90°﹣∠C=90°﹣78°=12°,∵∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣78°=62°,∵AE平分∠BAC,∴∠EAC=∠BAC=×62°=31°,∴∠EAD=∠EAC﹣∠DAC=31°﹣12°=19°.故答案为:19.【点评】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则△ABD的周长为21 cm.【考点】线段垂直平分线的性质.【分析】要求周长,就要求出三角形的三边,利用垂直平分线的性质计算.【解答】解:因为DE⊥AC,AE=CE,则DA=DC,于是C=AB+BD+DA=AB+(BD+DC)=AB+BC=10+11=21.△ABD∴△ABD的周长为21.【点评】此题设计巧妙,解答时要根据垂直平分线的性质将三角形ABC的周长问题转化为三角形ABC的两边长问题.20.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于90 度.【考点】方向角;平行线的性质;三角形内角和定理.【分析】根据方位角的概念和平行线的性质,结合三角形的内角和定理求解.【解答】解:∵C岛在A岛的北偏东50°方向,∴∠DAC=50°,∵C岛在B岛的北偏西40°方向,∴∠CBE=40°,∵DA∥EB,∴∠DAB+∠EBA=180°,∴∠CAB+∠CBA=90°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°.故答案为:90.【点评】解答此类题需要从运动的角度,结合平行线的性质和三角形的内角和定理求解.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)(2016秋•秦皇岛期中)求图中x的值.【考点】多边形内角与外角;三角形的外角性质.【分析】(1)根据三角形外角等于与它不相邻的两个内角的和,列出方程即可解决问题.(2)根据四边形内角和为360°,列出方程即可解决问题.【解答】(1)由三角形外角等于与它不相邻的两个内角的和,得x+70°=x+x+10°,解得x=60°,∴x=60°(2)由四边形内角和等于360°,得x+x+10°+60°+90°=360°解得:x=100°,∴x=100°.【点评】本题考查三角形的外角,多边形内角和等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.22.(10分)(2016秋•秦皇岛期中)已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小,写出作法.【考点】轴对称-最短路线问题;作图-轴对称变换.【分析】(1)根据网格结构找出点A、B、C关于y轴对称的点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;(2)根据网格结构找出点C关于x轴的对称点C″的位置,连接AC″与x轴相交于点P,根据轴对称确定最短路线问题,点P即为所求作的点.【解答】解:(1)△A′B′C′如图所示,A′(﹣1,2),B′(﹣3,1),C′(﹣4,3);(2)如图所示,点P即为使PA+PC最小的点.作法:①作出C点关于x轴对称的点C″(4,﹣3),②连接C″A交x轴于点P,点P点即为所求点.【点评】本题考查了利用轴对称确定最短路线问题,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(10分)(2014春•邵阳期末)如图,在△ABC中;(1)作∠C的角平分线CE交AB于E(保留痕迹,不写作法),过点E分别作AC、BC的垂线EM、EN,垂足分别为M、N;(2)若EN=2,AC=4,求△ACE的面积.【考点】作图—复杂作图.【分析】(1)利用角平分线的作法以及过一点作已知直线的作法得出即可;(2)利用角平分线的性质以及三角形面积求法求出即可.【解答】解:(1)如图所示:CE为∠ACB的角平线,(2)∵CE为∠ACB的角平线,∠EMC=∠ENC=90°,∴EM=EN=2,∴S=AC×EM=4.【点评】此题主要考查了复杂作图以及角平分线的性质,得出EM的长是解题关键.24.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.【考点】全等三角形的判定与性质.【分析】根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.【解答】证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.(10分)(2011•德州)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD 相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的判定方法,证明△ACD≌△ABE,即可得出AD=AE,(2)根据已知条件得出△ADO≌△AEO,得出∠DAO=∠EAO,即可判断出OA是∠BAC的平分线,即OA⊥BC.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.【点评】本题考查了全等三角形的判定方法,以及全等三角形的对应边相等,对应角相等的性质,难度适中.26.(12分)(2016秋•秦皇岛期中)学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)【考点】三角形综合题.【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH 全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt △DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;【解答】(1)解:HL;故答案为:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,∴△CBG≌△FEH(AAS),。
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 2C. 5D. 65. 下列哪个数是负数?A. 3B. 0C. 3D. 6二、判断题(每题1分,共5分)1. 2的平方等于4。
()2. 0是最小的自然数。
()3. 1是最大的质数。
()4. 两条对角线相等的四边形一定是矩形。
()5. 任何两个奇数相加的和都是偶数。
()三、填空题(每题1分,共5分)1. 一个正方形的边长是4,那么它的面积是______。
2. 如果 a = 2,那么 a 的平方是______。
3. 下列数中,最大的偶数是______。
4. 如果一个等边三角形的边长是3,那么它的周长是______。
5. 下列数中,最小的负数是______。
四、简答题(每题2分,共10分)1. 请解释什么是质数。
2. 请解释什么是偶数。
3. 请解释什么是等边三角形。
4. 请解释什么是自然数。
5. 请解释什么是正方形。
五、应用题(每题2分,共10分)1. 一个长方形的长是6,宽是4,求它的面积。
2. 如果 a = 3,b = 5,那么 a + b 的和是多少?3. 一个等腰三角形的底边长是8,腰长是5,求它的周长。
4. 一个正方形的边长是5,求它的对角线长度。
5. 如果一个数的平方是36,那么这个数可能是多少?六、分析题(每题5分,共10分)1. 请分析一个长方形的长和宽分别是多少时,它的面积最大。
2. 请分析一个等腰三角形的底边长和腰长分别是多少时,它的周长最小。
七、实践操作题(每题5分,共10分)1. 请画出一个边长为5的正方形,并标出它的对角线长度。
2. 请画出一个底边长为6,腰长为8的等腰三角形,并标出它的周长。
八年级数学上册期中考试试卷姓名班级考号题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A. 8B. 9C. 10D. 112.在△ABC中,AB=10,AC=2√10,BC边上的高AD=6,则另一边BC等于()A. 10B. 8C. 6或10D. 8或103.函数y=√2x−1x+1有意义,则x的取值范围是()A. x≥12B. x≠−1C. x≤12且x≠−1 D. x<12且x≠−14.若√k−1+(k−1)0有意义,则一次函数y=(k﹣1)x﹢1﹣k的图像可能是()A. B.C. D.5.已知x=√5+1,y=√5−1,则x2+xy+y2的值为()A. 16B. 20C. 2√5D. 46.当1<x<2时,化简√x2−4x+4+√x2−2x+1得()A. 2x−3B. 1C. 3−2xD. −17.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标()A. (4,10)B. (10,6)C. (10,4)D. (10,3)8.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A. (1,1)B. (0,√2)C. (−√2,0)D. (−1,1)9.一次函数y=ax+b,ab<0,则其大致图象正确的是()A. B.C. D.10.如图,函数y=﹣3x+3的图象分别与x轴、y轴交于点A、4B,∠BAO的平分线AC与y轴交于点C,则点C的纵坐标为( )A. 53B. 43C. 2D. 32二、填空题(本大题共8小题,共24.0分)11.在△ABC中,AB=41,AC=15,高AH=9,则△ABC的面积是__________.12.若9+√13与9−√13的小数部分分别为a和b,则(a+3)(b-4)的值______ .13.已知√x+3+|3x+2y-15|=0,则√x+y的算术平方根为______.14.已知P点在第三象限,且到x轴距离是2,到y轴距离是3,则P点的坐标是______.15.在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是______.16.在直线y=-1x+3上和x轴的距离是2个单位长度的点的坐标是______ .217.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2;④不等式kx+b>0的解集是x>2.其中说法正确的有______(把你认为说法正确的序号都填上).18.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(2,0),B(6,0)是x轴上的两点,则PA +PB 的最小值为______.三、解答题(本大题共6小题,共46.0分)19. 计算:3√48-9√13+3√18-4√18.20. 计算:√48−√54÷√2+(3+√3)(3−√3)21. 求式中的x 的值:(x -1)2=4.22. 如图,已知某开发区有一块四边形空地ABCD ,现计划在该空地上种植草皮,经测量∠ADC =90°,CD =6m ,AD =8m ,BC =24cm ,AB =26m ,若每平方米草皮需200元,则在该空地上种植草皮共需多少钱?23.如图,一次函数y=kx+b的图象经过(2,4)、(0,2)两点,与x轴相交于点C.求:(1)此一次函数的解析式;(2)△AOC的面积.24.如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,且AB=3,AD=2,经过点C的直线y=x-2与x轴、y轴分别交于点E、F.(1)求矩形ABCD的顶点A、B、C、D的坐标;(2)求证:△OEF≌△BEC;(3)P为直线y=x−2上一点,若S△POE=5,求点P的坐标.答案和解析1.【答案】C【解析】解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ACB和△CDE中,{∠ABC=∠DEC=90°∠ACB=∠CDEAC=DC,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选:C.运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.此题主要考查对全等三角形和勾股定理的综合运用,关键是证明△ACB≌△DCE.2.【答案】C【解析】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2√10,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD=√AB2−AD2=8,CD=√AC2−AD2=2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2√10,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD=√AB2−AD2=8,CD=√AC2−AD2=2,此时BC=BD-CD=8-2=6,则BC的长为6或10.故选:C.分两种情况考虑,如图所示,分别在直角三角形ABD与直角三角形ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.3.【答案】A【解析】【分析】主要考查了二次根式的概念.二次根式的概念:式子√a(a≥0)叫二次根式.√a(a≥0)是一个非负数.二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零.【解答】解:依题意有2x﹣1≥0,解得x≥1,又因为0做分母无意义,2.所以x+1≠0,即x≠﹣1,故x的取值范围是x≥12故选A.4.【答案】A【解析】【分析】此题主要考查了一次函数的图象与系数的关系,零指数幂的运算及二次根式有意义的条件.先根据二次根式中的被开方数是非负数,以及a 0=1(a≠0),判断出k的取值范围,然后判断出k-1、1-k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k-1)x+1-k的图象可能是哪个即可.【解答】解:∵式子√k−1+(k−1)0有意义,∴{k−1≥0k−1≠0,解得k>1,∴k-1>0,1-k<0,∴一次函数y=(k-1)x+1-k的图象可能是:故选A.5.【答案】A【解析】解:∵x=√5+1,y=√5−1,∴x+y=2√5,xy=(√5+1)(√5−1)=4,由题可知:x2+xy+y2=x2+y2+2xy-xy,=(x+y)2-xy,=(2√5)2-4=16.故选:A.先把所求式子变形为完全平方式,再把题中已知条件代入即可解答.本题考查了二次根式的化简求值,需要同学们对完全平方公式灵活运用能力.6.【答案】B【解析】【分析】本题考查的是二次根式的化简,掌握“二次根式的性质:√a2=|a|”是解题的关键.利用完全平方公式把原式变形,根据二次根式的性质化简即可得到结果.【解答】解:∵1<x<2,∴原式=√(x−2)2+√(x−1)2=|x-2|+|x-1|=2-x+x-1=1.故选:B.7.【答案】D【解析】解:∵四边形AOCD为矩形,D的坐标为(10,8),∴AD=OC=10,DC=OA=8,∵矩形沿AE折叠,使D落在OC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中,OF=√AF2−AO2=6,∴FC=10-6=4,设EC=x,则DE=EF=8-x,在Rt△CEF中,EF2=EC2+FC2,∴(8-x)2=x2+42,解得x=3,即EC的长为3.∴点E的坐标为(10,3),故选:D.根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.本题考查矩形的性质,勾股定理以及折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等;对应点的连线段被折痕垂直平分.8.【答案】D【解析】解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=√2,由旋转得:OB=OB1=OB2=OB3=…=√2,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,√2),B2(-1,1),B3(-√2,0),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(-1,1)故选:D.根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.9.【答案】A【解析】【分析】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过第一、第三象限;k<0时,直线必经过第二、第四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.根据a,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【解答】解:因为ab<0,可得:a>0,b<0,或a<0,b>0,所以图象在第一,第三,第四象限或第一,第二,第四象限.故选A.10.【答案】B【解析】【分析】过点C作CF⊥BA,由题意可得AO=4和BO=3,根据全等三角形的判定可证△ACF≌△ACO,可得CO=CF,AO=AF=4,再根据勾股定理可求OC的长,即可得点C的纵坐标.本题考查的是一次函数图象、勾股定理和全等三角形的判定与性质的有关知识,解题的关键在于作出辅助线CF.【解答】解:如图,过点C作CF⊥BA,∵y=−3x+3的图象分别与x轴、y轴交于点A、B,4∴点A坐标为(4,0),点B坐标为(0,3),∴AO=4,BO=3,在Rt△ABO中,AB=√AO2+BO2=5,∵AC平分∠BAO,∴∠FAC=∠OAC,且AC=AC,∠CFA=∠COA=90°,∴△ACF≌△ACO(AAS)∴CO=CF,AO=AF=4∴BF=1,在Rt△BCF中,BC2=BF2+CF2,∴(3-CO)2=1+CO2,∴CO=43故选B.11.【答案】234或126【解析】【分析】本题考查的是勾股定理的应用,掌握如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2是解题的关键.分三角形ABC为锐角三角形、三角形ABC为钝角三角形两种情况,根据AH垂直于BC,利用垂直的定义得到三角形ABH与三角形AHC为直角三角形,利用勾股定理分别求出BH与HC,由BH+HC=BC或BH-HC=BC求出BC,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:①当△ABC为锐角三角形时,如图1所示,∵AH⊥BC,∴∠AHB=∠AHC=90°,在Rt△ABH中,AB=41,AH=9,根据勾股定理得:BH=√AB2−AH2=40,在Rt△AHC中,AC=15,AH=9,根据勾股定理得:HC=√AC2−AH2=12,∴BC=BH+HC=40+12=52,BC•AH=234;则S△ABC=12②当△ABC为钝角三角形时,如图2所示,由①得,BH=40,CH=12,∴BC=BH-HC=40-12=28,BC•AH=126.则S△ABC=12综上,△ABC的面积为234或126.故答案为:234或126.12.【答案】-13【解析】【分析】本题考查了估算无理数的大小的应用,能求出a、b的值是解此题的关键.先估算出√13的范围,再求出9+√13和9-√13的范围,求出a、b的值,即可求出答案.【解答】解:∵3<√13<4,∴12<9+√13<13,∴a=9+√13-12=√13-3,∵-4<-√13<-3,∴5<9-√13<6,∴b=9-√13-5=4-√13,∴(a+3)(b-4)=(√13-3+3)×(4-√13-4)=-13,故答案为-13.13.【答案】√3【解析】解:由题意得,x+3=0,3x+2y-15=0,解得x=-3,y=12,所以,√x+y=√−3+12=3,所以,√x+y的算术平方根为√3.故答案为:√3.根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.【答案】(-3,-2)【解析】解:∵第三象限内的点横坐标<0,纵坐标<0,点P到x轴的距离是2,到y轴的距离为3,∴点P的纵坐标为-2,横坐标为-3,因而点P的坐标是(-3,-2),故答案为:(-3,-2).本题根据点在第三象限的特点,横纵坐标都小于0,再根据点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而根据点P到坐标轴的距离判断点P的具体坐标.此题用到的知识点为:第三象限点的坐标的符号都为负,点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.15.【答案】-1或5【解析】解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2-x|=3,解得,x=-1或x=5,故答案为:-1或5.根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2-x|=3,从而可以求得x 的值.本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.16.【答案】(2,2)和(10,-2)【解析】【分析】由题意可知,符合条件的点有两个,可以转化为求当y=±2时,x的值,再把x、y转化为点的坐标的形式.本题主要考查点的坐标及点到坐标轴的距离,涉及到解一元一次方程,注意不要漏解. 【解答】x+3=±2,解:∵直线上的点到x轴的距离是2个单位长度的点有两个,即-12解得:x=2或x=10;当x=2时,y=2;当x=10时,y=-2;∴直线y=-1x+3上和x轴的距离是2个单位长度的点的坐标为(2,2)和(10,-2).2故填:(2,2)和(10,-2).17.【答案】①②③【解析】解:由图可知,①y随x的增大而减小,故本小题正确;②直线与y轴正半轴相交,b>0,故本小题正确;③关于x的方程kx+b=0的解为x=2,故本小题正确;④不等式kx+b>0的解集是x<2,故本小题错误;综上所述,说法正确的是①②③.故答案为:①②③.根据一次函数的性质,一次函数与一元一次方程的关系对个小题分析判断即可得解.本题主要考查了一次函数的性质,以及一次函数与一元一次方程,数形结合是求解的关键.18.【答案】2√10【解析】解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时PA +PB 最小,∵OA ′=2,BO =6, ∴PA +PB =A ′B =√22+62=2√10. 故答案为:2√10.作A 点关于直线y =x 的对称点A ′,利用一次函数图象上点的坐标性质得出OA ′=2,进而利用勾股定理得出结论即可.此题主要考查了利用轴对称求最短路线以及一次函数图象上点的特征等知识,得出P 点位置是解题关键.19.【答案】解:3√48-9√13+3√18-4√18=3×4√3-9×√33+3×3√2-4×√24=12√3-3√3+9√2-√2=9√3+8√2.【解析】首先化简二次根式进而合并同类二次根式求出答案.此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.20.【答案】解:原式=4√3−√27+9−3=4√3−3√3+6=6+√3.【解析】根据运算顺序先算二次根式的乘除,再算加减,即可解答.本题考查了二次根式的混合运算,解决本题的关键是注意二次根式的运算顺序. 21.【答案】解:∵(x -1)2=4,∴x -1=±2, 解得,x 1=3,x 2=-1.【解析】根据直接开平方法可以解答此方程.本题考查平方根,解一元二次方程,解答本题的关键是会解答一元二次方程. 22.【答案】解:连接AC ,在Rt △ACD 中,AC 2=CD 2+AD 2=62+82=102,在△ABC 中,AB 2=262,BC 2=242,而102+242=262,即AC 2+BC 2=AB 2,∴∠ACB =90°,S 四边形ABCD =S △ACB -S △ACD =12•AC •BC -12AD •CD ,=12×10×24-12×8×6=96.所以需费用96×200=19200(元).【解析】仔细分析题目,需要求得四边形的面积才能求得结果.连接AC ,在直角三角形ACD 中可求得AC 的长,由AC 、AB 、BC 的长度关系可得三角形ABC 为一直角三角形,AB 为斜边;由此看,四边形ABCD 的面积等于Rt △ABC 面积减Rt △ACD 的面积解答即可.本题考查了勾股定理的应用,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.23.【答案】解:(1)∵由图可知A (2,4)、B (0,2),{2k +b =4b =2, 解得{k =1b =2, 故此一次函数的解析式为:y =x +2;(2)∵由图可知,C (-2,0),A (2,4),∴OC =2,AD =4,∴S △AOC =12OC •AD =12×2×4=4. 答:△AOC 的面积是4.【解析】(1)由图可知A 、B 两点的坐标,把两点坐标代入一次函数y =kx +b 即可求出kb 的值,进而得出结论;(2)由C 点坐标可求出OC 的长再由A 点坐标可知AD 的长,利用三角形的面积公式即可得出结论.此题考查的是待定系数法求一次函数的解析式及一次函数图象上点的坐标特点,先根据一次函数的图象得出A 、B 、C 三点的坐标是解答此题的关键.24.【答案】解:(1)∵AD =BC =2,故可设点C 的坐标为(m ,2),又∵点C 在直线y =x -2上,∴2=m -2,解得:m =4,即点C 的坐标为(4,2),∵四边形ABCD 是矩形,∴AB =CD =3,AD =BC =2,故可得点A 、B 、D 的坐标分别为(1,0)、(4,0)、(1,2).(2)直线y =x -2与x 轴、y 轴坐标分别为E (2,0)、F (0,-2),∴OF =OE =BC =BE =2,在Rt △OEF 和Rt △BEC 中,{OF =BCOE =BE ∠FOE =∠CBE故可得△OEF ≌△BEC .(3)设点P 的坐标为(x p ,y p ),则S △POE =12×OE ×|y p |=12×2×|y p |=5, 解得:y p =±5, ①当y p =5时,x p =7;②当y p =-5时,x p =-3,故点P 的坐标为(7,5)或(-3,-5).【解析】(1)根据题意可得点C 的纵坐标为2,代入函数解析式可得出点C 的坐标,结合矩形的性质可得出A 、B 、D 的坐标;(2)先求出OE 、OF 的长度,从而利用SAS 证明△OEF ≌△BEC 即可.(3)设点P 的坐标为(x p ,y p ),则可表示出S △POE =12×OE ×|y p |,解出x p 的值讨论即可. 此题综合考查了一次函数和矩形的性质,要求我们能将线段长度和点的坐标进行互相转化,在第三问的求解中,要先设出点P 的坐标,根据面积关系进行求解.。
C . 3八年级数学试题题号三总分1718192021222324得分评卷人得分一、选择题(每题3分,共24分) 1.下列图案是轴对称图形的有(2•如果一个有理数的平方根和立方根相同,那么这个数是()A. ± 1B. 1C. 0D. 0 和 13.下列说法:①用一张底片冲洗出来的 2张1寸相片是全等形;②所有的正五边形是全等形;③全等形的周长相等;④面积相等的图形一定是全等形•其中正确的是( )5.81的平方根是A. ①②③B .①③④C .①③D .③4.将一矩形纸片按如图方式折叠,上,则/ CBD 的度数 ( )A.大于90°B.C.小于90°D. C .D .BC 、 等于90° 不能确定B. -9D. -3C. 36. 估计20的算术平方根的大小在()A . 2与3之间B. 3与4之间 C . 4与5之间D. 5与6之间7. 如图1所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是11. 以下是一个简单的数值运算程序:8.如图,在△ ABC中, AB=AC,/ A=36,BD、CE分别是△ABC、△ BCD的角平分线,则图中的等腰三角形有( )A. 5个B. 4个C. 3个D. 2个得分评卷人、填空题(每题4分,共32分)9.无理数-也的相反数是___________ ,绝对值是___________10.在-3 , - 3 , —1, 0这四个实数中,最大的是________ ,最小的是___________ ,A、A—CBC DB(A)图1A. B. C.当输入x的值为-4时,则输出的结果为______________ ,12. 已知等腰三角形的一个内角为70。
,则另外两个内角的度数是_______________________ 13. 如图,△ ABDACE,则AB的对应边是______________ ,/ BAD的对应角是______ .14. 如图,AD II BC, / ABC的平分线BP与/BAD的平分线AP相交于点P,作PE丄AB于点E.若PE=2,则两平行线AD与BC间的距离为________________ ,/E = F = 90,/B = C , AE = AF,结论:① EM = FN :②CD =DN :③ N FAN EAM :④△ ACNABM •其中正确的有________________________ ,218. (6分)自由下落的物体的高度h (m)与下落时间t (s )的关系为h = 4.9 t .有一学生不慎让一个玻璃杯从19.6 m高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗(声音的速度为340 m / s)?19. (6分)已知:如图,D是厶ABC的边AB上一点,DF交AC于点E, DE = FE, FC II AB.求证:AD=CF .15.如图,点P在.线段MN交OA、OB于点E、J AOB的内部,点M、N分别是P关F,若△ PEF 周长是20cm,则线段^MN的长是B C16.如图所示,题OB ?的对称点,20.(6分)如图,写出A、B、C关于y轴对称的点坐标,并作出与△ ABC关于x轴对称的图形.21. (8分)认真观察下图4个图中阴影部分构成的图案,回答下列问题:03②,(1)请写出这四个图案都具有的两个共同特征.特征1 : 特征2: __⑵若将A、B抽象为两个点,公路AC抽象为一条直线,请在直线AC上找一个点M ,小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结(请你完成以下解答过程) (3 )拓展结论,设计新题图2,过点E 作EF//BC ,交AC 于点F .在等边三角形 ABC 中,点E 在直线 AB 上,点 D 在直线BC 上,且ED 二EC .若C如ABC的边长为1, AE =2,求CD的长(请你直接写出结果)一、选择题(24分)1. B2. C3. C4. B5. D6. C7. D8. A二、填空题(32分)9. 、. 3, . 3 ; 10. 0, -3 ; 11. 2 ; 12. 70° 40。
八年级上册数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列哪一个数是质数?A. 21B. 29C. 35D. 393. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长度为多少cm?A. 5cmB. 6cmC. 7cmD. 9cm4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的高为多少cm?A. 5cmB. 12cmC. 16cmD. 24cm5. 下列哪一个数是偶数?A. 101B. 103C. 105D. 107二、判断题(每题1分,共5分)1. 两个等腰三角形的底边长相等,则这两个三角形全等。
()2. 任何两个奇数的和都是偶数。
()3. 一个正方形的对角线长度等于它的边长的平方根。
()4. 一个等边三角形的面积可以用公式“底×高÷2”来计算。
()5. 任何两个质数的和都是偶数。
()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高为______cm。
2. 两个质数的积一定是______。
3. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积为______cm³。
4. 若一个等边三角形的边长为6cm,则这个三角形的面积为______cm²。
5. 下列哪一个数是合数?A. 11B. 13C. 15D. 17答案:______四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请简述等边三角形的性质。
3. 请简述长方体的体积公式。
4. 请简述等腰三角形的性质。
5. 请简述质数和合数的区别。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为12cm,腰长为15cm,求这个三角形的高。
八年级数学上册期中测试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列线段长能构成三角形的是()A.3、7、5 B.2、3、5C.5、6、11D.1、2、4 2.(3分)下列图形中不是轴对称图形的是()A.B.C.D.3.(3分)下列图形中,不是运用三角形的稳定性的是()A.房屋顶支撑架B.自行车三脚架C.拉闸门D.木门上钉一根木条4.(3分)一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.(3分)如图所示,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=47°,则∠B的度数是()A.33°B.47°C.53°D.100°6.(3分)已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2 B.9:4C.2:3D.4:97.(3分)如图,DE是△ABC中AC边的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为()A.16cm B.28cm C.26cm D.18cm8.(3分)如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为()A.60°B.67.5°C.72°D.75°9.(3分)如图,在△ABC中,∠B=∠C,D为BC边上的一点,E点在AC边上,∠ADE=∠AED,若∠BAD=20°,则∠CDE =()A.10°B.15°C.20°D.30°10.(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,共18分)11.(3分)点P(1,3)关于y轴对称点的坐标为.12.(3分)已知△ABC中的∠B=∠A+10°,∠C=∠B+10°,则∠A =,∠B=,∠C=.13.(3分)小华要从长度分别为5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒形成的三角形的周长为cm.14.(3分)如图,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)15.(3分)如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC =3,则BE=.16.(3分)在△ABC中,AD是高,∠BAD=60°,∠CAD=20°,AE平分∠BAC,则∠EAD的度数为.参考答案与试题解析一、选择题1.A;2.C;3.C;4.B;5.A;6.A;7.D;8.B;9.A;10.A;二、填空题11.(﹣1,3);12.50°;60°;70°; 13.33; 14.BC=BD;15.1.5;16.20°或40°;三、解答题(共8小题,共72分)17.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC 异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.18.(8分)已知等腰三角形的周长是22,一边长为5,求它的另外两边长.19.(8分)如图,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向.求∠C的度数.20.(8分)如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF (A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.21.(8分)如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.22.(10分)如图,∠ECF=90°,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CAB的外角平分线AG所在的直线交于一点D,(1)∠D与∠C有怎样的数量关系?(直接写出关系及大小)(2)点A在射线CE上运动,(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.23.(10分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC 上一点,过A作AD⊥BP于D,交直线BC于Q.(1)如图1,当P在线段AC上时,求证:BP=AQ.(2)当P在线段AC的延长线上时,请在图2中画出图形,并求∠CPQ.(3)如图3,当P在线段AC的延长线上时,∠DBA=时,AQ=2BD.24.(12分)如图1,A(m,0),B(0,n),且m,n满足(m ﹣2)2+=0.(1)求S△ABO;(2)点C为y轴负半轴上一点,BD⊥CA交CA的延长线于点D,若∠BAD=∠CAO,求的值;(3)点E为y轴负半轴上一点,OH⊥AE于H,HO,AB的延长线交于点F,G为y轴正半轴上一点,且BG=OE,FG,EA的延长线交于点P,求证:点P的纵坐标是定值.参考答案与试题解析三、解答题(共8小题,共72分)17.(8分)【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.18.(8分)【解答】解:若底边为5,设腰长为x,则5+2x=22,解得x=8.5,若腰为5,设底边为xcm,则2×5+x=22,解得x=12,∵5+5<12,∴不合题意.所以等腰三角形另外两边长分别为8.5和8.5.19.(8分)【解答】解:过A沿南向做射线AD交BC于D,由题意∠BAD=57°,∠CAD=15°,∠EBC=82°,∵AD∥BE,∴∠EBA=∠BAD=57°.∴∠ABC=∠EBC﹣∠EBA=25°.△ABC中,∠ABC=25°,∠BAC=72°,∴∠C=180°﹣25°﹣72°=83°.即:∠C的度数为83°.20.(8分)【解答】解:(1)D(﹣4,3);E(﹣5,1);F(0,﹣2);(5分)(2)AD=6,BE=8,∴S四边形ABED=(AD+BE)•2=AD+BE=14.(8分)21.(8分)【解答】证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵AD是∠BAC平分线,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵∠EAC=∠EAD﹣∠CAD,∠B=∠EDA﹣∠BAD,且∠BAD =∠CAD,∠EAD=∠EDA,∴∠EAC=∠B.22.(10分)【解答】解:(1)∠C=2∠D即:∠D=45°,∵BD平分∠CBA,AG平分∠EAB,∴∠EAB=2∠GAB,∠ABC=2∠DBA,∵∠CAB=180°﹣2∠GAB,∠BAC+∠ABC=90°,即180°﹣2∠GAB+2∠DBA=90°,整理得出∠GAB﹣∠DBA=45°,∴∠D=∠C=45°;(2)当A在射线CE上运动(不与点C重合)时,其它条件不变,(1)中结论还成立,∵∠CAB+∠ABC=∠C=90°,不论A在CE上如何运动,只要不与C点重合,这个关系式都是不变的,整理这个式子:∠CAB=180°﹣2∠GAB,∠ABC=2∠DBA,得:180°﹣2∠GAB+2∠DBA=90°,整理得∠GAB﹣∠DBA=45度,恒定不变,即:∠D=45°的结论不变,∴∠C=2∠D恒成立.23.(10分)【解答】(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP,在△ACQ和△BCP中,∴△ACQ≌△BCP(ASA),∴BP=AQ;(2)解:如图2所示:∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,∴∠CAQ=∠DBQ,在△AQC和△BPC中,∴△AQC≌△BPC(ASA),∴QC=CP,∵∠QCD=90°,∴∠CQP=∠CPQ=45°;(3)解:当∠DBA=22.5°时,AQ=2BD;∵AC=BC,∠ACB=90°,∴∠BAC=45°,∴∠P=22.5°,∴∠DBA=∠P,∴AP=AB,∵AD⊥BP,∴AD=DP,∵∠ACQ=∠ADP=90°,∠PAD=∠QAC,∴∠P=∠Q,在△ACQ和△BCP中,∴△ACQ≌△BCP(ASA),∴BP=AQ,∴此时AQ=BP=2BD.故答案为:22.5°.24.(12分)【解答】解:(1)∵(m﹣2)2+=0.∴m=n=2,∴A(2,0),B(0,2),∴OA=2,OB=2,∴S△AOB=OA×OB=2;(2)如图1,在OC上取一点E,使OE=OA=2,由(1)知,OA=OB=2,∴∠OAB=45°,∴AE=2,∵∠BAD=∠CAO,∴∠BAD=∠CAO=67.5°,∵∠ADB=∠AOC=90°,∴∠ABD=∠ACO=22.5°,∴CE=AE=2,∴OC=OE+CE=2(+1),∴AC2=OA2+OC2=4+4(+1)2=8(2+),tan∠ACO==﹣1,在Rt△ABD中,tan∠ABD=tan22.5°=tan∠ACO==﹣1,∴AD=(﹣1)BD,在Rt△AOB中,OA=OB=2,∴AB=2,根据勾股定理得,AD2+BD2=AB2,∴[(﹣1)BD]2+BD2=8,∴BD2=2(2+),==,∴=;(3)如图2,由(1)知,A(2,0),B(0,2),∴直线AB解析式为y=﹣x+2①,设E(0,a),∴OE=|a|=﹣a,∵BG=OE,∴BG=﹣a,∴OG=2﹣a,∴G(0,2﹣a),∵A(0,2),E(0,a),∴直线AE解析式为y=﹣x+a②,∵OH⊥AE,∴直线OH解析式为y=x③,联立①③得,x=,y=,∴F(,),∵G(0,2﹣a),∴直线FG的解析式为y=x+2﹣a④,联立②④得,x=,y=1,∴P(,1),∴点P的纵坐标是定值,定值为1.。
数学八年级上册期中试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?A. 21B. 29C. 35D. 392. 二次方程 x^2 5x + 6 = 0 的解是?A. x = 2, x = 3B. x = 1, x = 6C. x = -2, x = -3D. x = 4, x = 13. 下列哪个角是锐角?A. 120°B. 135°C. 150°D. 160°4. 下列哪个图形是平行四边形?A. 矩形B. 梯形C. 菱形D. 正方形5. 下列哪个数是无理数?A. √9B. √16C. √25D. √2二、判断题1. 任何两个奇数相加都是偶数。
()2. 二次方程的解可以是复数。
()3. 平行四边形的对角线互相平分。
()4. 任何两个负数相乘都是正数。
()5. 三角形的内角和等于180°。
()三、填空题1. 2的平方根是______。
2. 二次方程 ax^2 + bx + c = 0 的判别式是______。
3. 两条平行线的距离是______。
4. 三角形的面积可以用公式______计算。
5. 两个事件A和B相互独立,P(A) = 0.2,P(B) = 0.3,那么P(A∩B) = ______。
四、简答题1. 解释什么是因式分解,并给出一个例子。
2. 解释什么是相似三角形,并给出一个例子。
3. 解释什么是概率,并给出一个例子。
4. 解释什么是函数,并给出一个例子。
5. 解释什么是等差数列,并给出一个例子。
五、应用题1. 解方程:2x + 3 = 15。
2. 计算三角形的面积,已知底边长为10,高为5。
3. 计算下列数的平方根:9,16,25。
4. 计算下列数的立方根:8,27,64。
5. 解不等式:3x 7 > 2。
六、分析题1. 分析二次方程的解的情况,并给出一个例子。
2. 分析平行四边形的性质,并给出一个例子。
八年级数学试题 一.选择题36分 1.下列结论正确的是A 有两个锐角相等的两个直角三角形全等;B 一条斜边对应相等的两个直角三角形全等;C 顶角和底边对应相等的两个等腰三角形全等;D 两个等边三角形全等.2.下列四个图形中,不是轴对称图形的是A B C D 3.已知,如图1,AD=AC,BD=BC,O 为AB 上一点,那么,图中共有 对全等三角形.A. 1B. 2图1 4.如图2, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF ,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有 A .1个 B .2个 C .3个 D .4个5.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系A D CB图2 E FCOAB图4是A.形状相同B.周长相等C.面积相等D.全等6.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为A.20B.120C.20或120D.367.如图4,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40,则∠BOC=A. 0130 D.0140120 C.0110 B.08.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是A. 圆B. 正方形C. 长方形D. 等腰梯形9.点3,-2关于x轴的对称点是A. -3,-2B. 3,2C. -3,2D. 3,-210.下列长度的三线段,能组成等腰三角形的是A. 1,1,2B. 2,2,5C. 3,3,5D. 3,4,511.等腰三角形的一个角是80°,则它的底角是A. 50°B. 80°C. 50°或80°D. 20°或80°12.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是A. 75°或30°B. 75°C. 15°D. 75°和15°二.填空题18分13.如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI______全等, 如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI______全等.填“一定”或“不一定”或“一定不”14.点P-1,2关于x 轴对称点P 1的坐标为 .15.如左下图.△ABC ≌△ADE,则,AB= ,∠E=∠ .若∠BAE=120°∠BAD=40°.则∠BAC= .16.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.17.点M -2,1关于x 轴对称的点N 的坐标是________,直线MN 与x 轴的位置关系是___________.18.如图4,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______. 三.作图题6分19.近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内如图所示.医疗站必须满足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确定P 点的位置.不写作法,要保留作图痕迹 四.解答题40分20本题8分.如图,AB=DF,AC=DE,BE=FC,问:ΔABC 与ΔDEF 全等吗 AB 与DF 平行吗 请说明你的理由;21.10分已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF .AD OCB 图3AD CBE求证:1AF CE =;2AB CD ∥.22. 10分平面直角坐标系中,△ABC 的三个顶点坐标分别为A0,4B2,4C3,-1.1试在平面直角坐标系中,标出A 、B 、C 三点; 2求△ABC 的面积.3若△DEF 与△ABC 关于x 轴对称,写出D 、E 、F 的坐标.23.12分如图14,ABC △中,∠B =∠C,D,E,F 分别在AB ,BC ,AC 上,且BD CE =,=DEF B ∠∠求证:=ED EF . 参考答案 一.选择题1--5 CACDC 6--10 CADBC 11--12 CA 一.填空题13. 一定 一定不 14. -1,-215. AD C 80° 16. AB=CD 17. -2,-1 垂直 18. 8 三.作图题略 四.解答题20.解: 全等;平行ADE CB图F A DE CB 图F∵BE=FC ∴BE+CE=CE+CF ∴BC=EF在△ABC和△DEF中,AB=DFAC=DEBC=EF∴△ABC≌△DEFSSS∴∠B=∠F∴AB∥DF21.证明:∵DE⊥AC. BF⊥AC∴△CDE和△ABF都是Rt△在Rt△CDE和Rt△ABF中DE=BFAB=CD∴Rt△CDE≌Rt△ABFHL∴AF=CE∴∠C=∠A∴AB∥CD1图略2由题意知,面积为2×5×1/2=53 D 0,-4 E 2,- 4 F 3, 122.证明:∠CED是△BDE的外角∴∠CED=∠B+∠BDE 又∠DEF=∠B ∴∠CEF=∠BDE 在△BDE和△CEF中∠B=∠CBD=CE∠CEF=∠BDE∴△BDE≌△CEFASA ∴DE=EF。
八年级上册数学期中测试题 (答题时间:60分钟)一、选择题1. (广西桂林)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( )A. B. C. D. 2. 三角形的三边分别为3、1-2a 、8,则a 的取值范围是( ) A. -6<a <-3 B. -5<a <-2 C. 2<a <5 D. a <-5或a >-23. 有五根细木棒,长度分别为1cm 、3cm 、5cm 、7cm 、9cm ,现任取其中的三根木棒,组成一个三角形,问有几种可能( )A. 1种B. 2种C. 3种D. 4种4. 两个三角形有以下三对元素对应相等,则不能判定全等的是( ) A. 一边和任意两个角 B . 两边和它们的夹角 C. 两个角和它们一角的对边 D. 三角对应相等5. 已知△ABC 的三个内角∠A 、∠B 、∠C 满足关系式∠B +∠C =3∠A ,则此三角形中( )A. 一定有一个内角为45°B. 一定有一个内角为60°C. 一定是直角三角形D. 一定是钝角三角形6. 如果三角形的一个内角等于其他两个内角的和,则这个三角形是( ) A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 不能确定7. (山西)将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是( )8. 下列说法中,正确的是( ) A. 周长相等的锐角三角形都全等 B . 周长相等的直角三角形都全等C. 周长相等的钝角三角形都全等 D . 周长相等的等腰直角三角形都全等9. 如图所示,直线1l 、2l 、3l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A. 一处B. 二处C. 三处D. 四处二、填空题10. 在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度数是______。
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
八年级数学试题一、选择题(每题3分,共24分) 1. 下列图案是轴对称图形的有()A .1个B .2个C .3个D .4个2.如果一个有理数的平方根和立方根相同,那么这个数是()A. ±1B. 1C. 0D. 0和13. 下列说法:①用一张底片冲洗出来的2张1寸相片是全等形;②所有的正五边形是全等形;③全等形的周长相等;④面积相等的图形一定是全等形.其中正确的是()A. ①②③B .①③④C .①③D .③4.将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后//A B E B 与与在同一条直线上,则∠CBD 的度数()A. 大于90°B. 等于90°C. 小于90°D. 不能确定5.81的平方根是()A .9B .9C .3D .36. 估计20的算术平方根的大小在()A .2与3之间B .3与4之间C .4与5之间D .5与6之间7. 如图1所示,将矩形纸片先沿虚线AB 按箭头方向向右对折,接着将对折后的纸片沿AEBDCAE虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A .B .C .D .8.如图,在△ABC 中,AB =AC ,∠A=36°,BD 、CE 分别是△ABC 、△BCD 的角平分线,则图中的等腰三角形有()A .5个B .4个C .3个D .2个二、填空题(每题4分,共32分)9. 无理数3的相反数是_______,绝对值是___________. 10. 在-3,-3,-1,0 这四个实数中,最大的是________,最小的是___________.11. 以下是一个简单的数值运算程序:当输入x 的值为4时,则输出的结果为___________.12. 已知等腰三角形的一个内角为70°,则另外两个内角的度数是___________.13. 如图,△ABD ≌△ACE,则AB 的对应边是_________,∠BAD 的对应角是______.CDB(A)ABABCD图输人x平方-8 开立方输出结果14. 如图,AD ∥BC,∠ABC 的平分线BP 与∠BAD 的平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE=2,则两平行线AD 与BC 间的距离为___________.(第13题图)(第14题图)15.如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB ?的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是20cm ,则线段MN 的长是___________.16. 如图所示,90E F ,B C ,AE AF ,结论:①EM FN ;②CD DN ;③FAN EAM ;④ACN ABM △≌△.其中正确的有__________.(第15题图)(第16题图)三、解答题(共56分)17. 计算(每小题5分,共10分)(1)310.818496(2)21122(16)()82BPEA DC18.(6分)自由下落的物体的高度h (m )与下落时间t (s )的关系为h =4.9t 2.有一学生不慎让一个玻璃杯从19.6m 高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗(声音的速度为340m /s )?19.(6分)已知:如图,D 是△ABC 的边AB 上一点, DF 交AC 于点E, DE =FE , FC ∥AB.求证:AD =CF .20. (6分)如图,写出A 、B 、C 关于y 轴对称的点坐标,并作出与△ABC 关于x 轴对称的图形.EAB DFC21. (8分) 认真观察下图4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________;特征2:_________________________________________________.(2)请在下图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征22.(8分) 如图,两条公路AB,AC相交于点A,现要建个车站D,使得D到A村和B 村的距离相等,并且到公路AB、AC的距离也相等.(1) 请在图1中画出车站的位置.(2) 若将A、B抽象为两个点,公路AC抽象为一条直线,请在直线AC上找一个点M,使△ABM是等腰三角形,这样的点能找几个?请你找出所有符合条件的点.CCEAEA图1 图223.(10分)在△ABC 中,AB =CB ,∠ABC =90o,F 为AB 延长线上一点,点E 在BC 上,且AE =CF .(1)求证:Rt △ABE ≌Rt △CBF ; (2)若∠CAE =30o,求∠ACF 度数.24.(10分)数学课上,李老师出示了如下框中的题目.在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC ,如图.试确定线段AE 与DB 的大小关系,并说明理由.EABCD小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论:AEDB (填“>”,“<”或“=”). ABCEFFBA(2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“<”或“=”).理由如下:如图2,过点E 作//EF BC ,交AC 于点F .(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且EDEC .若ABC 的边长为1,2AE,求CD 的长(请你直接写出结果).第26题图1第26题图 2一、选择题(24分)1. B2. C3. C4. B5. D6. C7. D8. A 二、填空题(32分)9.3,3 ; 10.0, -3; 11. 2 ; 12. 70°40°或55°55°;13. AC ,∠CAE ;14. 4 ; 15. 20cm; 16.①③④.三、解答题(64分)17.(10分) (1)原式=7)2(9.061…………………………2分=7210961……………………………4分 =2039…………………………………5分(2)原式=)2(164222…………………2分=324222……………………………4分=24334…………………………………5分18. (6分)解:根据题意得6.199.42t …………………1分9.46.192t…………………2分2t…………………3分声音传播所用的时间是)(6.03406.19s …………………4分因为6.0<2…………………………………5分答:楼下的学生能躲开。
…………………………………6分AC19.(6分)证明(1)∵CF ∥AB∴∠ADE =∠F…………………1分在△ADE 和△CFE 中∠ADE =∠F DE =FE ∠AED =∠CEF ∴△ADE ≌△CFE ………………………………5分∴AD =CF………………………………6分20.(6分) A 、B 、C 关于y 轴对称的点坐标分别为(4,1)(1,-1)(3,2)每点1分,共3分图略(3分)21. (8分)解:(1)特征1:都是轴对称图形;…………………2分特征2:这些图形的面积都等于4个单位面积; (2)分(2)满足条件的图形有很多,只要画正确一个,都可以得满分. (4)分22. (8分)(1)∠BAC 的平分线与线段AB 的中垂线的交点即为车站位置(图略) (4)分(2)符合条件的点共有4个。
每找对一个得1分,共4分。
23. (10分)(1)∵∠ABC =90°,∴∠CBF =∠ABE=90°.在Rt △ABE 和Rt △CBF 中,∵AE=CF , AB=BC, ∴Rt △ABE ≌Rt △CBF (HL) …………5分(2)∵AB=BC,∠ABC=90°, ∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB-∠CAE=45°-30°=15°. …………7分由(1)知 Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°, …………8分∴∠ACF=∠BCF+∠ACB=45°+15°=60°. …………10分24.(10分) (1) = ………………2分(2) = ………………2分证明:在等边△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,∵EF∥BC,∴∠AEF=∠AFE=60°=∠BAC,∴AE=AF=EF,∴AB﹣AE=AC﹣AF,即BE=CF,∵∠ABC=∠EDB+∠BED=60°,∠ACB=∠ECB+∠FCE=60°,∵ED=EC,∴∠EDB=∠ECB,∴∠BED=∠FCE,∴△DBE≌△EFC,∴DB=EF,∴AE=BD.…………………7分(3)答:CD的长是1或3.…………………3分。