数学必修4_第二章_平面向量知识点word版本
- 格式:doc
- 大小:676.51 KB
- 文档页数:8
姓名,年级:时间:2.1 平面向量的实际背景及基本概念[教材研读]预习课本P74~76,思考以下问题1.向量是如何定义的?向量与数量有什么区别?2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.零向量与单位向量有什么特殊性?0与0的含义有什么区别? 5.如何判断相等向量或共线向量?向量错误!与向量错误!是相等向量吗?[要点梳理]1.向量的概念和表示方法(1)概念:既有大小,又有方向的量称为向量.(2)向量的表示2.向量的长度(或称模)与特殊向量(1)向量的长度(或模)定义:向量的大小叫做向量的长度(或模).(2)向量的长度表示:向量错误!,a的长度分别记作:|错误!|,|a|。
(3)特殊向量:①长度为0的向量为零向量,记作0;②长度等于1个单位的向量,叫做单位向量.3.向量间的关系(1)相等向量:长度相等且方向相同的向量,叫做相等向量,记作:a =b。
(2)平行向量:方向相同或相反的非零向量,也叫共线向量;a平行于b,记作a∥b;规定零向量与任一向量平行.[自我诊断]判断(正确的打“√",错误的打“×”)1.两个向量能比较大小.()2.向量的模是一个正实数.()3.单位向量的模都相等.( )4.向量错误!与向量错误!是相等向量.( )[答案]1。
×2。
× 3.√ 4.×错误!思考:已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度.其中是数量的有__________,是向量的有__________.提示:②④⑤⑨⑩①③⑥⑦⑧下列说法正确的有__________.(填序号)①若|a|=|b|,则a与b的长度相等且方向相同或相反;②若|a|=|b|,且a与b的方向相同,则a=b;③由于0方向不确定,故0不能与任意向量平行;④向量a与向量b平行,则向量a与b方向相同或相反;⑤起点不同,但方向相同且模相等的向量是相等向量.[思路导引] 利用向量的有关概念逐一判断.[解析] ①不正确.由|a|=|b|只能判断两向量长度相等,不能确定它们方向的关系.②正确.因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.③不正确.依据规定:0与任一向量平行.④不正确.因为向量a与向量b若有一个是零向量,则其方向不定.⑤正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.[答案] ②⑤解决与向量概念有关问题的方法解决与向量概念有关题目的关键是突出向量的核心——方向和长度,如:共线向量的核心是方向相同或相反,长度没有限制;相等向量的核心是方向相同且长度相等;单位向量的核心是方向没有限制,但长度都是一个单位长度;零向量的核心是方向没有限制,长度是0;规定零向量与任一向量共线.只有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.[跟踪训练]下列说法错误的有__________.(填上你认为所有符合的序号)①两个单位向量不可能平行;②两个非零向量平行,则它们所在直线平行;③当两个向量a,b共线且方向相同时,若|a|〉|b|,则a>b.[解析]①错误,单位向量也可以平行;②错误,两个非零向量平行,则它们所在直线还可能重合;③错误,两个向量是不能比较大小的,只有模可以比较大小.[答案] ①②③错误!思考:向量就是有向线段,这种说法对吗?提示:不对,向量与有向线段是两个不同的概念,可以用有向线段表示向量.在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)错误!,使|错误!|=4错误!,点A在点O北偏东45°;(2)错误!,使|错误!|=4,点B在点A正东;(3)错误!,使|错误!|=6,点C在点B北偏东30°。
必修4第二章 平面向量1、向量的有关概念:(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模)。
(2)零向量:长度为0的向量叫做零向量,其方向是任意的。
(3)单位向量:长度等于1个单位长度的向量。
与a 同向且长度为1的向量,叫做a 的单位向量,记作0a ,||0a a a =。
(4)平行向量:方向相同或相反的两非零向量叫做平行向量。
任一组平行向量经过平移都可以移到同一条直线上,平行向量又叫做共线向量。
规定:0 与任一向量平行。
(5)相等向量:长度相等且方向相同的向量。
(6)相反向量:长度相等且方向相反的向量。
2、向量的表示法:(1)字母表示法:如a ,AB 等;(2)几何表示法:用一条有向线段表示向量;(3)代数表示法:在平面直角坐标系中,设向量OA 的起点O 在坐标原点,终点坐标为(x ,y ),则(x ,y )称为OA 的坐标,记为OA =(x ,y );3、向量的线性运算法则:(1)平行四边形法则(2)三角形法则4、向量的线性运算性质: a b b a +=+(交换律))()(c b a c b a ++=++(结合律)a a a =+=+0000 =a 00=⋅a 00 =λ||||||a a λλ=a a)()(λμμλ=a a a μλμλ+=+)(b a b a λλλ+=+)(⇔+=)(21OB OA OM M 是线段AB 的中点非零向量a 的单位向量为||a a ± 5、共线向量定理:如果b a λ=,则b a //;反之,如果b a //,且0 ≠b ,则一定存在唯一一个实数λ使b a λ=。
6、两个向量平行的充要条件:若a 与b 不共线且b a μλ=,则0==μλ;若a 与b 是两个非零向量,则它们共线的充要条件是存在两个均不是零的实数μλ、,使0 =+b a μλ。
7、平面向量基本定理:如果21,e e 是同一平面的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数21a a 、,使得2211e a e a a += ,我们把不共线的向量21,e e 叫做表示这个平面内所有向量的一组基底。
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
向量知识复习题一. 平面向量基本定理和向量共线定理1. 如果12,e e是同一平面内两个不共线的向量,那么对于这一平面内的任一a ,有且只有一对实数12,λλ,使1122a e e λλ=+ .2. 如果有一个实数λ,(0),b a a a b λ=≠使那么与是共线向量;反之,如果b a 与 (0)a ≠ 是共线向量,那么有且只有一个实数λ,使.b a λ=练习1:在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN = _____(用a b 、表示) 2.设OA = a ,OB = b ,OC =c ,当(),λμλμ=+∈R c a b ,且1λμ+=时,点C 在( )A .线段AB 上 B .直线AB 上C .直线AB 上,但除去A 点D .直线AB 上,但除去B 点 二.利用数量积求角公式:______________________________练习:1.求(a b ==-的夹角。
2. 已知向量(sin ,1),(1,cos ),.22a b ππθθθ==-<<(I )若,a b ⊥求;θ(II )求a b + 的最大值。
3. 已知a 、b 、c 是同一平面内的三个向量,其中a ()1,2=. (1)若 |c|=25,且c //a ,求c 的坐标;(2)若b ()1,m =()0m <且a +2b 与a —2b 垂直,求a 与b三.向量的几何表示1.已知112233,),(,),(,),ABC A x y B x y C x y 三个顶点为(求证:(1)123123,)33x x x y y y ABC G++++ 的三条中线交于点(.(2)0GA GB BC ++= 2.如图2,OM ∥AB,点P 在由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界)运动,且OP xOA yOB =+,则x 的取值范围是 _;当12x =-时,y 的取值范围是 ___. 必修4第二章《平面向量》一、选择题1.在矩形ABCD 中,O 是对角线的交点,若e e 则213,5===( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e - D .)35(2112e e - 2.化简)]24()82(21[31--+的结果是( )A .-2B .-2C .-D .-3.对于菱形ABCD ,给出下列各式:①=②||||=③||||+=- ④||4||||22=+2其中正确的个数为 ( )A .1个B .2个C .3个D .4个4 ABCD 中,设d BD c AC b AD a AB ====,,,,则下列等式中不正确的是( )A .=+B .=-C .=-D .=- 5.已知向量与反向,下列等式中成立的是( )A .||||||-=-B .||||-=+C .||||||-=+D .||||||+=+6.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为( ) A .(1,5)或(5,-5) B .(1,5)或(-3,-5) C .(5,-5)或(-3,-5) D .(1,5)或(-3,-5)或(5,-5)7.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )43,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是 ( ) A .① B .①③ C .②③ D .①②③ 8.与向量)5,12(=平行的单位向量为( )A .)5,1312(B .)135,1312(--C .)135,1312(或)135,1312(--D .)135,1312(±± 9.若32041||-=-,5||,4||==,则与的数量积为( )A .103B .-103C .102D .1010.若将向量)1,2(=围绕原点按逆时针旋转4π得到向量,则的坐标为( )A .)223,22(--B .)223,22(C .)22,223(-D .)22,223(- 11.设k ∈R ,下列向量中,与向量)1,1(-=一定不平行的向量是( )A .),(k k =B .),(k k --=C .)1,1(22++=k kD .)1,1(22--=k k12.已知12||,10||==b a ,且36)51)(3(-=b a ,则b a 与的夹角为( )A .60°B .120°C .135°D .150°二、填空题13.非零向量||||||,+==满足,则,的夹角为 .14.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 15.已知)2,3(=a ,)1,2(-=,若b a b a λλ++与平行,则λ= .16.已知为单位向量,||=4,与的夹角为π32,则在方向上的投影为 .三、解答题17.已知非零向量b a ,满足||||b a b a -=+,求证: ⊥18.已知在△ABC 中,)3,2(=,),,1(k =且△ABC 中∠C 为直角,求k 的值.19、设21,e e 是两个不共线的向量,2121212,3,2e e e e e k e -=+=+=,若A 、B 、D 三点共线,求k 的值.20.已知2||= 3||=,与的夹角为60o,35+=,k +=3,当当实数k 为何值时,⑴∥ ⑵d c ⊥21.如图,ABCD 为正方形,P 是对角线DB 上一点,PECF 为矩形, 求证:①PA=EF ;②PA ⊥EF.22.如图,矩形ABCD 内接于半径为r 的圆O ,点P 是圆周上任意一点,求证:PA 2+PB 2+PC 2+PD 2=8r 2.23、如图,已知4AD AB = ,4DE BC = ,试判断AC 与AE是否共线?24、已知向量33(cos ,sin )22x x a = ,(cos ,sin )22x xb =- , [,]32x ππ∈-(1)求证:()a b - ⊥()a b + ; (2)13a b += ,求cos x 的值参考答案二、填空题:13. 120°; 14. 矩形 15、 1± 16. 2- 三、解答题: 17.证:()()22-=+⇒+=+⇒-=+0222222=⇒+-=++⇒b a b b a a b b a a 为非零向量又, ⊥∴18.解:)3,1()3,2(),1(--=-=-=k k0)3,1(),1(0=--⋅⇒=⋅⇒⊥⇒∠∠k k RT C 为21330312±=⇒=-+-⇒k k k 19.()212121432e e e e e e -=+--=-= 若A ,B ,D 三点共线,则共线,λ=∴设即212142e e e k e λλ-=+由于不共线与21e e 可得:221142e e k e e λλ-==故8,2-==k λ20.⑴若c ∥d 得59=k ⑵若d c ⊥得1429-=k 21.解以D 为原点为x 轴正方向建立直角坐标系则A(0,1), C:(1,0) B:(1,1))22,22(,r r P r DP则设=)221,22(r r --=∴ )0,22(:),22,1(r F r E 点为)22,122(r r --=∴22)221()22(||r r -+-=∴22)22()221(||r r -+-=∴故EF PA =⊥⇒=⋅0而 22.证:-=-=, 22222222||2||)(||||2||)(||PB PD PB PD PB PD BD +-=-=+-=-=∴0,,,=⋅=⋅⇒⊥⊥AC BD 故为直径222222||||||||||||+++=+∴即2222222844r PD PC PB PA r r =+++=+。
高二必修4数学第二章平面向量复习要点梳理数学是研究现实世界空间形式和数量关系的一门科学。
小编准备了高二必修4数学第二章平面向量复习要点,希望你喜欢。
1.向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:字母表示(注:印刷体是粗体字母,书写体是字母上面加个) 坐标表示法a=xi+yj=(x,y)注:i、j是单位向量。
(3)向量的长度:即向量的大小,记作|a|.(4)特殊的向量:零向量a=0|a|=0.单位向量aO为单位向量|aO|=1.说明:零向量、单位向量的定义都是只限制大小,不确定方向.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)(6)相反向量:a=-bb=-aa+b=0(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a//b.平行向量也称为共线向量.(8)两个非零向量夹角的概念:已知非零向量a与b,作OA=a,OB=b,则AOB=(0≦≦)叫a与b的夹角说明:①当=0时,a与b同向;②当时,a与b反向;③当/2时,a与b垂直,记a规定零向量和任意向量都垂直。
④注意在两向量的夹角定义,两向量必须是同起点的范围0q(9)向量的投影:定义:|b|cosq叫做向量b在a方向上的投影,投影也是一个数量,不是向量;观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。
高二必修4数学第二章平面向量复习要点梳理
数学是研究现实世界空间形式和数量关系的一门科学。
小编准备了高二必修4数学第二章平面向量复习要点,希望你喜欢。
1.向量的概念
(1)向量的基本要素:大小和方向.
(2)向量的表示:
字母表示(注:印刷体是粗体字母,书写体是字母上面加个) 坐标表示法a=xi+yj=(x,y)
注:i、j是单位向量。
(3)向量的长度:即向量的大小,记作|a|.
(4)特殊的向量:零向量a=0|a|=0.
单位向量aO为单位向量|aO|=1.
说明:零向量、单位向量的定义都是只限制大小,不确定方向.
(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)
(6)相反向量:a=-bb=-aa+b=0
(7)平行向量(共线向量):方向相同或相反的向量,称为平行
向量.记作a//b.平行向量也称为共线向量.
(8)两个非零向量夹角的概念:
已知非零向量a与b,作OA=a,OB=b,则AOB=(0≦≦)叫a与b的夹角
页 1 第
说明:①当=0时,a与b同向;
②当时,a与b反向;
③当/2时,a与b垂直,记a规定零向量和任意向量都垂直。
④注意在两向量的夹角定义,两向量必须是同起点的
范围0q
(9)向量的投影:
定义:|b|cosq叫做向量b在a方向上的投影,投影也是一个数量,不是向量;
当q为锐角时投影为正值;当q为钝角时投影为负值;当q为直角时投影为0;当q=时投影为当q=180时投影为-|b|,称为向量b在a方向上的投影;投影的绝对值称为射影。
高二必修4数学第二章平面向量复习要点就为大家介绍到这里,希望对你有所帮助。
页 2 第。
高中数学必修4 平面向量知识点归纳一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a;坐标表示法),(y x yj xi a向量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行零向量a =0 |a|=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)③单位向量:模为1个单位长度的向量向量0a 为单位向量 |0a|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a大小相等,方向相同),(),(2211y x y x 2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC u u u r(1)a a a 00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a,零向量的相反向量仍是零向量关于相反向量有: (i ))(a =a ; (ii) a +(a )=(a )+a =0;(iii)若a 、b是互为相反向量,则a =b ,b =a ,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差, 记作:)(b a b a求两个向量差的运算,叫做向量的减法③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0a ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =6平面向量的基本定理:如果21,e e是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 7 特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件 (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例1 给出下列命题:① 若|a r |=|b r |,则a r =b r;② 若A ,B ,C ,D 是不共线的四点,则AB DC u u u r u u u r是四边形ABCD 为平行四边形的充要条件;③ 若a r =b r ,b r =c r ,则a r =c r , ④ar =br 的充要条件是|ar |=|br |且a rb r a r b r b rc r a r c r AB DC u u ur u u u r ||||AB DC u u u r u u u r //AB DC u u u r u u u r //AB DC u u u r u u u r ||||AB DC u u u r u u u r AB DC u u u r u u u r a r br a r b r b r c r b r c r a r c r a r c r a r b r a r b r a r b r a r b r a r b r a r b r b r 0r AB BC CD u u ur u u u r u u u r DB AC BD u u u r u u u r u u u r OA OC OB COu u u r u u u r u u u r u u u r ()AB BC CD AC CD ADu u u r u u u r u u u r u u u r u u u r u u u r ()0DB BD AC AC ACu u u r u u u r u u u r r u u u r u u u r ()()()0OB OA OC CO AB OC CO AB AB u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r u u u r a r b r c r a r b r d r a r b r c r d r c r dr c r d r a r b r a r b r a r b r 0r a r b r 1010k k k 面向量的坐标表示1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j r r 作为基底由平面向量的基本定理知,该平面内的任一向量a r可表示成a xi yj r r r ,由于a r 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a r的坐标,记作a r =(x,y),其中x 叫作a r在x 轴上的坐标,y 叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量 (2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr(2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r=( x, y)(4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5) 若 1122,,,a x y b x y r r ,则1212a b x x y y rr若a b rr ,则02121 y y x x3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算运算类型几何方法 坐标方法 运算性质 向 量 的 加法1平行四边形法则 2三角形法则 1212(,)a b x x y y r r a b b a)()(c b a c b aAB BC AC u u u r u u u r u u u r向 量 的 减 法 三角形法则 1212(,)a b x x y y rr )(b a b aAB BA u u u r u u u r OB OA AB u u u r u u u r u u u r向 量 的 乘 法a是一个向量,满足:>0时,a 与a同向;<0时,a 与a异向;=0时, a =0),(y x a a a)()(a a a)( b a b a )(a ∥b a b向 量的 数量 积b a•是一个数 0 a 或0b 时, b a•=0 0 a 且0 b 时,•b a b a b a,cos |||| 1212a b x x y y • rra b b a • •)()()(b a b a b a • • • c b c a c b a • • • )(22||a a ,22||y x a||||||b a b a •例1 已知向量(1,2),(,1),2a b x u a b r r r r r ,2v a b rr r ,且//u v r r ,求实数x 的值解:因为(1,2),(,1),2a b x u a b r r r r r,2v a b r r r所以(1,2)2(,1)(21,4)u x x r ,2(1,2)(,1)(2,3)v x x r又因为//u v r r所以3(21)4(2)0x x ,即105x解得12x例2已知点)6,2(),4,4(),0,4(C B A ,试用向量方法求直线AC 和OB (O 为坐标原点)交点P 的坐标解:设(,)P x y ,则(,),(4,)OP x y AP x y u u u r u u u r因为P 是AC 与OB 的交点所以P 在直线AC 上,也在直线OB 上即得//,//OP OB AP AC u u u r u u u r u u u r u u u r由点)6,2(),4,4(),0,4(C B A 得,(2,6),(4,4)AC OB u u u r u u u r得方程组6(4)20440x y x y解之得33x y故直线AC 与OB 的交点P 的坐标为(3,3)三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos叫做a r 与b r的数量积(或内积) 规定00a r r2向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影3数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:2||a a a a r r r r5乘法公式成立: 2222a b a b a b a b r r r r r r r r ;2222a b a a b br r r r r r 222a a b b r r r r6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r③分配律成立: a b c a c b c r r r r r r r c a b rr r特别注意:(1)结合律不成立: a b c a b c r r r r r r;(2)消去律不成立a b a cr r r r 不能得到b c r r(3)a b r r =0不能得到a r =0r或b r =0r7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r,则a r ·b r =1212x x y y已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800 )叫做向量a r 与b r的夹角cos =cos ,a ba b a b • •r r r r r r当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件: a ⊥b a ·b=O 2121 y y x x 平面向量数量积的性质例1 判断下列各命题正确与否:(1)00a r;(2)00a r r ;(3)若0,a a b a c r r r r r,则b c r r ;⑷若a b a c r r r r ,则b c r r 当且仅当0a rr 时成立; (5)()()a b c a b c r r r r r r 对任意,,a b c r r r向量都成立;(6)对任意向量a r,有2a a r r解:⑴错; ⑵对; ⑶错; ⑷错; ⑸ 错;⑹对例2已知两单位向量a r 与b r 的夹角为0120,若2,3c a b d b a r r r r r r ,试求c r 与d r的夹角解:由题意,1a b r r ,且a r 与b r的夹角为0120,所以,01cos1202a b a b r r r r ,2c c c r r rQ (2)(2)a b a b r r r r 22447a a b b r r r r ,c r同理可得d r而c d r r 2217(2)(3)7322a b b a a b b a r r r r r r r r ,设 为c r与d r 的夹角, 则1829117137217cos1829117arccos点评:向量的模的求法和向量间的乘法计算可见一斑例3 已知 4,3a r, 1,2b r ,,m a b r r r 2n a b r r r ,按下列条件求实数的值(1)m n r r ;(2)//m n r r;(3)m n r r 解: 4,32,m a b r r r 27,8n a b rr r (1)m n r r 082374 952;(2)//m n r r 072384 21 ;(3)m n r r 088458723422222点评:此例展示了向量在坐标形式下的基本运算(七)向量中一些常用的结论:1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.||||||||||||a b a b a b r r r r r r ,特别地,当 a b r r、同向或有 0r ||||||a b a b r r r r ||||||||a b a b r r r r ;当 a b r r、反向或有0r ||||||a b a b r r r r ||||||||a b a b r r r r ; 当 a b r r、不共线 ||||||||||||a b a b a b r r r r r r (这些和实数比较类似).3.在ABC 中,①若 112233,,,,,A x y B x y C x y ,则其重心的坐标为123123,33x x x y y y G。
高中数学必修 4 知识点总结平面向量知点一 .向量的基本概念与基本运算1向量的概念:①向量:既有大小又有方向的量向量一般用 a, b, c ⋯⋯来表示,或用有向段的起点与uuur uuurxi yj ( x, y)点的大写字母表示,如:AB 几何表示法AB ,a;坐表示法 a向uuur量的大小即向量的模(度),作 | AB | 即向量的大小,作|a|向量不能比大小,但向量的模可以比大小.②零向量:度 0 的向量,0,其方向是任意的,0与任意向量平行零向量 a =0|r ra |=0由于0的方向是任意的,且定0 平行于任何向量,故在有关向量平行(共)的中必看清楚是否有“非零向量” 个条件.(注意与 0 的区)③ 位向量:模 1 个位度的向量向量 a0位向量| a0|=1④平行向量(共向量):方向相同或相反的非零向量任意一平行向量都可以移到同一直上方向相同或相反的向量,称平行向量作a∥ b由于向量可以行任意的平移( 即自由向量 ) ,平行向量可以平移到同一直上,故平行向量也称共向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意取,在必区分清楚共向量中的“共” 与几何中的“共”、的含,要理解好平行向量中的“平行”与几何中的“平行”是不一的.⑤相等向量:度相等且方向相同的向量相等向量平移后可以重合, a b 大x1x2小相等,方向相同(x1, y1 )(x2 , y2 )y1y22向量加法求两个向量和的运算叫做向量的加法uuur r uuur r r uuur uuur uuurAB a, BC b ,a+ b = AB BC =AC(1)0 a a 0 a ;(2)向量加法足交律与合律;向量加法有“三角形法”与“平行四形法”:(1)用平行四形法,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条角,而差向量是另一条角,方向是从减向量指向被减向量(2)三角形法的特点是“首尾相接” ,由第一个向量的起点指向最后一个向量的点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:uuur AB uuurBCuuurCD LuuurPQuuurQRuuurAR ,但这时必须“首尾相连”.3 向量的减法①相反向量:与 a 长度相等、方向相反的向量,叫做记作 a ,零向量的相反向量仍是零向量a 的相反向量关于相反向量有:( i)( a)= a;(ii) a +( a )=( a )+ a =0;(iii) 若a、b是互为相反向量,则 a = b , b= a , a +b= 0②向量减法:向量 a 加上b的相反向量叫做 a 与 b的差,记作: a b a ( b) 求两个向量差的运算,叫做向量的减法③作图法: a b 可以表示为从 b 的终点指向 a 的终点的向量( a 、 b 有共同起点)4实数与向量的积:①实数λ与向量 a 的积是一个向量,记作λ a ,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与 a 的方向相同;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是任意的②数乘向量满足交换律、结合律与分配律5两个向量共线定理:向量 b 与非零向量 a 共线有且只有一个实数,使得b=a6平面向量的基本定理:如果e1 , e2是一个平面内的两个不共线向量,那么对这一平面内的任一向量 a ,有且只有一对实数 1 , 2 使:a1e1 2 e2 ,其中不共线的向量e1 , e2叫做表示这一平面内所有向量的一组基底7特别注意 :(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件(3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等 由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例 1 给出下列命题:① 若 | r r r ra | = |b | ,则 a = b ;② 若 A ,B ,C ,D 是不共线的四点,则uuur uuur AB DC 是四边形 ABCD 为平行四边形的充要条件;r rr rr r ③ 若 a = b , b = c ,则 a = c ,rrrrr r④ a =b 的充要条件是 | a |=| b | 且 a // b ;r r r r r r⑤ 若 a // b , b // c ,则 a //c,其中正确的序号是解:①不正确.两个向量的长度相等,但它们的方向不一定相同.uuur uuur uuur uuur uuur uuur ② 正确.∵AB DC ,∴ | AB| |DC |且 AB// DC ,又 A ,B ,C ,D 是不共线的四点, ∴ 四边形 ABCD 为平行四边形; 反之,若四边形 ABCDuuuruuur uuur uuur 为平行四边形,则,AB//DC 且|AB| |DC |,uuur uuur因此, AB DC .③ 正确.∵r r r ra =b ,∴ a , b 的长度相等且方向相同;r r r r 又 b = c ,∴ b , c 的长度相等且方向相同,r r r r ∴ a , c 的长度相等且方向相同,故 a = c .r rr r r r r r ④ 不正确.当 a // b 且方向相反时,即使 | a |=| b | ,也不能得到 a =b ,故 | a |=| b |r r r r 且 a // b 不是 a =b 的充要条件,而是必要不充分条件.r r⑤ 不正确.考虑 b = 0 这种特殊情况.综上所述,正确命题的序号是②③.点评:本例主要复习向量的基本概念.向量的基本概念较多,因而容易遗忘.为此,复习一方面要构建良好的知识结构, 另一方面要善于与物理中、 生活中的模型进行类比和联想.例 2 设 A 、B 、 C 、 D 、 O 是平面上的任意五点,试化简:uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ① AB BC CD ,② DB AC BD ③OAOCOBCO解:①原式 = uuur uuur uuur uuur uuur uuur( AB BC ) CD AC CD AD ②原式 = uuur uuur uuur r uuur uuur ( DBBD) AC 0 AC AC③原式=uuur (OBuuurOA)uuur ( OC uuurCO)uuurAB uuur(OCuuurCO) uuurAB ruuurAB例 3 设非零向量rrrrrrrrrra 、b 不共线,c =k a + b ,d = a +k b(k R),若 c ∥ d ,试求 kr r解:∵ c ∥ d∴由向量共线的充要条件得:r r (λ R) c =λ d r r r rr r r 即 k a +b =λ( a +k b ) ∴ (k λ ) a + (1 λ k) b = 0r r又∵ a 、 b 不共线∴由平面向量的基本定理k 0 k11 k二 .平面向量的坐标表示1 平面向量的坐标表示: r r在直角坐标系中, 分别取与 x 轴、y 轴方向相同的两个单位向量 i , j作为基底 由平面向量的基本定理知, 该平面内的任一向量 r r r rr a 可表示成 a xi yj ,由于 a 与r rr 数对 (x,y)是一一对应的,因此把 (x,y)叫做向量 a 的坐标,记作 a =(x,y),其中 x 叫作 a 在 x 轴上的坐标, y 叫做在 y 轴上的坐标(1) 相等的向量坐标相同,坐标相同的向量是相等的向量(2) 向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关 2 平面向量的坐标运算:(1) rx 1, y 1 rr rx 1 x 2 , y 1 y 2若 a ,bx 2 , y 2 ,则 a b uuur(2) 若 A x 1, y 1 , B x 2 , y 2 ,则 ABx 2 x 1 , y 2 y 1 (3) r r x, y)若 a =(x,y),则 a =((4) rx 1, y 1 rx 2 , y 2 r rx 1 y 2 x 2 y 1 0若 a,b,则 a // b(5) rx 1, y 1 r x 2 , y 2 r r x 1 x 2 y 1 y 2若 a,b,则 a br r y 1 y 2 0若 a b ,则 x 1 x 23 向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质运几何方法坐标方法运算性质算 类型向 1 平行四边形法则 r rx,y 21 y)2a bb a量 2 三角形法则a b (x 1的 (a b) c a (b c)加法uuur uuur uuurAB BC AC向 三角形法则r ra b a ( b )量a b (x 1 x 2,y 1 y 2)的 uuur uuur减ABBA法uuur uuur uuurOB OA AB 向a 是一个向量 ,a( x, y)(a)() a量 满足 :的>0 时, a 与 a 同向 ;()aaa 乘<0 时, a 与 a 异向 ;法=0 时,a = 0( a b ) a ba ∥ bab向 a ? b 是一个数r rx 1x 2 y 1y 2a ?b b ? a量a?b的a0 或 b 0时 ,( a) ba ( b)(a b)数???量 a?b =0(ab) ?ca ?cb ?c积a 0且b 0 时 ,a 2 | a |2 , |a | x 2 y 2a?b |a||b|cos a,b| a ? b | | a || b | r r r r r r r r r r例 1 已知向量 a (1,2), b (x,1), u a 2b , v 2a b ,且 u // v ,求实数 x 的值r r r r r r r r解:因为 a (1,2), b (x,1),u a 2b , v 2a br 2( x,1) (2 x 1,4) r 2(1,2) ( x,1) (2 x,3)所以 u (1,2) , vr r又因为 u // v所以 3(2 x 1) 4(2 x) 0 ,即 10x 5解得 x12AC 和 OB ( O 为坐标原点)交例 2 已知点 A(4,0), B(4,4),C(2,6) ,试用向量方法求直线点 P 的坐标uuur uuur(x 4, y)解:设 P(x, y) ,则 OP ( x, y), AP因为 P 是 AC 与OB 的交点 所以 P 在直线 AC 上,也在直线 OB 上uuur uuur uuur uuur即得 OP // OB, AP // ACuuur uuur由点 A(4,0),B(4,4),C(2,6) 得, AC ( 2,6), OB (4, 4)6( x 4) 2 y 0得方程组4x 4 y 0x 3解之得y 3故直线 AC 与 OB 的交点 P 的坐标为 (3,3) 三.平面向量的数量积1 两个向量的数量积:r rrrr r 已知两个非零向量 a 与 b ,它们的夹角为 ,则 a ·b =︱ a ︱ ·︱ b ︱ cosr r r r叫做 a 与 b 的数量积(或内积) 规定 0 a 0r r rr r2 = a b向量的投影: ︱ b ︱ cos r ∈R ,称为向量 b 在 a 方向上的投影 投影的绝对值称为射| a |影3 数量积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积4 向量的模与平方的关系: r r r 2 r 2 a aa | a |5 乘法公式成立:r r r r r 2 r 2 r a b a b a bar r 2 r 2r r r 2 r a ba2a b b a2 r 2b ;2 r rr 22a bb6 平面向量数量积的运算律:①交换律成立: rrr r a b b a②对实数的结合律成立: r r r r r r Ra ba b a b③分配律成立:r r r r r r r rr r a bc a cb cca b特别注意 :( 1)结合律不成立: r r rr r r;a b c a b cr rr r r r (2)消去律不成立 a ba c 不能得到b crr不能得到 r r r r(3) a b =0a = 0 或b =07 两个向量的数量积的坐标运算:rrrr已知两个向量a ( x 1 , y 1),b ( x 2 , y 2 ) ,则 a ·b = x 1x 2 y 1 y 2rr uuur ruuur r8 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB=( 000)叫做向量r r180 a 与b的夹角r rr rx1 x2y1 y2cos= cosa ?b=a, b r r2222? ba x1y1x2y2当且仅当两个非零向量r r r r r a 与b同方向时,θ=00,当且仅当 a 与b反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题r r900r r r r9 垂直:如果a与b的夹角为则称 a 与b垂直,记作 a ⊥b10 两个非零向量垂直的充要条件:a ⊥b a ·b=O x1 x2y1 y20平面向量数量积的性质例 1判断下列各命题正确与否:r r r0 ;(1)0 a0 ;(2)0 ar r r r r r r(3)若a0, a b a c ,则 b c ;r r r r r r r r⑷若 a b a c ,则 b c当且仅当 a0 时成立;r r r r r r r r r(5)( a b )c a(b c ) 对任意 a,b , c 向量都成立;(6)对任意向量r r2r2 a,有 a a解:⑴错;⑵对;⑶错;⑷错;⑸ 错;⑹对例 2 已知两单位向量r r120,若r r r r r r r r a 与b的夹角为c2a b, d3b a ,试求c 与d的夹角解:由题意,r r r r0,a b 1 ,且a与 b 的夹角为 120r r r r01,所以, a b a b cos1202r r r r r r r r2r r r 227 ,Q c c c(2 a b) (2 a b)4a4a b b r7 ,cr13同理可得dr r r r r r r r r 2r217,而 c d(2a b ) (3b a)7a b3b2a2 rr设为 c 与d的夹角,则 cos2 171317 91 arccos17917 182182点评:向量的模的求法和向量间的乘法计算可见一斑例 3r4,3 r1,2 rr r r r r的已知 a, b, mab , n2a b ,按下列条件求实数值r r r r r r( 1) m n ;( 2) m // n ; (3) m nr r r4,32 r r r 7,8解: m a b, n 2a br r 47 3 28 052( 1) m n;r r9483 27 01 ;( 2) m// n2r r 423 227 28 25 2488 0(3) mn2 2 115点评:此例展示了向量在坐标形式下的基本运算。
(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)的全部内容。
【必修4】 第二章平面向量2.1 练习1、画有向线段,分别表示一个竖直向上,大小为18N 的力和一个水平向左、大小为28N 的力(1cm 长表示10N ).2、非零向量AB 的长度怎样表示?非零向量BA 的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗?3、指出图中各向量的长度.4、(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同?(2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同?2.2.1 练习1、如图,已知b a ,,用向量加法的三角形法则作出b a 。
2、如图,已知b a ,,用向量加法的平行四边形法则作出b a +.3、根据图示填空:(1)________;=+d a(2).________=+b c4、根据图示填空:(1)________;=+b a(2)________;=+d c(3)________;=++d b a(4).________=++e d c2.2.2 练习1、如图,已知b a ,,求作.b a -2、填空:________;=- ________;=- ________;=-BA BC ________;=-OA OD .________=-3、作图验证:b a b)(a --=+-2.2。
数学必修四第二章平面向量知识点第二章平面向量1. 平面向量的概念:平面上具有大小和方向的箭头。
2. 向量的表示:向量通常用小写字母加上一个箭头表示,如a→。
3. 平行向量:具有相同或相反的方向的向量。
4. 向量的加法:向量a→与向量b→相加得到向量c→,其坐标分别相加,即c→ = a→ + b→。
5. 向量的减法:向量a→与向量b→相减得到向量c→,其坐标分别相减,即c→ = a→ - b→。
6. 向量的数量积:向量a→与向量b→的数量积,用a·b表示,满足a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a→和向量b→的模,θ为两个向量夹角的大小。
7. 向量的数量积的性质:具有交换律、结合律和分配律。
8. 向量的夹角:向量a→与向量b→的夹角可以通过向量的数量积来计算夹角的余弦值。
9. 向量的夹角的性质:两个向量夹角为0°,当且仅当它们是同一向量或其中一个向量是另一个向量的相反向量。
10. 向量的共线与垂直:两个向量共线,当且仅当它们的夹角为0°或180°;两个向量垂直,当且仅当它们的数量积为0。
11. 平面向量的坐标表示:平面上的向量可以用坐标表示,即向量a→可以表示为(a,b)。
12. 平面向量的数量积的坐标表示:向量a→(a1, a2)与向量b→(b1, b2)的数量积为a1b1 + a2b2。
13. 向量的数量积与坐标表示的关系:向量a→(a1, a2)与向量b→(b1, b2)的数量积等于它们的坐标相乘的和。
14. 平移向量:平面上的一点A沿着一条向量a→移动到另一点B,其位置关系可以用带箭头的线段→AB表示,这条线段就是向量a→。
15. 平面向量的模运算:给定向量a→(a1, a2),有|a→| = √(a1^2 + a2^2)。
这些是数学必修四第二章平面向量的核心知识点。
高中数学必修4知识点总结第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
向量知识点总结一、向量的概念(1)向量:既有大小,又有方向的量; (2)数量:只有大小,没有方向的量;(3)有向线段的三要素:起点、方向、长度; (4)零向量:长度为0的向量;(5)单位向量:长度等于1个单位的向量; (6)平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行; (7)相等向量:长度相等且方向相同的向量。
二、向量加法运算⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+r r rr r r .⑷运算性质:①交换律:a b b a +=+r rrr;②结合律:()()a b c a b c ++=++rrrr rr;③00a a a +=+=r r r r r 。
⑸坐标运算:设()11,a x y =r ,()22,b x y =r ,则()1212,a b x x y y +=++rr 。
三、向量减法运算⑴三角形法则的特点:共起点,连终点,方向指向被减向量;⑵坐标运算:设()11,a x y =r ,()22,b x y =r ,则()1212,a b x x y y -=--rr ,设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--u u u r。
四、向量数乘运算⑴实数λ与向量a r 的积是一个向量的运算叫做向量的数乘,记作a λr; ①a a λλ=r r;②当0λ>时,a λr的方向与a r的方向相同;当0λ<时,a λr的方向与a r的方向相反;当0λ=时,0a λ=rr ;⑵运算律:①()()a a λμλμ=r r ;②()a a a λμλμ+=+r r r;③()a b a b λλλ+=+r r r r ;⑶坐标运算:设(),a x y =r ,则()(),,a x y x y λλλλ==r;b ra rC BAa b C C -=A -AB =B u u ur u u u r u u u r r r五、向量共线定理向量()0a a ≠rr r 与b r 共线,当且仅当有唯一一个实数λ,使b a λ=r r ;设()11,a x y =r ,()22,b x y =r ,其中0b ≠r r ,则当且仅当12210x y x y -=时,向量a r 、()0b b ≠r r r共线;六、平面向量基本定理如果1e u r 、2e u u r 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a r,有且只有一对实数1λ、2λ,使1122a e e λλ=+u r u u r r.(不共线的向量1e u r 、2e u u r 作为这一平面内所有向量的一组基底)七、分点坐标公式设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP u u u r u u u r时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭; 八、平面向量的数量积⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤o or r r r r r r r .零向量与任一向量的数量积为0;⑵性质:设a r 和b r 都是非零向量,则①0a b a b ⊥⇔⋅=r r r r .②当a r 与b r同向时,a b a b ⋅=r r r r ;当a r 与b r反向时,a b a b ⋅=-r r r r ;22a a a a ⋅==r r r r或a =r .③a b a b ⋅≤r r r r ; ⑶运算律:①a b b a ⋅=⋅r r r r ;②()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r ;③()a b c a c b c +⋅=⋅+⋅r r r r r r r;⑷坐标运算:设两个非零向量()11,a x y =r ,()22,b x y =r ,则1212a b x x y y ⋅=+rr ,若(),a x y =r ,则222a x y =+r,或a =r设()11,a x y =r ,()22,b x y =r ,则12120a b x x y y ⊥⇔+=rr ;设a r、b r 都是非零向量,()11,a x y =r ,()22,b x y =r ,θ是a r 与b r 的夹角,则cos a ba b θ⋅==rr r r ;。
2022数学必修四第二章平面向量知识点数学必修四第二章平面向量知识点1.平面向量基本概念有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;向量的模:有向线段AB的长度叫做向量的模,记作|AB|;零向量:长度等于0的向量叫做零向量,记作或0。
(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);相等向量:长度相等且方向相同的向量叫做相等向量;平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j 表示。
相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
2.平面向量运算加法与减法的代数运算:(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律:+ = + (交换律); +( +c)=( + )+c (结合律);实数与向量的积:实数与向量的积是一个向量。
(1)| |=| |·| |;(2) 当a0时,与a的方向相同;当a0时,与a的方向相反;当a=0时,a=0.两个向量共线的充要条件:(1) 向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= .(2) 若=( ),b=( )则‖b .3.平面向量基本定理若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得= e1+ e2.4.平面向量有关推论三角形ABC内一点O,OA·OB=OB·OC=OC·OA,则点O是三角形的垂心。
若O是三角形ABC的外心,点M满足OA+OB+OC=OM,则M是三角形ABC的垂心。
高中数学必修4平面向量知识点总结高中数学必修4平面向量知识点坐标表示法平面向量的坐标表示:在直角坐标系中,分别取与x轴、y 轴方向相同的两个单位向量作为基底。
由平面向量的基本定理知,该平面内的任一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x 轴上的坐标,y叫做在y轴上的坐标。
来表示平面内的各个方向在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行.长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.向量的运算1、向量的加法:AB+BC=AC设a=(x,y) b=(x ,y )则a+b=(x+x ,y+y )向量的加法满足平行四边形法则和三角形法则。
向量加法的性质:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)a+0=0+a=a2、向量的减法AB-AC=CBa-b=(x-x ,y-y )若a//b则a=eb则xy`-x`y=0若a垂直b则ab=0则xx`+yy`=03、向量的乘法设a=(x,y) b=(x ,y )a b(点积)=x x +y y =|a| |b|*cos夹角4、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
⾼中数学必修4平⾯向量知识点总结 平⾯向量是⾼中数学中基本内容,必修四课本的难点,有哪些知识点需要学习?下⾯是店铺给⼤家带来的⾼中数学必修4平⾯向量知识点,希望对你有帮助。
⾼中数学必修4平⾯向量知识点 坐标表⽰法 平⾯向量的坐标表⽰:在直⾓坐标系中,分别取与x轴、y轴⽅向相同的两个单位向量作为基底。
由平⾯向量的基本定理知,该平⾯内的任⼀向量可表⽰成,由于与数对(x,y)是⼀⼀对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y轴上的坐标。
来表⽰平⾯内的各个⽅向在数学中,我们通常⽤点表⽰位置,⽤射线表⽰⽅向.在平⾯内,从任⼀点出发的所有射线,可以分别⽤ 向量的表⽰向量常⽤⼀条有向线段来表⽰,有向线段的长度表⽰向量的⼤⼩,箭头所指的⽅向表⽰向量的⽅向.向量也可⽤字母a①、b、c等表⽰,或⽤表⽰向量的有向线段的起点和终点字母表⽰. 向量的⼤⼩,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量. ⽅向相同或相反的⾮零向量叫做平⾏向量.向量a、b、c平⾏,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其⽅向不确定,我们规定0与任⼀向量平⾏. 长度相等且⽅向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的⾮零向量,都可⽤同⼀条有向线段来表⽰,并且与有向线段的起点⽆关. 向量的运算 1、向量的加法: AB+BC=AC 设a=(x,y) b=(x',y') 则a+b=(x+x',y+y') 向量的加法满⾜平⾏四边形法则和三⾓形法则。
向量加法的性质: 交换律: a+b=b+a 结合律: (a+b)+c=a+(b+c) a+0=0+a=a 2、向量的减法 AB-AC=CB a-b=(x-x',y-y') 若a//b 则a=eb 则xy`-x`y=0 若a垂直b 则ab=0 则xx`+yy`=0 3、向量的乘法 设a=(x,y) b=(x',y') a·b(点积)=x·x'+y·y'=|a|·|b|*cos夹⾓ 4、向量有关概念: (1)向量的概念:既有⼤⼩⼜有⽅向的量,注意向量和数量的区别。
数学必修4第二章 平面向量知识点2.1 平面向量的实际背景及基本概念 1. 向量:既有大小又有方向的量。
2. 向量的模:向量的大小即向量的模(长度),如,AB a uu r r的模分别记作|AB u u u r|和||a r 。
注:向量不能比较大小,但向量的模可以比较大小。
3. 几类特殊向量(1)零向量:长度为0的向量,记为0r ,其方向是任意的,0r与任意向量平行,零向量a =0r |a|=0。
由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)(2)单位向量:模为1个单位长度的向量,向量0a为单位向量0||1a u u r。
将一个向量除以它的模即得到单位向量,如a r 的单位向量为:||aa e a r r r (3)平行向量(共线向量):方向相同或相反的非零向量,称为平行向量.记作a ∥b。
规定:0r与任何向量平等,任意一组平行向量都可以移到同一直线上,由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。
(4)相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量。
记作a r 。
关于相反向量有:① 零向量的相反向量仍是零向量, ②)(a =a; ③()0a a v v v ; ④若a 、b 是互为相反向量,则a =b ,b =a ,a+b =0 。
ar bra b r r BC(5)相等向量:长度相等且方向相同的向量。
记为b a。
相等向量经过平移后总可以重合。
2.2 平面向量的线性运算 1.向量加法(1)定义:求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC uuu r 。
规定:a a a00;(2)向量加法的法则—“三角形法则”与“平行四边形法则” ① 用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线。
② 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和。
注:当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”。
(3)向量加法的运算律:①交换律:a b b a r r r r②结合律:()()a b c a a c r r r r r r2.法向量的减(1) 定义:若a x b r r r 则向量x r 叫做a r 与b r 的差,记为b a r r。
求两个向量差的运算,叫做向量的减法。
(2)向量减法的法则—“三角形法则”与“平行四边形法则”① 三角形法则:当,a b r r有共同起点时,a b r r 表示为从减向量b 的终点指向被减向量a的终点的向量。
② 平行四边形法则:两个已知向量是要共始点的,差向量是如图所示的对角线。
设,AB a AC b u u u r r u u u r r 则a -b r =AB AC CB u u ur u u u r u u u r . 3.实数与向量的积 (1)定义:实数λ与向量a的积是一个向量,记作a r ,它的长度与方向规定如下: ① a a;② 当0 时,a r 的方向与a 的方向相同;当0 时,a r 的方向与a的方向相反;当0 时,0a ,方向是任意的。
(2) 数乘向量的运算律① ()()a a r r ;②()a a a r r r ;③()a b a b r r r r。
2.3 平面向量的基本定理及坐标表示1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e .注意:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;2.向量的夹角:已知两个非零向量a 、b ,作a A O ,b B O ,则∠AOB = ,叫向量a、b 的夹角,当 =0°,a 、b 同向,当 =180°,a 、b 反向,当 =90°,a 与b 垂直,记作a ⊥b 。
3.平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j r r 作为基底,由平面向量的基本定理知,该平面内的任一向量a r可表示成a xi yj r r r,由于a r 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a r 的坐标,记作a r =(x,y),其中x 叫作a r的横坐标,y 叫做作纵坐标。
规定:① (1,0)i r ,(0,1)j r② 相等的向量坐标相同,坐标相同的向量是相等的向量;③ 向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关4.平面向量的坐标运算:①若1122(,),(,)a x y b x y r r ,则 1212,a b x x y y rr ; ②若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r;③若a r =(x,y),则 a r=( x, y);④若1122(,),(,)a x y b x y r r ,则1221//0a b x y x y rr ;1212a b x x y y r r ⑤若1122(,),(,)a x y b x y r r , 则1212,a b x x y y r r附:向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后; 4. 2.符号表示法:用一个小写的英文字母来表示,如,,等;5. 3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为 ,a xi y j x y r r r,称 ,x y 为向量的坐标,= ,x y 叫做向量的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
记:AB BC ACu u u r u u u r u uu r减法起点相同的两个向量的差,(箭头指向被减向量)记:OA OB BAu u u r u u u r u u u rAB AC CBu u u r u u u r u u u r1212,a b x x y yrr数乘a 是一个向量,||||a arr方向:0时,与a同向;0时,与a反向;0时,0a11,yxa数量积||||cosa b a br rrr1212a b x x y yrr运算性质①交换律:a b b ar rr r;②结合律:a b c a b cr rr r r r;③00a a ar rr r r。
加法:减法:2.4 平面向量的数量积(1) 平面向量的数量积的定义①向量,,的夹角:已知两个非零向量,,过O 点作 ,, 则∠AOB=θ(00≤θ≤1800)叫做向量b a ,,的夹角。
当且仅当两个非零向量b a ,同方向时,θ=00,当且仅当b a ,反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题。
② 与垂直;如果,的夹角为900则称与垂直,记作 。
③ b a 与的数量积:两个非零向量,cos 叫做称与的数量积(或内积),记作 ,即b acos ,规定a 0=0 非零向量b a 与 当且仅当 时,θ=900,这时=0。
④b 在a方向上的投影:R OP(cos (注意OP 是射影)所以,ba 的几何意义: 等于的长度与在方向上的投影的乘积。
(2) 平面向量数量积的性质设,是两个非零向量,是单位向量,于是有:① ;②br a rCa b C Cu u ur u uu r u u u r r ro;③当与同向时,;当与反向时,,特别地,2a。
④cos(3)平面向量数量积的运算律①交换律成立:②对实数的结合律成立: Rbababa③分配律成立: c b c acbab a c特别注意:(1)结合律不成立: c b acba;(2)消去律不成立不能得到(3) =0不能得到=或=0④但是乘法公式成立:22bababa;22222ba(3)平面向量数量积的坐标表示①若=(x1,y1),=(x2,y2)则 =x1x2+y1y2②若=(x,y),则||2=.=x2+y222yx③若A(x1,y1),B(x2,y2),212212yyxx④若a=(x1,y1),b=(x2,y2)则02121yyxxba(注意与ba//时条件区别,a//01221yxyx)若=(x 1,y 1),=(x 2,y 2)则222221212121cos y x y x y y x x2.5 平面向量应用列举 1、 线段的定比分点(1)定义:设P 1,P 2是直线L 上的两点,点P 是L 上不同于P 1,P 2的任意一点,则存在一个实数 ,使21pp p ,叫做点P 分有向线段21P P 所成的比。
当点P 在线段21P P 上时,0 ;当点P 在线段21P P 或21P P 的延长线上时, <0 (2)定比分点的坐标形式112121y y y x x x ,其中P 1(x 1,y 1), P 2(x 2,y 2), P (x,y),向量形式呢? (3)中点坐标公式当 =1时,分点P 为线段21P P 的中点,即有 222121y y y x x x ,向量形式呢? 2、平移(1)图形平移的定义:设F 是坐标平面内的一个图形,将图上的所有点按照同一方向移动同样长度,得到图形F ’,我们把这一过程叫做图形的平移。
(2)平移公式设P(x,y)是图形F 上任意一点,它在平移后图形上的对应点P ’(x ’,y ’’),且'PP 的坐标为(h,k),则有k y y h x x '',这个公式叫做点的平移公式,它反映了图形中的每一点在平移后的新坐标与原坐标间的关系。