小升初奥数试卷及答案
- 格式:doc
- 大小:207.00 KB
- 文档页数:4
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩升初奥数题及答案(三篇)》相关资料,希望帮助到您。
⼩升初奥数题及答案篇⼀ 1、⼀个数除以7所得的余数和商相同,并且各个数位上的数字和最⼩,这个数是_______。
2、⼀项⼯程,预计15个⼯⼈每天做4个⼩时,18天可以完成。
为了赶⼯期,增加3⼈并且每天⼯作时间增加1⼩时,可以提前_______天完⼯。
3、甲、⼄两⼈背诵英语单词,甲⽐⼄每天多背8个,⼄因⽣病,中途停⽌10天。
40天后,⼄背的单词正好是甲的⼀半,甲背单词________个。
4、在⼀个两位数的两个数字之间加上⼀个0,所得的新数是原数的9倍,原数是。
5、买电影票,5元、8元、12元⼀张的⼀共150张,⽤去1140元,其中5元和8元的张数相等,5元的电影票有。
答案: 1、40 2、6 3、960 4、45 5、60⼩升初奥数题及答案篇⼆ 1、有2013名学⽣参加竞赛,共有20道竞赛题,每个学⽣有基础分25分,此外,答对⼀题得3分,不答题得1分,答错1题扣1分。
那么,所有参赛学⽣的得分总和是奇数还是偶数? 2、有n个同样⼤⼩的正⽅体,将它们堆成⼀个长⽅体,这个长⽅体的底⾯就是原正⽅体的底⾯。
如果这么长⽅体的表⾯积是3096平⽅厘⽶,当从这个长⽅体的顶部拿去⼀个正⽅体后,新的长⽅体的表⾯积⽐原来的表⾯积减少144平⽅厘⽶,那么n等于多少? 答案: 1、每个学⽣的基础分为奇数,⽆论题⽬的答题情况,每⼀题都将是总分加上或减去⼀个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学⽣的总分肯定是奇数,⽽学⽣有2013名,奇数和奇数的和还是奇数,所以所有学⽣的分数⼀定是奇数。
2、正⽅体⼀个⾯的⾯积是144÷4=36平⽅厘⽶,根据长⽅体的表⾯积可得: 36×(4n+2)=3096 144n+72=3096 n=21 答:n是21。
小升初小学奥数试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的3倍加上15等于这个数的5倍,这个数是多少?A. 5B. 10C. 15D. 20答案:B3. 一个长方体的长、宽、高分别是12厘米、8厘米和6厘米,其表面积是多少平方厘米?A. 432B. 504C. 576D. 648答案:B4. 一个数除以3的余数是2,除以5的余数是1,这个数最小是多少?A. 11B. 16C. 21D. 26答案:A5. 一本书的价格是35元,如果打8折,那么现价是多少元?A. 25B. 28C. 30D. 35答案:B二、填空题(每题3分,共15分)6. 一个数的1/4加上它的1/2等于______。
答案:3/47. 一个正方形的面积是64平方厘米,它的周长是______厘米。
答案:328. 一本书有120页,小明第一天看了总页数的1/3,第二天看了剩下页数的1/2,那么小明两天共看了______页。
答案:609. 一个数的2/3加上它的1/3等于______。
答案:110. 一个长方形的长是15厘米,宽是10厘米,如果长和宽都增加5厘米,那么新的长方形面积比原来增加了______平方厘米。
答案:125三、解答题(共75分)11. 一个长方形的长是21厘米,宽是15厘米。
如果长和宽都减少3厘米,那么新的长方形的面积是多少平方厘米?(10分)答案:新的长方形的长是21 - 3 = 18厘米,宽是15 - 3 = 12厘米。
面积是18 * 12 = 216平方厘米。
12. 小明和小红合伙买了一些文具,小明出了总金额的2/5,小红出了总金额的3/5。
如果小红出了60元,那么小明出了多少元?(15分)答案:小红出的钱是总金额的3/5,那么总金额是60 / (3/5) = 100元。
小明出了总金额的2/5,即小明出了100 * (2/5) = 40元。
小升初奥数题及答案(经典版)小升初奥数题及答案(经典版)一、选择题1.某数除以6,商是4,余数是多少?A. 3B. 4C. 5D. 6答案:B2.甲数的3倍等于乙数的5倍,则甲数是乙数的几分之几?A. 3/5B. 4/5C. 5/4D. 5/3答案:C3.某数的两倍增加60等于90,这个数是多少?A. 15B. 20C. 45D. 60答案:A4.下一个“完全平方数”是什么?A. 64B. 81C. 88D. 100答案:B5.质数是指只能被1和自己整除的自然数,以下哪个数是质数?A. 1B. 10C. 17D. 27答案:C二、填空题1.现在是星期三,10天后是星期几?答案:星期六2.一个四位数,千位数是2,个位数是4,十位数比个位数多1,百位数比十位数多4,这个数是多少?答案:21443.一个大于1的自然数除以2,商是5,余数是4,这个数是多少?答案:14三、解答题1.小明家附近有一片矩形草坪,长20米,宽15米。
他想在草坪四周围上一圈木栅栏,每段木栅栏的长度都相等。
请问每段木栅栏的长度是多少米?答案:每条木栅栏的长度是20+15+20+15=70米。
2.某书店新到一批数学书籍,分为4个等分。
如果每个等分有55本书,那么这批书共有多少本?答案:这批书共有4 × 55 = 220本。
3.有20个小球,其中16个重量一样,其他4个也重量一样,但比那16个重的小球更重。
请问,至少需要用天平称几次可以找出重的小球?答案:只需要用天平称2次。
首先,我们将20个小球平分成两组,每组10个小球,然后只需要用天平比较这两组小球的重量,就可以确定出重的小球所在的一组。
接下来,我们再将这一组里的10个小球平分成两组,每组5个小球,再次用天平比较,就可确定出重的小球所在的一组。
最后,将这一组的5个小球中任意两个拿出来比较,就能找到重的小球。
总结:小升初奥数题及答案(经典版)涵盖了选择题、填空题和解答题。
小升初奥数真题和答案试题一:有5个亮着的灯泡,每个灯泡都由一个开关控制,每次操作可以拉动其中的2个开关以改变相应灯泡的亮暗状态,能否经过假设干次操作使得5个灯泡都变暗?解答:每个灯泡变暗需要拉动奇数次开关;那么5个灯泡全部变暗一共也需要拉动奇数次开关;而每次操作是拉动2个开关;假设干次操作后一共拉动的次数肯定是2的倍数,也就是偶数次;但是5个灯泡全部变暗一定需要总共拉动奇数次,所以矛盾了;所以无论经过多少次操作都不可能使5个灯泡一起变暗。
试题二:甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.解答:第一次相遇时,两人合走了半个圆周;第二次相遇时,两人又合走了一个圆周,所以从第一相遇到第二次相遇时乙走的路程是第一次相遇时走的2倍,所以第二次相遇时,乙一共走了100×(2+1)=300 米,两人的总路程和为一周半,又甲所走路程比一周少60米,说明乙的路程比半周多60米,那么圆形场地的半周长为300-60=240 米,周长为240×2=480米.试题三:"迎春杯"数学竞赛后,甲、乙、丙、丁四名猜想他们之中谁能获奖.甲说:"如果我能获奖,那么乙也能获奖."乙说:"如果我能获奖,那么丙也能获奖."丙说:"如果丁没获奖,那么我也不能获奖."实际上,他们之中只有一个人没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同学是。
解答:首先根据丙说的话可以推知,丁必能获奖.否那么,假设丁没获奖,那么丙也没获奖,这与"他们之中只有一个人没有获奖"矛盾。
其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能.因此,只有甲没有获奖。
小升初的奥数试题及答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的3倍加上5等于这个数的5倍减去5,这个数是多少?A. 5B. 10C. 15D. 20答案:B3. 一个长方形的长是宽的2倍,若将长和宽都增加2厘米,新的长方形面积比原来增加了36平方厘米。
原来长方形的宽是多少厘米?A. 3B. 4C. 6D. 9答案:C二、填空题4. 一个数的1/2加上它的1/3等于2,这个数是______。
答案:65. 有一排数字,按照2、4、6、8、…的规律排列,第10个数字是______。
答案:206. 一个数除以3的余数是2,除以5的余数是1,这个数最小是______。
答案:16三、解答题7. 一个班级有48名学生,其中1/4是女生,剩下的是男生。
问这个班级有多少名男生?解答:班级中有48名学生,其中1/4是女生,即48 * 1/4 = 12名女生。
剩下的是男生,所以男生人数为48 - 12 = 36名。
8. 一辆汽车以每小时60公里的速度从甲地开往乙地,同时另一辆汽车以每小时40公里的速度从乙地开往甲地。
如果两地相距240公里,问两辆车几小时后相遇?解答:两辆车相向而行,它们的相对速度是60 + 40 = 100公里/小时。
两地相距240公里,所以相遇时间是240 / 100 = 2.4小时。
9. 一个长方体的长、宽、高分别是12厘米、8厘米和6厘米。
如果将这个长方体切成两个大小相等的立方体,问每个立方体的体积是多少?解答:长方体的体积是长宽高的乘积,即12 * 8 * 6 = 576立方厘米。
切成两个大小相等的立方体,每个立方体的体积是576 / 2 = 288立方厘米。
10. 一个水池有A、B、C三个进水管,A管单独注满水池需要5小时,B管需要8小时,C管需要10小时。
如果三管同时注水,多长时间可以注满水池?解答:设注满水池的总工作量为1,A管每小时注水1/5,B管每小时注水1/8,C管每小时注水1/10。
使用办法:题目后面有答案,但是要遮住答案完成,把题目完成在笔记本,自行核对,一天一题小学六年级奥数题及答案1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)} 左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
小升初奥数试题及参考答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3参考答案:C2. 一个数的1/5加上它的1/3,求和的结果是这个数的几分之几?A. 1/15B. 8/15C. 1/3D. 3/5参考答案:B3. 一个长方体的长是10厘米,宽是8厘米,高是5厘米,其表面积是多少平方厘米?A. 170B. 270C. 340D. 420参考答案:D二、填空题4. 一个数的3/4加上它的1/2,和是这个数的______。
参考答案:7/85. 一本书的价格是35元,如果打8折出售,那么现价是______元。
参考答案:286. 一个正方形的边长增加10%,那么它的面积增加了多少百分比?参考答案:21%三、解答题7. 一块长方形草地的长是40米,宽是30米。
现在要在其四周围上篱笆,问篱笆的总长度是多少米?参考答案:(40+30)×2 = 140米8. 小明和小红合作完成一项工作,小明单独完成需要4小时,小红单独完成需要6小时。
现在他们合作,共同完成这项工作需要多少时间?参考答案:设工作总量为1,小明每小时完成1/4,小红每小时完成1/6的工作量。
合作时,他们每小时完成的工作量是1/4 + 1/6 =5/12。
所以,他们合作完成工作需要的时间为1 ÷ (5/12) = 2.4小时。
9. 一个班级有48名学生,其中2/3是男生,剩下的是女生。
问这个班级有多少名女生?参考答案:48 × (1 - 2/3) = 48 × 1/3 = 16名女生。
四、应用题10. 小华有一些贴纸,她给了小明一半的贴纸后,自己还剩下20张。
请问小华原来有多少张贴纸?参考答案:设小华原来有x张贴纸,根据题意,x/2 = 20,解得x = 40张。
11. 一辆汽车从甲地到乙地,如果速度提高20%,可以比原定时间提前1小时到达。
已知原定速度是60公里/小时,求两地之间的距离。
小升初最常考奥数题100道及答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)2. 小明看一本书,第一天看了全书的1/4,第二天看了全书的2/5,第二天比第一天多看了21 页,这本书一共有多少页?答案:21÷(2/5 - 1/4)= 21÷3/20 = 140(页)3. 有一批货物,第一天运走了总数的2/5,第二天运走的货物比总数的1/4 多4 吨,这时还剩17 吨,这批货物共有多少吨?答案:(17 + 4)÷(1 - 2/5 - 1/4)= 21÷7/20 = 60(吨)4. 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:40÷[(1 - 25%)×3/(3 + 4) - 25%] = 40÷[3/7 - 1/4] = 560(人)5. 师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21 个,这批零件有多少个?答案:21÷(1 - 2/7 - 2/7)= 21÷3/7 = 49(个)6. 仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3 少12 袋,这时仓库里还剩24 袋,两次共取出多少袋?答案:(24 - 12)÷(1 - 2/5 - 1/3)= 12÷4/15 = 45(袋),45 - 24 = 21(袋)7. 甲、乙、丙三个数的和是110,甲与乙的比是3:2,乙与丙的比是4:1,乙数是多少?答案:甲:乙= 3:2 = 6:4,乙:丙= 4:1,所以甲:乙:丙= 6:4:1,乙数:110×4/(6 + 4 + 1) = 408. 一辆汽车从甲地开往乙地,行了全程的3/8,离乙地还有135 千米,两地之间的公路长多少千米?答案:135÷(1 - 3/8)= 216(千米)9. 修一条路,已修的与未修的比是1:5,又修了490 米后,已修的与未修的比是3:1,这时还有多少米未修?答案:490÷(3/4 - 1/6)×1/4 = 180(米)10. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,4/5 x - 2/3×(465 - x) = 20 ,解得x = 225,女生人数:465 - 225 = 240(人)11. 水果店里卖出的梨的重量是苹果的5/7,梨比苹果少卖30 千克,梨卖了多少千克?答案:30÷(1 - 5/7)×5/7 = 75(千克)12. 一筐苹果卖掉1/5 后,又卖掉6 千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?答案:6÷(1/3 - 1/5)= 45(千克)13. 甲、乙两班共有84 人,甲班人数的5/8 与乙班人数的3/4 共有58 人,甲、乙两班各有多少人?答案:设甲班有x 人,5/8 x + 3/4×(84 - x) = 58 ,解得x = 40,乙班:84 - 40 = 44(人)14. 学校买来两种图书共220 本,取出甲种图书的1/4 和乙种图书的1/5 共50 本借给五年级(1)班同学阅读,问甲、乙两种图书各买来多少本?答案:设甲种图书有x 本,1/4 x + 1/5×(220 - x) = 50 ,解得x = 120,乙种图书:220 - 120 = 100(本)15. 某工厂第一车间有工人150 人,第二车间有工人90 人,要使第一车间人数是第二车间的2 倍,需要从第二车间调多少人到第一车间?答案:(150 + 90)÷(2 + 1) = 80(人),90 - 80 = 10(人)16. 甲、乙两堆煤共180 吨,甲堆煤的1/3 比乙堆煤的2/3 多18 吨,甲、乙两堆煤各有多少吨?答案:设甲堆煤有x 吨,1/3 x - 2/3×(180 - x) = 18 ,解得x = 138,乙堆煤:180 - 138 = 42(吨)17. 学校图书馆有科技书和文艺书共3200 本,科技书的本数是文艺书的4/5,科技书和文艺书各有多少本?答案:文艺书:3200÷(1 + 4/5)= 16000/9 ≈1778(本),科技书:3200 - 1778 = 1422(本)18. 一辆汽车从甲地到乙地,已经行了全程的1/5,再向前行50 千米,就比全程的2/3 少6 千米,求甲乙两地的距离。
【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。
以下是整理的《2021年愚⼈节简短句⼦3篇》相关资料,希望帮助到您。
1.⼩升初奥数题及答案 ⽤1~9可以组成______个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满⾜要求的三位数? 答案与解析: (1)9×8×7=504个。
(2)504-(6+5+5+5+5+5+5+6)×6-7×6=210个; (减去有2个数字差是1的情况,括号⾥8个数分别表⽰这2个数是12,23,34,45,56,67,78,89的情况,×6是对3个数字全排列,7×6是三个数连续的123、234、345、456、567、789这7种情况)。
2.⼩升初奥数题及答案 龟兔赛跑,全程5.2千⽶,兔⼦每⼩时跑20千⽶,乌龟每⼩时跑3千⽶,乌龟不停地跑;兔⼦边跑边玩,它先跑了1分钟后玩了15分钟,⼜跑了2分钟后玩15分钟,再跑3分钟后玩15分钟,……。
那么先到达终点⽐后到达终点的快多少分钟? 答案与解析: 乌龟⽤时:5.2÷3×60=104(分钟);兔⼦总共跑了:5.2÷20×60=15.6(分钟)。
⽽我们有:15.6=1+2+3+4+5+0.6按照题⽬条件,从上式中我们可以知道兔⼦⼀共休息了5次,共15×5=75(分钟)。
所以兔⼦共⽤时:15.6+75=90.6(分钟)。
兔⼦先到达终点,⽐后到达终点的乌龟快:104-90.6=13.4(分钟)。
3.⼩升初奥数题及答案 ⼩华从甲地到⼄地,3分之1骑车,3分之2乘车;从⼄地返回甲地,5分之3骑车,5分之2乘车,结果慢了半⼩时。
已知,骑车每⼩时12千⽶,乘车每⼩时30千⽶,问:甲⼄两地相距多少千⽶? 解答:把路程当作1,得到时间系数 去时时间系数:1/3÷12+2/3÷30 返回时间系数:3/5÷12+2/5÷30 两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2⼩时 去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75 路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千⽶)4.⼩升初奥数题及答案 ⽼奶奶家有20个鸡蛋,还养了⼀天能下⼀个蛋的⽼母鸡,如果她家⼀天吃两个鸡蛋,⽼奶奶家的鸡蛋可以连续吃多少天? 解答: (1)20个鸡蛋,每天吃2个 20÷2=10天,在这10天⾥,母鸡⼜下了10个鸡蛋 (2)10个鸡蛋,每天吃2个 10÷2=5天,在这5天⾥,母鸡⼜下了5个鸡蛋 (3)5个鸡蛋,每天吃2个 5÷2=2天……1个,在这2天⾥,母鸡⼜下了2个鸡蛋 (4)2个鸡蛋+余下的1个鸡蛋,每天吃2个 3÷2=1天……1个,在这1天⾥,母鸡⼜下了1个鸡蛋 (5)1个鸡蛋+余下的1个鸡蛋,每天吃2个 2÷2=1天 (6)总天数 10+5+2+1+1=19天5.⼩升初奥数题及答案 有⼀班同学去划船,他们算了⼀下,如果增加⼀条船,每条船正好坐6⼈;如果减少⼀条船,每条船正好坐9⼈。
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是®⽆忧考⽹整理的《⼩升初奥数题及答案五篇》相关资料,希望帮助到您。
1.⼩升初奥数题及答案 1、⽤⼀只⽔桶装⽔,把⽔加到原来的2倍,连桶重10千克,如果把⽔加到原来的5倍,连桶重22千克。
桶⾥原有⽔多少千克? 想:由已知条件可知,桶⾥原有⽔的(5-2)倍正好是(22-10)千克,由此可求出桶⾥原有⽔的重量。
解:(22-10)÷(5-2)=12÷3=4(千克) 答:桶⾥原有⽔4千克。
2、⼩红和⼩华共有故事书36本。
如果⼩红给⼩华5本,两⼈故事书的本数就相等,原来⼩红和⼩华各有多少本? 想:从“⼩红给⼩华5本,两⼈故事书的本数就相等”这⼀条件,可知⼩红⽐⼩华多(5×2)本书,⽤共有的36本去掉⼩红⽐⼩华多的本数,剩下的本数正好是⼩华本数的2倍。
解:⼩华有书的本数:(36-5×2)÷2=13(本) ⼩红有书的本数:13+5×2=23(本) 答:原来⼩红有23本,⼩华有13本。
2.⼩升初奥数题及答案 1、已知⼀张桌⼦的价钱是⼀把椅⼦的10倍,⼜知⼀张桌⼦⽐⼀把椅⼦多288元,⼀张桌⼦和⼀把椅⼦各多少元? 想:由已知条件可知,⼀张桌⼦⽐⼀把椅⼦多的288元,正好是⼀把椅⼦价钱的(10-1)倍,由此可求得⼀把椅⼦的价钱。
再根据椅⼦的价钱,就可求得⼀张桌⼦的价钱。
解:⼀把椅⼦的价钱:288÷(10-1)=32(元) ⼀张桌⼦的价钱:32×10=320(元) 答:⼀张桌⼦320元,⼀把椅⼦32元。
2、3箱苹果重45千克。
⼀箱梨⽐⼀箱苹果多5千克,3箱梨重多少千克? 想:可先求出3箱梨⽐3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
小升初奥数题及答案五篇第一篇:数与代数1. 某数的三倍加上5等于20,求这个数。
解答:设这个数为x,则根据题意,可以列出方程3x + 5 = 20。
解这个一次方程可以得到x = 5。
2. 一个数增加20%后得到30,求这个数。
解答:设这个数为x,则根据题意,可以列出方程x + 0.2x = 30。
解这个一次方程可以得到x = 25。
第二篇:几何与图形1. 已知长方形的长是5cm,宽是3cm,求其面积和周长。
解答:长方形的面积可以通过长度乘以宽度来计算,即5cm × 3cm = 15cm²。
周长可以通过将长度和宽度相加再乘以2来计算,即(5cm + 3cm) × 2 = 16cm。
2. 在平面直角坐标系中,点A(2,3)和点B(5,1)连线,求线段AB的长度。
解答:根据坐标系中两点间的距离公式,线段AB的长度可以计算为√[(5-2)²+(1-3)²] = √[(3)²+(-2)²] = √(9+4) = √13。
第三篇:概率与统计1. 从1至15中随机抽取一个整数,求这个整数是偶数的概率。
解答:在1至15中,一共有8个偶数(2, 4, 6, 8, 10, 12, 14, 15)和7个奇数(1, 3, 5, 7, 9, 11, 13)。
因此,抽取的整数是偶数的概率为8/15。
2. 一个骰子中的每个面都标有1至6的数字,投掷骰子一次,求投掷结果是5或6的概率。
解答:骰子共有6个面,其中有2个面标有5和6。
因此,投掷结果是5或6的概率为2/6 = 1/3。
第四篇:逻辑与推理1. 小明说他有7本书,其中一半给了朋友,又借了5本回来,这时他还有多少本书?解答:小明有7本书,一半给了朋友,剩下的数量是7/2 = 3.5本。
因为书的数量不能为小数,所以小明实际上只剩下3本书。
2. 汤姆比杰克大三岁,而杰克比肯尼大两岁。
如果汤姆今年10岁,那么肯尼的年龄是多少?解答:根据题意,杰克比肯尼大两岁,汤姆比杰克大三岁,所以汤姆与肯尼之间的年龄差是5岁。
小升初奥数试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的3倍加上5等于这个数的5倍减去5,这个数是多少?A. 5B. 10C. 15D. 20答案:B3. 一个长方形的长是15厘米,宽是10厘米,那么它的周长是多少厘米?A. 25B. 30C. 50D. 60答案:C4. 一个数除以3的商是8,余数是1,这个数是多少?A. 24B. 25C. 26D. 27答案:B5. 下列哪个分数可以化简为1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:B二、填空题(每题3分,共15分)6. 一个数的1/4加上这个数的1/2等于______。
答案:3/47. 把0.125化成分数是______。
答案:1/88. 一本书的价格是35元,打8折后的价格是______元。
答案:289. 一个数的20%是10,那么这个数是______。
答案:5010. 时钟2点敲响2下,用了2秒,那么9点敲响9下,需要______秒。
答案:54三、解答题(每题10分,共30分)11. 一个长方形的长是宽的2倍,若将长和宽都增加2厘米,那么它的面积就增加了20平方厘米。
问原来长方形的长和宽分别是多少厘米?解答:设原来长方形的宽为x厘米,那么长为2x厘米。
根据题意,增加的部分可以表示为:(2x + 2)(x + 2) - 2x * x = 20。
简化后得到:4x + 4 = 20,解得x = 4厘米。
所以原来长方形的长为8厘米,宽为4厘米。
12. 一个水池有甲、乙两个进水管,甲管单独注满水池需要3小时,乙管单独注满水池需要5小时。
现在两管同时注水,注满水池需要多少时间?解答:设水池的容量为V升。
甲管的注水速率为V/3升/小时,乙管的注水速率为V/5升/小时。
两管同时注水的速率为(V/3 + V/5)升/小时。
注满水池所需时间为T小时,那么有方程:(V/3 + V/5) * T = V。
小升初奥数试题题及答案小升初奥数试题及答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的1/4加上它的1/2,和是多少?A. 1/2B. 3/4C. 9/4D. 1答案:D3. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 120B. 240C. 180D. 100答案:A二、填空题4. 一个数比20大10,这个数是_________。
答案:305. 一本书的价格是35元,如果打8折,那么现价是多少元?答案:28元三、解答题6. 一块长方形草地的长是40米,宽是25米,现在要在其四周等距离地种上树,每个间隔5米种一棵。
请问四周共种了多少棵树?解答:首先计算长方形草地的周长,周长= 2 × (长 + 宽) = 2× (40米 + 25米) = 2 × 65米 = 130米。
由于每个间隔5米种一棵树,所以总共可以种植的树的数量是周长除以间隔距离,即 130米÷ 5米 = 26棵。
答案:四周共种了26棵树。
7. 小明和小红合作完成一项工作,小明单独完成需要4小时,小红单独完成需要6小时。
现在他们合作,共同完成这项工作需要多少时间?解答:小明每小时完成工作的1/4,小红每小时完成工作的1/6。
他们合作时,每小时完成的工作量是1/4 + 1/6 = 5/12。
要计算他们合作完成工作所需的时间,我们可以用工作总量1除以他们合作的工作效率,即1 ÷ (5/12) = 12/5 = 2.4小时。
答案:小明和小红合作完成这项工作需要2.4小时。
四、应用题8. 一辆汽车从甲地开往乙地,如果车速提高20%,可以比原定时间提前1小时到达。
如果车速提高30%,可以比原定时间提前1.5小时到达。
问甲乙两地之间的距离是多少公里?解答:设原车速为v公里/小时,原定时间为t小时,甲乙两地之间的距离为d公里。
小升初奥数测试题及答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的1/4加上它的1/2,和是多少?A. 1/4B. 3/4C. 9/4D. 1答案:D3. 一本书的价格是35元,如果打8折,那么现价是多少元?A. 28元B. 30元C. 35元D. 42元答案:A二、填空题4. 一个长方形的长是15厘米,宽是10厘米,它的周长是________厘米。
答案:50厘米5. 一本书有120页,小明第一天看了总页数的1/4,第二天看了总页数的1/2,小明两天共看了________页。
答案:90页三、解答题6. 小明和小红共有100张邮票,如果小明给小红10张邮票,那么小红的邮票数将是小明的2倍。
小明和小红原来各有多少张邮票?解答:设小明原来有x张邮票,小红原来有(100-x)张邮票。
根据题意,2(x-10) = (100-x) + 10解得:2x - 20 = 110 - x3x = 130x = 40所以,小明原来有40张邮票,小红原来有60张邮票。
7. 一个水池有A、B、C三个进水管,A管单独注满水池需要10小时,B管需要12小时,C管需要15小时。
如果三个管子同时工作,那么需要多少时间才能注满水池?解答:设三个管子同时工作需要t小时注满水池。
A管每小时注水1/10,B管每小时注水1/12,C管每小时注水1/15。
三个管子同时工作,每小时注水量为1/10 + 1/12 + 1/15。
根据题意,(1/10 + 1/12 + 1/15) * t = 1解得:t = (1/10 + 1/12 + 1/15)^(-1)t = 4 (小时)四、应用题8. 一辆汽车从甲地到乙地,如果速度提高20%,可以比原定时间提前1小时到达。
如果速度降低20%,则会比原定时间晚1小时到达。
请问甲地到乙地的原定行驶时间是多少?解答:设原定速度为v,原定时间为t。
根据题意,v * t = (1.2v) * (t - 1) = (0.8v) * (t + 1)解得:t = 5 (小时)答案:甲地到乙地的原定行驶时间是5小时。
小升初奥数题卷子及答案一、选择题(每题2分,共10分)1. 下列哪个数是质数?A. 4B. 9C. 13D. 162. 一个数的平方是其本身,这个数可能是:A. 0B. 1C. -1D. 23. 一个圆的直径是14厘米,它的周长是多少厘米?A. 28B. 42C. 56D. 844. 一个数的倒数是1/5,这个数是:A. 5B. 1/5C. 1/6D. 65. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,它的体积是多少立方厘米?A. 240B. 180C. 360D. 480二、填空题(每题2分,共10分)1. 如果一个数是另一个数的2倍,那么这个数的______是另一个数的1倍。
2. 一个数的平方根是5,那么这个数是______。
3. 一个数的立方根是2,那么这个数是______。
4. 如果一个数的1/4加上2等于这个数本身,那么这个数是______。
5. 一个数的1/5加上它的4/5等于______。
三、计算题(每题5分,共20分)1. 计算下列表达式的值:(2^3 + 3^2) / 4 - 12. 解方程:2x - 5 = 3x + 13. 计算下列分数的和:1/2 + 1/3 + 1/44. 计算下列多项式的乘积:(x + 2)(x - 3)四、解答题(每题15分,共30分)1. 一个长方形的长是宽的两倍,如果长增加10厘米,宽增加5厘米,面积就增加了120平方厘米。
求原来长方形的长和宽。
2. 一个班级有40名学生,其中1/4的学生是优秀学生,1/8的学生是中等生,其余是差生。
如果班级要组织一次活动,需要每个学生交10元,那么组织这次活动需要多少元?五、应用题(每题25分,共50分)1. 一个农场有鸡和兔子共40只,它们的腿总共有100条。
问农场里有多少只鸡和多少只兔子?2. 一个工厂生产一批玩具,如果每天生产200个,需要20天完成。
如果每天生产250个,需要多少天完成?答案:一、选择题1. C2. B3. B4. D5. A二、填空题1. 1/22. 253. 84. 85. 1三、计算题1. 52. x = -23. 1 1/124. x^2 - 5x + 6四、解答题1. 原长方形的长是16厘米,宽是8厘米。
小升初奥数试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的1/4加上它的1/2,和是1。
这个数是多少?A. 1/2B. 2/3C. 1D. 4答案:C3. 一个长方体的长、宽、高分别是12cm、8cm和6cm,它的表面积是多少平方厘米?A. 432B. 360C. 312D. 288答案:A4. 一本书的价格是35元,如果打8折,那么现价是多少元?A. 28B. 30C. 35D. 42答案:A5. 一个数除以3的余数是2,除以5的余数是1,这个数除以15的余数是多少?A. 3B. 2C. 1D. 0答案:A6. 一个数的3/4加上它的1/2,和是2。
这个数是多少?A. 1B. 2C. 3D. 4答案:B7. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 40答案:A8. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 32B. 48C. 64D. 16答案:A9. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了多少公里?A. 120B. 100C. 80D. 60答案:A10. 一个数的2倍加上3等于这个数的3倍减去5,这个数是多少?A. 5B. 8C. 10D. 6答案:D二、填空题(每题4分,共40分)11. 一个数的倒数是1/4,这个数是_________。
答案:412. 一本书的价格比原价便宜了18元,现在的价格是42元,原价是_________元。
答案:6013. 一个长方体的长是15cm,宽是10cm,高是8cm,它的体积是_________立方厘米。
答案:120014. 一个数的1/3与它的1/2的和是20,这个数是_________。
答案:2415. 一个班级有36名学生,其中3/4是女生,那么这个班级有多少名男生?答案:916. 一个数的4/5加上它的1/2,和是6。
小升初奥数试卷及答案
时间:80分钟姓名分数
一、填空题(6分×10=60分)
1.。
2.一项工程,甲队单独完成需要10天,乙队单独完成需要15天,丙队单独完成需要20天。
开始时三个队一起工作,中途甲队撤走,由乙、丙两个队一起完成剩下的工程。
最后用6天时间完成该工程。
那么甲队实际工作了天。
3.甲数比乙数大5,乙数比丙数也大5,而这三个数的乘积是6384,那么甲数是。
4.如图:在三角形ABC中,BD=BC,AE=ED,图中阴影部分的面积为250.75
平方厘米,则三角形ABC面积为__________平方厘米。
5.某厂向银行申请甲乙两种贷款共40万元,每年需支付利息5万元。
甲种贷
款年利率为12%,乙种贷款年利率为14%。
甲种贷款的金额是________万元,乙种贷款的金额是_______万元。
6.在358的后面补上三个数码组成一个六位数,使得它分别能被3、4、5整除,这样的六位
数中最小的是________。
7.写出5个不相同的自然数,使其中任意三个自然数的和能被3整除,这5个自然数的和至
少是_________。
8.已知一个圆柱体的侧面展开图恰好是一个边长为6.28厘米的正方形。
这个圆柱体的体积
是_______立方厘米。
9.a、b、c、d、e是五个人的年龄数,已知a是b的2倍,c的3倍,d的4倍,e的6倍,
则a+b+c+d+e最小为________。
10.大货车和小轿车从同一地点出发沿同一公路行驶。
大货车先走1.5小时,小轿车出发4小
时后追上了大货车,如果小轿车每小时多行5千米,出发后3小时就可追上大货车,小轿车实际每小时行_______千米。
二、解答题(10分×4=40分)
1.甲种酒精含纯酒精40%,乙种酒精含纯酒精36%,丙种酒精含纯酒精35%。
将这三种酒
精混合在一起得到含纯酒精38.5的酒精11千克,已知乙种酒精比丙种酒精多3千克。
那么甲种酒精有多少千克?
2.某校参加一次数学竞赛的平均成绩是75分,选手中男生人数比女生人数多80%,而女生
比男生的平均分高20%,女生的平均分是多少?
3.小明跑步速度是步行速度的3倍,他每天从家到学校都是步行,有一天由于晚出发10分
钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样,那么小明每天步行上学需要时间多少分钟?
4.一艘轮船所带的柴油最多可以用6小时,驶出时顺风,每小时行30千米;驶回时逆风,每小时行24千米。
这艘轮船最多驶出多少千米就应返航?
奥数培训练习题
一、填空题
1.。
2. 3 6天中乙丙两队完成的工作量为,因此甲队实际工作了
(天)
3.24 ,容易知道,所以甲数乙数丙数分别
不超过25、20、15。
若甲数为奇数,则乙数为偶数,丙数为奇数。
因此乙数为16,此时甲数21,丙数11,无解。
乙数为奇数则乙数必为19(因19的偶倍数都要超过
25),此时甲数24,丙数14,,成立,甲数为24
4.2006
易知阴影部分面积为三角形ABC面积的,因此三角形ABC的面积为
(平方厘米)
5.30,10
假设全部是甲种贷款,则年支付利息万元,乙种贷款有
万元,甲种贷款万元。
6.358020
3、4、5的最小公倍数为60,而358000 除60的余数为40,因此最小的为358020。
7.35
被3除余数有0,1,2三种,若要5个自然数任意3个的和能被3整除,则这五个自然数被3除的余数相同。
由于是5个不同自然数,因此最小的和为
8.19.72
圆柱体底面周长为6.28厘米,因此底面半径为(厘米)。
圆柱体体积为
(立方厘米)
9.27
取a是2、3、4、6的最小公倍数12,则a = 12,b=6,c=4,d=3,e=2,因此和最小为27
10.55
根据题意,每小时多行5千米,速度差加大5千米,3小时后多行了15千米。
而由于距离差是相同的,因此这15千米应与原速度差1小时所追上的路程相同,故速度差为15千米/小时。
追及距离(千米),大货车速度(千米/小时)。
小轿车实际每小时行40+15 = 55千米。
二、解答题
1.7
设甲种酒精有x千克,则丙种酒精有千克,乙种酒精有,根据题目条件有方程
,解之得
2.84
设女生人数为10,则男生人数为18,再设女生的平均成绩是x分,则有方程
,解之得x = 84
3.30
由于跑步的速度是步行速度的3倍,而一半的路程跑步比步行快10分钟,因此一半的路
程步行需要(分钟),每天步行上学需要30分钟。
4.80
驶出时与驶回时的速度比为30:24 = 5:4,因此同样的距离下驶出时与驶回时的时间比应为
4:5,总共可以行驶6小时,因此最多驶出(千米)。