计算传热学
- 格式:docx
- 大小:16.36 KB
- 文档页数:2
计算传热学7-1例题编程由于没有提供具体的例题,我这里以一个简单的例子进行编程:计算一个半径为5cm的球体在30秒内从100摄氏度降到50摄氏度的冷却过程中,球体内每一时刻的温度值,球体的导热系数为0.05。
首先,需要找到球体内每一时刻的温度变化率。
根据热传导方程,温度变化率$dT/dt$与导热系数$K$、球体的半径$r$、球体内每一时刻的温度$T$、球体的质量$m$、球体的比热容$c$、球体的表面积$A$有关,计算公式如下:$dT/dt = -(K/(mr*c))*(A/(4*pi*r^2))*(T-T0)$其中,$T0$为环境温度,本例中为50摄氏度。
可以将上述公式转化为程序:```pythonimport mathK = 0.05 #导热系数r = 0.05 #半径,单位为米m = (4/3)*math.pi*pow(r,3)*7850 #质量,假设密度为7850kg/m^3c = 480 #比热容,单位为J/(kg*K)A = 4*math.pi*pow(r,2) #表面积T0 = 50 #环境温度T = 100 #初始温度t = 0 #初始时间dt = 0.1 #时间间隔,单位为秒while t <= 30:dTdt = -(K/(m*c))*(A/(4*math.pi*pow(r,2)))*(T-T0)T = T + dTdt*dtt = t + dtprint("Time:", t, "Temperature:", round(T,2))```执行上述程序,可以得到每时刻的温度值输出结果,单位为摄氏度。
根据该程序,可以修改参数来计算不同条件下的传热过程。
Nu = 2+0.6(Re^1/2)(Pr^1/3) 。
F=Q/kK*△tm F 是换热器的有效换热面积。
Q 是总的换热量。
k 是污垢系数一般取0.8-0.9K。
是传热系数。
△tm 是对数平均温差。
传热学三种传热方式可以分开学。
传热学相较于理论力学,工程热力学,流体力学而言还是比较简单的,一般大学生掌握了高等数学完全可以自学的。
学习传热学必须有耐心,了解几种换热方式和常见的几个常数公式(努谢尔特数、格拉晓夫数、伯努利常数,傅里叶常数,而且常常推导下几个常用常数公式间的关系,你会惊奇地发现他们其实不少是远亲的),其实解决传热学问题绝大多数都是在和导热系数较劲,有时候是直接涉及。
扩展资料:
在热对流方面,英国科学家牛顿于1701年在估算烧红铁棒的温度时,提出了被后人称为牛顿冷却定律的数学表达式,不过它并没有揭示出对流换热的机理。
传热学作为学科形成于19世纪。
1804年,法国物理学家毕奥在热传导方面得出的平壁导热实验结果是导热定律的最早表述。
稍后,法国的傅里叶运用数理方法,更准确地把它表述为后来称为傅里叶定律的微分形式。
1860年,基尔霍夫通过人造空腔模拟绝对黑体,论证了在相同温度下以黑体的辐射率(黑度)为最大,并指出物体的辐射率与同温度下该物体的吸收率相等,被后人称为基尔霍夫定律。
传热学计算公式范文传热学是物理学的一个分支,研究能量在物体之间的传递过程。
在传热学中,有许多重要的计算公式可以用于解决热传导、对流和辐射等传热现象。
下面将介绍一些常见的传热学计算公式。
热传导是物质内部由高温区向低温区传递热量的过程。
热传导热量的大小与物体的温度差、物体的热导率以及物体的尺寸等因素有关。
下面是一些常用的热传导计算公式:1.热流密度公式:热流密度(q)是单位时间内通过单位面积的热量传递量,可以由下式计算:q = -k * (dT/dx)其中,k是物体的热导率,dT/dx是温度梯度。
2.热传导率(k):物体的热传导率是描述物质导热能力的物理量,可以用以下公式计算:k=Q*L/(A*ΔT)其中,Q是通过物体的热量,L是物体的长度,A是传热的横截面积,ΔT是温度差。
3.热阻(R):热阻是描述物质阻碍热传导的程度的物理量,可以用以下公式计算:R=L/(k*A)其中,L是物体的长度,k是物体的热导率,A是传热的横截面积。
对流是物体表面与流体之间的热传递方式,流体通过对流来接触物体表面并将热量带走。
对于对流传热的计算,常用的公式有:1.流体的对流换热公式:流体通过对流来接触物体表面并带走热量,可以由下式计算:q = h * A * (T - Tfluid)其中,h是对流换热系数,A是物体表面积,T是物体表面的温度,Tfluid是流体的温度。
2.对流换热系数(h):对流换热系数描述了流体的传热能力,它可以由以下公式计算:h=(Nu*k__)/L其中,Nu是Nusselt数,k__是流体的导热系数,L是流体经过的长度。
3. Nusselt数(Nu):Nusselt数描述了流动体系中传热性能的参数,可以通过以下公式计算:Nu=(h*L)/k__其中,h是对流换热系数,L是流体经过的长度,k__是流体的导热系数。
辐射传热是物体通过辐射来传递能量的过程,对于辐射传热的计算,常用的公式有:1.斯特藩-玻尔兹曼定律:斯特藩-玻尔兹曼定律描述了黑体辐射能量的传递率,可以用下式表示:q=σ*ε*A*(T1^4-T2^4)其中,σ是斯特藩-玻尔兹曼常数,ε是物体的辐射率,A是物体的面积,T1和T2是物体的温度。
计算传热学第一类边界条件离散方程
传热学中的第一类边界条件,也称为热流量边界条件,是指在一个热传导过程中,表面的热流量(或热通量)是已知的。
对于此类边界条件,我们可以通过离散化的方法来建立传热方程,并求解出时间和空间上的温度分布。
以一维传热问题为例,考虑一个长L的直管,管的外部温度为T1,内部温度为T2,管壁的热流量为q,假设热传导系数为k,管的长度分为n个小段,依据传热学原理可以建立如下的离散方程:
$$\frac{T_{i-1}-2T_i+T_{i+1}}{\Delta x^2}=-\frac{q}{k},\quad i=1,2,\cdots,n-1, $$
其中$T_i$是第i个网格(或节点)的温度。
将第一类边界条件代入方程,得到:
$$\frac{T_1-2T_2+T_3}{\Delta x^2}=-\frac{q}{k}, $$
$$\frac{T_{n-2}-2T_{n-1}+T_n}{\Delta x^2}=-\frac{q}{k}, $$
同时,我们还需要加入一个边界条件,即:
$$T_1=T_2=T_1, $$
$$T_n=T_{n-1}=T_2. $$
通过将这些方程进行整理和线性求解,可以求得各个节点的温度。
具体的解法可以用三对角矩阵算法(Thomas Algorithm)进行求解,也可以使用迭代法(如高斯-赛德尔迭代法或松弛迭代法)进行求解。
总之,对于第一类边界条件,我们可以通过将离散化的方法来建立方程并求解,这是解决传热学问题中的一种常用方法。
计算重点公式传热学传热学是研究热能在物质之间传递的学科,涵盖了热传导、热对流和热辐射三种传热方式。
在工程和科学领域中,计算传热是非常重要的,可以用来优化和设计各种热能设备和系统。
下面将介绍一些重要的传热计算公式。
1.热传导计算公式热传导是通过分子间的相互作用传递热能的方式。
对于常见的一维热传导问题,可以使用傅里叶热传导定律进行计算:q = -kA(dT/dx)其中,q是单位时间内通过物体的热量流率,k是物质的热导率,A 是传热截面积,dT/dx是温度梯度。
如果传热是在不同的材料之间进行,还需要考虑热传导的界面热阻。
界面热阻的计算公式为:R=1/(hA)其中,R是界面热阻,h是对流传热系数。
2.热对流计算公式热对流是通过流体的对流传递热能的方式。
对于流体中的对流传热,可以使用牛顿冷却定律进行计算:q=hAΔT其中,q是单位时间内通过物体的热量流率,h是对流传热系数,A 是传热表面积,ΔT是流体和物体之间的温度差。
对流传热系数h可以通过实验测量或者经验公式进行估算,常用的计算公式有Nusselt数和普朗特数。
3.热辐射计算公式热辐射是通过物体表面的电磁辐射传递热能的方式。
对于黑体辐射,可以使用斯特藩—玻尔兹曼定律进行计算:q=σAε(T^4)其中,q是单位时间内通过物体的热量流率,σ是斯特藩—玻尔兹曼常数,A是物体的表面积,ε是物体的辐射率,T是物体的温度。
对于非黑体的辐射传热,还需要考虑辐射率和视觉系数等因素。
4.综合传热计算在实际问题中,常常会有多种传热方式同时存在。
此时,需要将不同传热方式的热流量进行累加,得到总的传热量。
根据能量守恒定律,可以得到以下综合传热公式:q_total = q_conduction + q_convection + q_radiation其中,q_total是总的热量流率,q_conduction是热传导的热量流率,q_convection是热对流的热量流率,q_radiation是热辐射的热量流率。
计算传热学在工程领域的应用研究引言计算传热学是研究热传输过程中热量、温度、流速等参数变化规律的一门学科。
在工程领域中,计算传热学在热能转换、能源利用与环境保护等方面发挥着重要的作用。
本文将从传热模型、传热计算方法和应用案例三个方面阐述计算传热学在工程领域的应用研究。
第一章传热模型传热模型是计算传热学中的基本概念,它描述了热量从高温区向低温区传递的过程。
传热模型可分为对流传热、导热传热和辐射传热三种。
对流传热指的是流体在物体表面与物体接触的同时将热量带走的现象。
导热传热则是指物体自身内部传递热能的过程。
辐射传热则是指物体表面和环境之间的热辐射现象。
第二章传热计算方法传热计算方法指的是以数学公式和模型来对传热过程进行计算和模拟的方法。
传热计算方法主要为传热系数法、有限元法、有限差分法以及计算流体力学等方法。
传热系数法可用于估算流体和固体间的传热系数,从而计算热传输过程。
有限元法和有限差分法则是通过分块分割的方法对物体进行离散化处理,并建立数学模型进行传热计算。
计算流体力学则是通过求解流体运动的数学方程来模拟流体在传热过程中的行为。
第三章应用案例在工程领域中,计算传热学的应用非常广泛。
以下列出几个应用案例。
1. 燃烧工程:在燃烧工程中,通过计算传热学模型和计算热转换效率,可以选择最适合的燃烧工艺和优化燃烧效率。
2. 电子工程:在电子设备中,通过计算传热学和优化散热系统的设计可以有效降低电子设备的温度,提高电子设备的可靠性。
3. 石化工程:在石化工程中,通过计算传热学和流体力学分析可以优化反应器的设计,提高生产效率。
4. 汽车工程:在汽车工程中,通过计算传热学和流体力学分析可以优化发动机散热系统的设计,提高汽车发动机的性能。
结论综上所述,计算传热学在工程领域中的应用研究发挥着重要的作用。
通过传热模型的建立和传热计算方法的运用,可以解决一些复杂的传热问题,并优化工程设计,提高工程效率和质量。
传热学热传导公式
热传导的公式是:ut=ku。
热传导是介质内无宏观运动时的传热现象,其在固体、液体和气体中均可发生,但严格而言,只有在固体中才是纯粹的热传导,而流体即使处于静止状态,其中也会由于温度梯度所造成的密度差而产生自然对流,因此,在流体中热对流与热传导同时发生。
通常使用傅里叶定律来计算:Q = -kA(dT/dx),其中,Q为单位时间内通
过某一面积的热量流(单位为瓦特W)、k为物质的热传导系数(单位为瓦特/米·开尔文W/(m·K))、A为热源和热汇之间的接触面积(单位为平方米m²)、dT/dx为温度梯度(单位为开尔文/K),表示在长度为x的方向上,温度变化的速率。
以上内容仅供参考,建议查阅传热学书籍或咨询专业人士获取更准确的信息。
第5章 非稳态问题的求解方法1.1 通用输运方程()()()()()t t f q Γv tφφρφρφφ,grad div div =++-=∂∂ ( 5-1 )5.1 显式Euler 方法考虑1D, 定速度,常物性,无源项的特例22xx u t ∂∂Γ+∂∂-=∂∂φρφφ ( 5-2 ) 时间向前,空间中心差分,得FD 与FV 相同形式代数方程()t x x u nin i n i n i n i nin i∆⎥⎦⎤⎢⎣⎡∆-+Γ+∆--+=-+-++21111122φφφρφφφφ( 5-3 ) 可写成()ni n i n i n i c d c d d 1112221-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+-=φφφφ ( 5-4 ) 其中()xtu c and x t d ∆∆=∆Γ∆=2ρ ( 5-5 ) d 表示时间步长与特征扩散时间()Γ∆/2ξρ的比。
后者代表一个扰动由于扩散通过∆x 一段距离所需时间。
c 表示时间步长与特性对流传递时间x u ∆/的比。
后者代表一个扰动由于对流通过∆x 一段距离所需时间。
c 成为Courant number, 为CFD 中一个关键的参数。
此格式为时间为1阶精度,空间为2阶精度。
方程(4)内的系数在某些条件下,可能会是负值。
用矩阵表示:n n A φφ=+1 ( 5-6 )观察函数:()∑---=-=in i ni n n 211φφφφε( 5-7 )如果系数矩阵A 的本征值中有大于1,则ε随着n 的增加而增加。
如果本征值全部小于1,则ε是递减的。
一般本征值很难求得,对于本特例,它的解可用复数形式表示ji n n j e ασφ= ( 5-8 )其中,α为波数,可取任意值。
∙ 无条件发散:φn 无条件随n 增加→|σ|>1 ∙无条件稳定:φn 无条件随n 降低→|σ|<1代入差分方程,得到本征值为:()αασsin 2cos 21c i d +1-+= ( 5-9 )考虑特殊情况,∙ 无扩散:d=0, →σ >0, 无条件发散,充分条件∙无对流:c=0, →当cos α= -1时,σ最大,→d<1/2,无条件收敛,充分条件从另一个稳定条件考虑,要求系数矩阵A 的所有系数为正,可得到类似稳定性条件:(充分条件)d c d 2and 5.0<<( 5-10 )第一个条件要求()Γ∆<∆22x t ρ ( 5-11 )表示,每当∆x 减少一半,时间步长需减少到1/4. 第二个条件要求2Pe or2<<Γ∆cell xu ρ ( 5-12 )这同前述的用1D 稳态对流/扩散问题的CDS 要求是一致的。
数值传热学数值传热又称计算传热,是传热学与数值方法相结合的一门交叉学科,它采用数值方法描述流动和传热问题的控制方程,并用计算机求解。
数值换热,其基本思想是将原始坐标在空间和时间上连续的物理量场(如速度场、温度场和浓度场等),用一系列有限个离散点上的数值来代替,通过一定的原理建立离散点变量值之间的关系代数方程(称为离散方程)。
通过求解所建立的代数方程组,得到求解变量的近似值。
1简介数值传热学(numerical heat transfer)数值传热学,又称计算传热学,是指对描写流动与传热问题的控制方程采用数值方法,通过计算机求解的一门传热学与数值方法相结合的交叉学科。
数值传热学的基本思想是把原来在空间与时间坐标中连续的物理量的场(如速度场,温度场,浓度场等),用一系列有限个离散点上的值的集合来代替,通过一定的原则建立起这些离散点变量值之间关系的代数方程(称为离散方程)。
求解所建立起来的代数方程已获得求解变量的近似值。
2发展简史数值传热学,主要由20世纪中叶,S.V. Patankar和D.B.Spalding 等人在总结前人的研究基础上所提出。
E.M.Sparrow对数值传热学的发展也起到了一定的促进作用。
国内比较知名的学者是陶文铨教授。
陶文铨3研究方法数值传热学常用的数值方法1.有限差分法历史上最早采用的数值方法,对简单几何形状中的流动与换热问题最容易实施的数值方法。
其基本点是:将求解区域中用于坐标轴平行的一系列网格的交点所组成的点的集合来代替,在每个节点上,将控制方程中每一个导数用相应的差分表达式来代替,从而在每个节点上,形成一个代数方程,每个方程中包括了本节点及其附近一些节点上的未知值,求解这些代数方程就获得了所需的数值解。
2.有限容积法将所计算的区域划分成一系列控制容积划分为一系列控制容积,每个控制容积都有一个节点做代表。
通过将守恒型的控制方程对控制容积坐积分导出离散方程。
在导出过程中,需要对界面上的被求函数本身及其一阶导数的构成做出假定,是目前流动与换热问题的数值计算中应用最广的一种方法。
传热学公式总结在物理学中,传热学是一个重要的分支领域,研究物质之间热量的传递方式和规律。
在实际应用中,我们常常需要利用传热学公式来计算热传导、对流和辐射等过程中的热量变化。
本文将对传热学中常用的公式进行总结和归纳,帮助读者更好地理解和应用相关知识。
1. 热传导方程热传导是物质内部由于温度差异而引起的热量传递过程。
热传导的速率可以根据傅里叶定律描述:q = -kA(dT/dx)其中,q表示单位时间内通过横截面A传导的热量,k为材料的热导率,dT/dx表示单位长度内温度的变化率。
这个公式说明了热量传导与温度梯度之间的关系,温度梯度越大,热传导速率就越大。
2. 热对流公式热对流是通过流体介质的热传递方式,常见于气体和液体中。
热对流可以根据牛顿冷却定律进行计算:q = hA(Ts - T∞)其中,q表示通过表面积A从物体表面传递的热量,h为热对流系数,Ts为表面温度,T∞为流体的远场/环境温度。
牛顿冷却定律的基本思想是热量传递与温度差和表面积之间成正比,而且逆向传热过程中的温度差往往比较小。
3. 辐射传热公式辐射传热是通过电磁波辐射的方式进行的,不需要物质介质。
具体的辐射传热公式可以根据斯特藩-玻尔兹曼定律给出:q = εσA(T⁴s - T⁴∞)其中,q为单位时间内通过表面积A传递的辐射热量,ε为发射率(表征表面辐射能力的一种无量纲值),σ为斯特藩-玻尔兹曼常数,Ts为表面温度,T∞为远场/环境温度。
斯特藩-玻尔兹曼定律说明了辐射热量与表面温度的四次方成正比,这意味着一个小的温度提高可以显著增加辐射传热率。
4. 复合热传递在实际情况中,热传递往往是多种传热方式的复合过程。
例如,一个物体既有热传导,又有对流和辐射。
在这种情况下,总的热传递可以通过下列公式求得:q = q₁ + q₂ + q₃其中,q₁、q₂和q₃分别表示通过热传导、热对流和辐射传递的热量。
根据具体情况,我们可以使用以上公式中的一个或多个来计算总的热传递。
1. 传热学的发展概述18世纪30年代首先从英国开始的工业革命促进了生产力的空前发展。
生产力的发展为自然科学的发展成长开辟了广阔的道路。
传热学这一门学科就是在这种大背景下发展成长起来的。
导热和对流两种基本热量传递方式早为人们所认识,第三种热量传递方式则是在1803年发现了红外线才确认的,它就是热辐射方式。
在批判“热素说”确认热是一种运动的过程中,科学史上的两个著名实验起着关键作用。
其一是1798年伦福特(B .T .Rumford)钻炮筒大量发热的实验,其二是 1799年戴维(H .Davy)两块冰块摩擦生热化为水的实验。
确认热来源于物体本身内部的运动开辟了探求导热规律的途径。
1804年毕渥根据实验提出了一个公式,认为每单位时间通过每单位面积的导热热量正比例于两侧表面温差,反比例于壁厚,比例系数是材料的物理性质。
傅里叶于1822年发表了他的著名论著“热的解析理论”,成功地完成了创建导热理论的任务。
他提出的导热定律正确概括了导热实验的结果,现称为傅里叶定律,奠定了导热理论的基础。
他从傅里叶定律和能量守恒定律推出的导热微分方程是导热问题正确的数学描写,成为求解大多数工程导热问题的出发点。
他所提出的采用无穷级数表示理论解的方法开辟了数学求解的新途径。
傅里叶被公认为导热理论的奠基人。
在傅里叶之后,导热理论求解的领域不断扩大。
同样,自1823年M. Navier 提出流动方程以来,通过1845 年 G.G. Stokes 的改进,完成了流体流动基本方程的创建任务。
流体流动理论是更加复杂的对流换热理论的必要前提,1909和1915年W. Nusselt 开辟了在无量纲数原则关系正确指导下,通过实验研究对流换热问题的一种基本方法。
1904 年,L. Prandtl 提出的对流边界层理论使流动微分方程得到了简化,1921年 E. Pohlhausen 基于流动边界层理论引进了热边界层的概念,为对流传热微分方程的理论求解建立了基础。
计算传热学(Computational Heat Transfer,CHT)又称数值传热学(Numerical Heat Transfer,NHT):是指对描写流动与传热问题的控制方程采用数值解法通过计算机予以求解的一门学科。
数值解法是一种离散近似的计算方法。
它所能获得的解不象分析解那样是被研究区域中未知量的连续函数,而只是某些代表性的点(称为节点)上的近似值。
有限差分法:有限容积法:有限元法:流体热传导(heat transfer):当流体中存在着温度差时,温度高的地方将向温度低的地方传送热量的现象。
扩散(diffusion):当流体混合物存在着组元的浓度差时,浓度高的地方将向浓度低的地方输送该组元物质的现象。
守恒型方程:如果微分方程在任意有限区域V内积分所得表达式都表示该区域的守恒定律,则为守恒型方程。
否则为非守恒型方程.抛物型问题:特点:这类问题中因变量与时间有关,描写了物理上的非稳态导热问题。
离散方程:步进求解,即从已知的(或已求解出的)某一时层上的值出发,根据边界条件,将解一步一步向前推进。
椭圆型问题特点:描写了物理上的稳态问题,求解区域内各点之值是互相影响的。
如稳态导热过程,有回流的流动与换热。
离散方程:联立求解(整场求解)空间区域离散化(domain discretization):实质:用有限个离散的点代替原来的连续空间。
实施:计算区域划分多个子区域(sub-domain),定其节点位置及节点所代表的控制容积(control volume)。
4种几何要素:网格线、节点、控制容积、界面内接点法和外节点法的比较:(1) 边界节点所代表的控制容积不同(2)当网格不均分时,节点位置不同(3)当网格不均分时,界面位置不同控制容积积分法:三步:1、将守恒型控制方程在控制容积中及△t内对空间和时间积分;2、选择未知函数及其导数对空间及时间的分布曲线3、按选定的型线作出积分,并整理成关于节点上未知值的代数方程显式:如果在整个时间步长内均取初始时刻之值而仅在该步长的结束时刻取终了之值,为显式,反之为隐式。
传热学常用公式1、热传导热流量与热流密度的区别,前者是单位时间内通过传热面积的总热量,单位为W,后者是单位时间内通过单位面积的热量,单位为W/m2。
傅里叶公式:热阻:类似于电阻,可以把它看成是阻挡热量传递的阻力,热流量=温差(动力)/热阻。
热阻与导热系数成反比,热阻大,导热系数就小。
面积热阻:2、热对流(对流换热)热对流指的是流体层之间发生相对位移,冷热流体掺混产生热量传递。
而在生活及工程中,更常见的是对流换热,即流体与固体表面之间的热量传递,它们都包含有热传导和热对流两种传热方式。
同时需要注意的是,对流换热中的流体必须要处于流动状态,如果流体是静止的,那么它就变成了单纯的热传导了。
用于计算对流换热的为牛顿冷却公式:注意两个温度之间的温差单位可以为K或者摄氏度。
对流换热热阻为:3、热辐射(辐射换热)一切温度高于0K的物体都会以电磁波的形式向外发射出热量,物体在环境中不断的发射出电磁波,同时吸收其它物体发射过来的电磁波能量,这个综合过程称为辐射换热。
热辐射不需要介质,可以在真空中传播。
用于计算辐射换热量的公式为四次方定律公式,要注意这里的T 是大写的,温度单位只能是K。
4、传热过程传热过程专指热量从固体壁面一侧流体通过固体壁面传递到另一侧流体的过程。
它包括三个环节,分别属于对流换热、热传导、对流换热。
传热过程的总热阻R即为三个子环节的子热阻串联相加。
即为:在计算传热过程的热流量或热流密度时可以直接使用“动力/热阻”来计算。
我们只需记住上述这些面积热阻就行,面积热阻更为常用。
5、稳态过程在计算中如果已知传热过程为稳态过程,那么要知道这意味着传热过程的三个子环节的热流密度均相等。
如果不相等,某个环节的热流密度大,那么该处温度会逐渐增加,即为非稳态过程。
6、温度梯度:沿等温线法线方向的温度变化率,该方向的变化率最大。
温度梯度为矢量,其方向为沿等温线法线方向指向温度升高的方向。
可是用gradt来表示。
7、热扩散率a热扩散率a越大,温度变化传播越迅速,物体的温度能更快的趋于一致。
计算传热学(Computational Heat Transfer,CHT)又称数值传热学(Numerical Heat Transfer,NHT):是指对描写流动与传热问题的控制方程采用数值解法通过计算机予以求解的一门学科。
数值解法是一种离散近似的计算方法。
它所能获得的解不象分析解那样是被研究区域中未知量的连续函数,而只是某些代表性的点(称为节点)上的近似值。
有限差分法:有限容积法:有限元法:流体热传导(heat transfer):当流体中存在着温度差时,温度高的地方将向温度低的地方传送热量的现象。
扩散(diffusion):当流体混合物存在着组元的浓度差时,浓度高的地方将向浓度低的地方输送该组元物质的现象。
守恒型方程:如果微分方程在任意有限区域V内积分所得表达式都表示该区域的守恒定律,则为守恒型方程。
否则为非守恒型方程.抛物型问题:➢特点:这类问题中因变量与时间有关,描写了物理上的非稳态导热问题。
➢离散方程:步进求解,即从已知的(或已求解出的)某一时层上的值出发,根据边界条件,将解一步一步向前推进。
椭圆型问题➢特点:描写了物理上的稳态问题,求解区域内各点之值是互相影响的。
如稳态导热过程,有回流的流动与换热。
➢离散方程:联立求解(整场求解)空间区域离散化(domain discretization):实质:用有限个离散的点代替原来的连续空间。
实施:计算区域划分多个子区域(sub-domain),定其节点位置及节点所代表的控制容积(control volume)。
4种几何要素:网格线、节点、控制容积、界面内接点法和外节点法的比较:(1)边界节点所代表的控制容积不同(2)当网格不均分时,节点位置不同(3)当网格不均分时,界面位置不同控制容积积分法:三步:1、将守恒型控制方程在控制容积中及△t内对空间和时间积分;2、选择未知函数及其导数对空间及时间的分布曲线3、按选定的型线作出积分,并整理成关于节点上未知值的代数方程显式:如果在整个时间步长内均取初始时刻之值而仅在该步长的结束时刻取终了之值,为显式,反之为隐式。
计算传热学
1、已知:一块厚度为0.1mm 的无限大平板,具有均匀内热源,q =50×103W/m 3,,导热系数K =10W/m.℃,一侧边界给定温度为75℃,另一侧对流换热,T f =25℃,,h=50W/m 2.℃,求解稳态分布。
(边界条件用差分代替微分和能量平衡法),画图。
(内,外节点)
2、试以下述一维非稳态导热问题为模型,编写求解一维非稳态扩散型问题的通用程序:
00
00000()()()()
L
L f x x x x L fL L
x x x x T T k s c x x T k h T T W x T
k h T T W x T T x τρτ
=====+=?=-+??-=-+?= 其中,x 是空间坐标变量,τ是时间坐标变量,T 是温度(分布),k 是材料的导热系数,s 是内热源强度,ρ是材料的密度,c 是材料的比热,h 0和h L 分别是x 0和x L 处流体与固体壁面间的换热系数,而T f0和T fL 分别是固体壁两侧流体的温度,W 0和W L 是x 0和x L 处(非对流换热)热流密度,T 0(x )是固体壁内初始温度分布。
注意k 、ρ、c 、s 、h 0 、h L 、W 0和W L 均可以是温度T 和/或空间坐标x 的函数。
具体要求:
1) 将数学模型无量纲化;
2) 考虑各种可能的边界条件和初始条件组合
3) 提供完整的程序设计说明,包括数学推导过程和程序使用说明
3、对于有源项的一维稳态方程,
s dx d T dx d u dx d +=)()(φφρ
已知x=0,φ=0,x=1, φ=1.源项S=0.5-X
利用迎风格式、混合格式、乘方格式求解φ的分布.
4、等截面直肋,材料导热系数k=5w/m*k ,厚w=20mm ,长
L=200mm ,在垂直纸面方向上无限伸长,肋基温度Tb=2000C, 肋端肋上下两表面为对流换热h=500w/m2*k ,T =250C ,按二维问题计算,肋片的散热量,并与肋片一维假设解得结果进行对比。
5、等截面直肋,材料导热系数K=5W/MK,厚W=0.02m,长L=0.2M.在垂直纸面方向上无限长,肋基温度Tb=473.15k,肋端,上下两表面为辐射换热,表面发射率为ε=1,环境温度T ∞=298.15K.按二维问题计算肋片的散热量,并与肋片一维假设解的结果进行对比。
(边界条件利用差分方程代替微分方程法)。
6、.考虑下述一维稳态对流-扩散问题,
L
L x x U U U U s dx
dU dx d uU dx d ==+Γ===00)()(ρ
其中u 是流速,Γ和ρ均为常数,而s 是x 的单值函数,
)21(5.020L
x L U U s L
--=β 1) 将上面的数学模型无量纲化,并给出其分析解;
2) 取β=1,就Pe L =(ρuL )/Γ=1、10、100三种情况分别用三点中心差
分格式、迎风格式、幂律格式和QUICK 格式进行计算,并与分析解比较(计算时节点数目可取为10 ~ 20);
3) 改变参数β,譬如取β=10,重复2)中的计算;
4) 分析2)和3)中得到的结果,对各种格式进行比较。