数字光纤通信系统
- 格式:pptx
- 大小:1.07 MB
- 文档页数:20
数字光纤通信系统的工作原理数字光纤通信系统是一种高速、高带宽的数据传输技术,其工作原理基于光学和电学的相互作用。
数字光纤通信系统主要由三部分组成:发射机、光纤传输线路和接收机。
发射机是数字光纤通信系统中的第一部分,它将电信号转换为光信号并将其发送到光纤传输线路上。
发射机主要由三个部分组成:激光器、调制器和驱动电路。
激光器是发射机的核心部件,它能够产生高强度、单色、相干的激光束。
调制器则是将电信号转换为激光脉冲的设备,它能够对激光束进行调制以便在传输过程中能够正确地识别出每一个二进制位。
驱动电路则是用来控制调制器的工作状态,以便让其按照正确的时间序列进行工作。
光纤传输线路是数字光纤通信系统中的第二部分,它是负责将激光脉冲从发射机传输到接收机的媒介。
在传输过程中,激光脉冲会在光纤中不断地反射和折射,以保证光信号能够稳定地传输到目的地。
光纤传输线路主要由两个部分组成:光纤和连接器。
光纤是数字光纤通信系统中最重要的部件之一,它具有非常高的抗干扰性和传输带宽。
在数字光纤通信系统中,常用的是单模光纤,它能够将激光脉冲通过一个非常小的核心直接传送到接收机中。
连接器则是用来连接不同段光纤的设备,它能够确保激光脉冲在传输过程中不会受到损失或干扰。
接收机是数字光纤通信系统中的第三部分,它负责将从传输线路上接收到的激光脉冲转换为电信号并将其输出。
接收机主要由两个部分组成:探测器和前置放大器。
探测器是接收机中最重要的部件之一,它能够将从传输线路上接收到的激光脉冲转换为电信号。
前置放大器则是用来增强探测器输出信号强度,并将其输出到后续的数字处理器中进行解码和处理。
总之,数字光纤通信系统是一种高速、高带宽的数据传输技术,其工作原理基于光学和电学的相互作用。
通过发射机将电信号转换为光信号并将其发送到光纤传输线路上,再通过接收机将从传输线路上接收到的激光脉冲转换为电信号并将其输出,从而实现了数字信息在长距离范围内的高速、稳定地传输。
数字光纤通讯系统基本构成20 世纪 70 年月末,光纤通讯开始进入适用阶段,各样光纤通讯系统先后成立起来,但当前强度调制-直接检测 (IM-DD) 系统是最常用、最主要的方式,下边就我所理解的光纤系统做一下简要介绍。
数字光纤通讯系统的基本框图以下列图所示。
光发射端机光接收端机光缆光中继器光缆输入接口输出接口备用系统电发射机电接收机协助系统用户用户一、电发射机通讯中传输的很多信号都是模拟信号,如语音信号、图像信号等,电发射机的任务就是把模拟信号变换为数字信号( A/D 变换),并用时分复用的方式把多路信号复接、合群,进而输出高比特率的数字信号。
PCM 包含抽样、量化、编码、传输、解码、低通等过程。
二、光发射机电发射机的输出电信号经输入接口进入光发射机。
输入接口的作用是保证电、光端机间信号的幅度、阻抗般配,还要进行合适的码型变换,以合适光发射机的要求。
如 PDH 的一、二、三次群 PCM 复接设施的输出码型是 HDB3 码,四次群是 CMI 码,在光发射机中,需要先变换成 NRZ 码。
光发射端机的构成以下列图所示。
数字信号线路编码调制电路光源光信号控制电路1、线路编码线路编码的作用是将传递码流变换成便于在光纤中传输接收及监测的线路码型。
线路编码的种类有:①扰码;②mBnB 码;③插入码。
我国 3 次群和 4 次群光纤通讯系统最常用的线路编码是5B6B 码。
2、调制电路光源的调制方式分直接调制和间接调制。
直接调制仅合用于半导体光源( LD 和 LED ),它是把要传递的信息转变成电流信号注入 LD 和 LED ,进而获取相应的光信号,是一种电源调制方式。
直接调制分模拟调制和数字调制,模拟调制一般只好使用 LED ,数字调制可使用 LED 也可使用 LD 。
间接调制是利用晶体的电光效应、磁光效应、声光效应等性质来实现对激光辐射的调制,它既合用于半导体激光器,也适于其余种类激光器。
间接调制最常用的是外调制,即在激光形成此后加载调制信号,详细方法是在激光器谐振腔外的光路上搁置调制器。
数字光纤通信与模拟光纤通信的区别光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。
1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。
从此,开创了光纤通信领域的研究工作。
光纤通信分为“数字光纤通信”和“模拟光纤通信”两大类(1)数字光纤通信系统这是目前光纤通信主要的通信方式。
输入采用脉冲编码(PCM)信号。
数字光纤通信采用二进制信号,信息由脉冲的“有”和“无”表示,所以噪声不影响传输的质量。
而且,数字光纤通信系统采用数字电路,易于集成以减少设备的体积和功耗,转接交换方便,便于与计算机结合等,有利于降低成本。
数字通信的优点是,抗干扰性强,传输质量好。
中继器采用判决再生技术,消除传输过程中的噪声积累,延长传输距离。
数字通信的缺点是所占的频带宽,语音电话占用4kHz的带宽,而数字电话占用20kHz~64kHz的带宽。
而光纤的带宽比金属传输线要宽许多,弥补了数字通信所占频带宽的缺点。
(2)模拟光纤通信系统若输入电信号不采用脉冲编码信号的通信系统即为模拟光纤通信系统。
模拟光纤通信最主要的优点是占用带宽较窄,电路简单,不需要数字系统中的模-数和数-模转换,所以价格便宜。
目前电视传输,广泛采用模拟通信系统采用调频(FM)或调幅(AM)技术,传输几十至上百路电视。
避免了电视数字传输中复杂的编码和解码技术,设备价格昂贵等问题。
这种系统的缺点是光电变换时噪声较大。
在长距离传输时,采用中继站将使噪声积累,故只能应用在短距离传输线路上。
如果希望在较长距离上传输,则要先采取脉冲频率调制,然后再送到光发送机进行光强调制。
由于采用FPM调制后,改善了传输信噪比,故中继距离可达20km以上,而且可以加装中间再生中继器。
其传输总长度可达50km~100km。
数字光纤通信系统是一种通过光纤信道传输数字信号的通信系统。
由于数字信号只取有限个离散值,可以通过取样、判决而再生,所以这种通信系统对信道的非线性失真不敏感,再通信全程中,及时由多次中继、失真(包括线性失真和非线性失真)和噪声也并不会积累。
数字光纤通信系统的组成数字光纤通信系统是一种高速数字数据传输系统,使用光纤传输数据,具有高速传输、信噪比高、阻抗稳定、抗干扰等优点,已经广泛应用于网络通信、数据中心、智能家居、医疗等领域。
数字光纤通信系统主要由三部分组成:传输设备、光纤线路和接收设备。
传输设备是数字光纤通信系统的核心部分,通常包括发射器和接收器两个组成部分。
发射器主要是将电信号转换成光信号,通过光纤线路传输;接收器则是将接收到的光信号转换成电信号,从而实现数字数据的传输。
发射器中的激光器是数字光纤通信系统中最重要的组件之一,它的性能直接影响到系统的传输速度和传输距离。
光纤线路是数字光纤通信系统的传输介质,它主要是由纤芯、包层、护套等组成。
纤芯是光纤线路中最关键的组件之一,它是光信号的传输通道,通常由高纯度玻璃、石英等材料制成。
包层则是包裹在纤芯外的一层材料,主要作用是保护纤芯,减少信号传输中的损耗。
护套则是包裹在包层外的一层材料,主要是为了保护线路,防止外界物理损伤。
接收设备是数字光纤通信系统中数据接收的最后一环,主要是将接收到的光信号转换成数字电信号,从而实现数据的解析和传输。
接收器通常包括光电探测器、放大器、解码器等组成部分,其中光电探测器是数字光纤通信系统中另一个重要的组件,它主要是将接收到的光信号转换成电信号,为后续的数据处理提供信号源。
综上所述,数字光纤通信系统的组成主要包括传输设备、光纤线路和接收设备三部分。
传输设备中的发射器和接收器是系统中最关键的组件之一,光纤线路是系统传输介质,而接收设备则是数据接收的最后一个环节,对于数据的完整性和准确性具有重要作用。
随着数字通信技术的不断更新和发展,数字光纤通信系统在未来的应用中将会发挥越来越重要的作用。