高二上学期数学 期 末 测 试 题
- 格式:docx
- 大小:306.53 KB
- 文档页数:6
2022-2023学年河南省信阳市信阳高级中学高二上学期期末考试数学试题一、单选题1.双曲线22132x y -=的渐近线方程是( )A .23y x =± B .32y x =±C .y =D .y = 【答案】D【分析】根据焦点在横轴上双曲线的渐近线方程直接求解即可.【详解】由题得双曲线的方程为22132x y -=,所以a b =,所以渐近线方程为b y x a =±=. 故选:D2.若平面α的法向量为μ,直线l 的方向向量为v ,直线l 与平面α的夹角为θ,则下列关系式成立的是( ) A .cos ||||v v μθμ⋅=B .||cos ||||v v μθμ⋅=C .sin |||vv μθμ⋅=∣D .||sin ||||v v μθμ⋅=【答案】D【分析】由线面角的向量求法判断 【详解】由题意得||sin ||||v v μθμ⋅=, 故选:D3.若抛物线C :22x py =的焦点坐标为()0,1,则抛物线C 的方程为( ) A .22x y =- B .22x y =C .24x y =-D .24x y =【答案】D【分析】由已知条件可得12p=,求出p ,从而可求出抛物线的方程. 【详解】因为抛物线C :22x py =的焦点坐标为()0,1,所以12p=,得2p =, 所以抛物线方程为24x y =, 故选:D4.函数()f x 的定义域为R ,导函数()f x '的图象如图所示,则函数()f x ( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点 【答案】C【分析】设()f x '的图象与x 轴的4个交点的横坐标从左至右依次为1234,,,x x x x ,根据导函数的图象写出函数的单调区间,再根据极值点的定义即可得出答案.【详解】解:设()f x '的图象与x 轴的4个交点的横坐标从左至右依次为1234,,,x x x x , 当1x x <或23x x x <<或4x x >时,0fx,当12x x x <<或34x x x <<时,()0f x '<,所以函数()f x 在()1,x -∞,()23,x x 和()4,x +∞上递增, 在()12,x x 和()34,x x 上递减,所以函数()f x 的极小值点为24,x x ,极大值点为13,x x , 所以函数()f x 有两个极大值点、两个极小值点. 故选:C .5.已知点1,0A ,直线l :30x y -+=,则点A 到直线l 的距离为( )A .1B .2C D .【答案】D【分析】利用点到直线的距离公式计算即可.【详解】已知点(1,0)A ,直线:30l x y -+=,则点A 到直线l =故选:D .6.已知A ,B ,C ,D ,E 是空间中的五个点,其中点A ,B ,C 不共线,则“存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【分析】利用存在实数x ,y ,使得DE xAB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC ,结合充分必要条件的定义即可求解.【详解】若//DE 平面ABC ,则,,DE AB AC 共面,故存在实数x ,y ,使得DE x AB y AC =+,所以必要性成立;若存在实数x ,y ,使得DE x AB y AC =+,则,,DE AB AC 共面,则//DE 平面ABC 或DE ⊂平面ABC ,所以充分性不成立;所以 “存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的必要不充分条件, 故选:B【点睛】关键点点睛:本题考查空间向量共面的问题,理清存在实数x ,y ,使得DE xAB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC 是解题的关键,属于基础题.7.已知双曲线22221x y a b -=(a >0,b >0)与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1B .(1C .∞)D .,+∞)【答案】C【分析】根据渐近线的斜率的范围可求离心率的范围. 【详解】因为双曲线的一条渐近线方程为by x a=,由题意得2b a >,所以双曲线的离心率c e a ==故选:C.8.已知()f x 是定义在R 上的偶函数,当0x >时,()()0xf x f x '-<,且()20f -=,则不等式()0f x x>的解集是( ). A .()()2,00,2-⋃ B .()(),22,∞∞--⋃+ C .()()2,02,-+∞ D .()(),20,2-∞-【答案】D 【分析】记()()(),0f x g x x x=≠.判断出()g x 的奇偶性和单调性,即可解不等式. 【详解】记()()(),0f x g x x x=≠.因为()f x 是定义在R 上的偶函数,所以()()f x f x -= 因为()()()()f x f x g x g x x x --==-=--,所以()g x 为奇函数,所以()()()()222222f fg g --==-=--. 因为()20f -=,所以()()220g g -==. 当0x >时,()()()20xf x f x g x x'-'=<,所以()g x 在()0,∞+上单减.因为()g x 为奇函数,图像关于原点对称,所以()g x 在(),0∞-上单减. 不等式()0f x x>即为()0g x >.当0x >时, ()g x 在()0,∞+上单减,且()20g =,所以()0g x >的解集为()0,2; 当0x <时, ()g x 在(),0∞-上单减,且()20g -=,所以()0g x >的解集为(),2-∞-. 综上所述:()0f x x>的解集为()(),20,2-∞-.故选:D二、多选题9.下列导数运算正确的有( )A .211x x '⎛⎫= ⎪⎝⎭B .()(1)x x xe x e '=+C .()222x x e e '=D .()2ln 2x x'=【答案】BC【分析】根据导数的运算法则逐项运算排除可得答案.【详解】对于A ,()12211x x x x --'⎛⎫'==-=- ⎪⎝⎭,故错误;对于B , ()()(1)x x x x xe x e x e x e '''==++,故正确; 对于C , ()()22222x x x e x e e ''==,故正确; 对于D , ()()''11ln 222x x x x==,故错误. 故选:BC.10.设等差数列{}n a 的前n 项和为n S ,其公差1d >,且7916+=a a ,则( ). A .88a = B .15120S = C .11a < D .22a >【答案】ABC【分析】利用等差数列基本量代换,对四个选项一一验证.【详解】对于A :因为7916+=a a ,所以978216a a a +==,解得:88a =.故A 正确; 对于B :()1158151521581512022a a a S +⨯⨯===⨯=.故B 正确;对于C :因为88a =,所以178a d +=,所以187a d =-. 因为1d >,所以11a <.故C 正确;对于D :因为88a =,所以268a d +=,所以286a d =-. 因为1d >,所以22a <.故D 错误. 故选:ABC11.已知曲线1C :函数()nx m f x x m+=-的图像,曲线()()2222:12C x y r -+-=,若1C 的所有对称轴平分2C ,且1C 与2C 有公共点,则r 的值可以等于( ).ABCD .3【答案】BD【分析】先将()f x 整理成()nm mf x n x m+=+-可得()f x 的所有对称轴都经过(),m n ,故可求得1,2m n ==,再计算()f x 上的点到圆心()1,2M 的最短距离即可求得答案【详解】因为()nx m nm mf x n x m x m++==+--,且()f x 是由nm m y x +=向右平移m 个单位长度,向上平移n 个单位长度得到,nm my x+=的所有对称轴都经过()0,0, 所以()nx m nm mf x n x m x m++==+--的所有对称轴都经过(),m n , 因为1C 的所有对称轴平分2C ,所以1C 的所有对称轴经过2C 的圆心()1,2M , 所以1,2m n ==,所以()321f x x =+-, 设函数()f x 图象上的动点3,21P x x ⎛⎫+ ⎪-⎝⎭,则()()2233121611MP x x x x ⎛⎫⎛⎫=-+≥-= ⎪ ⎪--⎝⎭⎝⎭,当且仅当311x x -=-时,取等号, 所以()f x 上的点到圆心()1,2M 的最短距离为6, 若1C 与2C 有公共点,则6r ≥ 故选:BD12.我国知名品牌小米公司今年启用了具备“超椭圆”数学之美的全新Logo .新Logo 将原本方正的边框换成了圆角边框(如图),这种由方到圆的弧度变化,为小米融入了东方哲学的思想,赋予了品牌生命的律动感.设计师的灵感来源于数学中的曲线:1nnC x y +=,则下列有关曲线C 的说法中正.确.的是( ).A .对任意的n ∈R ,曲线C 总关于原点成中心对称B .当0n >时,曲线C 上总过四个整点(横、纵坐标都为整数的点) C .当01n <<时,曲线C 围成的图形面积可以为2D .当1n =-时,曲线C 上的点到原点最近距离为22【答案】ABD【分析】对于A :利用代数法验证;对于B :直接求出曲线C 过四个整点()()()()1,0,1,0,0,1,0,1--,即可判断;对于C :先判断出||||1x y +=与坐标轴围成的面积为2,再判断出1n nx y +=在||||1x y +=内部,即可判断;对于D :表示出距离222221x d x y x x ⎛⎫=+=+ ⎪-⎝⎭.令()11x t t -=>-,利用基本不等式求出最小值.【详解】对于A :在曲线:1nnC x y +=中,以x -替换x ,以y -替换y ,方程不变,则曲线C 关于原点成中心对称.故A 正确;对于B,当0n >时,令0x =,得1y =±;令0y =,得1x =±.曲线C 总过四个整点()()()()1,0,1,0,0,1,0,1--.故B 正确;对于C :当01n <<时,由1n nx y +=,得:1,1x y ≤≤,且等号不同时成立. ∴||||||||1n n x y x y +>+=.又||||1x y +=与坐标轴围成的面积为2222⨯=,且1n nx y +=在||||1x y +=内部,则曲线C 围成图形的面积小于2.故C 错误.对于D :当1n =-时,曲线C 的方程为:11||||1x y --+=.不妨令,x y 均大于0,曲线化为111x y +=,即1x y x =-,则222221x d x y x x ⎛⎫=+=+ ⎪-⎝⎭. 令()11x t t -=>-,则2222222112(1)2228t t d t t t t t t ++=++=++++≥=,当且仅当221t t =且22t t=,即1t =时等号成立.结合对称性可知,曲线C上点到原点距离的最小值为故D 正确.故选:ABD.三、填空题13.已知{}n a 是公比为2的等比数列,则1234a a a a ++的值为______. 【答案】14##0.25【分析】利用等比数列的通项公式计算即可. 【详解】{}n a 是公比为2的等比数列,121113411123148124a a a a a a a a a a ++∴===++ 故答案为:14.14.设点P是曲线32y x =+上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是______.【答案】20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】求出23'=y xtan α≥α的范围可得答案. 【详解】∵23y x '=≥∴tan α≥ 又∵0απ≤≤, ∴02πα≤<或23a ππ≤< 则角α的取值范围是20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.故答案为:20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.15.已知数列{}n a 满足()21n a n m n =--,若满足123456a a a a a a <<<<<且对任意[)9,n ∈+∞,都有1n n a a +>,则实数m 的取值范围是______.【答案】1016,1117⎛⎫⎪⎝⎭【分析】由123456a a a a a a <<<<<解出1111m -<,由对任意[)9,n ∈+∞,都有1n n a a +>,解出1117m ->,即可求出实数m 的取值范围. 【详解】因为()21n a n m n =--,若满足123456a a a a a a <<<<<,所以()()()()()()222222111212313414515616m m m m m m --⨯<--⨯<--⨯<--⨯<--⨯<--⨯,解得:1111m -<. 因为对任意[)9,n ∈+∞,都有1n n a a +>,由二次函数的性质可得:()()101910212m m ⎧--<⎪+⎨-<⎪--⎩,解得:1117m ->. 所以1111711m <-<,解得:10161117m <<. 所以实数m 的取值范围为1016,1117⎛⎫⎪⎝⎭.故答案为:1016,1117⎛⎫⎪⎝⎭16.若方程2l e n 1x x ax x -=--存在唯一实根,则实数a 的取值范围是_____.【答案】(]1,01e ⎧⎫-∞+⎨⎬⎩⎭【分析】方程2l en 1xx ax x -=--存在唯一实根,则2ln 1e x x a x x-++=存在唯一实根,则函数y a =与函数()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>有唯一的交点,利用导数分析()f x 的单调性,并在同一坐标系中做出y a =与函数()e ln 1x f x xx x +=+的图象,即可求解【详解】方程2l e n 1x x ax x -=--存在唯一实根, 则2ln 1e x x a x x-++=存在唯一实根,令()()2ln 10e ,x x x x xf x -++=>,则()()2221e n e e 2l 1x x x x x x x x x x f x ---⎛⎫-+⋅- +⎪⎭+⎝'= ()222231l e l e n e n x x x x x x x x xx x ----+==-⋅-- 令()()()2211ln e e ln xxx x h x x x x x --⋅=-++⋅=,注意到()10h =,则()10f '=,且当()0,1x ∈时,210,ln 0,0,e 0x x x x >-<><, 所以()()22110,n e el 0x xx x x x x ⋅⋅--<+<,即()0h x <; 当()1,x ∈+∞时,210,ln 0,0,e 0x x x x >->>>, 所以()()22110,n e el 0x xx x x x x ⋅⋅-->+>,即()0h x >; 所以当()0,1x ∈时,0fx,()f x 单调递增;当()1,x ∈+∞时,()0f x '<,()f x 单调递减; 又()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>, 当()1,x ∈+∞时,()0f x >恒成立; 当0x →时,()f x →-∞;所以()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>的大致图象为:由2ln 1e xx a x x-++=存在唯一实根,则函数y a =与函数()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>有唯一的交点,由图象可知0a ≤或11ea =+时满足条件,所以方程2l e n 1x x ax x -=--存在唯一实根时, 实数a 的取值范围是(]1,01e a ⎧⎫∈-∞⋃+⎨⎬⎩⎭故答案为:(]1,01e ⎧⎫-∞⋃+⎨⎬⎩⎭四、解答题17.已知函数321()213f x x x =-++.(1)求()f x 的单调区间;(2)求函数()f x 在区间[]1,2-上的最大值与最小值.【答案】(1)单调递增区间为[]0,4;单调减区间为(),0∞-和()4,+∞;(2)()min 1f x =;()max 193f x =. 【解析】(1)求出导函数,令0fx,求出单调递增区间;令()0f x '<,求出单调递减区间.(2)求出函数的单调区间,利用函数的单调性即可求解. 【详解】(1)函数()f x 的定义域是R , 2()4f x x x '=-+,令()0f x '≥,解得04x ≤≤ 令()0f x '<,解得>4x 或0x <, 所以()f x 的单调递增区间为[]0,4, 单调减区间为(),0∞-和()4,+∞; (2)由()()1f x 在[)1,0-单调递减,在[]0,2单调递增,所以()()min 01f x f ==,而()81928133f =-++=,()11012133f -=++=, 故最大值是()9231f =. 18.已知抛物线2:2(0)C y px p =>的准线与x 轴交于点()1,0M -.(1)求抛物线C 的方程;(2)若过点M 的直线l 与抛物线C 相切,求直线l 的方程.【答案】(1)24y x =;(2)10x y -+=或10x y ++=【解析】(1)利用准线方程2p x =-求解 (2)设出直线方程,与抛物线方程联立,利用0∆=求解.【详解】(1)2:2(0)C y px p =>的准线2p x =-过()1,0M - 故12p -=-,则2p = 抛物线方程为24y x =(2)设切线方程为1x my =-与抛物线方程联立有2440y my -+=()24160m ∆=-=故1m =±故直线l 的方程为:10x y -+=或10x y ++=【点睛】求抛物线的切线方程的方法:方法一:将抛物线转化为二次函数,然后利用导数求解切线方程,这在开口朝上的抛物线中经常用到。
海淀区高二年级练习数学(答案在最后)2024.01考生须知1.本试卷共7页,共3道大题,19道小题.满分100分.考试时间90分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在试卷上,用黑色字迹签字笔作答.4.考试结束,请将本试卷交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.椭圆C :2222x y +=的焦点坐标为()A.(1,0)-,(1,0) B.(0,1)-,(0,1)C.(),)D.(0,,(【答案】B 【解析】【分析】先化为标准方程2212y x +=,求得222,1,1a b c ====,判断焦点位置,写焦点坐标.【详解】因为椭圆C :2222x y +=,所以标准方程为2212y x +=,解得222,1,1a b c ===,因为焦点在y 轴上,所以焦点坐标为(0,1)-,(0,1).故选:B【点睛】本题主要考查椭圆的几何性质,还考查了理解辨析的能力,属于基础题.2.抛物线2y x =的准线方程是()A.12x =-B.14x =-C.12y =-D.14y =-【答案】B 【解析】【分析】由抛物线的标准方程及性质,直接求解.【详解】由抛物线方程2y x =可知1212p p ==,,故准线方程为:124p x =-=-.故选:B.3.直线310x ++=的倾斜角是()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】先求解出直线的斜率,然后根据倾斜角与斜率的关系求解出倾斜角的大小.【详解】因为直线方程为310x +=,所以斜率k ==设倾斜角为θ,所以tan θ=,所以120θ=°,故选:C.4.已知点P 与(0,2),(1,0)A B -共线,则点P 的坐标可以为()A.(1,1)- B.(1,4)C.1,12⎛⎫-- ⎪⎝⎭D.(2,1)-【答案】B 【解析】【分析】三点共线转化为向量共线,利用共线条件逐个判断即可.【详解】设(,)P x y ,则(,2),(1,2)AP x y AB =-=--,由,,P A B 三点共线,则//AP AB,所以2(2)0x y -+-=,则220x y -+=.选项A ,21(1)250⨯--+=≠,不满足220x y -+=,故A 错误;选项B ,21420⨯-+=,满足220x y -+=,故B 正确;选项C ,12(1)2202⎛⎫⨯---+=≠ ⎪⎝⎭,不满足220x y -+=,故C 错误;选项D ,2(2)1230⨯--+=-≠,不满足220x y -+=,故D 错误.故选:B.5.已知P 为椭圆222:14x y C b+=上的动点.(1,0),(1,0)A B -,且||||4PA PB +=,则2b =()A.1B.2C.3D.4【答案】C 【解析】【分析】根据题意,结合椭圆的定义,得到点P 的轨迹表示以,A B 为焦点的椭圆,进而求得2b 的值.【详解】因为(1,0),(1,0)A B -,可得2AB =,则||||42A PA PB B +>==,由椭圆的定义,可得点P 的轨迹表示以,A B 为焦点的椭圆,其中24,21a c ==,可得2,1a c ==,所以2223b a c =-=,又因为点P 在椭圆222:14x y C b+=,所以23b =.故选:C.6.已知三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,则“1CB BB ⊥”是“CB AB ⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由面面垂直的性质定理可证明“1CB BB ⊥”是“CB AB ⊥”的必要条件,由底面为正三角形的直三棱柱模型,可知“1CB BB ⊥”不是“CB AB ⊥”的充分条件.【详解】①已知侧面11ABB A ⊥底面ABC ,且侧面11ABB A 底面ABC AB =,又BC ⊂平面ABC ,若BC AB ⊥,则由面面垂直的性质定理可得BC ⊥平面11ABB A ,1BB ⊂平面11ABB A ,则1CB BB ⊥,所以则“1CB BB ⊥”是“CB AB ⊥”的必要条件;②若三棱柱111ABC A B C -是直三棱柱,底面ABC 是正三角形,则1BB ⊥底面ABC ,1BB ⊂平面11ABB A ,则满足条件侧面11ABB A ⊥底面ABC .又BC ⊂平面ABC ,则1CB BB ⊥,但BC 与AB 不垂直.所以“1CB BB ⊥”不是“CB AB ⊥”的充分条件.综上所述,“1CB BB ⊥”是“CB AB ⊥”的必要不充分条件.故选:B.7.在空间直角坐标系O xyz -中,点(2,3,1)-P 到x 轴的距离为()A.2B.3C.D.【答案】D 【解析】【分析】结合空间直角坐标系,数形结合利用勾股定理求解点(2,3,1)-P 到x 轴的距离.【详解】在空间直角坐标系O xyz -中,过P 作PH ⊥平面xOy ,垂足为H ,则PH x ⊥轴,在坐标平面xOy 内,过H 作1HP x ⊥轴,与x 轴交于1P ,由(2,3,1)-P ,则1(2,0,0)P -,(2,3,0)H -,由1PH HP H = ,PH ⊂平面1PHP ,1HP ⊂平面1PHP ,则x 轴⊥平面1PHP ,1PP ⊂平面1PHP ,则x 轴1PP ⊥,故1PP即点(2,3,1)-P 到x 轴的距离,则1PP ==故选:D.8.已知双曲线222:1y C x b-=的左右顶点分别为12,A A ,右焦点为F ,以1A F 为直径作圆,与双曲线C 的右支交于两点,P Q .若线段PF 的垂直平分线过2A ,则2b 的数值为()A.3B.4C.8D.9【答案】C 【解析】【分析】由双曲线方程得1a =,结合圆的性质及线段垂直平分线的性质得2A 是1A F 的中点,得到,a c 关系求c ,进而求出2b .【详解】由双曲线222:1y C x b-=,得1a =,12(1,0),(1,0),(,0)A A F c -,由题意,点P 在以1A F 为直径的圆上,则1A P PF ⊥,取PF 的中点M ,由线段PF 的垂直平分线过2A ,则2A M PF ⊥,则12//A P A M ,故2A 是1A F 的中点,122A A A F=且12222,1A A a A F c a c ===-=-,所以12c -=,解得3c =,故222918b c a =-=-=.故选:C.9.设动直线l 与()22:15C x y ++= 交于,A B 两点.若弦长AB 既存在最大值又存在最小值,则在下列所给的方程中,直线l 的方程可以是()A.2x y a +=B.2ax y a +=C.2ax y +=D.x ay a+=【答案】D 【解析】【分析】由动直线恒与圆相交得直线过圆内一定点,再验证弦长取最值即可.【详解】()22:15C x y ++= ,圆心(1,0)C -,半径5r =,选项A ,由直线2x y a +=斜率为12-,可得动直线为为平行直线系,圆心(1,0)C -到直线20x y a +-=的距离15a d --=当6a ≤-或4a ≥时,5d ≥A 错误;选项B ,由直线2ax y a +=可化为(2)0a x y -+=,则直线恒过(2,0),因为()2215+>,点(2,0)在圆外,故直线不一定与圆相交,故B 错误;选项C ,由直线2ax y +=恒过(0,2),点(0,2)在圆上,当12a =时,直线方程可化为240x y +-=,此时圆心(1,0)C -到直线240x y +-=的距离1455d r --===,圆与直线相切,不满足题意,故C 错误;选项D ,由直线方程x ay a +=可化为(1)0x a y +-=,则直线恒过(0,1)M ,且点M 在圆C 内,故直线恒与圆C 相交,当直线过圆心C 时,弦长最长,由(1,0)-在直线(1)0x a y +-=上,可得1a =-,AB 取到最大值;如图,取AB 中点T ,则CT AB ⊥,圆心到直线的距离d CT CM=≤AB ==,当d 取最大值CM 时,弦长最短,即当直线与CM 垂直时,弦长最短,由CM 的斜率为01110CM k -==--此时直线斜率为11k a==,即当1a =时,AB 取到最小值.故D 正确.故选:D.10.如图,已知菱形ABCD 的边长为2,且60,,A E F ∠=︒分别为棱,AB DC 中点.将BCF △和ADE V 分别沿,BF DE 折叠,若满足//AC 平面DEBF ,则线段AC 的取值范围为()A. B. C.2,⎡⎣ D.2,⎡⎣【答案】A 【解析】【分析】借助空间直观想象,折叠前在平面图形中求出AC 的长度,折叠过程中证明平面//EAB 平面FDC ,面面距离即为AC 的最小值,由此得到AC 的范围.【详解】折叠前,连接,AC BD .由题意,在菱形ABCD 中,2AB BC ==,18060120ABC ∠=-= ,则由余弦定理得,22212cos 44222122AC AB BC AB BC ABC ⎛⎫=+-⋅∠=+-⨯⨯⨯-= ⎪⎝⎭,所以,AC =,故在折叠过程中,AC ≤.折叠后,若//AC 平面DEBF ,则AC ⊄平面DEBF ,则AC <BD 项错误;折叠前,在菱形ABCD 中,2BA BD ==,60DAB ∠= ,则ABD △是正三角形,由,E F 分别为棱,AB DC 中点,则,,//DE AB BF DC AB DC ⊥⊥,所以//DE BF .折叠后,,,DE AE DE EB AE EB E ⊥⊥= ,又AE ⊂平面EAB ,且EB ⊂平面EAB ,则DE ⊥平面EAB ,同理BF ⊥平面FDC ,所以平面//EAB 平面FDC ,则平面EAB 与平面FDC 的距离即为22DE =⨯=,由点A ∈平面EAB ,点C ∈平面FDC ,则AC ≥.在折叠过程中,当60DFC AEB ∠=∠= 时,由,AE EB DF FC ==,则,EBA DFC 均为正三角形,可构成如图所示的正三棱柱DFC EBA -,满足//AC 平面DEBF ,此时AC DE ==.所以AC A 正确,C 项错误.故选:A.第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.11.双曲线22:14y C x -=的渐近线方程为_________.【答案】2y x =±【解析】【分析】利用双曲线的性质即可求得渐近线方程.【详解】由双曲线的相关知识可知:1a =,2b =所以焦点在x 轴双曲线的渐近线方程为:2by x x a=±=±故答案为:2y x=±12.如图,已知E ,F 分别为三棱锥D ABC -的棱,AB DC 的中点,则直线DE 与BF 的位置关系是__________(填“平行”,“异面”,“相交”).【答案】异面【解析】【分析】假设共面推出矛盾.【详解】假设直线,DE BF 共面,EB ⊂平面DEBF ,由A EB ∈,则AB ⊂平面DEBF ,同理,DC ⊂平面DEBF ,故,AB CD 共面,这与D ABC -是三棱锥矛盾,故假设错误,故直线,DE BF 异面.故答案为:异面.13.经过点(0,1)A 且与直线:210l x y +-=垂直的直线方程为_______________.【答案】210x y -+=【解析】【分析】求出所求直线的斜率,利用点斜式方程可得出所求直线的方程.【详解】直线:210l x y +-=的斜率为12-,则与直线:210l x y +-=垂直的直线的斜率为2,则直线方程为12(0)y x -=-,即210x y -+=.故答案为:210x y -+=14.作为我国古代称量粮食的量器,米斗有着吉祥的寓意,是丰饶富足的象征,带有浓郁的民间文化韵味.右图是一件清代老木米斗,可以近似看作正四棱台,测量得其内高为12cm ,两个底面内棱长分别为18cm 和9cm ,则估计该米斗的容积为__________3cm .【答案】2268【解析】【分析】先画出正四棱台的直观图,再利用台体的体积公式即可求解.【详解】根据题意,正四棱台的直观图如下:由题意可知,高112cm OO h ==,下底面正方形的变长9cm AB =,其面积()219981cmS =⨯=,上底面正方形的变长18cm AB =,其面积()221818324cm S =⨯=,由台体的体积公式可得,该正四面体的体积:()()()3121181324122268cm 33V S S h =++=⨯++⨯=.故该米斗的容积为32268cm .故答案为:2268.15.已知四边形ABCD 是椭圆22:12x M y +=的内接四边形,其对角线AC 和BD 交于原点O ,且斜率之积为13-.给出下列四个结论:①四边形ABCD 是平行四边形;②存在四边形ABCD 是菱形;③存在四边形ABCD 使得91AOD ∠=︒;④存在四边形ABCD 使得2264||||5AC BD +=.其中所有正确结论的序号为__________.【答案】①③④【解析】【分析】利用椭圆的对称性判断①;利用菱形的对角线互相垂直可判断②;利用正切函数的和差公式与性质判断③;利用斜率关系得到22||||OA OB +的表达式,然后利用基本不等式求22||||AC BD +的最大值,可判断④.【详解】因为四边形ABCD 是椭圆22:12x M y +=的内接四边形,AC 和BD 交于原点O ,由椭圆的对称性可知OA OC =且OB OD =,所以四边形ABCD 是平行四边形,故①正确;假设对角线AC 和BD 的斜率分别为12,k k ,若四边形ABCD 是菱形,则其对角线互相垂直,即121k k ×=-,而这与1213k k ⋅=-矛盾,所以不存在四边形ABCD 是菱形,故②错误;不妨设直线AC 的倾斜角为α,直线BD 的倾斜角为β,且αβ>,则12tan ,tan 0k k αβ==>,又1213k k ⋅=-,则1213k k =-,则()122122tan tan 31tan tan 1tan tan 123k k AOD k k k k αβαβαβ⎛⎫--∠=-===-- ⎪++⎝⎭3tan1202≤-⨯=︒,又0180AOD ︒<∠<︒,则90120AOD ︒<∠<︒,所以存在四边形ABCD 使得91AOD ∠=︒,故③正确;直线AC 的方程1y k x =,直线BD 的方程2y k x =,由12212y k xx y =⎧⎪⎨+=⎪⎩,得()22122x k x +=,即122122k x =+,可得1222212A C x k x =+=,同理可得2222212B D x k x =+=,则()()22122222221212212111||221212121k kOA OB k k k k +++=+=++++++,由1213k k ⋅=-,得222119k k =,令()22121,09k t k t t==>,则22211119||||222221199t t t ttOA OB +=+++++=+++()()()92221123321922192t t t t t t +-+-=++=+++++2552181321813116333355t t t t t ++++=+=+≤++=,当且仅当218t t =,即221211,33t k k ===时,等号成立;于是()()()22222264||224||5AC BD OA OB OA OB +=+=+≤,当且仅当221213k k ==,即四边形ABCD 矩形时,等号成立,所以存在四边形ABCD 使得2264||||5AC BD +=,故④正确.故答案为:①③④.【点睛】关键点睛:本题结论④的解决关键是利用弦长公式得到22||||AC BD +关于t 的表达式,从而利用基本不等式即可得解.三、解答题共4小题,共40分.解答应写出文字说明、演算步骤或证明过程.16.已知圆222:(2)(0)C x y r r -+=>与y 轴相切.(1)直接写出圆心C 的坐标及r 的值;(2)直线:3410l x y --=与圆C 交于两点,A B ,求||AB .【答案】(1)圆心(2,0)C ,2r =(2)【解析】【分析】(1)由圆的方程得圆心坐标,结合图形,圆与y 轴相切得半径;(2)法一由弦长公式求解;法二利用几何法勾股定理求解.【小问1详解】圆222:(2)(0)C x y r r -+=>,则圆心(2,0)C ,因为圆222:(2)(0)C x y r r -+=>与y 轴相切,则半径2r =.【小问2详解】由(1)知,圆的方程为22:(2)4C x y -+=,圆心(2,0)C ,半径为2.法一:设()()1122,,,A x y B x y ,联立()22341024x y x y --=⎧⎪⎨-+=⎪⎩,得2257010x x -+=,2(70)42548000∆=--⨯=>,则1212141,525x x x x +==,所以12AB x=-===法二:圆心(2,0)C到直线:3410l x y--=的距离12d==<,则AB===故AB=.17.已知直线:1l y kx=+经过抛物线2:2C x py=的焦点F,且与C的两个交点为P,Q.(1)求C的方程;(2)将l向上平移5个单位得到,l l''与C交于两点M,N.若24MN=,求k值.【答案】(1)24x y=(2)k=【解析】【分析】(1)由直线l与y轴交点得焦点F,待定p可得方程;(2)联立直线l'与抛物线C的方程,由已知弦长利用弦长公式建立关于k的方程,求解可得.【小问1详解】抛物线2:2C x py=的焦点F在y轴上,直线:1l y kx=+,令0x=,得1y=,则焦点(1,0)F,所以12p=,即2p=,所以抛物线C的方程为24x y=;【小问2详解】直线:1l y kx=+向上平移5个单位得到:6l y kx'=+,由246x y y kx ⎧=⎨=+⎩,消y 得24240x kx --=,设直线l '与C 交于两点1122(,),(,)M x y N x y ,则216960k ∆=+>,且12124,24x x k x x +==-,MN =====,由24MN =,化简整理得427300k k +-=,解得210k =-(舍)或23k =,所以k =.18.如图,四棱锥E ABCD -中,⊥AE 平面,,,2,1ABCD AD AB AD BC AE AB BC AD ⊥====∥,过AD 的平面分别与棱,EB EC 交于点M ,N .(1)求证:AD MN ∥;(2)记二面角A DN E --的大小为θ,求cos θ的最大值.【答案】(1)证明见解析(2)33【解析】【分析】(1)由线面平行判定定理与性质定理可证;(2)建立空间直角坐标系,设[],0,1BM BE λλ=∈,利用法向量方法,用λ表示两平面法向量夹角的余弦,再由向量夹角与二面角大小关系求cos θ最大值.【小问1详解】因为//AD BC ,AD ⊄平面BCE ,BC ⊂平面BCE ,所以//AD 平面BCE .因为过AD 的平面分别与棱,EB EC 交于,M N ,所以//AD MN ;【小问2详解】因为⊥AE 平面ABCD ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以,AE AB AE AD ⊥⊥,又因为AB AD ⊥,如图,建立空间直角坐标系A xyz -,则(2,0,0),(2,0,2),(0,2,0),(0,0,1)B C E D ,所以(0,2,1),(2,2,2),(2,2,0),(0,0,1)ED EC BE AD =-=-=-=,设[],0,1BM BE λλ=∈,则(2,0,0)(2,2,0)(22,2,0)AM AB BM λλλ=+=+-=-,设平面AND 即平面AMND 的法向量为111(,,)m x y z =,则1110(22)20m AD z m AM x y λλ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,令1x λ=,则11y λ=-,于是(,1,0)m λλ=-;设平面END 即平面ECD 的法向量为222(,,)n x y z =,则22222202220n ED y z n EC x y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令21y =,则222,1z x ==-,于是(1,1,2)n =-,所以cos ,m nm n m n ⋅===⋅,因为[]0,1λ∈,所以cos ,,36m n ⎡∈--⎢⎣⎦,由二面角A DN E --的大小为θ,根据(,1,0),(1,1,2)m n λλ=-=- 的方向判断可得π,m n θ=-,所以,当12λ=时,cos θ的最大值为33.19.已知椭圆2222:1(0)x y E a b a b +=>>的两个顶点分别为(2,0),(2,0)A B -,离心率()()0001,,02e P x y y =≠为椭圆上的动点,直线,PA PB 分别交动直线x t =于点C ,D ,过点C 作PB 的垂线交x 轴于点H .(1)求椭圆E 的方程;(2)HC HD ⋅是否存在最大值?若存在,求出最大值;若不存在,说明理由.【答案】19.22143x y +=20.存在;12【解析】【分析】(1)由离心率及顶点坐标结合222b c a +=即可求解;(2)结合两点式得直线,PA PB 方程,进而得到点,C D 坐标,由直线CH 与直线PB 垂直得到直线CH 的斜率,结合点斜式得直线CH 的方程,进而的到点H 坐标,结合数量积的坐标运算及二次函数的最值即可求解.【小问1详解】由12ce a==,又两个顶点分别为(2,0),(2,0)A B -,则2,1a c ==,2223b a c =-=,故椭圆E 的方程为22143x y +=;【小问2详解】()()000,0P x y y ≠为椭圆上的动点,则02x ≠±,故直线,PA PB 的斜率存在且不为0,则直线PA :0022y x y x +=+,即00(2)2y y x x =++,则点00(,(2))2y C t t x ++,则直线PB :0022y x y x -=-,即00(2)2y y x x =--,则点00(,(2))2y D t t x --,则直线CH 的斜率为002x y -,故直线CH :00002(2)()2y x y t x t x y --+=-+,令0y =,得2020(2)4H t y x t x +=+-,又()00,P x y 在椭圆上,则2200143x y +=,整理得()2020344x y -=,所以36(2)44H t x t t -=-+=,则6,04t H -⎛⎫⎪⎝⎭,所以()22200020004(2)(2)3636(36),,4242164t y t y t y t t t HC HD x x x -⎛⎫⎛⎫+-+++⋅=⋅=+ ⎪ ⎪+--⎝⎭⎝⎭ ()22234(36)3(6)1216416t t t -+-=-=-+综上,存在6t =,使得HC HD ⋅有最大值12.确,运算要细心,是中档题.。
数学期末考试试卷及答案(高二上学期)一、选择题(每题4分,共40分)1. 若复数z满足|z-1|=|z+1|,则z在复平面内表示的点位于()A. 实轴B. 虚轴C. 线段AB的中点D. 圆心O答案:C2. 已知函数f(x)=2x+1,若f(f(x))=3,则x等于()A. -1B. 0C. 1D. 2答案:A3. 设函数g(x)=x²-4x+c,若g(x)的图象上存在两个点A、B,使得∠AOB=90°(其中O为坐标原点),则c的取值范围是()A. (-∞, 1]B. [1, +∞)C. (-∞, 3]D. [3, +∞)答案:A4. 已知等差数列{an}的前5项和为25,第5项为15,则该数列的首项为()A. 1B. 3C. 5D. 7答案:B5. 若平行四边形ABCD的对角线交于点E,已知BE=4,CE=6,∠DCE=30°,则BD的长度为()A. 8B. 10C. 12D. 16答案:B6. 已知函数h(x)=x³-3x,若h(x)的图象上存在一个点P,使得∠AOP=90°(其中O为坐标原点),则x的取值范围是()A. (-∞, 0]B. [0, +∞)C. (-∞, 1]D. [1, +∞)答案:C7. 若等比数列{bn}的前三项分别为1、2、4,则该数列的公比为()A. 2B. 3C. 4D. 5答案:A8. 已知函数p(x)=x²-2x+1,若p(p(x))=0,则x等于()A. 0B. 1C. 2D. 3答案:B9. 设函数q(x)=|x-1|+|x+1|,则q(x)的最小值为()A. 0B. 1C. 2D. 3答案:C10. 若三角形ABC中,∠A=60°,AB=3,AC=4,则BC的长度为()A. 5B. 6C. 7D. 8答案:B二、填空题(每题4分,共40分)11. 若复数z=a+bi(a、b为实数),且|z|=2,则___。
数学期末考试试卷及答案(高二上学期)一、选择题(共40分,每小题2分)1. 一次函数y = 2x - 3的图象是直线,下列说法正确的是()。
A. 过点(-3, 3)B. 过点(0, -3)C. 过点(3, 0)D. 过点(0, 3)答案:C2. 已知函数y = ax² + bx + c的图象经过点(1, 4),则a + b + c的值为()。
A. 4B. 6C. 8D. 10答案:B3. 在直角坐标系中,已知点A(2, 3),点B在x轴上,且AB = 5,则点B的坐标为()。
A. (2, 0)B. (0, -3)C. (7, 0)D. (-3, 0)答案:A4. 设函数f(x) = 2x + 3,g(x) = x² - 4,则f(g(2))的值为()。
A. 3B. 7C. 9D. 11答案:C5. 函数y = x² - 6x + 8的图象是一条抛物线,下列说法正确的是()。
A. 开口向上B. 开口向下C. 与x轴平行D. 与y轴平行答案:A二、解答题(共60分)6. 解方程组:2x - y = 3x + y = 5解答:将第一式两边同时加上第二式得到:2x - y + x + y = 3 + 53x = 8x = 8/3将x的值代入第二式得到:8/3 + y = 5y = 5 - 8/3y = 15/3 - 8/3y = 7/3因此,方程组的解为x = 8/3,y = 7/3。
7. 某商品原价为120元,现在打8折出售,求出售价格。
解答:打8折即为原价乘以0.8,所以出售价格为120元 × 0.8 = 96元。
8. 某数的5倍减去6等于30,求这个数。
解答:设这个数为x,则根据题意可以列出方程:5x - 6 = 305x = 30 + 65x = 36x = 36/5因此,这个数为36/5。
9. 已知等差数列的首项为3,公差为4,求第10项。
解答:第10项可以通过首项加上9倍公差来计算:第10项 = 3 + 9 × 4= 3 + 36= 39因此,第10项为39。
2022-2023学年贵州省贵阳市普通中学高二上学期期末监测考试数学试题一、单选题1.已知两个空间向量(),4,2a m =-,()1,2,1b =-,且a b ,则实数m 的值为( )A .2B .12C .12-D .2-【答案】D【分析】根据空间向量平行的坐标运算得出答案. 【详解】a b ∥,(),4,2a m =-,()1,2,1b =-, 42121m -∴==-,解得2m =-, 故选:D.2.在等比数列{}n a 中,24a =,42a =,则6a =( )A .1-B .1C .1或1-D 【答案】B【分析】根据等比数列基本量的计算即可求解.【详解】设公比为,q 则由24a =,42a =得222421422a a q q q ===⇒=,故226421a a q q ===, 故选:B3.已知直线l :0Ax By C ++=,如果0AC <,0BC <,那么直线l 不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】根据题意,求出直线在坐标轴上的截距,即可求解. 【详解】当0x =时,Cy B =-,由0BC <得0C B->, 即点(0,)CB -在y 轴的正半轴;当0y =时,Cx A =-,由0AC <得0C A->, 即点(,0)CA-在x 轴的正半轴, 又直线l 过点(0,)C B -和点(,0)CA -,所以直线l 不经过第三象限.4.以下四个命题,正确的是( )A .若直线l 的斜率为1,则其倾斜角为45°或135°B .经过()()101,3A B -,,两点的直线的倾斜角为锐角 C .若直线的倾斜角存在,则必有斜率与之对应 D .若直线的斜率存在,则必有倾斜角与之对应 【答案】D【分析】根据直线的倾斜角和斜率的概念依次判断选项即可. 【详解】A :直线的斜率为1,则直线的倾斜角为45︒,故A 错误; B :过点A 、B 的直线的斜率为3030112k -==-<--, 即3tan 02α=-<(α为直线的倾斜角),则α为钝角,故B 错误;C :当直线的倾斜角为90︒时,该直线的斜率不存在,故C 错误;D :若直线的斜率存在,则必存在对应的倾斜角,故D 正确. 故选:D.5.如图,在三棱柱111ABC A B C 中,M ,N 分别是1BB 和11A C 的中点,且1MN xAB y AC z AA =++,则实数x ,y ,z 的值分别为( )A .111,,22-B .111,,22--C .111,,22---D .111,,22-【答案】A【分析】根据题意用空间基底向量表示向量,结合空间向量的线性运算求解. 【详解】由题意可得:()11111111112222MN MB B C C N AA AC AB AC AB AC AA =++=+--=-++, 故111,,22x y z =-==.故选:A.6.等差数列{}n a 的前n 项和记为n S ,且510S =,1050S =,则15S =( ) A .70B .90C .100D .120【分析】根据等差数列前n 项和的性质可得51051510,,S S S S S --成等差数列,即可求得15S 的值. 【详解】在等差数列{}n a 中,51051510,,S S S S S --成等差数列,所以()051051512S S S S S -=-+,则()152********S ⨯-=+-,即15120S =. 故选:D.7.设1F ,2F 分别是双曲线C :2212y x -=的左、右焦点,P 为C 上一点且在第一象限若122PF PF =,则点P 的纵坐标为( ) A .1 B .3C .2D .23【答案】C【分析】根据双曲线的定义可得124,2PF PF ==,进而根据长度关系判断212PF F F ⊥,代入3x =即可求解.【详解】根据题意可知:1,2,3a b c === ,由122PF PF =以及1222PF PF a -==可得124,2PF PF ==,又12223F F c ==,由于2221212PF PF F F =+,故212PF F F ⊥,即三角形12PF F 为直角三角形,将3x =代入2212y x -=得2y =,由于P 为C 在第一象限,故点P 的纵坐标为2, 故选:C8.已知直线l :210x y --=是圆C :22610()x y x ay a +-++=∈R 的对称轴,过点()4,P a -作圆的一条切线,切点为A ,则PA =( ) A .10 B .7 C .3D .2【答案】B【分析】根据题意分析可得直线l 过圆心C ,可求得2a =-,再根据圆的切线长公式运算求解. 【详解】由题意可知:直线l :210x y --=过圆心3,2a C ⎛⎫- ⎪⎝⎭,则32102a ⎛⎫-⨯--= ⎪⎝⎭,解得2a =-,故圆C :226210x y x y +--+=的圆心为()3,1C ,半径3r =,且点()4,2P --, ∵()()22432158PC =--+--=,∴227PA PC r =-=.故选:B.二、多选题9.斐波那刻螺旋线被骨为自然界最完美的“黄金螺旋”,自然界存在很多斐波那契螺旋线的图案,例如向日葵,鹦鹉螺等.如图,小正方形的边长分别为斐波那契数1,1,2,3,5,8....,从内到外依次连接通过小正方形的14圆弧,就得到了一条被称为“斐波那契螺旋”的弧线,现将每一段“斐波那契螺旋”弧线所在的正方形边长设为(N )n a n *∈,数列{}n a 满足11a =,21a =,21(N )n n n a a a n *++=+∈,每一段“斐波那契螺旋”弧线与其所在的正方形围成的扇形面积设为(N )n b n *∈,则下列说法正确的有( )A .13578a a a a α+++=B .62984a a a a a +++=C .()54364πb b a a -=D .()67544b b b +=【答案】AC【分析】由题意可得{}n a 的前9项分别为1,1,2,3,5,8,13,21,34,根据运算即可判断AB,根据2π4n n b a =,利用平方差公式以及12n n n a a a --=+即可判断选项C,代入计算即可判断D.【详解】根据11a =,21a =,21(N )n n n a a a n *++=+∈得数列的前9项分别为1,1,2,3,5,8,13,21,34,所以135781251321a a a a α=+++=+++=,629841382133a a a a a =+++=+++≠,故A 正确,B 错误,由题意可得2π4n n b a =,即24πn n b a =,所以2254545454364()π()π()()πb b a a a a a a a a -=-=-+=,故C 正确, ()222256564()π()π5889πb b a a =+=+=+,22774ππ13169πb a ==⨯=,所以()67544b b b +≠,故D 错误, 故选:AC.10.如图,在正方线ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,K ,L 分别是AB ,BB 1,B 1C 1,C 1D 1,D 1D 1,DA 各棱的中点,则下列选项正确的有( )A .向量EA ,EK ,EF 共面B .A 1C ⊥平面EFGHKL C .BC 与平面EFGHKL 3D .∠KEF =90°【答案】BCD【分析】建系,利用空间向量判断向量共面和线、面关系以及求线面夹角. 【详解】如图,以D 为坐标原点建立空间直角坐标系,设2AD =, 则()()()()()()()()12,0,0,2,2,0,0,2,0,2,0,2,2,1,0,2,2,1,0,0,1,0,2,1A B C A E F K H ,可得()()()()()()10,1,0,2,1,1,0,1,1,2,2,2,2,0,0,0,1,1EA EK EF A C BC KH =-=--==--=-=, 对A :若向量EA ,EK ,EF 共面,则存在实数,λμ,使得EA EK EF λμ=+成立,∵()()0,1,0,2,,EA EK EF λμλλμλμ=-+=+-+,可得2010λλμλμ=⎧⎪+=-⎨⎪-+=⎩,无解,∴不存在实数,λμ,使得EA EK EF λμ=+成立, 故向量EA ,EK ,EF 不共面,A 错误; 对B :由题意可得:EF KH =,则EF KH ,同理可得:ELGH ,KL GF ,故,,,,,E F G H K L 六点共面,∵()()()1122212102021210AC EK ACEF ⎧⋅=-⨯+⨯+-⨯-=⎪⎨⋅=-⨯+⨯+-⨯=⎪⎩,则11,A C EK A C EF ⊥⊥, EKEF E =,,EK EF ⊂平面EFGHKL ,∴1A C ⊥平面EFGHKL ,B 正确;对C :由B 可得()12,2,2AC =--是平面EFGHKL 的法向量, ∵11143cos ,3223BC A C BC A C BC A C⋅===⨯,∴BC 与平面EFGHKL 所成角的正弦值为33,C 正确; 对D :∵()2011110EK EF ⋅=⨯+⨯+-⨯=,则EK EF ⊥, ∴90KEF ∠=︒,D 正确. 故选:BCD.【点睛】方法点睛:利用空间向量处理立体几何问题的一般步骤:(1)建立恰当的空间直角坐标系;(2)求出相关点的坐标,写出相关向量的坐标; (3)结合公式进行论证、计算; (4)转化为几何结论.三、填空题11.直线l 1:10x y +-=与直线l 2:30x y ++=间的距离是___________. 【答案】2【分析】根据两平行线间距离公式运算求解.【详解】由题意可得:直线l 1:10x y +-=与直线l 2:30x y ++=间的距离22132211d --=+.故答案为:22.12.已知空间向量(1,2,2)a =-,()1,0,1b =,则2a ab -⋅=___________. 【答案】6【分析】利用空间向量数量积运算法则计算即可.【详解】()()()21441,2,21,0,19126a a b -⋅=++--⋅=-+=. 故答案为:613.已知a ,b ,c 成等比数列,则二次函数22y ax bx c =++的图像与x 轴的交点个数是___________. 【答案】1【分析】根据题意有2b ac =,再借助二次函数的判别式判断交点个数 【详解】a ,b ,c 成等比数列,则2b ac =, ()224440b ac ac ac ∆=-=-=,则二次函数的图像与x 轴有1个交点, 故答案为:1.14.已知抛物线2:4C y x =的准线是直线l ,M 为C 上一点,MN l ⊥,垂足为N ,点P 的坐标是()0,2,则PM MN +的最小值为___________. 【答案】5【分析】由抛物线的定义可得出MN MF =,当M 为线段PF 与抛物线C 的交点时,PM MN +取最小值可得结果.【详解】抛物线C 的焦点为()1,0F ,准线为:1l x =-,如图所示:由抛物线的定义可得MN MF =,所以,()()2201205PM MN PM MF PF +=+≥=-+-= 当且仅当M 为线段PF 与抛物线C 的交点时,等号成立,因此,PM MN +的最小值为5. 故答案为:5.15.若直线y x b =+与曲线214x y y =+-有公共点,则b 的取值范围是___________.【答案】122,3⎡⎤-⎣⎦【分析】由题意可得:该曲线为以()1,2为圆心,半径2r =的右半圆,根据图象结合直线与圆的位置关系运算求解.【详解】∵2141x y y =+-≥,整理得()()()221241x y x -+-=≥, ∴该曲线为以()1,2为圆心,半径2r =的右半圆, 直线y x b =+的斜率1k =,如图所示: 当直线0x y b -+=与圆相切时,则()2212211b -+=+-,解得122b =-或122b =+(舍去);当直线y x b =+过点()1,4A 时,则41b =+,解得3b =; 综上所述:b 的取值范围是122,3⎡⎤-⎣⎦. 故答案为:122,3⎡⎤-⎣⎦.【点睛】方法点睛:直线与圆位置关系问题的求解思路:研究直线与圆的位置关系主要通过圆心到直线的距离和半径的比较实现,结合图象分析相应的性质与关系,列式求解.四、解答题16.如图,四棱柱1111ABCD A B C D -的底面是菱形,1AA ⊥底面ABCD ,AB =BD =2,13AA =,E ,F 分别是棱BB 1,DD 1上的动点(不含端点),且1BE D F =.(1)求四棱锥A BEFD -的体积;(2)当BE =1时,求平面AEF 与平面11BB D D 夹角的余弦值. 【答案】(1)3 (2)64【分析】(1)作出辅助线,得到AO 是四棱锥A BEFD -的高,求出各边的长,利用锥体体积公式求出答案;(2)建立空间直角坐标系,利用空间向量求解两平面的夹角的余弦值.【详解】(1)如图,连接AC 交BD 于点O ,因为底面ABCD 是菱形,所以AO BD ⊥,因为点E ,F 分别在1BB ,1DD 上, 所以1AA //BE //DF , 又1AA ⊥底面ABCD ,AO ⊂底面ABCD ,BD ⊂底面ABCD ,所以BE ⊥BD ,BE ⊥AO ,所以四边形BEFD 是直角梯形, 且因为13AA =,1BE D F =,所以3BE DF +=, 又因为BD BE B ⋂=,,BD BE ⊂平面BEFD ,所以AO ⊥平面BEFD ,即AO 是四棱锥A BEFD -的高, 因为AB =BD =2,底面ABCD 是菱形,所以ABD △是等边三角形,故1OB =,33AO OB ==, 所以()1332A BEFD BE DF BDV AO -+⋅=⋅=,所以四棱锥A BEFD -的体积为3(2)以O 为原点,分别以OA ,OB 所在直线为x 轴,y 轴,建立如图所示的空间直角坐标系, 则()3,0,0A,()0,1,1E ,()0,1,2F -,所以()3,1,1AE =-,()3,1,2AF =--. 设(),,n x y z =是平面AEF 的法向量,则()()()(),,3,1,130,,3,1,2320n AE x y z x y z n AF x y z x y z ⎧⋅=⋅=++=⎪⎨⋅=⋅--=--+=⎪⎩, 取1y =,则3x =2z =. 所以,()3,1,2n =是平面AEF 的一个法向量,由(1)可知,OA ⊥平面BEFD ,即OA ⊥平面11BB D D , 所以()3,0,0OA =是平面11BB D D 的一个法向量,而(3,1,23,0,06cos ,3143n OA n OA n OA⋅⋅<>===++⨯ 所以平面AEF 与平面11BB D D 617.设直线()2R x my m =+∈与抛物线22(0)y px p =>相交于,A B 两点,且OA OB ⊥. (1)求抛物线方程;(2)求AOB 面积的最小值. 【答案】(1)22y x = (2)4【分析】(1)联立直线与抛物线方程,消元得出韦达定理,将OA OB ⊥表示为坐标形式,列方程化简计算,可得抛物线方程;(2)利用三角形的面积公式,结合韦达定理,根据m 的取值,得出面积的最小值. 【详解】(1)设直线与抛物线交于点()()1122,,,A x y B x y ,联立222(0)x my y px p =+⎧⎨=>⎩得2240y pmy p --=,显然0∆>,所以121224y y pm y y p +=⎧⎨=-⎩,因为OA OB ⊥,所以12120x x y y +=,即()()1212220my my y y +++=,化简得()()212121240m y y m y y ++++=,代入得()2241440p m pm -+++=解得1p =,所以抛物线方程为22y x =(2)因为直线2x my =+过定点()2,0, 所以12121242AOBSy y y y =⨯⨯-=-==,当且仅当0m =时,AOB 的面积取得最小值为418.已知圆O :224x y +=,过定点()1,1A 作两条互相垂直的直线1l ,2l ,且1l 交圆O 于()()111333,,,P x y P x y 两点,2l 交圆O 于()()222444,,,P x y P x y 两点. (1)若13PP =1l 的方程;(2)求证:1234x x x x +++为定值. 【答案】(1)20x y +-= (2)证明见解析【分析】(1)根据题意分析可得()0,0O 到直线1l 的距离为d =点到直线的距离运算求解;(2)讨论直线是否与坐标轴垂直,结合韦达定理证明结论. 【详解】(1)由题设可知圆O 的圆心为()0,0O ,半径为2r =,由13PP =()0,0O 到直线1l 的距离为d == 因为直线1l 经过点()1,1A ,则有:当直线1l 的斜率不存在时,则1:1l x =,此时()0,0O 到直线1l 的距离为1d =,不合题意; 当直线1l 的斜率存在时,设直线1l 的方程为()11y k x -=-,即10kx y k --+=,=1k =-,所以直线1l 的方程为()11y x -=--,即20x y +-=.(2)∵2OA r ==<,即定点()1,1A 在圆O 内, ∴直线12,l l 与圆O 均相交,当直线1l 与x 轴垂直时,直线2l 与x 轴平行,此时132x x +=,240x x +=, 所以12342x x x x +++=;当直线2l 与x 轴垂直时,直线1l 与x 轴平行,此时130x x +=,242x x +=, 所以12342x x x x +++=;当直线1l 与不坐标轴垂直时,设直线1l 的方程为()()110y k x k =-+≠, 则直线2l 的方程为()()1110y x k k=--+≠, 联立方程()22114y k x x y ⎧=-+⎨+=⎩,消去y 得()()2222122230k x k k x k k ++-+--=, 所以2132221k kx x k-+=+, 同理可得242221kx x k ++=+, 所以12342x x x x +++=,综上所述:1234x x x x +++为定值2. 19.设数列{}n a 满足()123212n a a n a n +++-=.(1)求1a ,2a ,3a ,试猜想{}n a 的通项公式,并证明;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.【答案】(1)12a =,223a =,325a =,221n a n =-,证明见解析 (2)()3223nn +-【分析】(1)根据已知求出1a ,2a ,3a ,猜想数列{}n a 的通项公式为221n a n =-,当2n ≥时,()()12132321n a a n a n -+++-=-,结合已知式子两式相减即可得出当2n ≥时,221n a n =-,再验证1n =成立即可;(2)结合第一问结论得出数列2n n a ⎧⎫⎨⎬⎩⎭的通项,利用错位相减法得出答案.【详解】(1)因为()123212n a a n a n+++-=①,当1n =时,12a =当2n =时,1234a a +=,可得223a =, 当3n =时,123356a a a ++=,可得325a =, 所以猜想数列{}n a 的通项公式为221n a n =-,证明如下: 由题意,当2n ≥时,()()12132321n a a n a n -+++-=-②,-①②,得()212n n a -=,所以221n a n =-, 当1n =时,上式为12a =,这就是说,当1n =时,上式也成立. 因此,数列{}n a 的通项公式为221n a n =-; (2)由(1)知()12221n n n n a -=-,记2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则()0112123221n n S n -=⨯+⨯++-③,故()()12122123223221n n n S n n -=⨯+⨯++-+-④,-④③,得()()12122222211n n n S n -=-++++--,()()()121222211322312n nnn n --=-⨯+--=+--,所以数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为()3223nn +-.20.阅读材料:(一)极点与极线的代数定义;已知圆锥曲线G :22220Ax Cy Dx Ey F ++++=,则称点P (0x ,0y )和直线l :()()00000Ax x Cy y D x x E y y F ++++++=是圆锥曲线G 的一对极点和极线.事实上,在圆锥曲线方程中,以0x x 替换2x ,以02x x+替换x (另一变量y 也是如此),即可得到点P (0x ,0y )对应的极线方程.特别地,对于椭圆22221x y a b+=,与点P (0x ,0y )对应的极线方程为00221x x y y a b +=;对于双曲线22221x y b b-=,与点P (0x ,0y )对应的极线方程为00221x x y y a b -=;对于抛物线22y px =,与点P (0x ,0y )对应的极线方程为()00y y p x x =+.即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系. (二)极点与极线的基本性质、定理①当P 在圆锥曲线G 上时,其极线l 是曲线G 在点P 处的切线;②当P 在G 外时,其极线l 是曲线G 从点P 所引两条切线的切点所确定的直线(即切点弦所在直线); ③当P 在G 内时,其极线l 是曲线G 过点P 的割线两端点处的切线交点的轨迹. 结合阅读材料回答下面的问题:(1)已知椭圆C :22221(0)x y a b a b +=>>经过点P (4,0)C 的方程并写出与点P对应的极线方程;(2)已知Q 是直线l :142y x =-+上的一个动点,过点Q 向(1)中椭圆C 引两条切线,切点分别为M ,N ,是否存在定点T 恒在直线MN 上,若存在,当MT TN =时,求直线MN 的方程;若不存在,请说明理由.【答案】(1)221164x y +=,40x -= (2)存在,240x y +-=【分析】(1)根据题意和离心率求出a 、b ,即可求解;(2)利用代数法证明点Q 在椭圆C 外,则点Q 和直线MN 是椭圆C 的一对极点和极线.根据题意中的概念求出点Q 对应的极线MN 方程,可得该直线恒过定点T (2,1),利用点差法求出直线的斜率,即可求解.【详解】(1)因为椭圆22221(0)x y a b a b +=>>过点P (4,0),则2222140a b +=,得4a =,又c e a ==,所以c =,所以2224b a c =-=, 所以椭圆C 的方程为221164x y +=. 根据阅读材料,与点P 对应的极线方程为401164x y ⨯+=,即40x -=; (2)由题意,设点Q 的坐标为(0x ,0y ),因为点Q 在直线142y x =-+上运动,所以00142y x =-+,联立221164142x y y x ⎧+=⎪⎪⎨⎪=-+⎪⎩,得28240x x -+=,Δ64424320=-⨯=-<,该方程无实数根,所以直线142y x =-+与椭圆C 相离,即点Q 在椭圆C 外,又QM ,QN 都与椭圆C 相切,所以点Q 和直线MN 是椭圆C 的一对极点和极线.对于椭圆221164x y +=,与点Q (0x ,0y )对应的极线方程为001164x x y y +=, 将00142y x =-+代入001164x x y y +=,整理得()0216160x x y y -+-=,又因为定点T 的坐标与0x 的取值无关,所以2016160x y y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,所以存在定点T (2,1)恒在直线MN 上. 当MT TN =时,T 是线段MN 的中点,设()()1122,,M x y N x y ,,直线MN 的斜率为k ,则2211222211641164x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,整理得21122112442211616212y y x x x x y y -+⨯=-⋅=-⋅=--+⨯,即12k =-, 所以当MT TN =时,直线MN 的方程为()1122y x -=--,即240x y +-=.。
高二上学期数学期末测试题The document was prepared on January 2, 2021高 二 上 学 期 数 学 期 末 测 试 题一、选择题:1.不等式212>++x x 的解集为 A.()()+∞-,10,1 B.()()1,01, -∞- C.()()1,00,1 - D.()()+∞-∞-,11, 2.0≠c 是方程 c y ax =+22 表示椭圆或双曲线的 条件 A .充分不必要B .必要不充分C .充要D .不充分不必要3.若,20πθ≤≤当点()θcos ,1到直线01cos sin =-+θθy x 的距离为41,则这条直线的斜率为 B.-1 C.23 D.-334.已知x 的不等式01232>+-ax ax 的解集是实数集 R ,那么实数a 的取值范围是A.0,916 B.0, 916 C.916,0 D.⎪⎭⎫⎢⎣⎡38,0 5.过点2,1的直线l 被04222=+-+y x y x 截得的最长弦所在直线方程为: A. 053=--y x B. 073=-+y x C. 053=-+y x D. 013=+-y x6.下列三个不等式:①;232x x >+②2,0,≥+≠∈ba ab ab R b a 时、;③当0>ab 时,.b a ba +>+其中恒成立的不等式的序号是 A.①② B.①②③ C.① D.②③7.圆心在抛物线x y 22=上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 A .041222=---+y x y x B .01222=+-++y x y x C .01222=+--+y x y xD .041222=+--+y x y x8.圆C 切y 轴于点M 且过抛物线452+-=x x y 与x 轴的两个交点,O 为原点,则OM 的长是 A .4 B . C .22 D .29.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为A .191622=-x yB .191622=-y xC .116922=-x yD .116922=-y x10.抛物线x y 42-=上有一点P,P 到椭圆1151622=+y x 的左顶点的距离的最小值为A .32B .2+3C .3D .32-11.若椭圆)1(122>=+m y mx与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是 A .4B .2C .1D .12.抛物线px y 22=与直线04=-+y ax 交于两点AB,其中点A坐标为1,2,设抛物线焦点为F,则|FA |+|FB |= A.7 B.6 C.5 D.4二、填空题13. 设函数,2)(+=ax x f 不等式6|)(|<x f 的解集为-1,2,则不等式()1≤x f x的解集为 14.若直线)0,0(022>>=+-b a by ax 始终平分圆014222=+-++y x y x 的圆周,则ba11+的最小值为______ 15.若曲线15422=++-a y a x 的焦点为定点,则焦点坐标是 . 16.抛物线x y 22-=上的点M 到焦点F 的距离为3,则点M 的坐标为____________. 三、解答题: 18.已知椭圆)0(1:2222>>=+b a by a x C 经过点)221(,M ,其离心率为22,设直线m kx y l +=:与椭圆C 相交于B A 、两点.Ⅰ求椭圆C 的方程;Ⅱ已知直线l 与圆3222=+y x 相切,求证:OA ⊥OBO 为坐标原点;Ⅲ以线段OA,OB 为邻边作平行四边形OAPB,若点Q 在椭圆C 上,且满足OP OQ λ=O 为坐标原点,求实数λ的取值范围.19.已知圆C y 轴对称,经过抛物线x y 42=的焦点,且被直线x y =分成两段弧长之比为1:2,求圆C 的方程.20. 平面内动点Px,y 与两定点A-2, 0, B2,0连线的斜率之积等于-1/3,若点P 的轨迹为曲线E,过点Q (1,0)-作斜率不为零的直线CD 交曲线E 于点C D 、.1求曲线E 的方程; 2求证:AC AD ⊥;3求ACD ∆面积的最大值.21.已知直线l 与圆0222=++x y x 相切于点T ,且与双曲线122=-y x 相交于A 、B 两点.若T 是线段AB 的中点,求直线l 的方程. 22、设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆与x 轴正半轴Q P 、两点,且PQ AP 58=I 求椭圆离心率e ;II 若过A,F,Q 三点的圆恰好与直线033:=++y x l 相切,求椭圆方程答案一、ABDB A CD D A A C A 二、13. {x|x>21或52≤x }; 14. 4 ; 15.0,±3; 16.-5,25±. 三、17.解:由062322<--+-x x x x ,得0)2)(3()2)(1(<+---x x x x 18.Ⅰ椭圆方程为2212x y +=;Ⅱ见解析Ⅲ22λ-<<且0λ≠.解析试题分析:Ⅰ由已知离心率为22,可得等式222b a =;又因为椭圆方程过点(1M 可求得21b =,22a =,进而求得椭圆的方程; Ⅱ由直线l 与圆2223x y +=相切,可得m 与k 的等式关系即222(1)3m k =+,然后联立直线l 与椭圆的方程并由韦达定理可得122412kmx x k +=-+,21222212m x x k -=+,进而求出=21y y 222212m k k -+,所以由向量的数量积的定义可得→→⋅OB OA 的值为0,即结论得证;Ⅲ由题意可分两种情况讨论:ⅰ当0m =时,点A 、B 原点对称;ⅱ当0m ≠时,点A 、B不原点对称.分别讨论两种情形满足条件的实数λ的取值范围即可.试题解析:Ⅰ222c e a b c a==+离心率,222a b ∴= 222212x y b b ∴+=椭圆方程为,将点(12M ,代入,得21b =,22a =∴所求椭圆方程为2212x y +=.Ⅱ因为直线l 与圆2223x y +=相切,所以=即222(1)3m k =+ 由22,22y kx m x y =+⎧⎨+=⎩,得222(12)4220k x kmx m +++-=.设点A 、B 的坐标分别为11(,)A x y 、22(,)B x y ,则122412kmx x k +=-+,21222212m x x k -=+,所以1212()()y y kx m kx m =++=221212()k x x km x x m +++=222212m k k -+,所以1212OA OB x x y y ⋅=+=222212m k -++222212m k k -+=22232212m k k --+=0,故OA OB ⊥, Ⅲ由Ⅱ可得121222()212my y k x x m k +=++=+, 由向量加法平行四边形法则得OA OB OP +=,OP OQ λ=,OA OB OQ λ∴+= ⅰ当0m =时,点A 、B 原点对称,则0λ= 此时不构成平行四边形,不合题意. ⅱ当0m ≠时,点A 、B 不原点对称,则0λ≠,由OA OB OQ λ+=,得12121(),1().Q Q x x x y y y λλ⎧=+⎪⎪⎨⎪=+⎪⎩ 即224,(12)2.(12)Q Qkm x k m y k λλ-⎧=⎪+⎪⎨⎪=⎪+⎩点Q 在椭圆上,∴有222242[]2[]2(12)(12)km mk k λλ-+=++, 化简,得222224(12)(12)m k k λ+=+.2120k +≠,∴有2224(12)m k λ=+. ①又222222164(12)(22)8(12)k m k m k m ∆=-+-=+-,∴由0∆>,得2212k m +>. ②将①、②两式,得2224m m λ>0m ≠,24λ∴<,则22λ-<<且0λ≠.综合ⅰ、ⅱ两种情况,得实数λ的取值范围是22λ-<<且0λ≠.19.解:设圆C 的方程为)(2a y x -+22r =, 抛物线x y 42=的焦点()0,1F221r a =+∴ ①又直线x y =分圆的两段弧长之比为1:2,可知圆心到直线x y =的距离等于半径的,21即22r a = ②解①、②得2,12=±=r a 故所求圆的方程为 2)1(22=±+y x20.1223144x y +=(2)x ≠±;2略;31. 解析试题分析:1根据题意可分别求出连线PA ,PB 的斜率PA k ,PB k ,再由条件斜率之积为13列出方程,进行化简整理可得曲线E 的方程,注意点P 不与点,A B 重合.根据斜率的计算公式可求得2PA y k x ,2PB yk x ,所以12223y yx x x ,化简整理可得曲线E 的方程为223144x y +=(2)x ≠±; 2若要证AB AC ,只要证0AB AC ,再利用两个向量数量积为零的坐标运算进行证明即可.那么由题意可设直线BC 的方程为1myx ,1122,,,C x y D x y ,联立直线与椭圆的方程消去x ,可得y 的一元二次方程032)3(22=--+my y m ,由违达定理知33,32221221+-=+=+m y y m m y y ,则12122623x x m y y m ,()()21212243113m x x my my m -+⋅=--=+,又112,ACx y ,222,AD x y ,所以()()()121212*********AC AD x x y y x x x x y y ⋅=+++=++++=,从而可以证明AB AC ;3根据题意可知122111223ACDS AQ y y m △=⋅-=⨯=+,=故当0m =时,ACD △的面积最大,最大面积为1.试题解析:1设动点P 坐标为(,)x y ,当2x ≠±时,由条件得:1223y y x x ⋅=--+,化简得223144x y +=, 故曲线E 的方程为223144x y +=(2)x ≠±. 4分说明:不写2x ≠±的扣1分 2CD 斜率不为0,所以可设CD 方程为1+=x my ,与椭圆联立得:032)3(22=--+my y m 设),(),,(2211y x D y x C , 所以33,32221221+-=+=+m y y m m y y ,. 6分 01323)1(31)()1(),2(),2(2222212122211=+++++-=++++=+⋅+m m m m y y m y y m y x y x ,所以AC AD ⊥ 8分3ACD ∆面积为2222221)3(334394||21+-+=++=-m m m m y y , 10分 当0=m 时ACD △的面积最大为1. 12分考点:1.椭圆的方程;2.向量法证明两直线垂直;3.三角形面积的计算.21.解:直线l 与x 轴不平行,设l 的方程为 a my x += 代入双曲线方程 整理得而012≠-m ,于是122--=+=m amy y y B A T 从而 12--=+=m a a my x T T 即 )1,1(22mam am T -- 点T 在圆上 012)1()1(22222=-+-+-∴mam a m am 即22+=a m ① 由圆心)0,1(-'O .l T O ⊥' 得 1-=⋅'l T O k k 则 0=m 或 122+=a m当0=m 时,由①得 l a ∴-=,2的方程为 2-=x ;当122+=a m 时,由①得 1=a l m ∴±=,3的方程为13+±=y x . 故所求直线l 的方程为2-=x 或 13+±=y x22.解:I ),()、)(,(),由,(设b A b a c c F x Q 000220-=- 知),(),,(0b x AQ b c FA -==. cb x b cx AQ FA 2020,0,==-∴⊥ .设PQ AP y x P 58),,(11=由,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+==+=b b yc b x x 135581,138581581201 因为点P 在椭圆上,所以1)135()138(22222=+bb ac b 整理得ac c a ac b 3232222=-=)(,即 02322=-+⇒e e .21=⇒e II 由I,a c a c a c b ac b 21,21;23,3222====得由得 于是AQF a Q a F ∆-),0,23(),0,21(的外接圆圆心为)0,21(a ,半径.21a FQ r ==因为这个圆与直线033:=++y x l 相切,所以a a =+2|321|,解得a =2, ∴c=1,b=3,所求椭圆方程为13422=+y x。
高二2023-2024学年度上期期末能力测评数学(答案在最后)满分150分考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡指定位置;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上相应题目答案标号涂黑.如需改动,请用橡皮擦干净;3.回答非选择题时,在答题卡上作答.写在本试卷上无效;4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.每小题的四个选项中,只有一个选项符合题目要求.1.直线:l 2310x y +-=的一个方向向量为()A.()2,3- B.()3,2- C.()2,3 D.()3,2【答案】B 【解析】【分析】利用直线方向向量的定义和直线斜率与方向向量的关系直接求解即可.【详解】由2310x y +-=得,2133y x -+,所以直线的一个方向向量为2(1,)3-,而2(3,2)3(1,)3-=--,所以(3,2)-也是直线的一个方向向量.故选:B.2.对于变量x ,条件:p Q x ∈,条件:q R ,则p 是q 的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】D 【解析】【分析】根据充分必要条件的要求,分别判断p 能否推出q ,以及q 能否推出p 即得.【详解】由Q x ∈,若取=1x -R ,即p 不是q 的充分条件;R ,若取πx =,显然不满足Q x ∈,即p 不是q 的必要条件.3.对某社团进行系统抽样,编号为001,002,⋯,120,则抽取的序号不可能是()A.001,004,⋯,117B.008,020,⋯,116C.005,015,⋯,115D.014,034,⋯,114【答案】A 【解析】【分析】根据系统抽样的要求抽取的序号的间隔相同,序号构成等差数列,逐项验证.【详解】根据系统抽样的要求抽取的序号的间隔相同,序号构成等差数列,对A :121,4,3,32n a a d a n ====-,令32117n -=此方程没有正整数解,故A 不可能;对B :128,20,12,124n a a d a n ====-,令124116n -=得10n =满足要求,故B 可能;对C :125,15,10,105n a a d a n ====-,令105115n -=得12n =满足要求,故C 可能;对D :1214,34,20,206n a a d a n ====-,令206114n -=得6n =满足要求,故D 可能;故选:A4.若直线:l 260x y m -+-=平分圆:C 22240x mx y +++=,则实数m 的值为()A .2- B.2 C.3 D.2-或3【答案】C 【解析】【分析】列出22240x mx y +++=所满足的条件,由直线l 过圆心求得m 的值.【详解】22240x mx y +++=可化为()2224x m y m ++=-,则240m ->,直线260x y m -+-=始终平分圆22240x mx y +++=的周长,则直线l 经过圆心(,0)m -.代入直线得260m m --=,解得3m =或2m =-.因为2m =-不满足240m ->,故3m =故选:C.5.若数列{}n a 满足12a =,1123n nn S S n a +++=+,则88S a +的值为()A.9B.10C.11D.12【解析】【分析】由n S 与n a 的关系求得()()112n n S n S n +=++,从而1n S n ⎧⎫⎨⎬+⎩⎭为常数列,得到1n S n =+,即可求88S a +的值.【详解】由11n n n S S a ++-=及1123n nn S S n a +++=+得()()1123n n n n S S n S S +++=+-,即()()112323n n n n S S n S n S ++-+=++,即()()112n n S n S n +=++,所以112n n S S n n +=++,即1n S n ⎧⎫⎨⎬+⎩⎭为常数列,又11221S a ==,所以11n Sn =+,即1n S n =+,所以878879,81,S S a S S ===-=,所以8810S a +=.故选:B6.已知实数,x y28x y =+-,则点(),P x y 的轨迹为()A.抛物线B.双曲线C.一条直线D.两条直线【答案】D 【解析】【分析】将已知方程等价变形为()()334170x x y -⋅+-=,即可判断点(),P x y 的轨迹.28x y =+-,所以两边平方得()()22223246443216x y x y xy x y -+-=+++--,化简整理得2351426120x xy x y ++--=,所以()()334170x x y -⋅+-=,所以30x -=或34170x y +-=,即点(),P x y 的轨迹方程为30x -=或34170x y +-=,所以点(),P x y 的轨迹为两条相交直线.故选:D7.若复数z 满足()24z z z ⋅+=,则23z z +的最小值为()A .16B. C. D.【答案】C 【解析】【分析】设i z x y =+,利用复数的乘法运算及模的公式得422491016x x y y ++=,所求式子为()2244x y +,令224t x y =+,则利用422152160x tx t --+=有解求得t ≥,即可得解.【详解】设i z x y =+,则()()()()222i 3i 34i 4z z z x y x y x yxy ⋅+=+⋅+=-+=,所以()()22223416x y xy -+=,即422491016x x y y ++=,而()()()2222222333i i 42i 16444z zx y x y x y x y x y +=++-=+=+=+,令224t x y =+,则224y t x =-,所以()()242229104416x x t x t x +-+-=,即422152160x tx t --+=,记20m x =≥,则22152160m tm t --+=,由题意,该方程存在非负根,且二次函数对称轴015tm =>,所以()()22Δ2415160t t =-⨯⨯-+≥,所以215t ≥,又0t >,所以t ≥,所以234z z t +=≥,即23z +的最小值为.故选:C8.计算:cos 20cos 40cos 40cos80cos80cos 20-+= ()A.12B.23C.34D.2【答案】C 【解析】【分析】根据和差角公式以及积化和差公式即可求解.【详解】()()()()11cos 20cos 40cos 40cos80cos80cos 20cos 4020cos 4020cos 8040cos 804022⎡⎤⎡⎤-+=++--++-⎣⎦⎣⎦()()1cos 8020cos 80202⎡⎤+++-⎣⎦111131cos 20cos 40cos100cos 202cos 40cos100222242112⎡⎤⎡⎤⎡⎤⎡⎤=+-+++=+⎣⎦-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣-⎦+()()3131cos 20cos 40cos100cos 3010cos 3010sin104242⎡⎤⎡⎤=+=+--+-⎣⎦-+⎦⎣3132sin 30sin10sin10424⎡⎤=+-=⎣⎦,故选:C二、选择题:本题共4小题,每小题5分,共20分.在每小题的四个选项中,有多个选项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分.9.设集合A ={|αα为两个非零向量可能的夹角},集合B ={|ββ为两条异面直线可能的夹角},则下列说法错误的是()A.4π3A ∉ B.2π3B ∈C.ππ2A B θθ⎧⎫⊆≤≤⎨⎬⎩⎭ð D.ππ2A B θθ⎧⎫⊇≤≤⎨⎬⎩⎭ð【答案】BCD 【解析】【分析】由向量夹角定义和异面直线所成角取值范围求出集合A ,B ,再结合集合相关概念即可求解.【详解】由题集合[]0,πA =,π0,2B ⎛⎤= ⎥⎝⎦,所以4π3A ∉,2π3B ∈,故A 对,B 错;由上{}π0,π2A B ⎛⎤=⋃ ⎥⎝⎦ð,故C 、D 错.故选:BCD.10.已知曲线:Γ1x x y y +=-,将曲线Γ用函数()f x 表示,则下列说法正确的是()A.()f x 在R 上单调递减;B.()y f x =的图象关于34y x =对称;C.()22fx x +的最小值为9;D.若直线:l y kx b =+()0b <与()y f x =的图象没有交点,则实数k 为定值.【答案】ACD 【解析】【分析】分段讨论确定Γ所表示的曲线方程作出图象,由图象判断A ,B ,D 选项;求出()22f x x +的表达式求其最小值判断C 选项;【详解】当0,0x y >≥时,221916x y+=-不存在,故在第一象限内无图象;当0,0x y <≥时,221916x y-+=-,在第二象限内为双曲线的一部分,其渐近线为43y x =-,此时2216169x y =-,即()()221616,39x f x x =-≤-,所以()222251699x f x x +=-≥;当0,0x y ≤<时,221916x y +=,在第三象限内为椭圆的一部分;此时2216169x y =-,即()()221616,309x f x x =--<≤,所以()22271699x f x x +=->当0,0x y ><时,22916x y -=-,在第四象限内为双曲线的一部分,其渐近线为43y x =-;此时2216169x y =+,即()()221616,09x f x x =+>,所以()2222516169x f x x +=+>;综上:()22fx x +的最小值为9,故C 正确;()y f x =图象如图所示:对于A :由图象可得()f x 在R 上单调递减,故A 正确;对于B ,由图象可得()f x 图象不关于直线34y x =成轴对称图形,也可以求得()3,0-关于直线34y x =对称的点2172,2525⎛⎫-- ⎪⎝⎭不在()f x 图象上,故B 错误;对D :若直线:l y kx b =+()0b <与()y f x =的图象没有交点,则直线l 与渐近线平行,即43k =-为定值,否则直线l 与渐近线相交,则一定会与()y f x =的图象相交,故D 正确.故选:ACD【点睛】关键点点睛:本题关键是能根据,x y 的正负去掉绝对值符号得到曲线方程,作出图象,数形结合分析.11.已知独立的事件A 、B 满足()()0P A P B <<,则下列说法错误的是()A.()()P A P AB +一定小于()2P B ;B.()()P A B P AB +可能等于()2PB ;C.事件AB 和事件AB 不可能相互独立;D.事件AB 和事件A B +可以相互独立.【答案】BC 【解析】【分析】利用独立事件的定义和性质可判断A 正确,B 错误;根据事件A 与B ,A 与B ,A 与B ,A 与B 都相互独立,利用相互独立事件概率公式计算即可.【详解】()()P A P B <且,A B 相互独立,则()()P AB P B <,()()2()P A P AB P B +<,A 正确.∵A B +表示事件,A B 至少发生一个,AB 表示事件,A B 同时发生,∴()(),()()()()P A B P B P AB P A P B P B +>=<,∴()()P A B P AB +不能等于()2P B ,B 错误.若1()2P B =,则1()2P B =,此时()()P AB P AB =,∵AB AB A = .∴()(()(()()()P A P AB AB P AB P AB P A P B P AB ==+=+ .∴移项得(()()()()()()(1())()()P AB P A P AB P A P A P B P A P B P A P B =-=-=-=.∴事件A 与B 相互独立,同理可知事件A 与B ,A 与B 也都相互独立.∴事件AB 和AB 可能相互独立,事件AB 和A B +可能相互独立,C 错误,D 正确.故选:BC【点睛】关键点点睛:解题的关键是已知独立事件A 、B ,可推出事件A 与B ,A 与B ,A 与B ,A 与B 都相互独立.12.如图,在棱长为6的正方体1111ABCD A B C D -上,点M 为体对角线1BD 靠近1D 点的三等分点,点E F 、为棱AB 、1CC 的中点,点P 在平面MEF 上,且在该平面与正方体表面的交线所组成的封闭图形中(含边界),则下列说法正确的是()A.平面MEF 与底面ABCD 的夹角余弦值为77;B.点D 到平面MEF 的距离为11; C.点D 到点P 的距离最大值为6345;D.设平面MEF 与正方体棱的交点为1T 、…、n T ,则n 边形1n T T ⋯最长的对角线的长度大于172.【答案】BCD 【解析】【分析】建立空间直角坐标系,即可利用法向量的夹角求解A ,根据点面距离的向量法即可求解B ,根据面面平行的性质可得截面为六边形EQFNKT ,即可根据点点距离公式求解CD.【详解】建立如图所示的空间直角坐标系,则()()()2,2,4,6,3,0,0,6,3M E F ,()()4,1,4,2,4,1ME MF =-=--,设平面MEF 法向量为(),,m x y z =,440240ME m x y z MF m x y z ⎧⋅=+-=⎪⎨⋅=-+-=⎪⎩,取4y =,则()5,4,6m = ,而平面ABCD 的一个法向量为()10,0,6AA =,所以平面MEF 与底面ABCD的夹角余弦值为1677cos ,77m AA ==.故A 错误,()2,2,4,DM = 所以点D 到平面MEF的距离为11DM m m ⋅==,故B正确,延长EM 交11D C 于点N ,连接NF 交DC 延长线于点H ,连接EH 交BC 于Q ,由于点M 为体对角线1BD 靠近1D 点的三等分点,所以1111322D M D N D N MB EB ==⇒=,11912C N C F CH CH CF ==⇒=,9612235CH CQ BQ BQ EB BQ BQ -=⇒=⇒=,在棱11A D 上取K ,使得165D K =,由于11116124455,35352D K D KBQ BQ D N EB EB D N==⇒=⇒=,故//KN EQ ,连接,,TE TK FQ ,故六边形EQFNKT 即为平面MEF 上与正方体所截得的截面,由于1121863,6,555FC AE CQ D K ===-==113//,2932C F AT ATNF TE AT NC AE ∴=⇒=⇒= ,由于CQ 最大,故DQ为最大值5DQ =,故当P 在Q 处时,DP最大为5,C正确,由于()()()1863,6,0,6,3,0,0,6,3,6,0,2,,0,6,0,,6,552Q E F T K N ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭172NE ==>,因此六边形EQFNKT 的最长对角线的长度不小于NE 的长度,因此六边形EQFNKT 的最长对角线的长度大于172,故D 正确,故选:BCD【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.三、填空题:本题共4小题,每小题5分,共20分.13.函数()f x =的定义域为______.【答案】()11,2∞⎧⎫+⋃⎨⎬⎩⎭【解析】【分析】根据根式函数和对数函数及分式函数定义域法则列不等式求解即可.【详解】由题意2100ln 0x x x -≥⎧⎪>⎨⎪>⎩或2100ln 0x x x -=⎧⎪>⎨⎪≠⎩,解得1x >或12x =,所以函数()f x =的定义域为()11,2∞⎧⎫+⋃⎨⎬⎩⎭.故答案为:()11,2∞⎧⎫+⋃⎨⎬⎩⎭14.已知某平面内三角形ABC 为等腰三角形,AB AC =,点D 为AC 中点,且3BD =,则ABC 面积的最大值为____________.【答案】6【解析】【分析】根据向量的模长公式可得259cos 4A x=-,即可利用面积公式得()()2229203664ABC S x =--+ ,利用二次函数的性质即可求解.【详解】设AB AC x==由于12BD AC AB =- ,所以2222215cos 44BD AC AB AC AB x x A =+-⋅=- ,故259cos 4A x=-,()()222424211159sin 1cos 12444ABC S AB AC A x A x x ⎡⎤⎛⎫⎛⎫==-=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()24229458192036648464x x x =-+-=--+故当220x =时,此时()2ABC S 取最大值36,故面积的最大值为6,故答案为:615.已知锐角α,β满足2tan cos αβ=,2tan tan2αβ=,则sin sin βα的值为______.【答案】56【解析】【分析】根据已知结合同角关系消去β得1tan tan2tan ααα-=,再根据二倍角公式化弦为切得1sin 2cos αα+=,然后利用同角三角函数关系求得33sin ,tan 54αα==,然后代入sin sin βα==计算可得.【详解】因为2tan cos αβ=,2tan tan 2αβ=,所以22sin 1tan tan 2cos tan αβαβα-==,又2sin2sin 1cos 22tan 2sin cos 2sin cos 222αααααααα-===,所以1cos 1tan cos sin sin tan sin ααααααα---==,所以1cos cos sin ααα-=-,即1sin 2cos αα+=,又22sin cos 1αα+=,所以25sin 2sin 30αα+-=,又α为锐角,解得3sin 5α=,或sin 1α=-(舍去),所以43cos ,tan 54αα==,所以sin 5sin 6βα==.故答案为:5616.假设视网膜为一个平面,光在空气中不折射,眼球的成像原理为小孔成像.思考如下成像原理:如图,地面内有圆1O ,其圆心在线段MB 上,且与线段MB 交于不与,M B 重合的点A ,PM ⊥地面,且24BM PM ==,P 点为人眼所在处,视网膜平面与直线BM 垂直.过A 点作平面α平行于视网膜平面.科学家已经证明,这种情况下圆1O 上任意一点到P 点的直线与平面α交点的轨迹(令为曲线C )为椭圆或圆,且由于小孔成像,曲线C 与圆1O 在视网膜平面上的影像是相似的,则当视网膜平面上的圆1O 的影像为圆时,圆1O 的半径r 为____________.当圆1O 的半径r 满足112r ≤≤时,视网膜平面上的圆1O 的影像的离心率的取值范围为____________.【答案】①.32②.26,23⎣⎦【解析】【分析】使用空间向量方法可以验证曲线C 的两条半轴(半长轴和半短轴,但顺序可能不对应)的长分别为2r和,然后根据题设求解.【详解】由于视网膜平面与直线BM 垂直,平面α平行于视网膜平面,故平面α与直线BM 垂直.设地面平面为β,则据已知条件有PM β⊥.从而在β内可过M 作MA 的垂线MD ,使得,,MA MD MP 可分别作为以M为原点的一个右手坐标系的,, x y z轴正方向.由已知有4BM=,2PM=,故()0,0,0M,()4,0,0B,()0,0,2P.而42MA MB AB r=-=-,故()42,0,0A r-.再由1O A r=,知()14,0,0O r-.由于平面α与直线BM垂直,即平面α与x轴垂直,从而平面α上每一点的坐标的x轴分量都是定值42r-.再根据点A在线段MB内部及4BM=,又有0424r<-<,得02r<<.此时,地面平面即平面xOy,故圆1O的方程为()2224x r y rz⎧+-+=⎪⎨=⎪⎩.据此可设圆1O上的一点Q的坐标为()4cos,sin,0r r t r t-+,故()4cos,sin,2PQ r r t r t=-+-.设直线PQ和平面的交点为R,则,,P Q R三点共线,且R的坐标的x轴分量是42r-.故()22sin424842,,4cos4cos4cosr r tr rPR PQ rr r t r r t r r t⎛⎫---==-⎪-+-+-+⎝⎭,这得到R的坐标为()()22sin21cos42,,4cos4cosr r t r trr r t r r t⎛⎫-+-⎪-+-+⎝⎭.设()22sin4cosr r tyr r t-=-+,()21cos4cosr tzr r t+=-+,则()222221682242r ry zrr r-⎛⎫⎛⎫⋅+-⎪ ⎪⎝⎭⎝⎭-()()22222242142r ry zrr r--⎛⎫=⋅+-⎪⎝⎭-()()()222168sin41cos14cos4cosr t tr r tr r t⎛⎫-+=+-⎪-+-+⎝⎭()()()()()()22221681cos4cos4cos4cosr t r t rr r t r r t---+=+-+-+()()()()()2221681cos 4cos 4cos r t r t r r r t --+-+=-+()()()()()22222168168cos 168cos 24cos 4cos r r t r r t r r t r r r t ---+-++-+=-+()()()222216824cos cos 4cos r r r r t r tr r t -++-+=-+()()224cos 4cos r r t r r t -+=-+1=.所以我们得到点R 的轨迹为()222224216821242x r r r y z r r r =-⎧⎪-⎛⎫⎛⎫⎨⋅+-= ⎪ ⎪⎪⎝⎭⎝⎭-⎩.由此可知,曲线C 是位于平面α内,以42,0,2r r ⎛⎫- ⎪⎝⎭为中心,半长轴和半短轴分别(顺序可能不对应)为2r22-=的椭圆(或者是圆,因为在二者相等时是圆).而曲线C 和视网膜平面上的圆1O 的影像相似,故其中一个是圆当且仅当另一个是圆,且二者离心率相等.当曲线C 是圆时,有2r=12=,两边平方可得32r =.当112r ≤≤时,2r>=>,故和2r分别(顺序对应)是半长轴和半短轴的长,从而离心率e =再由112r≤≤,23⎣⎦.故答案为:32,26,23⎣⎦.【点睛】关键点点睛:本题的关键点在于,利用已知的坐标,采取适当的配凑得到类似椭圆的方程,从而得到相应曲线的性质.四、解答题:本题共5小题,共70分.解答题应写出文字说明、证明过程或演算步骤.17.已知抛物线C 的顶点是坐标原点O ,焦点是双曲线2241x y -=的右顶点.(1)求抛物线C 的方程;(2)若直线:l 2x y +=与抛物线相交于A 、B 两点,解决下列问题:(i )求弦长AB ;(ii )求证:OA OB ⊥.【答案】(1)22y x =;(2)(i);(ii )证明见解析.【解析】【分析】(1)求出双曲线右顶点,再求出抛物线的方程即得.(2)把直线l 的方程与抛物线方程联立,利用韦达定理,结合弦长公式及数量积的坐标表示求解即得.【小问1详解】双曲线2241x y -=,即22114x y -=,其右顶点为1(,0)2,则抛物线C 的焦点为1(,0)2,而抛物线C 的顶点是坐标原点O ,所以抛物线C 的方程:22y x =.【小问2详解】(i )设211)1(,2A y y ,222)1(,2B y y ,由222y xx y ⎧=⎨=-+⎩消去x 得:2240y y +-=,则122y y +=-,124y y =-,于是12y y -==所以12AB y y =-==.(ii )显然211)1(,2OA y y = ,222)1(,2OB y y = ,则221212121211(1)044OA OB y y y y y y y y ⋅=+=+= ,显然0,0OA OB ≠≠ ,即OA OB ⊥ ,所以OA OB ⊥.18.已知递增数列{}n a 和{}n b 分别为等差数列和等比数列,且113=a b ,422a b =,73a b =,126a b +=(1)求数列{}n a 和{}n b 的通项公式;(2)若ln ln n nb n a ac b =,证明:1211nc c c n 迹+.【答案】(1)2n a n =+,13n n b -=(2)证明见解析【解析】【分析】(1)由等差和等比数列的性质结合题意列方程组,解出11,,,a d q b ,再由基本量法求出通项即可;(2)由对数的运算性质化简再简单放缩可得()11133log 32log 31n n n n n nc n ++-=+≤=+,最后利用累乘法可证明.【小问1详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由题意可得:11112111133266a b a d b q a d b q a b q =⎧⎪+=⎪⎨+=⎪⎪+=⎩,前两式化简后有1111131322a b a d b q ⎧=⎪⎪⎨⎪+=⎪⎩,由上述式子可得:()21111136322a a d a d ⎛⎫+=+ ⎪⎝⎭,化简得:()()11930a d a d +-=,则19a d =-或13a d =,若19a d =-,可得1233b b b d ===-,数列{}n b 为常数列,故舍去;若13a d =,带入得3q =,又由116a b q +=,解得1d =,13a =,11b =,于是得到数列{}n a 的通项公式为2n a n =+,数列{}n b 的通项公式为13n n b -=.【小问2详解】由题可得()113ln log log 32ln n n a n nnb n n b b a ac a b +-===+,由于N n *∈时,()()113322310nn n ---+=-≥,则1332n n -³+(当且仅当1n =时取等号),所以()11133log 32log 31n n n n n nc n ++-=+≤=+,则121212311nn c c c n n 迹创即=++(当且仅当1n =时取等号).所以1211n c c c n 迹+.19.如图,1111ABCD A B C D -为一个平行六面体,且12AB AD AA ===,1BAA ∠=23πBAD ∠=,13DAA π∠=.(1)证明:直线AB 与直线1AC 垂直;(2)求点1B 到平面ABCD 的距离;(3)求直线1AC 与平面ABCD 的夹角的余弦值.【答案】(1)证明见解析(2)3(3)3【解析】【分析】(1)利用垂直关系的向量表示求1AB AC即可证明.(2)由已知条件得三棱锥1B ABC -为正四面体,再利用正四面体结构特征即可求解得到点1B 到平面ABCD 的距离.(3)由(1)可得1AC,再由(2)得点1C 到平面ABCD 的距离,进而可求出线面角的正弦值,再结合同角三角函数平方和为1求解余弦值即可.【小问1详解】由题可得111AC AC CC AB AD AA =+=++,所以()2111····AB AC AB AB AD AA AB AB AD AB AA =++=++ 2π2π422cos 22cos 033=+⨯+⨯=,则1AB AC ⊥,于是得证:1AB AC ⊥.【小问2详解】连接11,,AB CB AC ,则由题意可知1113DAA CBB ABC ABB π∠=∠=∠=∠=,且1AB BB BC ==,所以三棱锥1B ABC -为正四面体,所以由正四面体结构性质1B 在底面ABC 的投影O 在BG (G 为AC 中点)上,且1112333GO BO BG ====,所以1B O ⊥平面ABC ,且1263B O ==,即点1B 到平面ABCD 的距离为3.【小问3详解】设直线1AC 与平面ABCD 的夹角为θ,由于1111ABCD A B C D -为一个平行六面体,则点1C 到平面ABCD 的距离等于点1B 到平面ABCD 的距离为3d =,由(1)中11AC AB AD AA =++,得到:1AC === ,则1sin 3d AC θ== ,显然π0,2θ⎛⎫∈ ⎪⎝⎭,则cos 3θ==.20.已知圆1:O 224x y +=,圆2:O ()221x y m +-=()01m ≤<,点P 为圆2O 上的一点.(1)若过P 点作圆2O 的切线l 交圆1O 于A 、B 两点,且弦AB长度最大值与最小值之积为m 的值;(2)当0m =时,圆1O 上有C 、D 两点满足PC PD ⊥,求线段CD 长度的最大值.【答案】(1)12(21【解析】【分析】(1)画出图形,得出AB =,进一步由三角形三边关系得出1O Q 的最值,由此即可顺利得解.(2)由三角形三边关系、直角三角形性质可得关于CD 的不等式,解不等式即可得解.【小问1详解】设AB 中点为Q 点,连接12O O 、1O Q 、2O Q 、2O P ,由01m ≤<,得12211O O <-=,则圆1O 内含圆2O ,由垂径定理得:AB =,1AB O Q ⊥,由切线l 可得2AB O P ⊥,可得112121O Q O P O P O O m ≤≤+=+(当且仅当直线AB 为1y m =+时都取等),12121121O Q O P O O O P O O m ≥-≥-=-(当且仅当直线AB 为1y m =-+时都取等),所以111m O Q m -≤≤+,于是=,解得12m =.【小问2详解】取CD 中点T ,连接1O T 、TP 、1O P .当0m =时,1O 和2O 重合,由于PC PD ⊥,则12PT CD =,而11112O T PT O P CD ≥-=-,221144O T CD +=,则22114142CD CD ⎛⎫-≥- ⎪⎝⎭,解得:1CD ≤,当且仅当1O 在线段TP 上时取等,所以CD 1.21.请解决以下两道关于圆锥曲线的题目.(1)已知圆:M ()22224x y a ++=()02a <<,圆P 过点()2,0N 且与圆M 外切.设P 点的轨迹为曲线E .①已知曲线Γ:x yλ=()R λ∈与曲线E 无交点,求λ的最大值(用a 表示);②若记(2)中题①的λ最大值为0λ,圆:Q ()2211x y -+=和曲线00Γ:x y λ=相交于A 、B 两点,曲线E 与x 轴交于K 点,求四边形OAKB 的面积的最大值,并求出此时a 的值.(参考公式:322223a b c abc ⎛⎫++≤ ⎪⎝⎭,其中,,0a b c >,当且仅当a b c ==时取等号)(2)如图,椭圆:C 22221x y a b+=()0a b >>的左右焦点分别为1F 、2F ,其上动点M 到1F 的距离最大值和最小值之积为1,且椭圆C 的离心率为2.①求椭圆C 的标准方程;②已知椭圆C 外有一点P ,过P 点作椭圆C 的两条切线,且两切线斜率之积为12-.是否存在合适的P 点,使得123F PF π∠=?若存在,请写出P 点的坐标;若不存在,请说明理由.【答案】(1;②四边形OAKB 的面积的最大值为839,实数a的值为3(2)①2214x y +=;②不存在P 点使得123F PF π∠=,理由见解析【解析】【分析】(1)①根据已知条件求出点P 的轨迹方程E ,再将两个曲线无交点转化为对应的方程组无解即可.②根据已知条件求出,A B 两点坐标,表示出所求四边形的面积结合参考的不等式求解即可.(2)①根据焦点弦的范围和离心率列方程组求解即可.②由点P 和椭圆关系可以求出点P 的轨迹方程;再根据123F PF π∠=也以确定点所在圆弧的轨迹方程;根据联立两个方程有没有解来判断是否存在这样的点P 即可.【小问1详解】由圆P 过点()2,0N 且与圆M 外切可得:2P P M P ON R OM R R R a ⎧=⎪⎨=+=+⎪⎩,所以有24OM ON a MN -=<=,则点P 的轨迹为以M 、N 为左右焦点,实轴长为2a 的双曲线右支,所以曲线:E 222214x y a a-=-()0x >.①显然,当0λ≤时,曲线Γ与曲线E 无交点,当0λ>时,()222Γ:Γ:0x y x y x λλ=⇔=≥,于是令2222222014x x y a a x y λ>⎧⎪⎪-=⎨-⎪=⎪⎩,得222241a a x λ⎛⎫--= ⎪⎝⎭,若该方程在()0,∞+上无实数解,则22240a a λ--≤,解得λ≤所以λ.②将0λ=曲线00Γ:x y λ=得:曲线0Γ:x =22224a x y a ⇔=-()0x ≥,不妨令()222222411a x y a x y ⎧=⎪-⎨⎪-+=⎩,得0x =或212a ,于是212A B x x a ==,则四边形OAKB的面积12OAKB S a ==根据参考公式将该式化为32222228283269OAKB a a a S a ⎛⎫⎛⎫++-=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭,2a =取等号,解得263a =或3-,负值舍去)所以四边形OAKB 的面积的最大值为839,此时实数a 的值为263.【小问2详解】①由焦点弦取值范围1a c MF a c -≤≤+,离心率c e a =得:()()21c a a c a c ⎧=⎪⎨⎪-+=⎩,解得:21a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程为2214x y +=.②设00(,)P x y ,过点P 的切线方程为()00y y k x x -=-,由对称性不妨令00≥y ,()220014x y y y k x x ⎧+=⎪⎨⎪-=-⎩,消元得()()()2220000418440k x k y kx x y kx ++-+--=,令Δ0=,化简得:()()22200004210x k x y k y --+-=,由于两切线斜率之积为12-,则202020401142x y x ⎧-≠⎪-⎨=-⎪-⎩,化简得:2200163x y +=()02x ≠±,由于123F PF π∠=,则点P 在以12F F 为弦所对圆心角为23π的圆的优弧 12F F 上,当00≥y 时,易得该圆的方程为()2214x y +-=,不妨令()22221631420x y x y x y ⎧+=⎪⎪⎪+-=⎨⎪≠±⎪⎪≥⎩,解得该方程组无实数解,则当00≥y 时,不存在P 点使得123F PF π∠=,由对称性可知,当00≤y 时也不存在P 点使得123F PF π∠=,综上,不存在P 点使得123F PF π∠=.。
石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(答案在最后)(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为,则该圆的一般方程为()A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---= D.224440x y x y ++++=4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12B.24C.30D.325.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.146.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.27.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020B.2021C.2022D.20238.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.265C.7010D.3010二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF +=B.12PF F △面积的最大值是C.椭圆C 的离心率为63D.1PF PA +最小值为-11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为1312.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12nk += B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.15.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】化成斜截式方程得斜率为k =.【详解】将直线一般式方程化为斜截式方程得:y =+,所以直线的斜率为k =,所以根据直线倾斜角与斜率的关系得直线的倾斜角为120︒.故选:C2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-【答案】B 【解析】【分析】利用在平行四边形ABCD 中有AB DC =,计算即可.【详解】结合题意:设D 的坐标为(),,x y z ,因为()1,2,3A ,()2,1,0B -,()1,2,0C -,所以()1,3,3AB =--,()1,2,DC x y z =---- ,因为在平行四边形ABCD 中有AB DC =,所以11323x y z =--⎧⎪-=-⎨⎪-=-⎩,解得253x y z =-⎧⎪=⎨⎪=⎩,所以D 的坐标为()2,5,3-.故选:B.3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为)A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---=D.224440x y x y ++++=【答案】A 【解析】【分析】根据题意,设圆的半径为r ,求出圆心到直线0x y +=的距离,由直线与圆的位置关系可得r 的值,即可得圆的标准方程,变形可得答案.【详解】根据题意,设圆的半径为r ,圆心坐标为()2,2,到直线0x y +=的距离d ==,该圆被直线0x y +=截得的弦长为22216r =+=,则圆的方程为22221)6()(x y -+-=,变形可得224480x y x y +---=,故选:A.4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12 B.24 C.30D.32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.5.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.14【答案】D 【解析】【分析】根据题意,利用列举法求得所求事件中所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意,将一颗骰子先后抛掷2次,第一次所得点数m ,第二次所得点数n ,记为(),m n .1,2,3,4,5,6m =,1,2,3,4,5,6n =,共有6636⨯=种结果,其中满足2n m n <≤的有:(2,1),(3,2),(4,2),(4,3),(5,3),(5,4)(6,3),(6,4),(6,5),,共有9种结果,由古典概型的概率计算公式,可得满足2n m n <≤的概率为91364P ==.故选:D.6.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.2【答案】D 【解析】【分析】根据抛物线的定义及题意可知3x 0=x 0+2p,得出x 0求得p ,即可得答案.【详解】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p =∵p >0,∴p=2.故选D .【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.7.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020 B.2021C.2022D.2023【答案】C 【解析】【分析】根据题意,结合121a a ==,()*21N n n n a a a n ++=+∈,利用累加法,即可求解.【详解】由斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则2231375720520211a a a a a a a a a =+++++++++⋅⋅⋅+ 45720216792021a a a a a a a a =++++=++++ 8920212022a a a a =+++== .故选:C.8.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.5C.10D.10【答案】D 【解析】【分析】根据三棱锥A BCD -的对棱相等可以补成长方体AGBI HCJD -,计算长方体的长宽高,建立空间直角坐标系,利用空间向量的坐标运算即可求得异面直线AE ,CF 所成角的余弦值.【详解】解:三棱锥A BCD -中,由于3AB AC BD CD ====,4AD BC ==,则三棱锥A BCD -可以补在长方体AGBI HCJD -,则设长方体的长宽高分别为,,AG a AI b AH c ===,则2222222229,9,16a c AC a b AB b c AD +==+==+==,解得1,a b c ===,如图以C 为原点,,,CH CJ CG 分别为,,x y z轴建立空间直角坐标系,则((()()(1,0,,0,,0,0,0,1,,0,A B C D E ,所以(110,0,,4422AF AD ⎛⎫==-=- ⎪ ⎪⎝⎭,则(AE =-,(1,0,0,,1,,2222CF CA AF ⎛⎫⎛⎫=+=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以cos ,10AE CF AE CF AE CF⋅===-⋅,则异面直线AE ,CF所成角的余弦值为10.故选:D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立【答案】BC 【解析】【分析】由题意可知摸出的两球的编号可能都是奇数或都是偶数或恰好一个奇数一个偶数,共三种情况,由此可判断,,A B C 之间的互斥或对立的关系,再由古典概型求出(),(),()P AB P A P B 判断是否相互独立可得答案.【详解】由题意知,事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,即摸出的小球编号都为奇数或都为偶数,故事件A ,B 不互斥,故A 错误;事件C 为摸出的小球编号恰好只有一个奇数,即摸出的两球编号为一个奇数和一个偶数,其反面为摸出的小球编号都为奇数或都为偶数,故B ,C 是对立事件,故C 正确;事件A ,C 不会同时发生,故A ,C 是互斥事件,故B 正确;每次摸出两个小球,所有基本事件为:()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,()()()()2,6,3,4,3,5,3,6,()()()4,5,4,6,5,6,共有15个,所以由古典概型可得31()155P A ==,62()155P B ==,31()155P AB ==,所以()()()P AB P A P B ≠,故事件A 与B 不相互独立,故D 错误.故选:BC.10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF += B.12PF F △面积的最大值是C.椭圆C 的离心率为3D.1PF PA +最小值为-【答案】ACD 【解析】【分析】A 选项,根据椭圆定义求出答案;B 选项,数形结合得到当P 在上顶点或下顶点时,12PF F △面积最大,求出最大值;C 选项,由ce a=直接求解即可;D 选项,作出辅助线,结合椭圆定义得到()12PF PA PA PF +=+-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,得到答案.【详解】A 选项,由题意得2a b c ====,由椭圆定义可得122PF PF a +==A 正确;B 选项,当P 在上顶点或下顶点时,12PF F △面积最大,最大值为1212F F b bc ⋅==B 错误;C 选项,离心率3c e a ===,C 正确;D 选项,因为2211162+<,所以点()1,1A 在椭圆内,连接2PF ,由椭圆定义可知12PF PF +=,故12PF PF =,故()122PF PA PF PA PA PF +=-+=-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,最小值为2AF -==,所以1PF PA +最小值为D 正确.故选:ACD11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为13【答案】ACD 【解析】【分析】根据空间向量的基本定理,可判定A 错误;根据投影向量的求法,可判定B 正确;根据20a b ⋅=≠,可判定C 错误;根据线面角的空间的向量求法,可判定D 错误.【详解】对于A 中,设()(2,4,4)1,2,2(2,1,1)x y --=+-,可得222424x y x y x y -=-⎧⎪+=-⎨⎪+=⎩,此时,方程组无解,所以向量(2,4,4)--与向量,a b不共面,所以A 错误;对于B 中,由向量()1,2,2,(2,1,1)a b ==-,可得向量b 在向量a 上的投影向量为21244(1,2,2),,33999a ba aa ⋅⎛⎫⋅=⨯⋅= ⎪⎝⎭,所以B 正确;对于C 中,若两个不同的平面,αβ的法向量分别是,a b,因为20a b ⋅=≠ ,所以a 与b不垂直,所以平面α与平面β不垂直,所以C 错误;对于D 中,若平面α的法向量是a ,直线l 的方向向量是b,设直线l 与平面α所成角为θ,其中π02θ≤≤,则·sin cos ,a b a b a b θ===,所以cos 9θ==,所以D 错误.故选:ACD.12.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12n k +=B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-【答案】ABD 【解析】【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可.【详解】由题意可知,第1次得到数列1,3,2,此时1k =第2次得到数列1,4,3,5,2,此时3k =第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =第n 次得到数列1,123,,,,k x x x x ,2此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得:123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈ 用等比数列求和可得()33132n na -=+则()121331333322n n n a +++--=+=+23322n +=+又()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+所以133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误.123n nS a a a a =++++ 23133332222n n+⎛⎫=++++ ⎪⎝⎭ ()231331322nn --=+2339424n n +=+-()133234n n +=+-,故D 项正确.故选:ABD.【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.【答案】310##0.3【解析】【分析】利用空间向量的加减及数乘运算,以{},,a b c为基底,用基向量表示MN ,再空间向量基本定理待定系数即可.【详解】在平行六面体1111ABCD A B C D -中,因为点M 是11A D 的中点,点N 是1CA 上的点,所以111114152MN A N A M A C A D =-=- ()()11111141415252AC AA A D AB AD AA A D =--=+--()14152AB AD AA AD =+--14345105AB AD AA =+-4345105a b c =+- .又MN xa yb zc =++ ,由空间向量基本定理得,434,,5105x y z ===-,则310x y z ++=.故答案为:310.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.【答案】25##0.4【解析】【分析】分析数据得到三天中恰有两天下雨的有417,386,196,206,得到答案.【详解】10组随机数中,表示三天中恰有两天下雨的有417,386,196,206,故这三天中恰有两天下雨的概率近似为42105=.故答案为:2515.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.【答案】129130【解析】【分析】利用等差数列前n 项和公式,将题目所求的式子中的,n n a b 有关的式子,转化为,n n S T 有关的式子来求解.【详解】原式11111212111111212132333322111292222223212130a a a a Sb b b b T +⨯+==⋅=⋅=⋅=⋅=+⨯+.【点睛】本小题主要考查了等差数列通项公式的性质,考查了等差数列前n 项和公式,考查了通项公式和前n 项和公式的转化.对于等比数列{}n a 来说,若m n p q +=+,则有m n p q a a a a +=+,而前n 项和公式()12n n a a n S +⋅=,可以进行通项和前n 项和的相互转化.属于基础题.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.【答案】(【解析】【分析】利用点差法得到22l b k a=,根据题意和渐近线方程得到l b k a <,故01b a <<,从而求出离心率的取值范围.【详解】设()()1122,,,A x y B x y ,则2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减得()()()()2212121212b x x x x a y y y y +-=+-,若12x x =,则AB 的中点在x 轴上,不合要求,若12x x =-,则AB 的中点在y 轴上,不合要求,所以2121221212y y y y b x x x x a-+⋅=-+,因为()1,1P 为AB 的中点,所以1212212y y x x +==+,故22l b k a=,因为()222211,0x y a b a b-=≥>的渐近线方程为b y x a =±,要想直线l 与双曲线C :()222211,0x y a b a b -=≥>交于A 、B 两点,则l b k a <,即22b ba a <,解得01b a <<,所以离心率(c e a ==.故答案为:(【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【答案】(1)2100x y +-=;(2)70x y +-=或430x y -=.【解析】【分析】(1)根据给定的方向向量,求出直线的斜率,利用直线的点斜式方程求解即得.(2)由已知,按截距是否为0,结合直线的截距式方程分类求解即得.【小问1详解】由向量()1,2a =-是直线l 的一个方向向量,得直线l 的斜率2k =-,又l 经过点()3,4P ,则l 方程为:()423y x -=--,即:2100x y +-=,所以直线l 的方程为2100x y +-=.【小问2详解】依题意,当直线l 过原点时,而直线l 又过点()3,4P ,则直线l 的方程为43y x =,即430x y -=;当直线l 不过原点时,设直线l 的方程为x y a +=,则有34a +=,解得7a =,即直线l 的方程为70x y +-=,所以直线l 的方程为70x y +-=或430x y -=.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.【答案】(1)(2)11,22⎛+⎝⎭【解析】【分析】(1)求出圆心和半径,得到圆心到直线的距离,利用垂径定理求出弦长;(2)求出圆心和半径,根据圆心()2,λλ--到y x =的距离大于半径得到不等式,求出答案.【小问1详解】当2λ=时,圆C :22410x y y ++-=,圆心()0,2C -,半径r =,所以圆心到直线的距离d ==设直线与圆交于A 、B 两点,则弦长AB ==故直线y x =被圆C截得的弦长为【小问2详解】圆C 方程为()()2222221x y λλλλ+-++=⎡-⎤⎣+⎦,22012221122λλλ⎛⎫-+=- ⎪+⎭>⎝恒成立,因为直线y x =与圆C 没有公共点,圆心()2,λλ--到y x =>所以22221λλ>-+,即22210λλ--<,解得:1122λ-<<,故λ的取值范围是11,22⎛+ ⎝⎭.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.【解析】【详解】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,令nn nb c a =,则212n nn c +=,因此12231357212122222n n n n n n T c c c --+=+++=+++++ ,又234113572121222222n n n n n T +-+=+++++ ,两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-.【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.【答案】(1)证明见解析(2)4515【解析】【分析】(1)先证明线面垂直,再应用面面垂直判定定理证明即可;(2)应用空间向量法求出二面角余弦.【小问1详解】因为PB ⊥平面ABCD ,所以PB AB ⊥.在Rt PAB中可求得AB ==在ABC 中,因为1,2BC AC ==,所以2225AC BC AB +==,所以ACBC ⊥.又PB ⊥平面ABCD ,所以AC PB ⊥.因为PB BC B ⋂=,PB BC ⊂,平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面PAC ,所以平面PAC ⊥平面PBC .【小问2详解】因为,AB AD PB ⊥⊥平面ABCD ,所以分别以,,AD BA BP的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系,则()()()()0,2,,2,0,0,2,0,0,0,55P C D AD AP ⎛⎫-==- ⎪ ⎪⎝⎭.由(1)知AC ⊥平面PBC ,所以,,055AC ⎛⎫=- ⎪ ⎪⎝⎭ 为平面PBC 的一个法向量.设平面PAD 的法向量为(),,n x y z =r,可得2020x z =⎧⎪⎨+=⎪⎩,令2y =,得(n =.设平面PBC 与平面PAD 的夹角为θ,则cos cos ,15n AC n AC n ACθ⋅===.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.【答案】(1)427(2)265432【解析】【分析】(1)对乙来说共有两种情况:(胜,不胜,胜),(不胜,胜,胜),根据独立事件的乘法公式即可求解.(2)以比赛结束时的场数进行分类,在每一类中根据相互独立事件的乘法公式即可求解.【小问1详解】设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=【小问2详解】设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲得两分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.【答案】(1)22143x y +=;(2)90,2⎛⎤ ⎥⎝⎦.【解析】【分析】(1)根据给定条件,确定椭圆C 过点3(1,)2,再代入求解作答.(2)设出直线l 的方程,与椭圆C 的方程联立,结合韦达定理求出APQ △面积的函数关系,再利用对勾函数的性质求解作答.【小问1详解】依题意,2a =,当直线l 的斜率不存在时,由3PQ =,得直线l 过点3(1,)2,于是219144b+=,解得23b =,所以椭圆C 的方程为22143x y +=.【小问2详解】依题意,直线l 不垂直于y 轴,设直线l 的方程为()()11221,,,,x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩消去x 整理得()2234690t y ty ++-=,则12122269,3434t y y y y t t --+==++,APQ △的面积121||||2S AD y y =-=218134t ==++,令1u =≥,对勾函数13y u u=+在[1,)+∞上单调递增,则134u u+≥,即4≥,从而189012<≤+,当且仅当0t =时取等号,故APQ △面积的取值范围为90,2⎛⎤ ⎥⎝⎦.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.。
四川省绵阳市2023-2024学年高二上学期期末教学质量测
试数学试卷
学校:___________姓名:___________班级:___________考号:___________
二、多选题
9.下列关于空间向量的命题中,正确的有( )
A .将空间所有的单位向量平移到一个起点,则它们的终点构成一个球面
B .若非零向量a r ,b r ,c r 满足a b ^r r ,b c ^r r ,则有//a c r r
C .与一个平面的法向量共线的非零向量都是该平面的法向量
D .若OA uuu r ,OB uuu r ,OC uuu r 为空间的一组基底,且OD OA OB OC =++uuu r uuu r uuu r uuu r ,则A ,B ,C ,
D 四点共面
10.如果一组数据的中位数比平均数小很多,则下面叙述正确的是( ).
A .这组数据是近似对称的
B .数据中可能有极端大的值
C .数据中可能有异常值
D .数据中众数可能和中位数相同
11.某电商平台对去年春节期间消费的前1000名网购者,按性别等比例分层抽样100
名,并对其性别(M (男)、F (女))及消费金额(A (消费金额
>400),B (200<消费金额≤400),
C (
0<消费金额≤200)进行调查分析,得到如
人数统计表,则下列选项正确的是( )
)得曲线M 的方程为24y x =.设(),A x y ,(),B x y .。
天津市部分区2023~2024学年度第一学期期末练习高二数学(答案在最后)第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.45.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1ACE 的距离为()A.3B.6C.4D.148.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.22D.329.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.11.直线10x -=的倾斜角为_______________.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.14.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,求直线l 的方程.18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.19.在数列{}n a 中,11a =,()*122nn n a a n +-=∈N .(1)求2a ,3a ;(2)记()*2n n n a b n =∈N .(i )证明数列{}n b 是等差数列,并求数列{}n a 的通项公式;(ii )对任意的正整数n ,设,,,.n n n a n c b n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.天津市部分区2023~2024学年度第一学期期末练习高二数学第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--【答案】A 【解析】【分析】直接由空间向量的坐标线性运算即可得解.【详解】由题意空间向量()1,2,3a =-,()2,1,1b =- ,则()()()()()21,2,322,1,11,2,34,2,23,4,5a b -=---=---=--.故选:A.2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在【答案】A 【解析】【分析】求出直线1l 与2l 不相交时的a 值,再验证即可得解.【详解】当直线1l 与2l 不相交时,(2)30a a +-=,解得1a =或3a =-,当1a =时,直线1l :330x y +-=与直线2l :310x y ++=平行,因此1a =;当3a =-时,直线1l :3330x y --=与直线2l :10x y -++=重合,不符合题意,所以实数a 的值为1.故选:A3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-【答案】B 【解析】【分析】根据抛物线的方程与焦点之间的关系分析求解.【详解】由题意可知:此抛物线的焦点落在y 轴正半轴上,且24p =,可知12p=,所以焦点坐标是()0,1.故选:B.4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.4【答案】B 【解析】【分析】直接由等比数列基本量的计算即可得解.【详解】由题意()()21242131110251a q q a a q a a a q ++====++(1,0a q ≠分别为等比数列{}n a 的首项,公比).故选:B.5.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=【答案】D 【解析】【分析】先求椭圆的焦点坐标,再代入双曲线方程可得2a ,利用渐近线方程可得2b ,进而可得答案.【详解】椭圆221259x y +=的焦点坐标为()4,0±,而双曲线()222210,0x y a b a b -=>>过()4,0±,所以()2222401a b ±-=,得216a =,由双曲线的一条渐近线方程为20x y +=可得2214y x =,则2214b a =,于是21164b =,即24b =.所以双曲线的标准标准为221164x y -=.故选:D.6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =【答案】D 【解析】【分析】由题意分直线斜率是否存在再结合直线与圆相切的条件进行分类讨论即可求解.【详解】圆224470x y x y +--+=,即圆()()22221x y -+-=的圆心坐标,半径分别为()2,2,1,显然过(1,0)点且斜率不存在的直线为1x =,与圆()()22221x y -+-=相切,满足题意;设然过(1,0)点且斜率存在的直线为()1y k x =-,与圆()()22221x y -+-=相切,所以1d r ===,所以解得34k =,所以满足题意的直线方程为3430x y --=或1x =.故选:D.7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1A CE 的距离为()A.63B.66C.24D.14【答案】A 【解析】【分析】建立空间直角坐标系,利用空间向量法求点到平面的距离公式即可求出结果.【详解】分别以1,,DA DC DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,()11,0,1A ,11,,02E ⎛⎫⎪⎝⎭,()0,1,0C ,()11,1,1B ,110,,12A E ⎛⎫=- ⎪⎝⎭ ,()11,1,1AC =-- ,()110,1,0A B = 设平面1A CE 的法向量为(),,n x y z =,1100A E n A C n ⎧⋅=⎪⎨⋅=⎪⎩,即1020y z x y z ⎧-=⎪⎨⎪-+-=⎩,取1,2,1x y z ===,()1,2,1n = 所以点1B 到平面1ACE的距离为113A B n d n⋅===uuu u r rr .故选:A.8.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.2D.2【答案】C 【解析】【分析】由圆222x y c +=与椭圆有交点得c b ≥,即2222c b a c ≥=-,可得212e ≥,即可求解.【详解】由题意知,以12F F 为直径的圆的方程为222x y c +=,要使得圆222x y c +=与椭圆有交点,需c b ≥,即2222c b a c ≥=-,得222c a ≥,即212e ≥,由01e <<,解得12e ≤<,所以椭圆的离心率的最小值为2.故选:C9.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236【答案】C 【解析】【分析】由题意首项得()*121n n n a +=∈+N ,进而有()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,由裂项相消法求和即可.【详解】由题意()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则()()()*1231232111n n n a a a na n n a ++++⋅⋅⋅++++=∈N ,两式相减得()()*112n n n a ++=∈N ,所以()*121n n n a+=∈+N ,又1221131a =⨯+=≠,所以()*3,12,2n n a n n n =⎧⎪=∈⎨≥⎪⎩N ,()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,所以数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为31111113115122223341011221122⎛⎫⎛⎫+⨯-+-++-=+⨯-= ⎪ ⎪⎝⎭⎝⎭.故选:C.第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.【答案】9【解析】【分析】根据空间向量数量积的坐标表示即可求解.【详解】由题意知,(2,1,3)(4,2,1)24(1)2319a b ⋅=-⋅=⨯+-⨯+⨯=.故答案为:911.直线10x -=的倾斜角为_______________.【答案】150 【解析】【分析】由直线10x +-=的斜率为3k =-,得到00tan [0,180)3αα=-∈,即可求解.【详解】由题意,可知直线10x +-=的斜率为3k =-,设直线的倾斜角为α,则00tan [0,180)3αα=-∈,解得0150α=,即换线的倾斜角为0150.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.【答案】39【解析】【分析】由题意36396129,,,S S S S S S S ---成等差数列,结合315S =-,612S =-即可求解.【详解】由题意n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,所以()()36312151518S S S -=++=--,而36396129,,,S S S S S S S ---成等差数列,所以3101112129318155439a S a S a S =++=⨯+-+=-=.故答案为:39.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.【答案】2【解析】【分析】利用空间向量坐标法即可求出点到直线的距离.【详解】因为()0,2,3A ,()2,1,5B -,()0,1,5C -,所以()2,2,0BC =-,()2,1,2AB =-- 与BC同向的单位方向向量BC n BC ⎫==-⎪⎭uu u rr uu u r,2AB n ⋅=-uu u r r 则点A 到直线BC 的距离为2=.故答案为:214.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.【答案】【解析】【分析】由两圆的方程先求出公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦长即可.【详解】 两圆方程分别为:2210100x y x y +--=①,2262400x y x y +-+-=②,由②-①可得:412400x y +-=,即3100x y +-=,∴两圆的公共弦所在的直线方程为:3100x y +-=,2210100x y x y +--=的圆心坐标为()5,5,半径为,∴圆心到公共弦的距离为:d ==,∴公共弦长为:=.综上所述,公共弦长为:故答案为:.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.,答案不唯一)【解析】【分析】设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立直线方程和抛物线方程,再由焦点弦公式得12222p AB x x p p k=++=+,由圆220x y px +-=的方程可知,直线l 过其圆心,2CD r =,由38AB CD =列出方程求解即可.【详解】由题意知,l 的斜率存在,且不为0,设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,得()22222204k p k x k p p x -++=,易知0∆>,则2122222k p p p x x p k k ++==+,所以12222p AB x x p p k =++=+,圆220x y px +-=的圆心,02p ⎛⎫ ⎪⎝⎭,半径2p r =,且直线l 过圆心,02p ⎛⎫ ⎪⎝⎭,所以2CD r p ==,由38AB CD =得,22328p p p k ⎛⎫+= ⎪⎝⎭,k =..三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .【答案】(1)38n a n =-(2)122n n T +=-【解析】【分析】(1)由已知条件求出数列首项与公差,可求{}n a 的通项公式;(2)由23,b b 可得{}n b 的首项与公比,可求前n 项和n T .【小问1详解】设等差数列{}n a 公差为d ,15a =-,4143422S a d ⨯=+=-,解得3d =,所以()1138n a a n d n =+-=-;【小问2详解】设等比数列{}n b 公比为q ,244==b a ,335178b a a +=+==,得2123148b b q b b q ==⎧⎨==⎩,解得122b q =⎧⎨=⎩,所以()()11121222112nnn n b q T q +--===---.17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N两点,且MN =,求直线l 的方程.【答案】(1)()()22215x y -+-=(2)30x y --=或10x y -+=【解析】【分析】(1)由题意可知OA OB ⊥,由此得圆的半径,圆心,进而得解.(2)由直线垂直待定所求方程,再结合点到直线距离公式、弦长公式即可得解.【小问1详解】由题意可知OA OB ⊥,所以圆C 是以()4,0A ,()0,2B 中点()2,1C 为圆心,12r AB ===为半径的圆,所以圆C 的方程为()()22215x y -+-=.【小问2详解】因为垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,所以不妨设满足题意的方程为0x y m -+=,所以圆心()2,1C 到该直线的距离为d =所以MN ==,解得123,1m m =-=,所以直线l 的方程为30x y --=或10x y -+=18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.【答案】(1)10(2)证明见解析(3)6【解析】【分析】(1)建立适当的空间直角坐标系,求出()()1,2,0,2,2,0DE BC =-=- ,结合向量夹角余弦公式即可得解.(2)要证明1B F ⊥平面AEF ,只需证明11,B F AE B F AF ⊥⊥,即只需证明110,0B F AF B F AE ⋅=⋅= .(3)由(2)得平面AEF 的一个法向量为()11,1,2B F =-- ,故只需求出平面1AB E 的法向量,再结合向量夹角余弦公式即可得解.【小问1详解】由题意侧棱1AA ⊥平面ABC ,又因为,AB AC ⊂平面ABC ,所以11,AA AB AA AC ⊥⊥,因为90BAC ∠=︒,所以BA BC ⊥,所以1,,AB AC AA 两两互相垂直,所以以点A 为原点,1,,AB AC AA 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系:因为ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2A B C A B C ,()()()1,1,0,0,2,1,1,0,1F E D ,所以()()1,2,0,2,2,0DE BC =-=- ,设直线DE与BC所成角为θ,所以cos cos,10DE BCDE BCDE BCθ⋅===⋅.【小问2详解】由(1)()()()11,1,2,1,1,0,0,2,1B F AF AE=--==,所以111100,0220B F AF B F AE⋅=-+-=⋅=-+-=,所以11,B F AE B F AF⊥⊥,又因为,,AE AF A AE AF=⊂平面AEF,所以1B F⊥平面AEF.【小问3详解】由(2)可知1B F⊥平面AEF,即可取平面AEF的一个法向量为()11,1,2B F=--,由(1)可知()()12,0,2,0,2,1AB AE==,不妨设平面1AB E的法向量为(),,n x y z=,则22020x zy z+=⎧⎨+=⎩,不妨令2z=-,解得2,1x y==,即可取平面1AB E的法向量为()2,1,2n=-,设平面1AB E与平面AEF夹角为α,则111cos cos,6B F nB F nB F nα⋅===⋅.19.在数列{}n a中,11a=,()*122nn na a n+-=∈N.(1)求2a,3a;(2)记()*2nnnab n=∈N.(i)证明数列{}n b是等差数列,并求数列{}n a的通项公式;(ii)对任意的正整数n,设,,,.nnna ncb n⎧=⎨⎩为奇数为偶数,求数列{}n c的前2n项和2n T.【答案】19.24a=,312a=20.(i )证明见解析;()1*2n n a n n -=⋅∈N .(ii )()()*216554929n n n n n T n +-⎛⎫=++∈⎪⎝⎭N .【解析】【分析】(1)由递推公式即可得到2a ,3a ;(2)对于(i ),利用已知条件和等差数列的概念即可证明;对于(ii ),先写出n c ,再利用错位相减法求得奇数项的前2n 项和,利用等差数列的前n 项和公式求得偶数项的前2n 项和,进而相加可得2n T .【小问1详解】由11a =,()*122n n n a a n +-=∈N ,得()*122n n n a a n +=+∈N ,所以121224a a =+=,2322212a a =+=,即24a =,312a =.【小问2详解】(i )证明:由122n n n a a +-=和()*2n n n a b n =∈N 得,()*11111122122222n n n n n n n n n n n a a a a b b n ++++++--=-===∈N ,所以{}n b 是111122a b ==,公差为12的等差数列;因为()1111222n b n n =+-⨯=,所以()*1,22n n n a b n n ==∈N ,即()1*2n n a n n -=⋅∈N .(ii )由(i )得12,1,2n n n n c n n -⎧⋅⎪=⎨⎪⎩为奇数为偶数,当n 为奇数,即()*21n k k =-∈N 时,()()()221*21212214N k k k c k k k ---=-⋅=-⋅∈,设前2n 项中奇数项和为n A ,前2n 项中偶数项和为nB 所以()()0121*143454214n n A n n -=⨯+⨯+⨯++-⋅∈N ①,()()123*4143454214n n A n n =⨯+⨯+⨯++-⋅∈N ②,由①-②得:()()()()()012131431453421234214n n n A n n k -⎡⎤-=⨯+-⨯+-⨯++---⋅--⋅⎣⎦,()()121121444214n n n -=-+⨯++++--⋅ ,()()1142214114nn n ⨯-=⨯--⋅--()242214133n n n ⨯=---⋅-()2521433n n ⎡⎤=---⎢⎥⎣⎦()*552433n n n ⎛⎫=--∈ ⎪⎝⎭N ,即()*5532433n n A n n ⎛⎫-=--∈ ⎪⎝⎭N ,则()*655499n n n A n -⎛⎫=+∈ ⎪⎝⎭N ;当n 为偶数,即()*2n k k =∈N 时,()*212N 2k c k k k =⨯=∈,所以()()*11232n n n B n n +=++++=∈N .综上所述,()()*216554929n n n n n n n T A B n +-⎛⎫=+=++∈ ⎪⎝⎭N .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.【答案】(1)221205x y +=(2)220x y --=【解析】【分析】(1)由离心率和椭圆上的点,椭圆的方程;(2)设直线方程,代入椭圆方程,利用弦长公式和面积公式求出直线斜率,可得直线方程.【小问1详解】椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M ,则有22222161132a b a b c c e a ⎧+=⎪⎪⎪=+⎨⎪⎪==⎪⎩,解得2220,5a b ==,所以椭圆C 的方程为221205x y +=.【小问2详解】过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),设直线l 的方程为()41y k x =-+,椭圆左顶点为()A -,MA k =,点N 在x 轴下方,直线l的斜率k >,由()22411205y k x x y ⎧=-+⎪⎨+=⎪⎩,消去y 得()()222214846432160k x k k x k k ++-+--=,设(),N m n ,则有()2284414k k m k -+=+,得22168414k k m k --=+,)288414k MN k +==-=+,原点O 到直线l 的距离d =则有)2388121124OMN S MN d k k =⋅⋅++=⋅= ,当41k >时,方程化简为241270k k +-=,解得12k =;当041k <<时,方程化简为2281210k k +-=,解得114k =,不满足k >所以直线l 的方程为()1412y x =-+,即220x y --=.【点睛】方法点睛:解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.要强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。
高二数学上学期期末考试试题(及答案)高二数学上学期期末考试试题及答案第I卷(选择题)1.在三角形ABC中,已知a+b=c-2ab,则C=()。
A。
2π/3 B。
π/3 C。
π D。
3π/4改写:在三角形ABC中,已知a+b=c-2ab,求C的大小。
答案:B2.在三角形ABC中,已知cosAcosB=p,求以下条件p的充要条件。
A。
充要条件B。
充分不必要条件C。
必要不充分条件D。
既非充分也非必要条件改写:在三角形ABC中,已知cosAcosB=p,求p的充要条件。
答案:B3.已知等比数列{an}中,a2a10=6a6,等差数列{bn}中,b4+b6=a6,则数列{bn}的前9项和为()。
A。
9 B。
27 C。
54 D。
72改写:已知等比数列{an}和等差数列{bn}的一些条件,求{bn}的前9项和。
答案:C4.已知数列{an}的前n项和Sn=n+2n,则数列{a1}的前n 项和为()。
A。
n^2/(n-1) B。
n(n+1)/(2n+1) C。
3(2n+3)/(2n+1) D。
3(n+1)/(n-1)改写:已知数列{an}的前n项和Sn=n+2n,求数列{a1}的前n项和。
答案:B5.设 2x-2y-5≤2,3x+y-10≥3,则z=x+y的最小值为()。
A。
10 B。
8 C。
5 D。
2改写:已知不等式2x-2y-5≤2和3x+y-10≥3,求z=x+y的最小值。
答案:C6.对于曲线C:x^2/4+y^2/k^2=1,给出下面四个命题:①曲线C不可能表示椭圆;②“14”的必要不充分条件;④“曲线C表示焦点在x轴上的椭圆”是“1<k<5”的充要条件。
其中真命题的个数为()。
A。
0个 B。
1个 C。
2个 D。
3个改写:对于曲线C:x^2/4+y^2/k^2=1,判断下列命题的真假,并统计真命题的个数。
答案:C7.对于曲线C:x^2+y^2=1与直线y=k(x+3)交于点A,B,则三角形ABM的周长为()。
2022-2023学年云南省玉溪市高二上学期期末教学质量检测数学试题一、单选题1.已知集合{}1,2A =,()(){}210B x x x =-+<,则A B =( ) A .{}1 B .{}2C .{}1,2D .∅【答案】A【分析】求一元二次不等式的解集,再求集合A 与集合B 的交集即可. 【详解】∵{|(2)(1)0}{|12}B x x x x x =-+<=-<<,∴{1}A B ⋂=. 故选:A. 2.已知复数()21i1i z +=-,则z 的虚部为( ) A .1- B .12-C .12D .1【答案】C【分析】由复数的运算结合定义求解. 【详解】()2221i1i i i 11i 2i 2i 221i z +++====-+---,即z 的虚部为12. 故选:C3.欧几里得大约生活在公元前330~前275年之间,著有《几何原本》《已知数》《圆锥曲线》《曲面轨迹》等著作.若从上述4部书籍中任意抽取2部,则抽到《几何原本》的概率为( ) A .12B .13C .14D .56【答案】A【分析】运用列举法解决古典概型.【详解】记4部书籍分别为a 、b 、c 、d ,则从从4部书籍中任意抽取2部的基本事件为ab 、ac 、ad 、bc 、bd 、cd 共有6个,抽到《几何原本》的基本事件为ab 、ac 、ad 共有3个,所以抽到《几何原本》的概率为:3162P ==. 故选:A.4.过点()1,0-的直线l 与圆C :222440x y x y +-+-=相交于A ,B 两点,弦AB 长的最小值为( )A .1BC .2D .【答案】C【分析】判断点(1,0)-在圆C 内,根据当l 垂直于圆心与定点所在直线时,弦长||AB 最短,代入公式||AB =.【详解】∵圆C :222440x y x y +-+-=,即:22(1)(2)9x y -++=, ∴圆C 的圆心(1,2)C -,半径为3. 又∵22(11)(02)9--++<, ∴点(1,0)M -在圆C 内, ∴当l CM ⊥时,弦长||AB 最短. 又∵||CM ==∴||2AB ===. 故选:C.5.已知等比数列{}n a 满足220n n a a +-=,10n n a a +<,12a =,则6a 的值为( ) A .4 B.-C .8 D.-【答案】D【分析】由10n n a a +<得出0q <,再由通项结合220n n a a +-=得出q ,进而得出6a 的值. 【详解】设公比为q ,110,0n n n na a a q a ++<∴=<. 220n n a a +-=,111120n n a q a q +-∴-=.即()12220n qq--=,解得q =55612(a a q ==⨯=-故选:D6.已知直线1l :()31302a x y +++=和直线2l :210x ay ++=,则12l l ∥的充要条件为( ) A .2a = B .3a =- C .25a =-D .2a =或3a =-【答案】B【分析】根据两直线平行得出关于实数a 的方程,解出即可. 【详解】∵12//l l ,∴313221a a +=≠,即:2602? a a a ⎧+-=⎨≠⎩,解得:3a =-.故选:B.7.碳14的半衰期为5730年.在考古中,利用碳14的半衰期可以近似估计目标物所处的年代.生物体内碳14含量y 与死亡年数x 的函数关系式是5730012x y A ⎛⎫= ⎪⎝⎭(其中0A 为生物体死亡时体内碳14含量).考古学家在对考古活动时挖掘到的某生物标本进行研究,发现该生物体内碳14的含量是原来的60%,由此可以推测到发掘出该生物标本时,该生物体在地下大约已经过了(参考数据:lg 20.3≈,lg30.5≈)( )A .2292年B .3580年C .3820年D .4728年【答案】C【分析】运用对数运算性质解方程即可.【详解】由题意知,5730001()0.62xA A =,所以16lg lg 5730210x =,即lg 2lg 61lg 2lg310.30.510.25730x -=-=+-≈+-=-, 即:lg 20.25730x-≈-,解得:0.20.2573057303820lg 20.3x ≈⨯≈⨯=(年). 故选:C.8.若22lg 2lg 5a =+,ln 44b =,ln 55c =,则,,a b c 的大小关系为( ) A .a b c << B .a c b << C .b a c << D .c b a <<【答案】D【分析】根据,b c 的形式可构造函数()()ln 3xf x x x=>,利用导数可求得()f x 单调性,由()()45f f >可得,b c 大小关系;根据基本不等式和对数运算可求得12a b >>,由此可得结果. 【详解】令()()ln 3x f x x x =>,则()1ln 0xf x x -'=<,f x 在()3,+∞上单调递减,()()45f f ∴>,即ln 4ln 545>,c b ∴<; ()2222lg 2lg5lg 2lg 5lg 2lg52lg 2lg512lg 2lg5122+⎛⎫+=+-=->-⨯ ⎪⎝⎭111242=-⨯=,12a ∴>, 又2ln 4ln 2111ln 2ln e 44222b ===<=,b a ∴<,c b a ∴<<. 故选:D.【点睛】关键点点睛:本题考查通过构造函数的方式比较大小的问题,解题关键是能够根据所给数值的共同形式,准确构造函数,将问题转化为同一函数的不同函数值的大小关系比较问题,从而利用函数单调性来确定结果.二、多选题9.如图,在ABC 中,若点D ,E ,F 分别是BC ,AC ,AB 的中点,设AD ,BE ,CF 交于一点O ,则下列结论中成立的是( )A .BC AC AB =- B .1122AD AC AB =+ C .2233AO AC AB =+ D .2233OC AC AB =- 【答案】AB【分析】利用向量的加减法则进行判断.【详解】根据向量减法可得BC AC AB =-,故A 正确; 因为D 是BC 的中点,所以1122AD AC AB =+,故B 正确; 由题意知O 是ABC 的重心, 则()2211133233AO AD AC AB AC AB ==⨯+=+,故C 错误; 221111121()()332333333OC CF CB CA CB CA CA AB CA AC AB =-=-⨯+=--=-+-=-,故D 错误.故选:AB.10.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列说法正确的是( )A .()π2sin 26f x x ⎛⎫=- ⎪⎝⎭B .()f x 的图象关于点5π,012⎛⎫- ⎪⎝⎭对称C .()f x 在3π,π4⎛⎫⎪⎝⎭上单调递增D .若将()f x 的图象向右平移π6个单位长度,则所得图象关于y 轴对称【答案】ABD【分析】根据三角函数的性质以及函数图象变换即可求解. 【详解】由题意可知,7πππ2,212122T A ==-=,则2ππT ω==,则2ω=,所以()()2sin 2f x x ϕ=+,又因为()f x 的图象过点π,012⎛⎫⎪⎝⎭,所以ππ22π2π126k k ϕϕ⋅+=⇒=-+,因为π2ϕ<,所以π6ϕ=-,所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭,故A 正确;()5π5ππ2sin 22sin π012126f ⎡⎤⎛⎫⎛⎫-=⋅--=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故B 正确; 令πππ2π22π,Z 262k xk k ,解得:ππππ,Z 63k xk k ,令1k =可得:5π4π63x ≤≤,所以C 不正确; 将()f x 的图象向右平移π6个单位长度,则πππ2sin 22sin 22cos 662y x x x ⎡⎤⎛⎫⎛⎫=--=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦为偶函数,关于y 轴对称,所以D 正确. 故选:ABD.11.已知双曲线M :()222108x y a a -=>的左、右焦点分别为1F ,2F ,过1F 作M 的一条渐近线的垂线,垂足为A ,连接2AF ,记e 为双曲线M 的离心率,C 为12AF F △的周长,若直线2AF 与另一条渐近线交于点B ,且2AB BF =,则( )A .e =B .22eC .8C =+D .8C =+【答案】AD【分析】不妨设垂足A 在第二象限,从而可求得1AF ,再根据2AB BF =,可得1OB AF ∕∕,则1AF OB k k =,即可求出a ,进而可得离心率,求出直线1AF 斜率,即可得12AF F ∠,再在12AF F △中,利用余弦定理求得2AF 即可.【详解】双曲线M :()222108x y a a -=>的渐近线方程为0bx ay ±=,()1,0F c -, 不妨设垂足A 在第二象限,即点A 在直线0bx ay +=上, 则12222bc AF b a b-===+,因为2AB BF =,所以B 为2AF 的中点, 又因O 为12F F 的中点,所以1OB AF ∕∕, 则1AF OB k k =,即a bb a=,所以228a b ==, 故224c a b =+=, 所以2ce a==, 所以11AF OB k k ==,则12πtan 4AF F ∠=, 在12AF F △中,11222,8AF F F ==,则22221121121222cos 8642228402AF AF F F AF F F AF F =+-∠=+-⨯⨯⨯=, 所以2210AF =,所以12AF F △的周长822210C =++.故选:AD.12.如图,在棱长为2的正方体1111ABCD A B C D -的表面上有一动点G ,则下列说法正确的是( )A .当点G 在线段11A C 上运动时,三棱锥1G ACB -的体积为定值 B .当点G 在线段AC 上运动时,1B G 与11A C 所成角的取值范围为ππ,42⎡⎤⎢⎥⎣⎦C .使得AG 与平面ABCD 所成角为45°的点G 的轨迹长度为π42+D .若P 是线段1AB 的中点,当点G 在底面ABCD 上运动且满足//PG 平面11B CD 时,线段PG 长的最6【答案】ACD【分析】对于选项A ,运用等体积法转化可得;对于选项B ,通过作平行线研究异面直线所成的角;对于选项C ,通过线面垂直找到线面角,再根据线面角可得点G 的轨迹计算即可.对于选项D ,通过面面平行的判定定理证得面1A BD //面11B CD ,从而得到点G 的轨迹,在PBD △中,运用等面积法求得PG 的最小值.【详解】对于选项A ,因为1CC ⊥面1111D C B A ,11B D ⊂面1111D C B A ,所以111CC B D ⊥, 当点G 在线段11A C 上运动时, 因为1111B D A C ⊥,111B D CC ⊥,1111AC CC C =,11A C 、1CC ⊂面11ACC A ,所以11B D ⊥面11ACC A , 又因为11//AC A C ,所以111111111111111422222323223223G ACB B AGC AGC V V S B D AC AA B D --==⨯=⨯⨯⨯⨯=⨯⨯⨯⨯△.所以三棱锥1G ACB -的体积为定值43,故选项A 正确;对于选项B ,因为11//AC A C ,所以异面直线1B G 与11A C 所成角为1B GC ∠或其补角,在△1AB C 中,1122AB BC AC ===1π3B CG ∠=, 所以1ππ32B GC ≤∠≤,故1B G 与11A C 所成角的取值范围为ππ[,]32,故选项B 错误;对于选项C ,∵1BB ⊥面ABCD ,则145B AB ︒∠=,∴当G 在线段1AB 上时,AG 与面ABCD 所成角为45︒,122AB =, 同理:当G 在线段1AD 上时,AG 与面ABCD 所成角为45︒,122AD =, 若点G 在面1111D C B A 上,∵面ABCD //面1111D C B A , ∴AG 与面1111D C B A 所成角为45︒,又∵1AA ⊥面1111D C B A ,1AG ⊂面1111D C B A , ∴11AA A G ⊥,145A GA ︒∠=, ∴112AG AA ==, ∴点G 在以1A 为圆心 ,2为半径的圆上, 又∵点G 在面1111D C B A 上,∴点G 在圆与四边形1111D C B A 的交线11B D 上,∴11B D 的长为12ππ4r ⨯=,∴点G 的轨迹长度为11112222ππ42B D AB AD l ++=++=+, 故选项C 正确;对于选项D ,连接DP 、DB ,取AB 的中点E ,连接DE 、PE ,则1//PE AA ,1AA ⊥平面ABCD ,所以PE ⊥平面ABCD ,DE ⊂平面ABCD ,所以PE DE ⊥,如图所示,∵11//BB DD 且11=BB DD , ∴四边形11BDD B 为平行四边形, ∴11//BD B D ,又∵BD ⊄面11B CD ,11B D ⊂面11B CD ,∴//BD 面11B CD , 同理1//A B 面11B CD , 又∵1BDA B B =,BD 、1A B ⊂面1A BD ,∴面1A BD //面11B CD , 又∵//PG 面11B CD , ∴∈G 面1A BD ,又∵∈G 面ABCD ,面1A BD面ABCD BD =,∴G BD ∈,即:G 的轨迹为线段BD . ∴当PG BD ⊥时,PG 最短.在Rt DAB 中,2AD AB ==,1AE =,所以BD =,DE ,在1Rt A AB △中,112PB A B ==在Rt PED 中,1PE =,所以PD =在PBD △中,因为222PB PD BD +=,所以PB PD ⊥,所以由等面积法得1122PBD S PB PD BD h =⋅=⋅△,即:1122=⨯,解得:h =线段PG 故选项D 正确. 故选:ACD.三、填空题13.为估计某中学高一年级男生的身高情况,随机抽取了25名男生身高的样本数据(单位:cm ),按从小到大排序结果如下164.0164.0165.0165.0166.0167.0167.5168.0168.0170.0170.0170.5171.0171.5172.0172.0172.5172.5173.0174.0174.0175.0175.0176.0176.0据此估计该中学高一年级男生的第75百分位数约为___________. 【答案】173【分析】根据百分位数的定义求解即可. 【详解】由75%2518.75⨯=,所以该中学高一年级男生的第75百分位数为第19个数,即173. 故答案为:17314.若正数x ,y 满足112x y+=,则9x y +的最小值是___________. 【答案】8【分析】利用常数“1”代换结合基本不等式进行求解. 【详解】因为112xy +=,则11112x y ⎛⎫+= ⎪⎝⎭, ()111191999101028222y x y x x y x y x y x y x y ⎛⎫⎛⎫⎛⎫+=+⋅+=⋅++≥+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当且仅当9y x x y =,即2,23x y ==时等号成立, 所以9x y +的最小值是8. 故答案为:8.15.已知等腰三角形底角的正切值为52,则顶角的正弦值是___________.【答案】459##459 【分析】由倍角公式结合同角三角函数的基本关系求解.【详解】如下图所示,等腰三角形ABC ,其中A 为顶角,因为5tan 2B =,所以 ()2222sin cos 2tan 545sin sin 2sin 22sin cos 5sin cos tan 1914B B B A B B B B B B B π=-======+++.故答案为:45916.已知函数()f x 的定义域为R ,()32y f x =++是偶函数,当3x ≥时,()2log f x x =,则不等式()()221f x f x +>-的解集为___________.【答案】533x x x ⎧⎫-⎨⎬⎩⎭或【分析】运用函数的奇偶性可得()f x 关于3x =对称,再运用函数的单调性、对称性可得|21||4|x x ->-,解绝对值不等式即可.【详解】∵(3)2y f x =++是偶函数,∴(3)2(3)2f x f x ++=-++,即:(3)(3)f x f x +=-+∴()f x 关于3x =对称.∵当3x ≥时,2()log f x x =,∴()f x 在[3,)+∞上单调递增,又∵(22)(1)f x f x +>-,∴|223||13|x x +->--,即:|21||4|x x ->-,∴22(21)(4)x x ->-,即:234150x x +->,解得:3x <-或53x >. 故答案为:{|3x x <-或5}3x >.四、解答题17.已知数列{}n a 是递增的等比数列,n S 为{}n a 的前n 项和,满足22a =,37S =(1)求{}n a 的通项公式;(2)若数列2log n n b a =,求数列{}n b 的前n 项和n T .【答案】(1)12n n a -=(2)()12n n n T -=【分析】(1)根据等比数列单调性和通项公式可构造方程求得公比q ,进而得到n a ;(2)利用等差数列求和公式可求得n T .【详解】(1)设等比数列{}n a 的公比为q ,{}n a 为递增的等比数列,220a =>,1q ∴>,23222227a S a a q q q q ∴=++=++=,解得:12q =(舍)或2q ,2122n n n a a q --∴==.(2)由(1)得:12log 21n n b n ,又10b =,11n n b b +-=,∴数列{}n b 是以0为首项,1为公差的等差数列,()()01122n n n n n T +--∴==. 18.已知ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且满足()2cos cos 0c a B b C -+=(1)求ABC ∠;(2)如图,点D 在AC 延长线上,且CD BC =,4AB =,7AD =,求ABC 的面积.【答案】(1)π3. 333 【分析】(1)由正弦定理边化角及和角公式化简可得结果;(2)在△ABC 中应用余弦定理解得BC 的值,代入三角形面积公式计算即可.【详解】(1)∵()2cos cos 0c a B b C -+=,∴由正弦定理得()sin 2sin cos sin cos 0C A B B C -+=,即sin cos 2sin cos sin cos 0C B A B B C -+=,()sin 2sin cos B C A B +=,即sin 2sin cos A A B =, ∵ sin 0A ≠,∴ 1cos 2B = 又∵()0,πB ∈,∴ 3B π=. (2)设CD x =,则7AC x =-, 在△ABC 中,()22247π1cos 3242x x x +--==⨯,解得:3310x = 则△ABC 的面积11333333sin 423210ABC S AB BC π=⨯⨯⨯=⨯⨯△19.2022年,某市教育体育局为了解九年级语文学科教育教学质量,随机抽取100名学生参加某项测试,得到如图所示的测试得分(单位:分)频率分布直方图.(1)根据测试得分频率分布直方图,求a 的值;(2)根据测试得分频率分布直方图估计九年级语文平均分;(3)猜测平均数和中位数(不必计算)的大小存在什么关系?简要说明理由.【答案】(1)0.007a =(2)79.2(3)中位数大于平均数,理由见解析【分析】(1)由频率之和等于1,得出a 的值;(2)由频率分布直方图求平均数的方法求解;(3)观察频率分布直方图数据的分布,得出平均数和中位数的大小关系.【详解】(1)解:()0.0030.0050.0150.02201a ++++⨯=解得0.007a =(2)语文平均分的近似值为()0.003300.005500.015700.02900.00711020⨯+⨯+⨯+⨯+⨯⨯79.2=, 所以,语文平均分的近似值为79.2.(3)中位数大于平均数.因为和中位数相比,平均数总在“长尾巴”那边.20.如图,三棱柱111ABC A B C 为直三棱柱,侧面11ABB A 是正方形,2AB AC ==,D 为线段11A B 上的一点(不包括端点)且1AC CD ⊥(1)证明:AC AB ⊥;(2)当点D 为线段11A B 的中点时,求直线1AC 与平面BCD 所成角的正弦值【答案】(1)证明见解析 (2)22【分析】(1)法一:由线面垂直的判定定理证得11A B ⊥平面11AAC C ,则11A B AC ⊥,又11//AB A B ,所以AB AC ⊥.法二:设1B D k AB =,由空间向量基本定理表示出1,AC CD ,由1AC CD ⊥可得10AC CD ⋅=,代入化简即可得出AC AB ⊥.(2)建立空间直角坐标系,分别求出直线1AC 的方向向量和平面BCD 的法向量,由线面角的向量公式求解即可.【详解】(1)法一:证明:连接1A C ,在直三棱柱111ABC A B C 中,∵1AB AC A A ==,∴四边形11ACC A 是正方形,∴11A C AC ⊥,又∵1AC CD ⊥且1CD AC C ⋂=,1,CD AC ⊂平面1A CD , ∴1AC ⊥平面1A CD ,因为11A B ⊂平面1A CD ,∴111AC A B ⊥,又∵111A B AA ⊥,11,AC AA ⊂平面11AAC C ,11A AC AA ⋂=,∴11A B ⊥平面11AAC C ,AC ⊂平面11AAC C ,∴11A B AC ⊥,又∵11//AB A B ,∴AB AC ⊥,法二:证明:设1B D k AB =,11AC AC AA =+,()()()1111CD CB BD AC BB B B AB D k AB AC B =+=-++=+-+∵1AC CD ⊥,∴10AC CD ⋅=,即()()1111111k AB AC AC AC BB AC k AB AA AC AA BB AA +⋅-⋅+⋅++⋅-⋅+⋅()1400040k AB AC =+⋅-++-+=又∵点D 不与11A B 的端点重合,∴10k +≠,∴0AB AC ⋅=,即AC AB ⊥.(2)由(1)得AC ,AB ,1AA 两两互相垂直,如图建立空间直角坐标系,()0,0,0A ,()12,0,2C ,()2,0,0C ,()0,2,0B ,()0,1,2D()12,0,2AC =,()0,1,2BD =-,()2,1,2CD =-设平面BCD 的法向量为(),,n x y z =0202200n BD y z x y z n CD ⎧⋅=-+=⎧⎪⇒⎨⎨-++=⋅=⎩⎪⎩,令2x =,则2,1==y z , 可求得()2,2,1n =设直线1AC 与平面BCD 所成角为θ, 11162sin cos 62AC nAC n AC n θ⋅=⋅===⋅, ∴直线1AC 与平面BCD 2 21.已知31,22a ⎛⎫=- ⎪ ⎪⎝⎭,π2πcos ,sin 33b x x ωω⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,0ω>,设()f x a b =⋅ (1)若函数()y f x =图象相邻的两对称轴之间的距离为π,求()f x ;(2)当函数()y f x =在定义域内存在1x ,()212x x x ≠,使()()1212f x f x +=,则称该函数为“互补函数”.若函数()y f x =在π3π,22⎡⎤⎢⎥⎣⎦上为“互补函数”,求ω的取值范围.【答案】(1)()sin f x x =(2)3ω≥【分析】(1)根据数量积的坐标公式及辅助角公式将函数()f x 化简,再根据()y f x =相邻的对称轴距离为π求出ω,即可得解;(2)分3ππ222T -≥、3ππ22T -<、3ππ222T T ≤-<三种情况讨论,分别求出ω的取值范围,即可得解.【详解】(1)解:因为31,22a ⎛⎫=- ⎪ ⎪⎝⎭,π2πcos ,sin 33b x x ωω⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()3π12πcos sin2323f x a b x x ωω⎛⎫⎛⎫=⋅=--+ ⎪ ⎪⎝⎭⎝⎭ π1πππsin sin sin 32333x x x x ωωωω⎡⎤⎛⎫⎛⎫⎛⎫=-+-=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 又因为函数()y f x =相邻的对称轴距离为π,所以2πT =,即2π2πω=,解得1ω=,所以()sin f x x =.(2)解:因为函数()sin x y f x ω==在π3π,22⎡⎤⎢⎥⎣⎦上为“互补函数”, 函数()y f x =在定义域内存在1x ,()212x x x ≠使()()1212f x f x +=,即()()122f x f x +=, ①当3ππ222T -≥,即3ππ2π2220ωω⎧-≥⋅⎪⎨⎪>⎩,解得4ω≥,显然成立; ②当3ππ22T -<,即3ππ2π220ωω⎧-<⎪⎨⎪>⎩,解得02ω<<时,显然不成立; ③当3ππ222T T ≤-<时,即24ω≤<时, 所以ππ223π5π22ωω⎧≤⎪⎪⎨⎪≥⎪⎩或者π5π223π9π22ωω⎧≤⎪⎪⎨⎪≥⎪⎩或者π9π223π13π22ωω⎧≤⎪⎪⎨⎪≥⎪⎩, 解得ω的取值范围为34ω≤<,综上所述3ω≥.22.已知曲线C :()222210x y a b a b +=>>,且点M ⎛ ⎝⎭和点N ⎛ ⎝⎭在曲线C 上. (1)求曲线C 的方程;(2)若点O 为坐标原点,直线AB 与曲线C 交于A ,B 两点,且满足OA OB ⊥,试探究:点O 到直线AB 的距离是否为定值.如果是,请求出定值;如果不是,请说明理由【答案】(1)2213x y += (2)【分析】(1)方法1:待定系数法(代入曲线的标准方程中)求得椭圆的方程. 方法2:待定系数法(代入曲线的一般式方程中)求得椭圆的方程.(2)分类讨论①若直线AB 斜率存在时,由韦达定理及0OA OB ⋅=可得2k 与2m 的关系式,代入计算点O 到直线AB 的距离即可. ②当直线AB 的斜率不存在时检验也成立.【详解】(1)方法1:由已知M ⎛ ⎝⎭及点N ⎛ ⎝⎭在曲线C 上, 则2222161938199a b ab ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:2231a b ⎧=⎨=⎩, 所以曲线C 的方程为2213x y +=. 方法2:由已知可设曲线C 的方程为221mx ny +=,(0)n m >>,因为M ⎛ ⎝⎭及点N ⎛ ⎝⎭在曲线C 上, 则61938199m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:131m n ⎧=⎪⎨⎪=⎩ , 所以曲线C 的方程为2213x y +=. (2)设()11,A x y ,()22,B x y ,①若直线AB 斜率存在,设直线的方程为y kx m =+,则:22330y kx m x y =+⎧⎨+-=⎩ 消去y 后得()222136330k x kmx m +++-=,则222222Δ364(13)(33)3612120k m k m k m =-+-=-+>, 122613km x x k +=-+,21223313m x x k -=+, 由OA OB ⊥知,()()()()2212121212121210x x y y x x kx m kx m k x x km x x m +=++⋅+=++++=22433m k ⇒=+,此时0∆>,又点O 到直线AB的距离d所以d ==.②当直线AB 的斜率不存在时,A 、B 两点关于x 轴对称, 而且当11x y =时,代入方程2213x y +=,可得1x = 所以直线AB的方程为x =, 此时O 点到直线AB的距离d =. 综上所述,点O 到直线AB。
2022-2023学年北京市昌平区高二上学期期末质量检测数学试题一、单选题1.已知直线:20+-=l x y ,则直线l 的倾斜角为( )A .π4B .π2C .2π3D .3π4【答案】D【分析】将直线方程化成斜截式,可得直线的斜率,再根据斜率和倾斜角的关系即可得答案. 【详解】解:因为直线:20+-=l x y , 化成斜截式为2y x =-+, 所以直线l 的斜率1k =-, 设直线l 的倾斜角为θ, 则有tan 1θ=-, 又因为[0,π)θ∈, 所以3π4θ=. 故选:D2.已知()(),1,2,2,,1a x b y =-=,且a b ∥,则xy =( ) A .92- B .2 C .2- D .8【答案】B【分析】先利用向量平行充要条件求得14,2x y =-=-,进而求得xy 的值.【详解】()(),1,2,2,,1a x b y =-=,且a b ∥,则()1201120xy y -⨯=⎧⎨⨯--=⎩,解之得124y x ⎧=-⎪⎨⎪=-⎩,则()1422xy =-⨯-= 故选:B3.椭圆221259x y +=的右焦点坐标为( )A .()5,0-B .()3,0C .()4,0D .()5,0【答案】C【分析】利用椭圆的标准方程判断其焦点位置并求得c ,从而得解.【详解】因为椭圆221259x y +=,所以椭圆焦点落在x 轴上,2225,9a b ==, 所以22225916c a b =-=-=,则4c =,所以椭圆221259x y +=的右焦点坐标为(),0c ,即()4,0. 故选:C.4.已知正方体11111,,,ABCD A BC D AB a AD b AA c -===,点E 是1BB 的中点,则DE =( )A .12a b c ++B .12a b c +-C .12a b c --D .12a b c -+【答案】D【分析】先用空间向量的减法表示DB ,然后再用空间向量的加法表示DE . 【详解】在正方体1111ABCD A B C D -中, ,AB a AD b ==, 则DB AB AD a b =-=-, 又点E 是1BB 的中点,则11111222BE BB AA c ===, 所以12DE DB BE a b c =+=-+.故选:D.5.在5(3)x -的展开式中,3x 的系数为( ) A .270- B .90- C .90 D .270【答案】C【分析】利用二项展开式通项即可求得3x 的系数 【详解】5(3)x -的展开式的通项515C (3)r rr r T x-+=-令53r -=,则2r =,则3x 的系数为225C (3)90-=故选:C6.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若,,m n αβαβ⊂⊂∥,则m n ∥ B .若,,m n αβαβ⊥∥∥,则m n ⊥ C .若,,m n m n αβ⊥∥∥,则αβ⊥ D .若,,m n m n αβ⊥⊥∥,则αβ∥ 【答案】C【分析】利用长方体模型举反例排除A ,B ,D ,再证明C 正确即可. 【详解】作长方体1111ABCD A B C D -,对于选项A ,取平面α为平面ABCD ,平面β为平面1111D C B A ,直线m 为直线BC ,直线n 为直线11C D ,则,,m n αβαβ⊂⊂∥,但直线,m n 异面,选项A 错误;对于选项B ,取平面α为平面ABCD ,平面β为平面11A B BA ,直线m 为直线11C D ,直线n 为直线1CD ,则,,m n αβαβ⊥∥∥,但直线,m n 不垂直,选项B 错误;对于选项D ,取平面α为平面ABCD ,平面β为平面11A B BA ,直线m 为直线1C C ,直线n 为直线11C D ,则,,m n m n αβ⊥⊥∥,但平面,αβ垂直,选项D 错误; 对于选项C ,如图过直线n 作平面γ与平面β相交,且l βγ=,因为//n β,γ⊂n ,l βγ=,所以//n l ,又//m n ,所以//m l ,因为//m l ,m α⊥,所以l α⊥,又l β⊂,所以αβ⊥,选项C 正确.故选:C.7.“2m =”是“双曲线2221y x m-=的渐近线方程为2y x =±”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】双曲线渐近线方程为by x a=±,再结合充分条件和必要条件的定义判断即可. 【详解】若2m =,则22212y x -=,则渐近线方程为2y x =±;若渐近线方程为2y x =±,则21m b a ==,则2m =±, 故“2m =”是“双曲线2221y x m-=的渐近线方程为2y x =±”的充分而不必要条件,故选:A.8.已知直线:1l y kx =-与曲线2:14xC y =-有公共点,则实数k 的取值范围是( )A .11,22⎡⎤-⎢⎥⎣⎦B .[]22-,C .][(),22,∞∞--⋃+D .11,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】D【分析】根据曲线方程可得曲线C 为椭圆2214x y +=的上半部分包括x 轴上的部分,由直线经过定点()0,1P -,数形结合即可求解.【详解】将214x y =-得()22104x y y +=≥,故曲线C 为椭圆2214x y +=的上半部分包括x 轴上的部分,:1l y kx =-经过定点()0,1P -,曲线C 与x 轴的交点为()()2,0,2,0A B --,11,22AP PB k k ==-,当直线:1l y kx =-与曲线2:14x C y =-有公共点时,则PB k k ≤ 或AP k k ≥,即12k ≥ 或12k ≤-,故选:D9.某社区征集志愿者参加为期5天的“垃圾分类,全民行动”的宣传活动,要求志愿者每人只参加一天且每天至多安排一人.现有甲、乙、丙3人报名,甲要求安排在乙、丙的前面参加活动,那么不同的安排方法共有( ) A .18种 B .20种C .24种D .30种【答案】B【分析】根据组合以及分步乘法计数原理即可求解.【详解】根据题意可知:需要从5天中选择3天分别安排甲乙丙3名志愿者,且甲在乙丙的前面, 第一步:从5天中选择3天,共有35C 10=种选择,第二步:将甲乙丙按照“甲乙丙”或者“甲丙乙”的顺序安排在已选好的3天中,共有2种选择, 根据分步乘法计数原理得:不同的安排方法共有21020⨯=, 故选:B10.已知正四棱锥P ABCD -的八条棱长均为4,S 是四边形ABCD 及其内部的点构成的集合.设集合{}|3T Q S PQ =∈≤,则T 表示的区域的面积为( )A .3π4B .πC .2πD .3π【答案】B【分析】由题意,相当于求出以P 为球心,3为半径的球与底面ABCD 的截面圆的半径后,即可求区域的面积.【详解】解:设顶点P 在底面上的投影为O ,连接BO ,则O 为正方形ABCD 的中心,如图,且124222BO ==2216822PO PB OB --=因为当3PQ =时,故221OQ PQ PO =-=,故T 的轨迹为以O 为圆心,1为半径的圆上以及圆内,而正方形ABCD 内切圆的圆心为O ,半径为21>,故T 的轨迹在正方形ABCD 内部,故其面积为π. 故选:B.二、填空题11.已知直线12:210,:310l ax y l x y ++=-+=.若12l l ⊥,则实数=a __________. 【答案】6【分析】根据两直线一般式中垂直满足的关系即可求解. 【详解】由于12l l ⊥,所以230a -⨯=,解得6a = 故答案为:612.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中偶数共有__________个.(用数字作答) 【答案】12【分析】由分步乘法计数原理结合排列组合直接求解即可.【详解】根据题意,要使组成无重复数字的三位数为偶数,则从0,2中选一个数字为个位数,有2种可能,从1,3,5中选两个数字为十位数和百位数,有23A 326=⨯=种可能,故这个无重复数字的三位数为偶数的个数为2612⨯=. 故答案为:12.13.若423401234(12)x a a x a x a x a x +=++++,则13a a +=__________.(用数字作答)【答案】40【分析】利用赋值法求解.【详解】解:由423401234(12)x a a x a x a x a x +=++++,令1x =,得0123481++++=a a a a a , 令=1x -,得012341a a a a a -+-+=, 两式联立得1340a a +=, 故答案为:4014.数学中有许多形状优美、寓意美好的曲线,曲线:G 224x y xy +=+就是其中之一(如图).给出下列四个结论:①曲线G 有且仅有四条对称轴;②曲线G 上任意两点之间的距离的最大值为6;③曲线G 恰好经过8个整点(即横坐标、纵坐标均为整数的点); ④曲线G 所围成的区域的面积大于16. 其中所有正确结论的序号是__________. 【答案】①③④【分析】设点()00,P x y 是曲线G 上任意一点,分别求出点()00,P x y 关于x 轴、y 轴、直线y x =、直线y x =-对称的点,检验是否满足方程可得有四条对称轴.再由图象知,没有其他的对称轴即可判断①正确;根据基本不等式可得4xy ≤,即有228x y +≤,所以曲线G 上任意一点到原点的距离22d ≤进而可判断②错误;分别令0x =,1x =±,2x =±,可得到8个点的坐标,进而说明当2x 时,不存在这样的点,即可判断③正确;易知曲线G 的范围大于以()2,0-,()2,0,()2,2--,()2,2-,()2,2-,()2,2,()0,2-,()0,2这8个点构成的正方形,又正方形的面积为16,即可得到④正确.【详解】对于①:设点()00,P x y 是曲线G 上任意一点,则有2200004x y x y +=+成立.显然点()00,P x y 关于x 轴的对称点()100,P x y -,点()00,P x y 关于y 轴的对称点()200,P x y -,点()00,P x y 关于直线y x =的对称点()300,P y x ,点()00,P x y 关于直线y x =-的对称点()400,P y x --也满足该式成立,所以x 轴、y 轴、直线y x =、直线y x =-都是曲线G 的对称轴.由图象易得,曲线G 没有其他的对称轴,故①正确;对于②:因为222x y xy +≥,当且仅当x y =时,等号成立.所以有42xy xy +≥,则4xy ≤,所以有2248x y xy +=+≤,即曲线G 上任意一点到原点的距离22822d x y =+又曲线G 的图象关于O 点中心对称,所以曲线G 上任意两点之间的距离的最大值为242d =②错误; 对于③:令0x =,则24y =,解得2y =±,可得点()0,2-,()0,2;令1x =±,则230y y --=,显然y 无整数解;令2x =±,则220y y -=,解得2y =±或0y =,可得点()2,0-,()2,0,()2,2--,()2,2-,()2,2-,()2,2;当3≥x ,29x ≥,此时将224x y xy +=+看做关于y 的方程2240y x x y +--=,此时()()22244163x x x ∆=---=-.因为29x ≥,所以2327x -≤-,则2163110x ∆=-≤-<,方程无解. 综上所述,曲线G 恰好经过8个整点.故③正确;对于④:显然由()2,0-,()2,0,()2,2--,()2,2-,()2,2-,()2,2,()0,2-,()0,2这8个点构成的正方形在曲线G 的内部.正方形的边长为4,面积为16.所以曲线G 所围成的区域的面积大于16.故④正确.故答案为:①③④.三、双空题15.在三棱锥-P ABC 中,PA ⊥底面,,1,2ABC AB AC PA AB AC ⊥===,则异面直线PC 与AB 所成角的大小为__________;点A 到平面PBC 的距离为__________.【答案】π2##90 【分析】以A 为原点,AB 为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出PC 与AB 所成角,根据点面距离的空间向量法即可求解.【详解】在三棱锥-P ABC 中,PA ⊥底面ABC ,,1,2AB AC PA AB AC ⊥===, ∴以A 为原点,AB 为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,则()()()()0,0,0,2,0,0,0,2,0,0,0,1A B C P ,()()0,2,1,2,0,0PC AB =-=,()2,0,1PB =- ,设异面直线PC 与AB 所成角为θ,π02θ<≤则||0cos 0||||PC AB PC AB θ⋅+==,由于π02θ<≤,所以π2θ=, 设平面PBC 的法向量为(),,m x y z =,则2020m PC y z m PB x z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,取1x =,则()1,1,2m =,所以点A 到平面PBC 的距离为200636m AB m⋅++==故答案为:π2616.已知双曲线C 经过点()1,432C 的标准方程为__________;其焦距为__________.【答案】 221779y x -= 270【分析】先分类讨论双曲线C 的焦点在x 轴或是在y 轴上,再由题意求出22,a b 的值,从而得出双曲线C 的标准方程及其焦距.【详解】当双曲线C 的焦点在x 轴上时,可设双曲线C 为:22221,(0,0)x ya b a b-=>> ,离心率为22321c b e a a ==+,则2218116b a +=,2219b a =,229a b =,又因为双曲线C 经过点()1,4,则有221161a b -=,联立方程222291161a b a b⎧=⎪⎨-=⎪⎩ ,解得2159b =- ,不符合题意;当双曲线C 的焦点在y 轴上时,可设双曲线C 为:22221,(0,0)y xa b ab-=>> ,离心率为223214c b e a a ==+,则2218116b a +=,2219b a =,229a b =,又因为双曲线C 经过点()1,4,则有221611a b -=,联立方程222291611a b a b⎧=⎪⎨-=⎪⎩ ,解得279b =,27a =, 则222770799c a b =+=+=,所以70c =,则双曲线C 的标准方程为221779y x -=. 故答案为:221779y x -=.四、解答题17.已知圆C 的圆心坐标为()1,0C,且经过点(P . (1)求圆C 的标准方程;(2)若过点P 作圆C 的切线l 与x 轴交于点M ,求直线l 的方程及PCM △的面积. 【答案】(1)()2214x y -+=(2)30x -+=;【分析】(1)利用待定系数法设出圆的标准方程,代入即可求解.(2)首先利用点斜式设出直线方程,再利用直线与圆相切的条件求出斜率,即可得到直线方程,再结合三角形为直角,即可求解面积.【详解】(1)有题意可知,设圆的方程为()2221x y r -+=,又因为(P 在圆上,则()22201r -+=,则24r =,故圆的方程为()2214x y -+=.(2)由题意知,直线的斜率存在,则设直线方程为()0y k x =-,即0-=kx y ,因为直线与圆相切,则圆心到直线的距离2d ==,解得k =则直线方程为30x +=.则M 点坐标为()30-,,根据题意知,PCM △为直角三角形,其中PM =2PC ,所以PCM △的面积为11222PM PC ⨯⨯=⨯=18.如图,在三棱柱111ABC A B C 中,1C C ⊥平面1,,1ABC AC BC CA CC CB ⊥===.(1)求证:1AC ⊥平面1A BC ;(2)求直线1C C 与平面1A BC 所成角的大小.【答案】(1)证明见解析(2)45【分析】(1)先说明11ACC A 为正方形,即11AC AC ⊥,再证明BC ⊥平面11ACC A,即1AC BC ⊥,根据线面垂直的判定定理即可证明;(2)根据(1)中结论1AC ⊥平面1A BC ,则直线1C C 与平面1A BC 所成角即为11C CA ∠,在正方形11ACC A 求出该角即可.【详解】(1)证明:1C C ⊥平面ABC ,AC ⊂平面ABC ,1C C AC ∴⊥, 1AC CC =,∴平行四边形11ACC A 为正方形,11AC AC ⊥∴, 1C C ⊥平面ABC ,BC ⊂平面ABC1C C BC ∴⊥,BC AC ⊥,1AC CC C =,AC ⊂平面11ACC A ,1CC ⊂平面11ACC A ,BC ∴⊥平面11ACC A ,1AC ⊂平面11ACC A ,1AC BC ∴⊥,1,BC AC C BC =⊂平面1A BC ,1AC ⊂平面1A BC , 1AC ∴⊥平面1A BC 得证;(2)记1AC 与1A C 交点为D ,由(1)知1AC ⊥平面1A BC ,所以1C D ⊥平面1A BC ,故直线1C C 与平面1A BC 所成角为11C CA ∠,由(1)知平行四边形11ACC A 为正方形,1145C CA =∴∠,故直线1C C 与平面1A BC 所成角为45.19.已知抛物线2:2(0)C y px p =>经过点()1,2.(1)求抛物线C 的方程及其准线方程;(2)设()1,4M ,直线:l y x b =+与抛物线C 有两个不同的交点,A B .若MAB △是以AB 为底边的等腰三角形,求证:直线l 经过抛物线C 的焦点.【答案】(1)24y x =,=1x -(2)证明见解析【分析】(1)应用点在抛物线上即可求出p ,即可求出抛物线C 的方程及其准线方程;(2)直线方程和抛物线联立方程组,再把等腰三角形转化为斜率关系,列式计算即可求出b ,进而得证.【详解】(1)因为抛物线2:2(0)C y px p =>经过点()1,2,所以42p =,所以抛物线C 的方程为24y x =,准线方程为=1x -;(2)设()()1122,,,A x y B x y ,AB 中点1212,22x x y y T ++⎛⎫ ⎪⎝⎭ 联立方程组24y x y x b⎧=⎨=+⎩,可得()24x b x +=,即()22240x b x b +-+= 可得()222440b b ∆=-->,即1b >, 1221242x x b x x b+=-⎧⎨=⎩,则12124y y x b x b +=+++=,所以()2,2T b -, 因为MAB △是以AB 为底边的等腰三角形,所以MT AB ⊥,即可得1MT AB k k ⨯=-,又因为1AB k =,()1,4M ,()2,2T b -,则21MT k b =-,即得2111b ⨯=--所以1b所以:1l y x =-,经过抛物线C 的焦点()1,0.20.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PD ⊥平面,2ABCD DA DC DP ===,点M 在棱PC 上,且PA //平面BDM .(1)求证:M 是棱PC 的中点;(2)再从条件①、条件②这两个条件中选择一个作为已知,求:(i )二面角M BD C --的余弦值;(ii )在棱PA 上是否存在点Q ,使得BQ ⊥平面BDM ?若存在,求出PQ PA的值;若不存在,说明理由.条件①:60BAD ∠=︒;条件②:2BD =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)证明见解析(2)(i 21;(ii )不存在点Q ,理由见解析【分析】(1)连结AC ,交BD 于F ,连结MF ,又线面平行的性质可推导出//PA MF ,由此能证明结论;(2)由已知分析,选择条件①:60BAD ∠=︒,或选择条件②:2BD =,均可得ABD △为正三角形,取AB 中点N ,连接DN ,建立空间直角坐标系,根据空间向量的坐标运算求解二面角M BD C --的余弦值及验证是否存在点Q ,使得BQ ⊥平面BDM 即可.【详解】(1)证明:连接AC 交BD 于F ,连接MF则MF 是平面PAC 与平面BDM 的交线,//PA 平面BDM ,PA ⊂平面PAC ,//PA MF ∴.又底面ABCD 为平行四边形,则F 是AC 的中点,M ∴是棱PC 的中点,(2)解:因为底面ABCD 为平行四边形,又2DA DC ==,则底面ABCD 为菱形,选择条件①:60BAD ∠=︒,或选择条件②:2BD =,均可得ABD △为正三角形.取AB 中点N ,连接DN ,则DN AB ⊥,即DN DC ⊥又PD ⊥平面ABCD ,,DQ DC ⊂平面ABCD ,所以,PD DN PD DC ⊥⊥,如图以D 为原点,,,DN DC DP 为,,x y z 轴建立空间直角坐标系,则()))()()()0,0,0,3,1,0,3,1,0,0,2,0,0,0,2,0,1,1D A B C P M -, (i )由于PD ⊥平面ABCD ,则()0,0,2DP =时平面BCD 的一个法向量,设平面BDM 的法向量为(),,n x y z =,又()()3,1,0,0,1,1DB DM ==,所以0000DB n y y y z y z DM n ⎧⎧⋅=+==⎪⎪⇒⇒⎨⎨+==-⎪⎪⋅=⎪⎩⎩⎩,令1x =得(1,3,n =-,则23cos ,27DP nDP n DP n ⋅===⨯⋅M BD C --为锐角, 所以二面角M BD C --;(ii )若在棱PA 上否存在点Q,设PQ PA λ=,则PQ PA λ=,且[]0,1λ∈,所以())1,2,,2PQ λλλ=--=--, 则()))1,2,,21,22BQ BP PQ λλλλ=+=--+--=---, 若BQ ⊥平面BDM ,则//BQ n = 故在棱PA 上不存在点Q ,使得BQ ⊥平面BDM .21.已知椭圆222:1(02)4x y G b b +=<<其左、右顶点分别为12,A A ,过点()1,0P 作与x 轴不重合的直线l 交椭圆G 于点,M N (点M 在x 轴的上方).(1)求椭圆G 的方程; (2)若线段MN l 的方程; (3)设直线12,A M A N 的斜率分别为12,k k ,试判断12k k 是否为定值?若是定值,求出这个定值,并加以证明;若不是定值,说明理由.【答案】(1)22142x y += (2)10x y --=或10x y +-=(3)12k k 为定值13,理由见解析.【分析】(1)根据椭圆离心率公式e ,代入计算,即可得到椭圆方程; (2)设直线l 的方程为1x my =+,0m ≠,联立直线与椭圆方程,结合弦长公式列出方程,即可得到结果.(3)设l 的方程为1x my =+,0m ≠,设()11,M x y ,()22,N x y ,然后将直线方程与椭圆的方程联立方程组,消去x ,再利用根与系数的关系得12223m y y m +=-+,12233y y m =-+,然后求11122222y k x y k x +=-,化简可得答案;【详解】(1)因为椭圆222:1(02)4x y G b b +=<<即e =,解得22b = 所以椭圆方程为22142x y += (2)根据题意设直线l 的方程为1x my =+,0m ≠ 联立直线与椭圆方程可得221142x my x y =+⎧⎪⎨+=⎪⎩,消去x 得()222230m y my ++-= 则240b ac ∆=->,即()222412216240m m m ∆=++=+> 由韦达定理可得12122223,22m y y y y m m --+==++由弦长公式可得12MN y -==即()()42228513081310m m m m +-=⇒+-= 所以21m =或2138m =-(舍) 即1m =±所以直线l 的方程为10x y --=或10x y +-= (3)12k k 为定值13,理由如下: 设l 的方程为1x my =+,0m ≠, 设()11,M x y ,()22,N x y ,不妨设210y y <<. 由221142x my x y =+⎧⎪⎨+=⎪⎩可得()222230m y my ++-=, 2Δ16240m =+>,12222m y y m +=-+,12232y y m =-+. 所以121223y y m y y +=,即()121223my y y y =+.且12121212,22A M A N y y k k k k x x ====+- 11122222y k x y k x +=- 121222y x x y -=+ ()()1212112122133y my myy y my y my y y --==++()()12112232332y y y y y y +-=++12121312239322y y y y +==+. 综上所述:1231k k =.。
大兴区2023~2024学年度第一学期高二期末检测数学(答案在最后)1.本试卷共4页,共两部分,21道小题.满分150分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用2B 铅笔作答,其他题用黑色字迹签字笔作答.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.椭圆22194x y +=的长轴长为()A.4B.5C.6D.9【答案】C 【解析】【分析】由椭圆的方程即可得出答案.【详解】由22194x y +=可得29a =,则26a =.故选:C .2.双曲线22142x y -=的渐近线方程为()A.y x =±B.22y x =±C.y =D.12y x =±【答案】B 【解析】【分析】直接由渐近线的定义即可得解.【详解】由题意双曲线22142x y -=的渐近线方程为22042x y -=,即2y x =±.故选:B.3.若直线l 的方向向量为()2,1,m ,平面α的法向量为11,,22⎛⎫⎪⎝⎭,且l α⊥,则m =()A.1B.2C.3D.4【答案】D 【解析】【分析】由l α⊥可知,直线l 的方向向量与平面α的法向量平行,列方程组求解即可.【详解】∵直线l 的方向向量为()2,1,m ,平面α的法向量为11,,22⎛⎫⎪⎝⎭,且l α⊥,∴直线l 的方向向量与平面α的法向量平行,则存在实数λ使()12,1,1,,22m λ⎛⎫= ⎪⎝⎭,∴21122m λλλ=⎧⎪⎪=⎨⎪=⎪⎩,解得2,4m λ==,故选:D.4.两条平行直线0x y -=与10x y --=间的距离等于()A.2B.1C.D.2【答案】A 【解析】【分析】直接利用两平行线间的距离公式求解.【详解】两条平行直线0x y -=与10x y --=,由两平行线间的距离公式可知,所求距离为22d ==.故选:A .5.过点()1,0且被圆22(2)1x y ++=截得的弦长最大的直线方程为()A.220x y +-=B.220x y --=C.210x y +-= D.210x y --=【答案】B【解析】【分析】根据圆的性质可知所求直线即为过圆心的直线,结合直线的截距式方程求解.【详解】由题意可知:圆22(2)1x y ++=的圆心为()0,2-,显然圆的最大弦长为直径,所求直线即为过圆心的直线,可得直线方程为112x y +=-,即220x y --=.故选:B.6.圆221:2C x y +=与圆222:(2)(2)2C x y -+-=的位置关系是()A.相交B.相离C.内切D.外切【答案】D 【解析】【分析】求出两个圆的圆心距即可判断得解.【详解】圆221:2C x y +=的圆心1(0,0)C ,半径1r =,圆222:(2)(2)2C x y -+-=的圆心2(2,2)C ,半径2r =显然1212||C C r r ==+,所以圆1C 与2C 外切.故选:D7.采取随机模拟的方法估计气步枪学员击中目标的概率,先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中,以三个随机数为一组,代表三次射击击中的结果,经随机数模拟产生了20组随机数:907966181925271932812458569683431257393027556488730113537989根据以上数据估计,该学员三次射击至少击中两次的概率为()A.310B.720C.25 D.920【答案】B 【解析】【分析】根据所给数据计数至少击中两次的次数后计算概率.【详解】所给数据中有181,271,932,812,431,393,113共7个数据表示至少击中两次,所以概率为720P =.故选:B .8.若方程221343x y m m+=--表示双曲线,则实数m 的取值范围为()A.()4,3,3⎛⎫-∞⋃+∞ ⎪⎝⎭ B.4,33⎛⎫⎪⎝⎭C.()4,3,3⎛⎫-∞-⋃+∞ ⎪⎝⎭D.4,33⎛⎫-⎪⎝⎭【答案】A 【解析】【分析】根据题意得到()()3430m m --<,再解不等式即可.【详解】依题意,()()3430m m --<,则43<m 或3m >.故选:A9.已知12,F F 是双曲线221:18y C x -=与椭圆2C 的左、右公共焦点,A 是12,C C 在第一象限内的公共点,若121F F F A =,则2C 的离心率是()A.35B.25 C.13D.23【答案】A 【解析】【分析】由双曲线定义、椭圆定义以及离心率公式,结合已知条件运算即可得解.【详解】由221:18y C x -=知1,3a b c ====,所以12126F F F A c ===,∵12||||22F A F A a -==,∴24F A =,∴1210F A F A +=,∵12||6F F =,∴2C 的离心率是63105e ==.故选:A.10.平面内与定点()()12,0,,0F a F a -距离之积等于2(0)a a >的动点的轨迹称为双纽线.曲线C 是当a =P 是曲线C 上的一个动点,则下列结论不正确的是()A.曲线C 关于原点对称B.满足12PF PF =的点P 有且只有一个C.4OP ≤D.若直线y kx =与曲线C 只有一个交点,则实数k 的取值范围为()1,1-【答案】D 【解析】【分析】由题意得当a =()()2222216x y x y +=-,对于A ,用(,)x y --替换方程中的(,)x y 即可判断;对于B ,令12PF PF =,求出点P 的坐标即可验证;对于C ,由()2222221616x y x y x y -+=≤+即可判断;对于D ,由方程()()22221161k x k +=-无零解,即可得解.2a =,当a =C 8,即()()2422228864y y x x +++-=,整理,得()()2222216x y x y +=-,对于A ,用(,)x y --替换方程中的(,)x y ,原方程不变,所以曲线C 关于原点中心对称,故A 正确;对于B ,若12PF PF =,=所以0x =,此时288y +=,即0y =,所以满足12PF PF =的点P 有且只有一个,即()0,0,故B 正确;对于C ,由()()2222216x yx y+=-,得()2222221616x y x y x y -+=≤+,所以曲线C 上任意一点到原点的距离,即都不超过4,故C 正确;对于D ,直线与曲线C 一定有公共点()0,0,若直线与曲线C 只有一个交点,将y kx =代入方程()()2222216x y x y +=-中,得()()224221161kx k x +=-,当0x ≠时,方程()()22221161k x k +=-无零解,则210k -≤,解得1k ≥或1k ≤-,故D 错误.故选:D.【点睛】关键点睛:判断D 选项的关键是首先一定有公共点()0,0,然后通过化简方程组得方程()()22221161k x k +=-无零解,由此即可顺利得解.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.如果事件A 与事件B 互斥,且()0.2P A =,()0.3P B =,则()P A B =.【答案】0.5【解析】【分析】()P A B 表示事件A 与事件B 满足其中之一占整体的占比.所以根据互斥事件概率公式求解.【详解】()()0.20.3)0.5(P A P B P A B =+=+= 【点睛】此题考查互斥事件概率公式,关键点在于理解清楚题目概率表示的实际含义,属于简单题目.12.经过原点()0,0且与直线3450x y ++=垂直的直线方程为__________.【答案】430x y -=【解析】【分析】与直线3450x y ++=垂直的直线方程可设为:430x y b -+=,再将()0,0代入即可得出答案.【详解】与直线3450x y ++=垂直的直线方程可设为:430x y b -+=,又因为经过原点()0,0,所以0b =.所求方程为430x y -=故答案为:430x y -=.13.已知双曲线222:1(0)y C x m m-=>是等轴双曲线,则C 的右焦点坐标为__________;C 的焦点到其渐近线的距离是__________.【答案】①.)②.1【解析】【分析】根据等轴双曲线的概念求得m ,即可得焦点,再根据点到直线的距离可得结果.【详解】双曲线222:1(0)y C x m m-=>是等轴双曲线,则21m =,1m =,222112c a b =+=+=,则c =C 的右焦点坐标为),双曲线的渐近线方程为y x =±,即0x y ±=,则焦点()到渐近线的距离1d ==,故答案为:),1.14.探照灯、汽车灯等很多灯具的反光镜是抛物面(其纵断面是拋物线的一部分),正是利用了抛物线的光学性质:由其焦点射出的光线经抛物线反射之后沿对称轴方向射出.根据光路可逆图,在平面直角坐标系中,抛物线2:8C y x =,一条光线经过()8,6M -,与x 轴平行射到抛物线C 上,经过两次反射后经过()08,N y 射出,则0y =________,光线从点M 到N 经过的总路程为________.【答案】①.83②.20【解析】【分析】由点N 与点Q 的纵坐标相同和韦达定理可得0y ,利用抛物线的定义可求得总路程.【详解】如图,设第一次射到抛物线上的点记为P ,第二次射到抛物线上的点记为Q ,易得9,62P ⎛⎫- ⎪⎝⎭,因为()2,0F ,所以直线PF 的方程为125240x y +-=.联立28125240y xx y ⎧=⎨+-=⎩消去x 整理得2310480y y +-=,可设()00,Q x y ,显然6-和0y 是该方程的两个根,则0616y -=-,所以083y =.(方法一)光线从点M 到N 经过的总路程为()()()||||||4420M P P Q N Q M N MP PQ QN x x x x x x x x ++=-++++-=++=.(方法二)设抛物线的准线为l ,则其方程为2x =-,分别过点P ,Q 做准线l 的垂线,垂足分别为G ,H ,则PF PG =,QF QH =,所以PQ PF QF PG QH =+=+,故光线从点M 到N 经过的总路程为828220MP PQ QN MG NH ++=+=+++=.故答案为:83;20.15.画法几何的创始人法国数学家加斯帕尔⋅蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆,我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,,2F F 分别为椭圆的左、右焦点,,A B 为椭圆上两个动点.直线l 的方程为220bx ay a b +--=.给出下列四个结论:①C 的蒙日圆的方程为2223x y b +=;②在直线l 上存在点P ,椭圆C 上存在,A B ,使得PA PB ⊥;③记点A 到直线l 的距离为d ,则2d AF -的最小值为3b ;④若矩形MNGH 的四条边均与C 相切,则矩形MNGH 面积的最大值为26b .其中所有正确结论的序号为__________.【答案】①②④【解析】【分析】由(),Q a b 在蒙日圆上可得蒙日圆的方程,结合离心率可得,a b 关系,由此可知①正确;由l 过(),P b a 且(),P b a 在蒙日圆上,可知当,A B 恰为切点时,PA PB ⊥,知②正确;根据椭圆定义可将2||d AF -转化为12d AF a +-,可知1F A l ⊥时,1||d AF +取得最小值,由点到直线距离公式可求得1||d AF +最小值,代入可得2||d AF -的最小值,知③错误;由题意知,蒙日圆为矩形MNGH 的外接圆,由矩形外接圆特点可知矩形长宽与圆的半径之间的关系22212x y b +=,利用基本不等式可求得矩形面积最大值,知④正确.【详解】对于①,过(),Q a b 可作椭圆的两条互相垂直的切线:,x a y b ==,∴(),Q a b 在蒙日圆上,∴蒙日圆方程为2222x y a b +=+,由2c e a ==,得222a b =,∴C 的蒙日圆方程为2223x y b +=,故①正确;对于②,由l 方程知:l 过(),P b a ,又(),P b a 满足蒙日圆方程,∴(),P b a 在圆2223x y b +=上,当,A B 恰为过P 作椭圆两条互相垂直切线的切点时,PA PB ⊥,故②正确;对于③,∵A 在椭圆上,∴12||||2AF AF a +=,∴211||(2||)||2d AF d a AF d AF a -=--=+-,当1F A l ⊥时,1||d AF +取得最小值,最小值为1F 到直线l 的距离,又1F 到直线l 的距离2222213d b ==,∴2min (||)23d AF a -=-,故③错误;对于④,当矩形MNGH 的四条边均与C 相切时,蒙日圆为矩形MNGH 的外接圆,∴矩形MNGH 的对角线为蒙日圆的直径,设矩形MNGH 的长和宽分别为,m n ,则22212m n b +=,∴矩形MNGH 的面积22262m n S mn b +=≤=,当且仅当m n ==时取等号,即矩形MNGH 面积的最大值为26b ,故④正确.故答案为:①②④.【点睛】关键点睛:本题考查圆锥曲线中的新定义问题的求解,解题关键是能够根据蒙日圆的定义,结合点(),a b 在蒙日圆上,得到蒙日圆的标准方程,从而结合圆的方程来判断各个选项.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知两直线1l :80mx y n ++=和2l :210x my +-=,(1)若1l 与2l 交于点(,1)P m -,求,m n 的值;(2)若12l l //,试确定,m n 需要满足的条件.【答案】(1)1,7m n ==(2)当4,2m n =≠-或4,2m n =-≠时,【解析】【分析】(1)将点代入则得到方程,解出即可;(2)根据平行列出方程,解出4m =±,再排除重合的情况即可.【小问1详解】将点(,1)P m -代入两直线方程得:280m n -+=和210m m --=,解得1,7m n ==.【小问2详解】由12l l //得:28204m m -⨯=⇒=±,又两直线不能重合,所以有8(1)0nm ⨯--≠,对应得2n ≠±,所以当4,2m n =≠-或4,2m n =-≠时,12l l //.17.已知椭圆22:143x y C +=与经过左焦点1F 的一条直线交于,A B 两点.(1)若2F 为右焦点,求2ABF △的周长;(2)若直线AB 的倾斜角为π4,求线段AB 的长.【答案】(1)8(2)247【解析】【分析】(1)直接画出图形结合椭圆的定义即可求解.(2)由题意结合左焦点1F 的坐标以及直线AB 的倾斜角为π4,可得直线AB 的方程,将其与椭圆方程联立,结合韦达定理以及弦长公式即可得解.【小问1详解】由题意2a =,由椭圆定义有121224,24AF AF a BF BF a +==+==,所以2ABF △的周长为221212448AB AF BF AF AF BF BF ++=+++=+=.【小问2详解】设()()1122,,,A x y B x y ,由题意直线AB 的斜率为πtan 14k ==,1c ===,即()11,0F -,所以直线AB 的方程为1y x =+,将它与椭圆方程22143x y +=联立得221431x y y x ⎧+=⎪⎨⎪=+⎩,消去y 并化简整理得27880x x +-=,显然0∆>,由韦达定理得121288,77x x x x +=-=-,所以线段AB的长为12247AB x =-===.18.已知圆C 经过点A (2,0),与直线x +y =2相切,且圆心C 在直线2x +y ﹣1=0上.(1)求圆C 的方程;(2)已知直线l经过点(0,1),并且被圆C截得的弦长为2,求直线l的方程.【答案】(1)(x﹣1)2+(y+1)2=2(2)x=0或3x+4y﹣4=0【解析】【分析】(1)由圆C的圆心经过直线2x+y﹣1=0上,可设圆心为C(a,1﹣2a).由点到直线的距离公式表示出圆心C到直线x+y=2的距离d,然后利用两点间的距离公式表示出AC的长度即为圆的半径,然后根据直线与圆相切时圆心到直线的距离等于圆的半径,列出关于a的方程,求出方程的解即可得到a的值,由a的值可确定出圆心坐标及半径,然后根据圆心和半径写出圆的方程即可.(2)分类讨论,利用圆心到直线的距离为1,即可得出结论.【小问1详解】因为圆心C在直线2x+y﹣1=0上,可设圆心为C(a,1﹣2a).则点C到直线x+y=2的距离d=.据题意,d=|AC|=解得a=1.所以圆心为C(1,﹣1),半径r=d=则所求圆的方程是(x﹣1)2+(y+1)2=2.【小问2详解】k不存在时,x=0符合题意;k存在时,设直线方程为kx﹣y+1=0=1,∴k34=-,∴直线方程为3x+4y﹣4=0.综上所述,直线方程为x=0或3x+4y﹣4=0.19.如图,在四面体ABCD中,AD⊥平面ABC,点M为棱AB的中点,2,2 AB AC BC AD====.(1)证明:AC BD ⊥;(2)求平面BCD 和平面DCM 夹角的余弦值;(3)在线段BD 上是否存在一点P ,使得直线PC 与平面DCM 所成角的正弦值为66?若存在,求BP BD 的值;若不存在,请说明理由.【答案】(1)证明见解析(2)23(3)不存在,理由见解析【解析】【分析】(1)由勾股定理得AB AC ⊥,由AD ⊥平面ABC 得AD AC ⊥,从而AC ⊥平面ABD ,进而得出结论;(2)以A 为坐标原点,以,,AB AC AD 所在直线分别为,,x y z 轴,建立空间直角坐标系,求出平面BCD 与平面DCM 的法向量,利用向量夹角公式求解;(3)设()01BP BD λλ=≤≤,则BP BD λ= ,求得22,0(,2)P λλ-,设直线PC 与平面DCM 所成角为θ,由题意sin cos ,PC n PC n PC nθ⋅== ,列式求解即可.【小问1详解】∵2,2AB AC BC ===,∴222AB AC BC +=,∴AB AC ⊥,∵AD ⊥平面ABC ,AC ⊂平面ABC ,∴AD AC ⊥,∵AB AD A ⋂=,,AB AD ⊂平面ABD ,∴AC ⊥平面ABD ,∵BD ⊂平面ABD ,∴AC BD ⊥.【小问2详解】以A 为坐标原点,以,,AB AC AD 所在直线分别为,,x y z轴,建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(1,0,0)A B C D M ,(2,2,0),(0,2,2),(1,2,0)BC CD CM =-=-=- ,设平面BCD 的法向量为111(,,)m x y z = ,由1111220220m BC x y m CD y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令11x =,则111,1==y z ,(1,1,1)m = ,设平面DCM 的法向量为222(,,)n x y z = ,由222222020n CD y z n CM x y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ ,令21y =,则222,1x z ==,(2,1,1)n = ,∴cos ,3m n m n m n ⋅=== ,∴平面BCD 和平面DCM夹角的余弦值为3.【小问3详解】设()01BP BDλλ=≤≤,则BP BD λ= ,设(,,)P x y z ,则()()2,,2,0,2x y z λ-=-,得22,0,2x y z λλ-=-==,∴22,0(,2)P λλ-,()22,2,2PC λλ=-- ,平面DCM 的法向量为(2,1,1)n = ,设直线PC 与平面DCM 所成角为θ,由题意,sin cos ,6PC n PC n PC n θ⋅==== ,∴210λ+=,此方程无解,∴在线段BD 上是不存在一点P ,使得直线PC 与平面DCM 所成角的正弦值为6.20.已知抛物线2:2(0)C y px p =>,过C 的焦点F 且垂直于x 轴的直线交C 于不同的两点,P Q ,且4PQ =.(1)求抛物线C 的方程;(2)若过点()0,2M 的直线l 与C 相交于不同的两点,,A B N 为线段AB 的中点,O 是坐标原点,且AOB与MON △:1,求直线l 的方程.【答案】(1)24y x=(2)123=+y x 或2y x =-+【解析】【分析】(1)由题意可得直线,P Q 方程,进而可得2PQ p =,可求得p 值,即可得答案.(2)设直线l 的方程为2(0)y kx k =+≠,联立直线与抛物线,根据韦达定理及弦长公式求得点N 的横坐标N x ,AB ,求出O 到直线l 距离d ,由AOB 与MON △的面积的关系列式求出k ,可得答案.【小问1详解】抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫ ⎪⎝⎭,则,P Q 两点所在的直线方程为:2p x =,代入抛物线2:2(0)C y px p =>,得22y p =,y p =±,则||24PQ p ==,故2p =,∴抛物线C 的方程为24.y x =【小问2详解】由题意,设直线l 的方程为2(0)y kx k =+≠,1122(,),(,)A x y B x y ,联立224y kx y x=+⎧⎨=⎩,得22(44)40k x k x +-+=,∴22(44)1632160k k k ∆=--=-+>,解得12k <且0k ≠,121222444,k x x x x k k -+==,∴点N 的横坐标为122222N x x k x k +-==,∴A B =O 到直线l 距离d =,∴AOB 的面积21122AOB S d k AB =⋅=△,MON △的面积22112222222M N ON k k S OM x k k --=⋅=⨯=⨯△,由题意AOB MON S =,∴2222kk k =-,整理得23210k k +-=,解得13k =或1k =-,∴直线l 的方程为123=+y x 或2y x =-+.21.已知椭圆2222:1(0)x y C a b a b+=>>的上、下顶点为21,B B ,左、右焦点为12,F F ,四边形1122B F B F 是面积为2的正方形.(1)求椭圆C 的方程;(2)若P 是椭圆C 上异于12,B B 的点,判断直线1PB 和直线2PB 的斜率之积是否为定值?如果是,求出定值;如果不是,请说明理由;(3)已知圆2223x y +=的切线l 与椭圆C 相交于,D E 两点,判断以DE 为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.【答案】(1)2212x y +=(2)是定值,定值为12-(3)过定点,定点为(0,0)【解析】【分析】(1)根据题意列式求,,a b c ,即可得椭圆方程;(2)设()000,,0P x y x ≠,根据斜率公式结合椭圆方程分析求解;(3)取特例3x =±可知定点应为()0,0,再对一般情况,利用韦达定理可得0OC OD ⋅= ,即可得结果.【小问1详解】由题意可得22212222b c b c a b c=⎧⎪⎪⨯⨯=⎨⎪=+⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的方程为2212x y +=.【小问2详解】是定值,理由如下:设()000,,0P x y x ≠,则220012x y +=,可得()220021x y =-,由(1)可知:()()120,1,0,1B B -,则()1222000022000011111221PB PB y y y y k k x x x y +---⋅=⋅===--,所以直线1PB 和直线2PB 的斜率之积是定值12-.【小问3详解】由题意可知:圆2223x y +=的圆心为()0,0,半径为3,因为13<,可知圆2223x y +=在椭圆内,可知切线l 与椭圆C 相交,①当直线l 的斜率不存在时,因为直线l 与圆M相切,故切线方程为3x =±,若切线方程为3x =代入椭圆方程可得,可得,33C ⎛⎫ ⎪ ⎪⎝⎭,,33D ⎛⎫- ⎪ ⎪⎝⎭,则以CD为直径的圆的方程为22233x y ⎛⎫-+= ⎪ ⎪⎝⎭;若切线方程为3x =-代入椭圆方程可得,可得,33C ⎛⎫- ⎪ ⎪⎝⎭,,33D ⎛-- ⎝⎭,则以CD 为直径的圆的方程为226233x y ⎛⎫++= ⎪ ⎪⎝⎭;联立方程2222233233x y x y ⎧⎛⎫⎪-+= ⎪ ⎪⎪⎪⎝⎭⎨⎛⎪++= ⎪ ⎪⎝⎭⎩,解得00x y ==⎧⎨⎩,即两圆只有一个交点()0,0,若存在定点,则定点应为()0,0;②当直线l 的斜率存在时,设直线l 的方程为y kx m =+,则3d ==,整理得222(1)3m k =+,联立方程2212y kx m x y =+⎧⎪⎨+=⎪⎩,消去y 得222(21)4220k x kmx m +++-=,设()11,C x y ,()22,D x y ,则122421km x x k -+=+,21222221m x x k -=+,所以22221212121222()()()21m k y y kx m kx m k x x km x x m k -=++=+++=+,所以()2222121222212232202121k k m k OC OD x x y y k k +----⋅=+===++ 即0OC OD ⋅=,所以以CD 为直径的圆经过定点(0,0)O ;综上可知,以CD 为直径的圆过定点(0,0).【点睛】方法点睛:1.过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y kx t =+,由题设条件将t 用k 表示为t mk n =+,得()y k x m n =++,故动直线过定点(),m n -;(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点;2.求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.。
高二上学期期末考试数学试卷含答案(全卷满分:120 分 考试用时:120 分钟)一、选择题(本大题共12小题,共60分)1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是( )A. ①用随机抽样法,②用系统抽样法B. ①用系统抽样法,②用分层抽样法C. ①用分层抽样法,②用随机抽样法D. ①用分层抽样法,②用系统抽样法 2.若直线1:(2)10l m x y ---=与直线2:30l x my -=互相平行,则m 的值为( )A. 0或-1或3B. 0或3C. 0或-1D. -1或33.用秦九韶算法求多项式542()42016f x x x x x =++++在2x =-时,2v 的值为( )A. 2B.-4C. 4D. -34.执行右面的程序框图,如果输入的3N =,那么输出的S =( )A. 1B.32C.53D.525.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件) 若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A. 5,5B. 3,5C. 3,7D. 5,7 6.若点P (3,4)和点Q (a ,b )关于直线10x y --=对称,则( )A.5,2a b ==B. 2,1a b ==-C. 4,3a b ==D. 1,2a b ==-7.直线l 过点(0,2),被圆22:4690c x y x y +--+=截得的弦长为l 的方程是( )A.423y x =+ B. 123y x =-+ C. 2y = D. 423y x =+ 或2y = 8.椭圆221169x y +=中,以点(1,2)M 为中点的弦所在直线斜率为( )A.932-B.932C.964D.9169.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )C.12πD.14π10.若椭圆22194x y k+=+的离心率为45,则k 的值为( ) A .-21B .21C .-1925或21D.1925或21 11.椭圆221164x y +=上的点到直线x +2y -2=0的最大距离是( ) A .3 B.11 C .2 2D.1012.2=,若直线:12l y kx k =+-与曲线有公共点,则k 的取值范围是( )A.1,13⎡⎤⎢⎥⎣⎦ B.1,13⎛⎫ ⎪⎝⎭ C. )1,1,3⎛⎤⎡-∞⋃+∞ ⎣⎥⎝⎦ D. ()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭二、填空题(本大题共4小题,共20分)13.命题“20,0x x x ∀>+>”的否定为______________________________ .14.已知x 与y 之间的一组数据:,已求得关于y 与x 的线性回归方程 1.20.55x =+,则a 的值为______ .15.若,x y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为______.16.椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,焦距为2c. 若直线y =3(x +c)与椭圆的一个交点M满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.三、解答题(本大题共6小题,共70分)17.(本小题10分)已知直线l 的方程为210x y -+=. (1)求过点A (3,2),且与直线l 垂直的直线1l 的方程; (2)求与直线l 平行,且到点P (3,0)的距离2l 的方程.18.(本小题12分)设命题:p 实数x 满足22430x ax a -+<(0a >);命题:q 实数x 满足32x x -+<0. (1)若1a =且p ∧q 为真,求实数x 的取值范围;(2)若¬q 是¬p 的充分不必要条件,求实数a 的取值范围.19.(本小题12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1), …[4,4.5]分成9组,制成了如图所示的频率分布直方图. (1)求直方图中的a 值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (3)估计居民月均用水量的中位数.20.(本小题12分)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x 、y . 奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.21.(本小题12分)已知曲线方程为:22240x y x y m +--+=. (1)若此曲线是圆,求m 的取值范围;(2)若(1)中的圆与直线240x y +-=相交于M 、N 两点,且OM⊥ON(O 为坐标原点),求m 的值.22.(本小题12分)已知1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上. (1)求椭圆C 的方程;(2)直线:l y kx m =+(m >0)与椭圆C 有且仅有一个公共点,且与x 轴和y 轴分别交于点M ,N ,当△OMN 面积取最小值时,求此时直线l 的方程.数学参考答案13.20000,0x x x ∃>+≤14. 2.1515. -5117.(1)设与直线l :2x -y +1=0垂直的直线1l 的方程为:x +2y +m =0,-------------------------2分把点A (3,2)代入可得,3+2×2+m =0,解得m =-7.-------------------------------4分 ∴过点A (3,2)且与直线l 垂直的直线1l 方程为:x +2y -7=0;----------------------5分(2)设与直线l :2x -y +1=0平行的直线2l 的方程为:2x -y +c =0,----------------------------7分∵点P (3,0)到直线2l =,解得c =-1或-11.-----------------------------------------------8分∴直线2l 方程为:2x -y -1=0或2x -y -11=0.-------------------------------------------10分18.(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,又a >0,所以a <x <3a ,.------------------------------------------------------2分 当a =1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3.由实数x 满足302x x -<+ 得-2<x <3,即q 为真时实数x 的取值范围是-2<x <3.------4分 若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是1<x <3.---------------------------------------------- 6分(2)¬q 是¬p 的充分不必要条件,即p 是q 的充分不必要条件 -----------------------------8分由a >0,及3a ≤3得0<a ≤1,所以实数a 的取值范围是0<a ≤1.-------------------------------------------------12分19.(1)∵1=(0.08+0.16+a +0.40+0.52+a +0.12+0.08+0.04)×0.5,------------------------2分整理可得:2=1.4+2a ,∴解得:a =0.3-----------------------------------------------------------------4分(2)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量为30万-----6分 则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.---------------------------8分 (3)根据频率分布直方图,得0.08×0.5+0.16×0.5+0.30×0.5+0.40×0.5=0.47<0.5, 0.47+0.5×0.52=0.73>0.5,∴中位数应在(2,2.5]组内,设出未知数x ,---------------------------------------10分 令0.08×0.5+0.16×0.5+0.30×0.5+0.4×0.5+0.5×x =0.5, 解得x =0.06;∴中位数是2+0.06=2.06.--------------------------------------------------------12分 20.(1)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4),共16个, ----------------------------2分 满足xy ≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个, ----------4分∴小亮获得玩具的概率为516; -------------------------------------------------------6分 (2)满足xy ≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个, ----8分∴小亮获得水杯的概率为616; --------------------------------------------------------9分 小亮获得饮料的概率为5651161616--=,----------------------------------------------11分 ∴小亮获得水杯大于获得饮料的概率.-------------------------------------------------12分21.(1)由曲线方程x 2+y 2-2x -4y +m =0.整理得:(x -1)2+(y -2)2=5-m ,------------------------------------------------2分 又曲线为圆,则5-m >0,解得:m <5.------------------------------------------------------------------4分(2)设直线x +2y -4=0与圆:x 2+y 2-2x -4y +m =0的交点为M (x 1,y 1)N (x 2,y 2).则:22240240x y x y x y m +-=⎧⎨+--+=⎩,消去x 整理得:5y 2-16y +8+m =0, 则:1212168,55m y y y y ++==,------------------------------------------------6分 由OM ⊥ON (O 为坐标原点),可得x 1x 2+y 1y 2=0,-------------------------------------8分又x 1=4-2y 1,x 2=4-2y 2,则(4-2y 1)(4-2y 2)+y 1y 2=0.---------------------------------------------------10分 解得:85m =,故m 的值为85.--------------------------------------------------12分 22.(1)∵1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上,∴依题意,1c =,又3242a ==,故2a =.---------------------2分由222b c a +=得b 2=3.-----------------------------------------------------------3分故所求椭圆C 的方程为22143x y +=.-----------------------------------------------4分(2)由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消y 得(4k 2+3)x 2+8kmx +4m 2-12=0,由直线l 与椭圆C 仅有一个公共点知,△=64k 2m 2-4(4k 2+3)(4m 2-12)=0,整理得m 2=4k 2+3.-----------------------------6分 由条件可得k ≠0,(,0)mM k-,N (0,m ). 所以.①------------------------------8分将m 2=4k 2+3代入①,得.因为|k |>0,所以,-------------------------------10分当且仅当34k k=,则,即时等号成立,S △OMN 有最小值.-----11分因为m 2=4k 2+3,所以m 2=6,又m >0,解得.故所求直线方程为或.----------------------------12分高二级第一学期期末质量检测数学试卷本试卷分两部分,共4页,满分150分。
杭州2023学年第一学期高二年级期末数学试卷(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24x y =的准线方程为()A. 1x =-B. 1x = C. 1y =- D. 1y =【答案】C 【解析】【分析】根据抛物线标准方程即可求解.【详解】由题知,抛物线方程为24x y =,则其准线方程为1y =-.故选:C2.圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为()A.1 B.2C.4D.5【答案】A 【解析】【分析】求出圆的圆心和半径,利用点到直线的距离以及半径关系,求解即可.【详解】由2240x y x +-=,得22(2)4x y -+=,圆心为(2,0),半径2r =,圆心到直线3490x y -+=的距离3d ==,故圆上的点到直线3490x y -+=的距离的最小值为1d r -=.故选:A3.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足()2PD xPA x =+- 3PB xPC +,则x 的值为()A.0B.19-C.13-D.23-【答案】C【解析】【分析】由空间向量共面定理构造方程求得结果.【详解】 空间A B C D 、、、四点共面,但任意三点不共线,231x x x ∴+-+=,解得:13x=-.故选:C4.已知ABC 的三个顶点分别为()1,0,0A ,()0,2,0B ,()2,0,2C ,则BC 边上的中线长为()A.1B.C.D.2【答案】B 【解析】【分析】利用中点坐标公式与空间两点的距离公式即可得解.【详解】因为()0,2,0B ,()2,0,2C ,所以BC 的中点为()1,1,1,又()1,0,0A ,则BC =.故选:B.5.设{}n a 是公差为d 的等差数列,n S 是其前n 项和,且10a <,48S S =,则()A.0d <B.70a = C.120S = D.7n S S ≥【答案】C 【解析】【分析】根据等差数列的通项公式和前n 项求和公式,结合选项计算依次判断即可.【详解】A :由48S S =,得1143874822a d a d ⨯⨯+=+,则1112a d =-,又10a <,所以11102a d =-<,得0d >,故A 错误;B :7111166022a a d d d d =+=-+=>,故B 错误;C :121121111121266022S a d d d ⨯=+=-⨯+=,故C 正确;D :7177711135()()22222S a a d d d -=+=-+=,21(1)1222n n n n nS na d d --=+=,由21235n n -≥-,得15n ≤≤或7n ≥,即当15n ≤≤或7n ≥时,有7n S S ≥,故D 错误.故选:C6.用数学归纳法证明:()111212322n n f n +=++++≥ (*n ∈N )的过程中,从n k =到1n k =+时,()1f k +比()f k 共增加了()A.1项B.21k -项C.12k +项D.2k 项【答案】D 【解析】【分析】分别计算出()1f k +和()f k 的项数,进而作差即得结论.【详解】因为()1111232n f n =++++ ,所以()1111232k f k =++++ ,共2k 项,则()11111112321221k k k f k +++++++++=+ 共12k +项,所以()1f k +比()f k 共增加了1222k k k +-=项,故选:D7.若数列{}n a 满足递推关系式122nn n a a a +=+,且12a =,则2024a =()A.11012B.22023C.11011D.22021【答案】A 【解析】【分析】利用取倒数法可得11112n n a a +-=,结合等差数列的定义和通项公式即可求解.【详解】因为122n n n a a a +=+,所以1211122n n n n a a a a ++==+,所以11112n n a a +-=,又12a =,所以1112=a ,故数列1{}na 是以12为首项,以12为公差的等差数列,则1111(1)222n n n a =+-=,得2n a n=,所以20242120241012a ==.故选:A8.设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB OF =,若在双曲线Γ的右支上存在一点A ,使得OA OF =,且3OAB OBA ∠≥∠,则Γ的离心率的取值范围是()A.22,77⎡⎤-⎢⎥⎣⎦ B.21,7⎛⎤+ ⎥ ⎝⎦C.31,7⎛⎤+ ⎥ ⎝⎦D.33,77⎡⎤-+⎢⎥⎣⎦【答案】B 【解析】【分析】因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点,根据条件结合双曲线的定义得27480e e --≤求解即可.【详解】不妨设A 在第一象限.因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点.设Γ的左焦点为X ,则4XOA OAB OBA OBA ∠=∠+∠≥∠,122AFO XOA OBA ∠=∠≥∠,即A FAB FB ≥∠∠,FA BF ≤在圆O 上上取一点C ,使FC B F =,则FC FA ≥由双曲线的定义知2CX FC a -≤(a 是实半轴长),即()222224FC aC c C X F +≥=-(c 是半焦距),由2FB OF = ,得212c FB FO ==,得22222242c c c Xa C ⎛⎫+≥=⎭⎛⎫⎪⎝ ⎪⎭-⎝2274202a ac c +-≥,又离心率ce a =,所以27480e e --≤,又1e >,所以21,7e ⎛⎤⎝∈⎥⎦,故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()f x ,()g x 在R 上连续且可导,且()00'≠f x ,下列关于导数与极限的说法中正确的是()A.()()()000Δ0ΔlimΔx f x x f x f x x→--'= B.()()()Δ0ΔΔlim2Δh f t h f t h f t h→+--'=C.()()()000Δ03Δlim3Δx f x x f x f x x→+-'= D.()()()()()()000Δ0000Δlim Δx g x x g x g x f x x f x f x →'+-='+-【答案】BCD 【解析】【分析】利用导数的定义逐个求解.【详解】()()()()()000000limlimx x f x x f x f x x f x f x xx∆→∆→+⎡⎤-∆--∆-'=-=-∆-∆⎣⎦,故A 错;()()()()()02limlim22h h f t h f t h f t h f t f t hh∆→∆→+∆--∆+∆-'==∆∆,故B 对;()()()00003lim3x f x x f x f x x∆→+∆-'=∆,由导数的定义知C 对;()()()()()()()()()()0000000000000limlimlim x x x g x x g x g x x g x g x x f x x f x f x x f x f x x ∆→∆→∆→+∆-'+∆-∆==+∆-'+∆-∆,故D 对;故选:BCD10.已知等差数列{}n a 的前n 项和为n S ,正项等比数列{}n b 的前n 项积为n T ,则()A.数列n S n ⎧⎫⎨⎬⎩⎭是等差数列 B.数列{}3na 是等比数列C.数列{}ln n T 是等差数列D.数列2n n T T +⎧⎫⎨⎬⎩⎭是等比数列【答案】ABD 【解析】【分析】根据等差数列与等比数列的定义及等差数列前n 项和公式为计算即可.【详解】设{}n a 的公差为d ,{}n b 的公比为q ,则2112222n n S d d d d S n a n n a n ⎛⎫⎛⎫=+-⇒=+- ⎪ ⎪⎝⎭⎝⎭,所以()1212n n S S d n n n --=≥-是常数,故A 正确;易知()1133323nn n n a a a d a n ---==≥是常数,故B 正确;由()1ln ln ln 2n n n T T b n --=≥不是常数,故C 错误;()221212n n n n n nT T b q n T T b +++-÷==≥是常数,故D 正确.故选:ABD11.已知O 为抛物线()2:20C y px p =>的顶点,直线l 交抛物线于,M N 两点,过点,M N 分别向准线2px =-作垂线,垂足分别为,P Q ,则下列说法正确的是()A.若直线l 过焦点F ,则以MN 为直径的圆与y 轴相切B.若直线l 过焦点F ,则PF QF⊥C.若,M N 两点的纵坐标之积为28p -,则直线l 过定点()4,0pD.若OM ON ⊥,则直线l 恒过点()2,0p 【答案】BCD 【解析】【分析】根据抛物线的焦半径公式结合条件判断AB ,设直线l 方程为x my b =+,与抛物线方程联立,利用韦达定理结合条件判断CD.【详解】设()()1122,,,M x y N x y ,选项A :MN 中点H 即以MN 为直径的圆的圆心横坐标为122x x +,则由抛物线的定义可知12MN MP NQ x x p =+=++,所以梯形PMNQ 的中位线122x x pGH ++=,所以点H 到y 轴的距离为1222x x p GH +-=不等于半径1222x x pMN ++=,A 说法错误;选项B :由抛物线的定义可知MP MF =,NF NQ =,又根据平行线的性质可得1MPF PFO MFP ∠=∠=∠=∠,2NQF QFO NFQ ∠=∠=∠=∠,因为()212π∠+∠=,所以π122∠+∠=,即PF QF ⊥,B 说法正确;选项C :由题意可知直线l 斜率不为0,设直线l 方程为x my b =+,联立22x my b y px=+⎧⎨=⎩得2220y pmy pb --=,22480p m pb ∆=+>,所以122y y pb =-,由21228y y pb p =-=-解得4b p =,满足0∆>,所以直线:4l x my p =+过定点()4,0p ,C 说法正确;选项D :因为OM ON ⊥,所以由0OM ON ⋅= 可得12110x x y y +=,所以221212022y y y y p p⋅+=①,将122y y pb =-,代入①得2b p =,满足0∆>,所以直线:2l x my p =+过定点()2,0p ,D 说法正确;故选:BCD12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转化成图3所示的几何体,若图3中每个正方体的棱长为1,则()A.122QC AD AB AA =+- B.若M 为线段CQ 上的一个动点,则BM BD ⋅的最小值为1C.点F 到直线CQ 的距离是3D.异面直线CQ 与1AD 【答案】ABD 【解析】【分析】根据空间向量线性运算法则判断A ,以1A 为坐标原点,1A F 所在直线为x 轴,11A B 所在直线为y 轴建立空间直角坐标系,利用空间向量法计算B 、C 、D .【详解】因为()1112222CQ CB BQ AD BA AD AA AB AB AD AA =+=-+=-+-=--+,所以()112222QC CQ AB AD AA AD AB AA =-=---+=+-,故A 正确;如图以1A为坐标原点,建立空间直角坐标系,则()0,1,1B -,()11,0,0D -,()1,0,1D --,()0,1,1Q -,()1,1,1C --,()0,0,1A -,()1,0,0F ,()1,1,0BD =-- ,()1,2,2CQ =- ,()11,0,1AD =- ,()2,1,1CF =-,对于B :因为M 为线段CQ 上的一个动点,设CM CQ λ=,[]0,1λ∈,则()()()1,0,01,2,21,2,2BM BC CM λλλλ=+=-+-=--,所以()121BM BD λλλ⋅=--+=+,所以当0λ=时()min1BM BD ⋅= ,故B 正确;对于C :CF ==63CF CQ CQ ⨯+-⨯-+⨯⋅==,所以点F到直线CQ的距离d ==,故C 错误;对于D:因为111cos ,6CQ AD CQ AD CQ AD ⋅===⋅ ,所以1sin ,6CQ AD ==,所以1tan ,CQ AD =,即异面直线CQ 与1AD ,故D 正确;故选:ABD .第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知()sin exf x =,则()f x '=_____________.【答案】sin e cos x x ⋅【解析】【分析】利用复合函数求导函数方法求解即可.【详解】由()()()sin sin sin c e e e sin os x x x x x x f '=⋅=⋅''=,故答案为:sin e cos x x⋅14.若平面内两定点A ,B 间的距离为3,动点P 满足2PA PB=,则△PAB 面积的最大值为_____________.【答案】3【解析】【分析】首先求点P 的轨迹方程,再利用数形结合求PAB 面积的最大值.【详解】以AB 所在直线为x 轴,以线段AB 的中垂线为y 轴建立平面直角坐标系,设33(,),(,0),(,0)22P x y A B -,因为2PA PB=,即2PA PB =,=,整理为:22542x y ⎛⎫-+= ⎪⎝⎭,则点P 的轨迹是以点5,02⎛⎫⎪⎝⎭为圆心,半径为2的圆,所以点P 到AB 距离的最大值是2,所以PAB 面积的最大值是13232⨯⨯=.故答案为:315.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为________.【答案】2【解析】【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PM PAM PA =∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。
高 二 上 学 期 数 学 期 末 测 试 题一、选择题:1.不等式212>++x x 的解集为( ) A.()()+∞-,10,1Y B.()()1,01,Y -∞- C.()()1,00,1Y - D.()()+∞-∞-,11,Y 2.0≠c是方程 c y ax =+22 表示椭圆或双曲线的( )条件A .充分不必要B .必要不充分C .充要D .不充分不必要3.若,20πθ≤≤当点()θcos ,1到直线01cos sin =-+θθy x 的距离为41,则这条直线的斜率为( )B.-1C.23D.-334.已知关于x 的不等式01232>+-ax ax 的解集是实数集 R ,那么实数a 的取值范围是( ) A.[0,916] B.[0,916)C.(916,0) D.⎪⎭⎫⎢⎣⎡38,05.过点(2,1)的直线l 被04222=+-+y x y x 截得的最长弦所在直线方程为:( ) A. 053=--y x B. 073=-+y x C. 053=-+y x D. 013=+-y x6.下列三个不等式:①;232x x >+②2,0,≥+≠∈ba ab ab R b a 时、;③当0>ab 时,.b a b a +>+其中恒成立的不等式的序号是( )A.①② B.①②③ C.① D.②③7.圆心在抛物线x y 22=上,且与x 轴和该抛物线的准线都相切的一个圆的方程是( )A .041222=---+y x y x B .01222=+-++y x y x C .01222=+--+y x y x D .041222=+--+y x y x8.圆C 切y 轴于点M 且过抛物线452+-=x x y 与x 轴的两个交点,O 为原点,则OM 的长是( ) A .4 B .C .22D .29.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为( )A .191622=-x y B .191622=-y x C .116922=-x y D .116922=-y x10.抛物线x y 42-=上有一点P ,P 到椭圆1151622=+y x 的左顶点的距离的最小值为( )A .32B .2+3C .3D .32-11.若椭圆)1(122>=+m y mx 与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是( )A .4 B .2 C .1 D .12.抛物线px y 22=与直线04=-+y ax 交于两点AB,其中点A坐标为(1,2),设抛物线焦点为F,则|FA |+|FB |=( )A.7 B.6 C.5 D.4二、填空题13. 设函数,2)(+=ax x f 不等式6|)(|<x f 的解集为(-1,2),则不等式()1≤x f x的解集为 14.若直线)0,0(022>>=+-b a by ax 始终平分圆014222=+-++y x y x 的圆周,则ba 11+的最小值为______15.若曲线15422=++-a y a x的焦点为定点,则焦点坐标是 . 16.抛物线x y 22-=上的点M 到焦点F 的距离为3,则点M 的坐标为____________.三、解答题: 18.已知椭圆)0(1:2222>>=+b a b y a x C 经过点)221(,M ,其离心率为22,设直线m kx yl +=:与椭圆C 相交于B A 、两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知直线l 与圆3222=+y x 相切,求证:OA ⊥OB (O 为坐标原点);(Ⅲ)以线段OA,OB 为邻边作平行四边形OAPB ,若点Q 在椭圆C 上,且满足OP OQ λ=u u u r u u u r(O 为坐标原点),求实数λ的取值范围.19.已知圆C 关于y 轴对称,经过抛物线x y 42=的焦点,且被直线x y =分成两段弧长之比为1:2,求圆C 的方程.20. 平面内动点P (x ,y )与两定点A (-2, 0), B (2,0)连线的斜率之积等于-1/3,若点P 的轨迹为曲线E ,过点Q (1,0)-作斜率不为零的直线CD 交曲线E 于点C D 、.(1)求曲线E 的方程; (2)求证:ACAD ⊥;(3)求ACD ∆面积的最大值.21.已知直线l 与圆0222=++x y x 相切于点T ,且与双曲线122=-y x 相交于A 、B 两点.若T 是线段AB 的中点,求直线l 的方程.22、设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆与x 轴正半轴Q P 、两点,且58= (I )求椭圆离心率e ;(II )若过A,F,Q 三点的圆恰好与直线033:=++y x l 相切,求椭圆方程答案一、ABDB A CD D A A C A二、13. {x|x>21或52≤x }; 14. 4 ; 15.(0,±3); 16.(-5,25±).三、17.解:由062322<--+-x x x x ,得0)2)(3()2)(1(<+---x x x x 18.(Ⅰ)椭圆方程为2212x y +=;(Ⅱ)见解析(Ⅲ)22λ-<<且0λ≠.【解析】试题分析:(Ⅰ)由已知离心率为22,可得等式222b a =;又因为椭圆方程过点(12M ,可求得21b =,22a =,进而求得椭圆的方程; (Ⅱ)由直线l 与圆2223x y +=相切,可得m 与k 的等式关系即222(1)3m k =+,然后联立直线l 与椭圆的方程并由韦达定理可得122412kmx x k +=-+,21222212m x x k -=+,进而求出=21y y 222212m k k -+,所以由向量的数量积的定义可得→→⋅OB OA 的值为0,即结论得证;(Ⅲ)由题意可分两种情况讨论:(ⅰ)当0m =时,点A 、B 关于原点对称;(ⅱ)当0m ≠时,点A 、B 不关于原点对称.分别讨论两种情形满足条件的实数λ的取值范围即可.试题解析:(Ⅰ)222c e a b c a ===+Q 离心率,222a b ∴= 222212x y b b∴+=椭圆方程为,将点(1M 代入,得21b =,22a =∴所求椭圆方程为2212x y +=.(Ⅱ)因为直线l 与圆2223x y +=相切,所以=222(1)3m k =+ 由22,22y kx m x y =+⎧⎨+=⎩,得222(12)4220k x kmx m +++-=.设点A 、B 的坐标分别为11(,)A x y 、22(,)B x y ,则122412kmx x k +=-+,21222212m x x k -=+,所以1212()()y y kx m kx m =++=221212()k x x km x x m +++=222212m k k -+,所以1212OA OB x x y y ⋅=+u u u r u u u r =222212m k -++222212m k k -+=22232212m k k --+=0,故OA OB ⊥, (Ⅲ)由(Ⅱ)可得121222()212my y k x x m k +=++=+,由向量加法平行四边形法则得OA OB OP +=u u u r u u u r u u u r ,OP OQ λ=u u u r u u u r Q ,OA OB OQ λ∴+=u u u r u u u r u u u r(ⅰ)当0m =时,点A 、B 关于原点对称,则0λ= 此时不构成平行四边形,不合题意.(ⅱ)当0m ≠时,点A 、B 不关于原点对称,则0λ≠,由OA OB OQ λ+=u u u r u u u r u u u r ,得12121(),1().Q Q x x x y y y λλ⎧=+⎪⎪⎨⎪=+⎪⎩ 即224,(12)2.(12)Q Q km x k m y k λλ-⎧=⎪+⎪⎨⎪=⎪+⎩Q 点Q 在椭圆上,∴有222242[]2[]2(12)(12)km mk k λλ-+=++,化简,得222224(12)(12)m k k λ+=+.2120k +≠Q ,∴有2224(12)m k λ=+. ①又222222164(12)(22)8(12)k m k m k m ∆=-+-=+-Q , ∴由0∆>,得2212k m +>. ②将①、②两式,得2224m m λ>0m ≠Q ,24λ∴<,则22λ-<<且0λ≠.综合(ⅰ)、(ⅱ)两种情况,得实数λ的取值范围是22λ-<<且0λ≠.19.解:设圆C 的方程为)(2a y x -+22r =, 抛物线x y 42=的焦点()0,1F 221r a =+∴①又直线x y =分圆的两段弧长之比为1:2,可知圆心到直线x y =的距离等于半径的,21即22r a =②解①、②得2,12=±=r a 故所求圆的方程为 2)1(22=±+y x20.(1)223144x y +=(2)x ≠±;(2)略;(3)1. 【解析】试题分析:(1)根据题意可分别求出连线PA ,PB 的斜率PA k ,PB k ,再由条件斜率之积为13-列出方程,进行化简整理可得曲线E 的方程,注意点P 不与点,A B 重合.根据斜率的计算公式可求得2PA y k x =+,2PB y k x =-,所以()12223y y x x x ?-贡+-,化简整理可得曲线E 的方程为223144x y +=(2)x ≠±; (2)若要证AB AC ^,只要证0AB AC?u u u r u u u r ,再利用两个向量数量积为零的坐标运算进行证明即可.那么由题意可设直线BC 的方程为1my x =+,()()1122,,,C x y D x y ,联立直线与椭圆的方程消去x ,可得关于y 的一元二次方程032)3(22=--+my y m ,由违达定理知33,32221221+-=+=+m y y m m y y ,则()12122623x x m y y m +=+-=-+,()()21212243113m x x my my m -+⋅=--=+,又()112,AC x y =+u u u r ,()222,AD x y =+u u u r ,所以()()()121212*********AC AD x x y y x x x x y y u u u r u u u r⋅=+++=++++=,从而可以证明AB AC ^;(3)根据题意可知1211122ACDS AQ y y △=⋅-=⨯=又23m =+0m =时,ACD △的面积最大,最大面积为1. 试题解析:(1)设动点P 坐标为(,)x y ,当2x ≠±时,由条件得:1223y y x x ⋅=--+,化简得223144x y +=, 故曲线E 的方程为223144x y +=(2)x ≠±. 4分(说明:不写2x ≠±的扣1分) (2)CD 斜率不为0,所以可设CD 方程为1+=x my ,与椭圆联立得:032)3(22=--+my y m 设),(),,(2211y x D y x C , 所以33,32221221+-=+=+m y y m m y y ,. 6分 01323)1(31)()1(),2(),2(2222212122211=+++++-=++++=+⋅+m m m m y y m y y m y x y x ,所以ACAD ⊥ 8分(3)ACD ∆面积为2222221)3(334394||21+-+=++=-m m m m y y , 10分当0=m 时ACD △的面积最大为1. 12分[考点:1.椭圆的方程;2.向量法证明两直线垂直;3.三角形面积的计算.21.解:直线l 与x 轴不平行,设l 的方程为 a my x += 代入双曲线方程 整理得而012≠-m ,于是122--=+=m amy y y B A T 从而 12--=+=m a a my x T T 即 )1,1(22mam am T -- Θ点T 在圆上 012)1()1(22222=-+-+-∴ma m a m am 即22+=a m ① 由圆心)0,1(-'O .l T O ⊥' 得 1-=⋅'l T O k k 则 0=m 或 122+=a m 当0=m 时,由①得 l a ∴-=,2的方程为 2-=x ;当122+=a m 时,由①得 1=a l m ∴±=,3的方程为13+±=y x . 故所求直线l 的方程为2-=x 或 13+±=y x22.解:(I )),()、)(,(),由,(设b A b a c c F x Q 000220-=-知),(),,(0b x b c -==. cb x b cx 2020,0,==-∴⊥Θ.设PQ AP y x P 58),,(11=由,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+==+=b b yc b x x 135581,138581581201 因为点P 在椭圆上,所以1)135()138(22222=+bb ac b 整理得ac c a ac b 3232222=-=)(,即 02322=-+⇒e e .21=⇒e (II )由(I ),a c a c a c b ac b 21,21;23,3222====得由得 于是AQF a Q a F ∆-),0,23(),0,21(的外接圆圆心为)0,21(a ,半径.21a FQ r ==因为这个圆与直线033:=++y x l 相切,所以a a =+2|321|,解得a =2, ∴c=1,b=3,所求椭圆方程为13422=+y x。