高中数学导数典型例题精讲
- 格式:docx
- 大小:787.98 KB
- 文档页数:16
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。
方法:f'(x)为在x=x处的切线的斜率。
题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。
方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。
例题:已知函数f(x)=x-3x。
1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。
提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。
将问题转化为关于x,m的方程有三个不同实数根问题。
答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。
1)求过点(1,-3)与曲线y=x-3x相切的直线方程。
(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。
题型3:求两个曲线y=f(x)、y=g(x)的公切线。
方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例题:求曲线y=x与曲线y=2elnx的公切线方程。
(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。
(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。
答案详解:本题主要考查导数在研究函数中的应用。
(1)求出比较其与的大小,得到的单调性表,于是得到的极值。
(2)将代入到中,并求得当时,此时恒成立,即在单调递增,同理可以得到在上为增函数,则原不等式可化为在上恒成立,令,对其求导得知若为减函数时其导数恒小于,便可得到的取值范围。
(3)若存在,使得假设成立,也即在上不是单调增或单调减,故,对求导得到其极小值点为,由于解得此时,此时需证明当,使得即可,此时可取,发现成立,故的取值范围为。
答案详解(Ⅰ),由是的极值点得,所以。
于是,定义域为,,函数在上单调递增,且。
因此,当时,;当时,。
所以,在上单调递减,在上单调递增。
(Ⅱ)当,时,,故只需要证明当时,。
当时,函数在单调递增,又,,故在有唯一实根,且。
当时,;当时,;从而当时,取得最小值。
由得:,,故。
综上:当时,。
解析:本题主要考查函数的求导和函数的单调性的判断。
(Ⅰ)先对函数求导,得导函数,由题,则可得的值,当时,单调递增,求得的的取值范围即为单调增区间;当时,单调递减,求得的的取值范围即为单调减区间。
(Ⅱ)由分析知,只需证明当时,,此时通过分析函数单调性,求得即可得证。
例题5:函数。
(Ⅰ)讨论的导函数零点的个数;(Ⅱ)证明:当时,。
答案详解(Ⅰ)的定义域为,()。
当时,,没有零点;当时,因为单调递增,单调递增,所以在单调递增。
又,当满足且时,,故当时,存在唯一零点。
(Ⅱ)由(Ⅰ),可设在的唯一零点为,当时,;当时,。
故在单调递减,在单调递增,所以当时,取得最小值,最小值为。
由于,所以。
故当时,。
解析:本题主要考查导数的概念及其几何意义以及导数在函数研究中的应用。
(Ⅰ)求导得出的表达式,根据其表达式,对进行分类讨论。
当时,可知没有零点;当时,可知单调递增,且存在使得而,因此存在唯一零点。
(Ⅱ)由(Ⅰ),可设的最小值在时取到,最小值为。
写出的表达式,再运用均值不等式即可得出。
题型3:先构造,再赋值,证明和式或积式不等式例题:已知函数。
资料一 :导数.知识点1.导数的概念例1.已知曲线yP (0, 0),求过点P的切线方程·解析:如图,按切线的定义,当x →0时,割线PQ 的极限位置是y 轴(此时斜率不存在),因此过P 点的切线方程是x =0. 例2.求曲线y =x 2在点(2,4)处的切线方程·解析:∵ y =x 2, ∴ ∆y =(x 0+∆x )2-x 02=2x 0∆x +(∆x )2 =4∆x +(∆x )2∴ k =00limlim (4)4x x yx x ∆→∆→∆=+∆=∆. ∴ 曲线y =x 2在点(2,4)处切线方程为y -4=4(x -2)即4x -y -4=0. 例3.物体的运动方程是 S =1+t +t 2,其中 S 的单位是米,t 的单位是秒,求物体在t =5秒时的瞬时速度及物体在一段时间[5,5+∆t ]内相应的平均速度.解析:∵ S =1+t +t 2, ∴ ∆S =1+(t +∆t )+(t +∆t )2-(1+t +t 2)=2t ·∆t +∆t +(∆t )2,∴21St t t∆=++∆∆, 即()21v t t t =++∆, ∴ (5)11v t =∆+, 即在[5,5+∆t ]的一段时间内平均速度为(∆t +11)米/秒∴ v (t )=S ’=00limlim(21)21t t St t t t ∆→∆→∆=++∆=+∆ 即v (5)=2×5+1=11.∴ 物体在t =5秒时的瞬时速度是11米/秒. 例4.利用导数的定义求函数yx =1处的导数。
解析:∆y1=, ∴ y x ∆∆, ∴ 0limx y x ∆→∆∆=1lim 2x ∆→=-.例5.已知函数f (x )=21sin 00x x xx ⎧≠⎪⎨⎪=⎩, 求函数f (x )在点x =0处的导数解析:由已知f (x )=0,即f (x )在x =0处有定义,∆y =f (0+∆x )-f (0)=21()sin x x∆∆,y x∆∆=1sin x x ∆⋅∆, 0lim x yx ∆→∆∆=01lim sin x x x ∆→∆⋅∆=0, 即 f ’(0)=0.∴ 函数f (x )在x =0处导数为0.例6.已知函数f (x )=21(1)121(1)12x x x x ⎧+⎪⎪⎨⎪+>⎪⎩≤, 判断f (x )在x =1处是否可导?解析:f (1)=1, 20001[(1)1]112lim lim lim (1)12x x x x y x x x ---∆→∆→∆→+∆+-∆==+∆=∆∆,001(11)112lim lim 2x x x y x x ++∆→∆→+∆+-∆==∆∆, ∵00lim lim x x y y x x -+∆→∆→∆∆≠∆∆, ∴ 函数y =f (x )在x =1处不可导. 例7.已知函数 y =2x 3+3,求 y ’.解析:∵ y =2x 3+3, ∴ ∆y =2(x +∆x )3+3-(2x 3+3)=6x 2·∆x +6x ·(∆x )2+2(∆x )3,∴ y x∆∆=6x 2+6x ·∆x +2(∆x )2, ∴ y ’=0lim x y x ∆→∆∆=6x 2.例8.已知曲线y =2x 3+3上一点P ,P 点横坐标为x =1,求点P 处的切线方程和法线方程.解析:∵ x =1, ∴ y =5, P 点的坐标为(1, 5), 利用例7的结论知函数的导数为y ’=6x 2,∴ y ’1|x ==6, ∴ 曲线在P 点处的切线方程为y -5=6(x -1) 即6x -y -1=0, 又曲线在P 点处法线的斜率为-61, ∴ 曲线在P 点处法线方程为y -5=-61( x -1),即 6y +x -31=0. 例9.抛物线y =x 2在哪一点处切线平行于直线y =4x -5?解析:∵ y ’=0lim x yx ∆→∆∆=220()lim2x x x x x x∆→+∆-=∆, 令2x =4.∴ x =2, y =4, 即在点P (2,4)处切线平行于直线y =4x -5.例10.设mt ≠0,f (x )在x 0处可导,求下列极限值(1) 000()()lim x f x m x f x x ∆→-∆-∆; (2) 000()()lim x x f x f x t x∆→∆+-∆.解析:要将所求极限值转化为导数f ’(x 0)定义中的极限形式。
导数经典20题目录导数经典20题 (1)一、【不等式恒成立-单变量】5道 (3)二、【不等式恒成立-双变量】5道 (13)三、【不等式证明】5道 (23)四、【零点问题】5道 (32)一、【不等式恒成立-单变量】【第01题】(2017•广东模拟)已知()ln a f x x x=+.(1)求()f x 的单调区间和极值;(2)若对任意0x >,均有()2ln ln x a x a −≤恒成立,求正数a 的取值范围.【分析】(1)求出函数的导数,通过讨论a 的范围求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为2ln ln 1a a ≤+,求出a 的范围即可.【解答】解:(1)(0x >), ()221a x a f x x x x−′=−=(0x >), 当0a ≤时,()0f x ′>,在()0,+∞上递增,无极值;当0a >时,0x a <<时,()0f x ′<,在()0,a 上递减,x a >时,()0f x ′>,()f x 在(),a +∞上递增,()()ln 1f x f a a ==+极小值,无极大值.(2)若对任意0x >,均有恒成立,即对任意0x >,均有2ln ln a a x x≤+恒成立, 由(1)得:0a >时,()f x 的最小值是ln 1a +,故问题转化为:2ln ln 1a a ≤+,即ln 1a ≤,故0e a <≤.【点评】本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,考查()ln a f x x x =+()f x ()f x ()2ln ln x a x a −≤转化思想,是一道中档题.一、【不等式恒成立-单变量】【第02题】(2019•西安一模)已知函数()()21e x f x x ax =−−(其中e 为自然对数的底数). (1)判断函数()f x 极值点的个数,并说明理由;(2)若对任意的0x >,()3e x f x x x +≥+,求a 的取值范围.【分析】(1)首先求得导函数,然后分类讨论确定函数的极值点的个数即可;(2)将原问题转化为恒成立的问题,然后分类讨论确定实数a 的取值范围即可.【解答】解:(1)()()e 2e 2x xf x x ax x a ′=−=− ,当0a ≤时,()f x 在(),0−∞上单调递减,在()0,+∞上单调递增,()f x 有1个极值点; 当102a <<时,()f x 在(),ln 2a −∞上单调递增,在()ln 2,0a 上单调递减,在()0,+∞上单调递增,()f a 有2个极值点; 当12a =时,()f x 在R 上单调递增,此时函数没有极值点; 当12a >时,()f x 在(),0−∞上单调递增,在()0,ln 2a 上单调递减,在()ln 2,a +∞上单调递增,()f a 有2个极值点. 综上,当12a =时,()f x 没有极值点;当0a ≤时,()f x 有1个极值点;当0a >且12a ≠时,()f x 有2个极值点.(2)由得32e 0x x x ax x −−−≥.当0x >时,2e 10x x ax −−−≥, 即2e 1x x a x−−≤对0x ∀>恒成立. 设()2e 1x x g x x−−=(0x >), ()3e x f x x x +≥+则()()()21e 1x x x g x x −−−′=,设()e 1x h x x =−−,则()e 1x h x ′=−,由0x >可知()0h x ′>,()h x 在()0,+∞上单调递增,()()00h x h >=,即e 1x x >+,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()1e 2g x g ∴≥=−,e 2a ∴≤−,故a 的取值范围是(],e 2−∞−.【点评】本题主要考查导数研究函数的极值点,导数研究不等式恒成立的方法,分类讨论的数学思想等知识,属于中等题.【第03题】(2017春•太仆寺旗校级期末)已知函数()ln f x x a x =−,()1a g x x+=−(a ∈R ). (1)若1a =,求函数()f x 的极小值;(2)设函数()()()h x f x g x =−,求函数()h x 的单调区间;(3)若在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,求a 的取值范围.【分析】(1)先求出其导函数,让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间进而求出函数()f x 的极值;(2)先求出函数()h x 的导函数,分情况讨论让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间;(3)先把()()00f x g x <成立转化为()00h x <,即函数()1ln a h x x a x x +=+−在[]1,e 上的最小值小于零;再结合(2)的结论分情况讨论求出其最小值即可求出a 的取值范围.【解答】解:(1)()f x 的定义域为()0,+∞,当1a =时,()ln f x x x =−,()111x f x x x −′=−=, x ()0,11 ()1,+∞ ()'f x− 0 + ()f x减 极小 增 所以()f x 在1x =处取得极小值1.(2)()1ln a h x x a x x +=+−, ()()()221111x x a a a h x x x x+−+ + ′=−−=, ①当10a +>时,即1a >−时,在()0,1a +上()0h x ′<,在()1,a ++∞上()0h x ′>, 所以()h x 在()0,1a +上单调递减,在()1,a ++∞上单调递增;②当10a +≤,即1a ≤−时,在()0,+∞上()0h x ′>,所以,函数()h x 在()0,+∞上单调递增.(3)在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,即在[]1,e 上存在一点0x ,使得()00h x <,即函数在[]1,e 上的最小值小于零. 由(2)可知,①当1e a +≥,即e 1a ≥−时,()h x 在[]1,e 上单调递减,所以()h x 的最小值为()e h ,由()1e e 0ea h a +=+−<可得2e 1e 1a +>−, 因为2e 1e 1+−e 1>−, 所以2e 1e 1a +>−; ②当11a +≤,即0a ≤时,()h x 在上单调递增,所以()h x 最小值为()1h ,由()1110h a =++<可得2a <−;③当11e a <+<,即0e 1a <<−时,可得()h x 最小值为()1h a +,因为()0ln 11a <+<,所以,()0ln 1a a a <+<,故()()12ln 12h a a a a +=+−+>,此时,()10h a +<不成立.综上可得,所求a 的范围是:或2a <−. 【点评】本题第一问考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.()1ln a h x x a x x+=+−[]1,e 2e 1e 1a +>−【第04题】(2019•蚌埠一模)已知函数()()2ln f x a x x x =−−.(1)当1a =时,求函数()f x 的单调区间;(2)若()0f x ≥恒成立,求a 的值.【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)通过讨论x 的范围,问题转化为01x <<时,2ln x a x x ≤−,1x >时,2ln x a x x ≥−,令()g x =2ln x x x−,根据函数的最值求出a 的范围,取交集即可. 【解答】解:(1)1a =时,()2ln f x x x x −−,(0x >) 故()()()211121x x f x x x x+−′=−−=, 令()0f x ′>,解得:1x >,令()0f x ′<,解得:01x <<,故()f x 在()0,1递减,在()1,+∞递增.(2)若()0f x ≥恒成立,即()2ln a x x x −≥,①()0,1x ∈时,20x x −<,问题转化为2ln x a x x ≤−(()0,1x ∈),1x >时,20x x −>,问题转化为2ln x a x x ≥−(1x >), 令()g x =2ln x x x −, 则()()()22121ln x x x g x x x −−−′=−, 令()()121ln h x x x x =−−−,则()112ln h x x x ′=−+−,()2120x x xh ′=−−<′, 故()h x ′在()0,1和()1,+∞内都递减,()0,1x ∈时,()()10h x h ′′>=,故()h x 在()0,1递增,()()10h x h <=,故()0,1x ∈时,()0g x ′<,()g x 在()0,1递减,而1x →时,()1g x →,故()0,1x ∈时,()1g x >,故1a ≤,()1,x ∈+∞时,()()10h x h ′′<=,故()h x 在()0,1递减,()()10h x h <=, 故()1,x ∈+∞时,()0g x ′<,()g x 在()1,+∞递减,而1x →时,()1g x →,故()1,x ∈+∞时,()1g x >,故1a ≥,②1x =时,显然成立.综上:1a =.【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,分类讨论思想,是一道综合题.【第05题】(2019•南昌一模)已知函数()()e ln x f x x x a =−++(e 为自然对数的底数,a 为常数,且1a ≤). (1)判断函数()f x 在区间()1,e 内是否存在极值点,并说明理由; (2)若当ln 2a =时,()f x k <(k ∈Z )恒成立,求整数k 的最小值. 【分析】(1)由题意结合导函数的符号考查函数是否存在极值点即可; (2)由题意结合导函数研究函数的单调性,据此讨论实数k 的最小值即可. 【解答】解:(1)()1e ln 1x f x x x a x ′=−++−,令()1ln 1g x x x a x=−++−,()1,e x ∈,则()()'e x f x g x =, ()2210x x g x x −+′=−<恒成立,所以()g x 在()1,e 上单调递减,所以()()110g x g a <=−≤,所以()'0f x =在()1,e 内无解. 所以函数()f x 在区间()1,e 内无极值点.(2)当ln 2a =时,()()e ln ln 2x f x x x =−++,定义域为()0,+∞,()1e ln ln 21x f x x x x ′=−++−,令()1ln ln 21h x x x x =−++−, 由(1)知,()h x 在()0,+∞上单调递减,又11022h => ,()1ln 210h =−<,所以存在11,12x∈,使得()10h x =,且当()10,x x ∈时,()0h x >,即()'0f x >,当()1,x x ∈+∞时,()0h x <,即()'0f x <.所以()f x 在()10,x 上单调递增,在()1,x +∞上单调递减, 所以()()()1111max e ln ln 2x f x f x x x ==−++. 由()10h x =得1111ln ln 210x x x −++−=,即1111ln ln 21x x x −+=−, 所以()1111e 1x f x x =−,11,12x∈ ,令()1e 1x r x x =− ,1,12x ∈ ,则()211e 10x r x x x′=−+> 恒成立, 所以()r x 在1,12上单调递增,所以()()1102r r x r <<= ,所以()max 0f x <,又因为1211e ln 2ln 2122f=−−+=>−,所以()max 10f x −<<,所以若()f x k <(k ∈Z )恒成立,则k 的最小值为0.【点评】本题主要考查导数研究函数的极值,导数研究函数的单调性,导数的综合运用等知识,属于中等题.二、【不等式恒成立-双变量】【第06题】(2019•广元模拟)已知函数()()ln 11xf x a x x=−++(a ∈R ),()2e mx g x x =(m ∈R ). (1)当1a =时,求函数()f x 的最大值;(2)若0a <,且对任意的1x ,[]20,2x ∈,()()121f x g x +≥恒成立,求实数m 的取值范围.【分析】(1)求出函数的导数,得到函数的单调区间,求出函数的最大值即可; (2)令()()1x f x ϕ=+,根据函数的单调性分别求出()x ϕ的最小值和()g x 的最大值,得到关于m 的不等式,解出即可.【解答】解:(1)函数()f x 的定义域为()1,−+∞, 当1a =时,()()()2211111xf x xx x −′=−=+++,∴当()1,0x ∈−时,()'0f x >,函数()f x 在()1,0−上单调递增, ∴当()0,x ∈+∞时,()'0f x <,函数()f x 在()0,+∞上单调递减, ()()max 00f x f ∴==.(2)令()()1x f x ϕ=+,因为“对任意的1x ,[]20,2x ∈,()()121f x g x +≥恒成立”, 所以对任意的1x ,[]20,2x ∈,()()min max x g x ϕ≥成立, 由于()()211ax a x x ϕ−−+′=+,当0a <时,对[]0,2x ∀∈有()'0x ϕ>,从而函数()x ϕ在[]0,2上单调递增, 所以()()min 01x ϕϕ==, ()()222e e 2e mx mx mx g x x x mmxx ′=+⋅=+,当0m =时,()2g x x =,x ∈[]0,2时,()()max 24g x g ==,显然不满足()max 1g x ≤,当0m ≠时,令()'0g x =得10x =,22x m=−, ①当22m−≥,即10m −≤≤时,在[]0,2上()0g x ′≥,所以()g x 在[]0,2上单调递增, 所以()()2max 24e m g x g ==,只需24e 1m ≤,得ln 2m ≤−,所以1ln 2m −≤≤−. ②当202m <−<,即1m <−时,在20,m − 上()0g x ′≥,()g x 单调递增,在2,2m−−上()0g x ′<,()g x 单调递减,所以()22max 24eg x g m m== , 只需2241e m ≤,得2e m ≤−,所以1m <−. ③当20m−<,即0m >时,显然在[]0,2上()0g x ′≥,()g x 单调递增, 所以()()2max 24e m g x g ==,24e 1m ≤不成立. 综上所述,m 的取值范围是(],ln 2−∞−.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.【第07题】(2019•濮阳一模)已知函数()ln b f x a x x =+(0a ≠). (1)当2b =时,讨论函数()f x 的单调性;(2)当0a b +=,0b >时,对任意1x ,21,e e x ∈,都有()()12e 2f x f x −≤−成立,求实数b 的取值范围.【分析】(1)通过讨论a 的范围,求出函数的单调区间即可;(2)原问题等价于()()max min e 2f x f x −≤−成立,可得()()min 11f x f ==,可得()()max e e b f x f b ==−+,即e e 10b b −−+≤,设()e e 1b b b ϕ=−−+(0b >),可得()b ϕ在()0,+∞单调递增,且()10ϕ=,即可得不等式e e 10b b −−+≤的解集.【解答】解:(1)函数()f x 的定义域为()0,+∞. 当2b =时,()2ln f x a x x =+,所以()22x a f x x+′=. ①当0a >时,()0f x ′>,所以函数()f x 在()0,+∞上单调递增.②当0a <时,令()0f x ′=,解得:x =当0x <<()0f x ′<,所以函数()f x 在 上单调递减;当x >()0f x ′>,所以函数()f x 在+∞上单调递增. 综上所述,当2b =,0a >时,函数()f x 在()0,+∞上单调递增;当2b =,0a <时,函数()f x 在 上单调递减,在 +∞上单调递增. (2) 对任意1x ,21,e e x∈,有()()12e 2f x f x −≤−成立,()()max min e 2f x f x ≤∴−−成立,0a b += ,0b >时,()ln b f x b x x =−+.()()11bb b x b f x bx x x−−′=−+=. 当01x <<时,()0f x ′<,当1x >时,()0f x ′>,()f x ∴在1,1e单调递减,在[]1,e 单调递增,()()min 11f x f ==,1e e bf b − =+ ,()e e b f b =−+, 设()()1e e e 2e b b g b f f b −=−=−−(0b >),()e e 20b b g b −′=+−>. ()g b ∴在()0,+∞递增,()()00g b g ∴>=,()1e e f f ∴>.可得()max f x =()e e b f b =−+,e 1e 2b b ∴−+−≤−,即e e 10b b −−+≤,设()e e 1b b b ϕ=−−+(0b >),()e 10b b ϕ′−>在()0,b ∈+∞恒成立.()b ϕ∴在()0,+∞单调递增,且()10ϕ=,∴不等式e e 10b b −−+≤的解集为(]0,1. ∴实数b 的取值范围为(]0,1.【点评】本题考查了导数的应用,考查了转化思想、运算能力,属于压轴题.【第08题】(2019•衡阳一模)已知()32342f x x ax x −=+(x ∈R ),且()f x 在区间[]1,1−上是增函数.(1)求实数a 的值组成的集合A ;(2)设函数()f x 的两个极值点为1x 、2x ,试问:是否存在实数m ,使得不等式21213m tm x x ++≥−对任意a A ∈及[]1,1t ∈−恒成立?若存在,求m 的取值范围;若不存在,请说明理由.【分析】(1)由()f x 在区间[]1,1−上是增函数.可得()24220f x ax x ′=+−≥在区间[]1,1−上恒成立.可得()10f ′−≥,()10f ′≥,即可得出. (2)函数()f x 的两个极值点为1x 、2x ,可得12x x a +=,122x x =−.()()1212121212322x x x x x x x x x x −−++≤−++==a A ∈,设()h a =[]1,1a ∈−,则()h a 是偶函数,且在[]0,1上单调递增,进而得出其最大值为7.()21213g t m tm x x ++≥−=对任意a A ∈及[]1,1t ∈−恒成立,可得()()1717g g −≥ ≥,解得m 范围即可得出.【解答】解:(1) ()f x 在区间[]1,1−上是增函数, ∴()24220f x ax x ′=+−≥在区间[]1,1−上恒成立.()14220f a ∴′−=−−≥,()14220f a ′=+−≥,解得11a −≤≤. []1,1A ∴=−.(2)函数()f x 的两个极值点为1x 、2x , ∴12x x a +=,122x x =−.∴()()1212121212322x x x x x x x x x x −−++≤−++==a A ∈ ,设()h a =[]1,1a ∈−,则()h a 是偶函数,且在[]0,1上单调递增.123x x ∴−的最大值为()17h =.设()2211g t m tm mt m ++=++=,[]1,1t ∈−,()123g t x x ≥−对任意a A ∈及[]1,1t ∈−恒成立,则()()1717g g −≥≥ ,解得3m ≤−或3m ≥. ∴存在实数3m ≤−或3m ≥,使得不等式21213m tm x x ++≥−对任意a A ∈及[]1,1t ∈−恒成立.【点评】本题考查了利用导数研究函数的单调性、方程与不等式的解法、转化方法、分类讨论方法,考查了推理能力与计算能力,属于难题.【第09题】(2018•呼和浩特一模)已知函数()ln f x x =,()212g x x bx =−(b 为常数). (1)当4b =时,讨论函数()()()h x f x g x =+的单调性;(2)2b ≥时,如果对于1x ∀,(]21,2x ∈,且12x x ≠,都有()()()()1212f x f x g x g x −<−成立,求实数b 的取值范围.【分析】(1)先求导,再根据导数和函数的单调性关系即可求出,(2)令()()()x f x g x ϕ=+,则问题等价于函数()x ϕ在区间(]1,2(1,2]上单调递减,即等价于()10x x b xϕ′=+−≤在区间(]1,2上恒成立,所以得1b x x ≥+,求出即可.【解答】解:(1)()21ln 2h x x x bx =+−的定义域为()0,+∞,当4b =时,()21ln 42h x x x x =+−,()2141'4x x h x x x x−+=+−=, 令()'0h x =,解得12x =−,22x =+(2x ∈时,()0h x ′<, 当(0,2x ∈或()2+∞时,()0h x ′>,所以,()h x 在(0,2和()2+∞单调递增;在(2单调递减. (2)因为()ln f x x =在区间(]1,2上单调递增, 当2b ≥时,()212g x x bx =−在区间(]1,2上单调递减, 不妨设12x x >,则()()()()1212f x f x g x g x −<−等价于()()()()1122f x g x f x g x +<+, 令()()()x f x g x ϕ=+,则问题等价于函数()x ϕ在区间(]1,2上单调递减, 即等价于()10x x b xϕ′=+−≤在区间(]1,2上恒成立, 所以得1b x x≥+在区间(]1,2上恒成立, 因为1y x x=+在(]1,2上单调递增, 所以max 15222y =+=,所以得5b≥.2【点评】本题考查了导数研究函数的单调性以及根据函数的增减性得到函数的最值,理解等价转化思想的运用,属于中档题.【第10题】(2018•邕宁区校级模拟)设函数()e xa f x x x=−,a ∈R 且0a ≠,e 为自然对数的底数. (1)求函数()f x y x=的单调区间; (2)若1ea =,当120x x <<时,不等式()()()211212m x x f x f x x x −−>恒成立,求实数m 的取值范围.【分析】(1)求出函数y 的导数y ′,利用导数判断函数y 的单调性与单调区间; (2)120x x <<时,()()()211212m x x f x f x x x −−>等价于()()1212m mf x f x x x −>−;构造函数()()mg x f x x=−,由()g x 在()0,+∞上为减函数,得出()0g x ′≤, 再利用构造函数求最值法求出m 的取值范围. 【解答】解:(1)函数()2e 1xf x a y x x==−, ()243e 2e 2e xx x a x a x x a y x x −⋅−⋅∴′==, ①当0a >时,由0y ′>得02x <<,由0y ′<得0x <或2x >; ②当0a <时,由0y ′>得0x <或2x >,由0y ′<得02x <<. 综上:①当0a >时,函数()f x y x=的增区间为()0,2,减区间为(),0−∞,()2,+∞; ②当0a <时,函数()f x y x=的增区间为(),0−∞,()2,+∞,减区间为()0,2. (2)当120x x <<时,()()()211212m x x f x f x x x −−>等价于()()1212m mf x f x x x −>−,即函数())e (e x m mg x f x x x x x=−=−−在()0,+∞上为减函数,则()()()1212221e 1e 10x x x x x m m g x x x x−−−−−+′=−+=≤, ()121e x m x x −∴≤−−;令()()121e x h x x x −=−−, 则()()11 e 2e 2x x h x x xx −−′=−=−,由()0h x ′=得ln 2e x =;当()0,ln 2e x ∈时,()0h x ′<,()h x 为减函数; 当()ln 2e,+x ∈∞时,()0h x ′>,()h x 为增函数.()h x ∴的最小值为()()()()22ln 2e 12ln 2e ln 2e 1e ln 2e 2ln 2ln 21ln 21h −=−−=−+=−−; 2ln 21m ∴≤−−,m ∴的取值范围是(22,ln 1 −−∞− .【点评】本题考查了利用导数研究函数的单调性与最值问题,也考查了不等式恒成立问题,是综合题.三、【不等式证明】【第11题】(2018新课标I)已知函数()e ln 1x f x a x =−−.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 【分析】(1)推导出0x >,()1e x f x a x ′=−,由2x =是()f x 的极值点,解得212ea =,从而()21e ln 12exf x x =−−,进而()211e 2e x f x x ′=−,由此能求出()f x 的单调区间. (2)当1e a ≥时,()e ln 1e xf x x ≥−−,设()e ln 1e xg x x =−−,则()e 1e x g x x ′=−,由此利用导数性质能证明当1ea ≥时,()0f x ≥. 【解答】解:(1)∵函数()e ln 1x f x a x =−−. ∴0x >,()1e xf x a x′=−, ∵2x =是()f x 的极值点,∴()212e 02f a ′=−=,解得212ea =,∴()21e ln 12exf x x =−−,∴()211e 2e x f x x ′=−, 当02x <<时,()0f x ′<,当2x >时,()0f x ′>, ∴()f x 在()0,2单调递减,在()2,+∞单调递增.(2)证明:当1e a ≥时,()e ln 1e xf x x ≥−−,设()e ln 1e x g x x =−−,则()e 1e x g x x ′=−, 由()e 10e x g x x ′=−=,得1x =,当01x <<时,()0g x ′<, 当1x >时,()0g x ′>, ∴1x =是()g x 的最小值点,故当0x >时,()()10g x g ≥=, ∴当1ea ≥时,()0f x ≥. 【点评】本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.【第12题】(2018新课标Ⅲ)已知函数()21e xax x f x +−=. (1)求曲线()y f x =在点()0,1−处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【分析】(1)()()()()2221e 1e e x xx ax ax x f x +−+−′=由()02f ′=,可得切线斜率2k =,即可得到切线方程. (2)可得()()()()()()2221e 1e 12ee x xxx ax ax x ax x f x +−+−+−′==−.可得()f x 在1,a−∞−,()2,+∞递减,在1,2a−递增,注意到1a ≥时,函数()21g x ax x =+−在()2,+∞单调递增,且()2410g a =+>.只需()min e f x ≥−,即可. 【解答】解:(1)()()()()()()2221e 1e 12e e x xxx ax ax x ax x f x +−+−+−′==−.∴()02f ′=,即曲线()y f x =在点()01−,处的切线斜率2k =, ∴曲线()y f x =在点()01−,处的切线方程方程为()12y x −−=. 即210x y −−=为所求.(2)证明:函数()f x 的定义域为:R , 可得()()()()()()2221e 1e 12e e x xxx ax ax x ax x f x +−+−+−′==−.令()0f x ′=,可得12x =,210x a=−<, 当1,x a∈−∞−时,()0f x ′<,当1,2x a ∈− 时,()0f x ′>,当()2,x ∈+∞时,()0f x ′<.∴()f x 在1,a−∞−,()2,+∞递减,在1,2a − 递增,注意到1a ≥时,函数()21g x ax x =+−在()2,+∞单调递增,且()2410g a =+>.函数()f x 的图象如下:∵1a ≥,∴(]10,1a∈,则11e e a f a−=−≥−, ∴()1min e e af x =−≥−, ∴当1a ≥时,()e 0f x +≥.【点评】本题考查了导数的几何意义,及利用导数求单调性、最值,考查了数形结合思想,属于中档题.【第13题】(2016新课标Ⅲ)设函数()ln 1f x x x =−+. (1)讨论()f x 的单调性; (2)证明当()1,x ∈+∞时,11ln x x x−<<; (3)设1c >,证明当()0,1x ∈时,()11x c x c +−>.【分析】(1)求出导数,由导数大于0,可得增区间;导数小于0,可得减区间,注意函数的定义域;(2)由题意可得即证ln 1ln x x x x <−<.运用(1)的单调性可得ln 1x x <−,设()ln 1F x x x x =−+,1x >,求出单调性,即可得到1ln x x x −<成立;(3)设()()11x G x c x c =+−−,求()G x 的二次导数,判断()G x ′的单调性,进而证明原不等式.【解答】解:(1)函数()ln 1f x x x =−+的导数为()11f x x′=−, 由()0f x ′>,可得01x <<;由()0f x ′<,可得1x >. 即有()f x 的增区间为()0,1;减区间为()1,+∞; (2)证明:当()1,x ∈+∞时,11ln x x x−<<,即为ln 1ln x x x x <−<. 由(1)可得()ln 1f x x x =−+在()1,+∞递减, 可得()()10f x f <=,即有ln 1x x <−;设()ln 1F x x x x =−+,1x >,()1ln 1ln F x x x ′=+−=, 当1x >时,()0F x ′>,可得()F x 递增,即有()()10F x F >=, 即有ln 1x x x >−,则原不等式成立; (3)证明:设()()11x G x c x c =+−−,则需要证明:当()0,1x ∈时,()0G x >(1c >);()1ln x G x c c c ′=−−,()()2ln 0x G x c c ′′=−<,∴()G x ′在()0,1单调递减,而()01ln G c c ′=−−,()11ln G c c c ′=−−, 由(1)中()f x 的单调性,可得()01ln 0G c c ′=−−>,由(2)可得()()11ln 1ln 10G c c c c c ′=−−=−−<,∴()0,1t ∃∈,使得0G t ′=(),即()0,x t ∈时,()0G x ′>,(),1x t ∈时,()0G x ′<; 即()G x 在()0,t 递增,在(),1t 递减; 又因为:()()010G G ==,∴()0,1x ∈时()0G x >成立,不等式得证; 即1c >,当()0,1x ∈时,()11x c x c +−>.【点评】本题考查导数的运用:求单调区间和极值、最值,考查不等式的证明,注意运用构造函数法,求出导数判断单调性,考查推理和运算能力,属于中档题.【第14题】(2015新课标I)设函数()2e ln x f x a x =−. (1)讨论()f x 的导函数()f x ′零点的个数; (2)证明:当0a >时,()22lnf x a a a≥+. 【分析】(1)先求导,在分类讨论,当0a ≤时,当0a >时,根据零点存在定理,即可求出;(2)设导函数()f x ′在()0,+∞上的唯一零点为0x ,根据函数()f x 的单调性得到函数的最小值()0f x ,只要最小值大于22ln a a a+,问题得以证明.【解答】解:(1)()2e ln x f x a x =−的定义域为()0,+∞, ∴()22e x xx af =′−. 当0a ≤时,()0f x ′>恒成立,故()f x ′没有零点, 当0a >时,∵2e x y =为单调递增,ay x=−单调递增, ∴()f x ′在()0,+∞单调递增, 又()0f a ′>,假设存在b 满足0ln2a b <<时,且14b <,()0f b ′<, 故当0a >时,导函数()f x ′存在唯一的零点;(2)由(1)知,可设导函数()f x ′在()0,+∞上的唯一零点为0x , 当()00,x x ∈时,()0f x ′<, 当()0,x x ∈+∞时,()0f x ′>,故f(x)在()00,x 单调递减,在()0,x +∞单调递增, 所欲当0x x =时,()f x 取得最小值,最小值为()0f x , 由于0202e 0x ax −=,所以()002a f x x =+02ax +2ln a a ≥2a +2ln a a. 故当0a >时,()22lnf x a a a≥+. 【点评】本题考查了导数和函数单调性的关系和最值的关系,以及函数的零点存在定理,属于中档题.【第15题】(2015安徽)设n ∗∈N ,n x 是曲线221n y x +=+在点()1,2处的切线与x 轴交点的横坐标. (1)求数列{}n x 的通项公式; (2)记2221321n n T x x x −= ,证明:14n T n≥. 【分析】(1)利用导数求切线方程求得切线直线并求得横坐标; (2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)2221'1'22n n y x n x ++=+=+()(),曲线221n y x +=+在点()1,2处的切线斜率为22n +,从而切线方程为()()2221y n x −=+−.令0y =,解得切线与x 轴的交点的横坐标为1111n n x n n =−=++;(2)证明:由题设和(1)中的计算结果可知:22213222211321242n n n n T x x x−− = =, 当1n =时,114T =, 当2n ≥时,因为()()()()2222212221211212212222n n n n n n n n n n n x −−−−−−−=>=== , 所以2112112234n T n n n − >××××= ;综上所述,可得对任意的n ∗∈N ,均有14n T n≥. 【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.四、【零点问题】【第16题】(2018秋•龙岩期末)已知函数()()2ln 12f x x ax a x a =−−−+(a ∈R ). (1)讨论()f x 的单调性;(2)令函数()()()()22e 1ln 1x g x f x x a x −=+−+−−,若函数()g x 有且只有一个零点0x ,试判断0x 与3的大小,并说明理由.【分析】(1)由()222211a x x a f x x a x x +− ′−−−−(1x >),分212a +≤和212a +>两类分析函数的单调性;(2)函数()()()()()222e 1ln 1e ln 12x x g x f x x a x ax x a −−=+−+−−=−−−+,求其导函数,可得()21e 1x g x a x −′=−−−,令()()h x g x ′=,对()h x 求导,分析可得()g x ′在()1,+∞上有唯一零点1x ,结合已知可得01x x =,则()()0000g x g x ′ = = ,由此可得()()0200013e ln 1101x x x x −−−−+−=−, 令()()()213e ln 111x t x x x x −−−−+−−(1x >). 再利用导数判断其单调性,结合函数零点的判定可得03x <. 【解答】解:(1)()222211a x x a f x x a x x +− ′−−−−(1x >), 当212a +≤,即0a ≤时,()0f x ′>在()1,+∞上恒成立,()f x 在()1,+∞上单调递增; 当212a +>,即0a >时,若21,2a x + ∈ ,则()0f x ′<,若2,2a x + ∈+∞,则()0f x ′>, ∴()f x 在21,2a + 上单调递减,在2,2a ++∞上单调递增; (2)函数()()()()()222e 1ln 1e ln 12x x g x f x x a x ax x a −−=+−+−−=−−−+. 则()21e 1x g x a x −′=−−−,易知()g x ′在()1,+∞上单调递增,当1x >且1x →时,()g x ′→−∞,x →+∞,()g x ′→+∞, ∴()g x ′在()1,+∞上有唯一零点1x ,当()11,x x ∈时,()0g x ′<,当()1,x x ∈+∞时,()0g x ′>. ∴()()1min g x g x =,由已知函数()g x 有且只有一个零点0x ,则01x x =. ∴()()0000g x g x ′ = = ,即()0022001e 01e ln 120x x a x ax x a −− −−= − −−−+=, 消a 得,()000222000011e ln 1e 2e 011x x x x x x x −−−−−−−+−= −−, ()()0200013e ln 1101x x x x −−−−+−=−, 令()()()213e ln 111x t x x x x −−−−+−−(1x >). 则()()()2212e 1x t x x x −′=−+−. ∴()1,2x ∈时,()0t x ′>,()2,x ∈+∞时,()0t x ′<. ∴()t x 在()2,+∞上单调递减. ∵()210t =>,()13ln 202t =−+<, ∴()t x 在()2,3上有一个零点,在()3,+∞上无零点. 若()t x 在()1,2上有一个零点,则该零点必小于3. 综上,03x <.【点评】本题考查了利用导数研究函数的单调性,考查函数零点的判定,考查了推理能力与计算能力,属于难题.【第17题】(2019•大庆二模)已知函数()22ln f x x a x =−(a ∈R ). (1)当12a =时,点M 在函数()y f x =的图象上运动,直线2y x =−与函数()y f x =的图象不相交,求点M 到直线2y x =−距离的最小值; (2)讨论函数()f x 零点的个数,并说明理由.【分析】(1)首先写出函数的定义域,对函数求导,分析在什么情况下满足距离最小,构造等量关系式,求解,得到对应的点的坐标,之后应用点到直线的距离公式进行求解即可;(2)对函数求导,分情况讨论函数的单调性,依次得出函数零点的个数. 【解答】解:(1)()f x 的定义域为()0,+∞, 12a =时,()2ln f x x x =−,()12f x x x ′=−,令()1f x ′=,解得:1x =或12x =−,又()11f =,故图像上的点到直线20x y −−=的距离的最小值即为点()1,1M 到直线20x y −−=的距离,其距离d(2)由()0f x =,得22ln x a x =(0x >且1x ≠),设()2ln x g x x=(0x >且1x ≠),2y a =, 问题转化为讨论()y g x =的图象和2y a =的图象的交点个数问题, ()()22ln 1ln x x g x x−′=,(0x >且1x ≠),令()0g x ′=,解得x ,当01x <<或1x <<时,()0g x ′<,当x 时,()0g x ′>,故()g x 在()0,1,(递减,在)+∞递增,故()2e g x g =极小值,又01x <<时,()0g x <,当1x >时,()0g x >,故当20a <或22e a =即0a <或e a =时,直线2y a =与函数()y g x =的图象有1个交点, 当22e a >即e a >时,有2个交点, 当0e a ≤<时没有交点,故函数()f x 当0a <或e a =时1个零点,当0a <或e a =时2个零点,0e a ≤<时没有零点.【点评】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有图象上的点到直线的距离的最小值的求解,导数的几何意义,应用导数研究函数的零点的问题,注意对分类讨论思想的应用,要做到不重不漏,属于较难题目.【第18题】(2018秋•周口期末)已知函数()22ln f x ax x =−(a ∈R ). (1)讨论函数()f x 的单调性; (2)当21e a =时,若函数()y f x =的两个零点分别为1x ,2x (12x x <),证明:()12ln ln 21x x +>+.【分析】(1)求函数的定义域和函数的导数,分0a ≤和0a >分类讨论函数的单调性即可;(2)欲证()12ln ln 21x x +>+,只需证122e x x +>,即证122e x x >−,只需证()()212e 0f x f x −>=,将()22e f x −表示出来化简整理并构造函数()()442ln 2ln 2e 1etg t t =−+−−,由函数()g t 的单调性即可证明. 【解答】解:(1)易知()f x 的定义域是()0,+∞,()()22122ax f x ax x x−′=−=, 当0a ≤时,()0f x ′<,()f x 在()0,+∞递减,当0a >时,令()0f x ′>,解得x >,故()f x 在 递减,在 +∞递增; (2)证明:当21ea =时,()222ln e x f x x =−,由(1)知()()min e 1f x f ==−,且()10,e x ∈,()2e,x ∈+∞,又由()2e 22ln 20f =−>知22e x <,即()2e,2e x ∈,故()22e 0,e x −∈,由()222222ln 0e x f x x =−=,得22222e ln x x =,故()()()()222222222e 42e 2ln 2e 42ln 2ln 2e eex x f x x x x −−=−−=−+−−,()2e,2e x ∈,令()()442ln 2ln 2e etg t t t =−+−−,()e,2e t ∈, 则()()()24e 0e 2e t g t t t −′=>−, 故()g t 在()e,2e 递增,故()()e 0g t g >=,即()()212e 0f x f x −>=, 又()f x 在()0,e 上单调递减,故212e x x −<,即()12ln ln 21x x +>+.【点评】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想考查不等式的证明,是一道综合题.(2018秋•咸阳期末)已知函数()221ln 2f x x a x =−(0a >). (1)讨论()f x 的单调性;(2)若()f x 在[]1,e 上没有零点,求a 的取值范围.【分析】(1)求出()f x ′,解不等式()0f x ′>,()0f x ′<,即可求出()f x 的单调区间; (2)用导数求出函数()f x 在区间[]1,e 上没有零点,只需在[]1,e 上()min 0f x >或()max 0f x <,分类讨论,根据导数和函数的最值得关系即可求出.【解答】解:(1)()222a x a f x x x x −′=−=(0x >), 令()0f x ′>,解得x a >;令()0f x ′<,解得0x a <<, ∴函数()f x 的单调增区间为(),a +∞,单调减区间为()0,a .(2)要使()f x 在[]1,e 上没有零点,只需在[]1,e 上()min 0f x >或()max 0f x <, 又()1102f =>,只需在区间[]1,e 上,()min 0f x >. ①当e a ≥时,()f x 在区间[]1,e 上单调递减,则()()22min 1e e 02f x f a ==−>,解得0a <<与e a ≥矛盾. ②当1e a <<时,()f x 在区间[)1,a 上单调递减,在区间(],e a 上单调递增, ()()()2min 112ln 02f x f a a a ==−>,解得0a <1a <③当01a <≤时,()f x 在区间[]1,e 上单调递增,()()min 10f x f =>,满足题意, 综上所述,实数a 的取值范围是:0a <<【点评】本题是导数在函数中的综合运用,考查运用导数求单调区间,求极值,求最值,考查分类讨论的思想方法,同时应注意在闭区间内只有一个极值,则一定为最值的结论的运用.(2018秋•芜湖期末)已知函数()2ln 1f x x a x =−−(a ∈R ). (1)求()f x 的极值点;(2)若函数()f x 在区间()0,1内无零点,求a 的取值范围.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,求出函数的极值点即可;(2)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,从而确定是否存在零点,进而判断a 的范围.【解答】解:(1)()222a x a f x x x x −′=−=(0x >),当0a ≤时,()0f x ′>,()f x 在()0,+∞递增,当0a >时,令()0f x ′>,解得x >,故()f x 在 递减,在 +∞ 递增,故x =是极小值点,无极大值点; (2)()22x af x x −′=(01x <<), ∵01x <<,∴2022x <<,当0a ≤时,()0f x ′>,()f x 在()0,1递增, 故()()10f x f <=,函数无零点,符合题意; 当2a ≥时,()0f x ′<,()f x 在()0,1递减, 故()()10f x f >=,函数无零点,符合题意;当02a <<时,存在()00,1x =,使得()00f x ′=,故()f x 在 递减,在递增,又10e1a−<<,1e 0a f −> ,()10f f <=, 故()f x 在()0,1有零点,不合题意;综上,若函数()f x 在区间()0,1内无零点,则2a ≥或0a ≤.【点评】本题考查了函数的单调性,极值问题,考查导数的应用以及函数零点问题,考查分类讨论思想,转化思想,是一道综合题.。
导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。
这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。
对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。
利用导数的定义,我们可以计算得到函数在某一点处的变化率。
1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。
例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。
这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。
1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。
也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。
二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。
例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。
2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。
我们把这个过程称为求导,求出的导数称为导函数。
导函数的值就是原函数在对应点处的导数值。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。
这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。
三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。
高中数学典型例题分析第十章 导数及其应用§10.1导数及其运算一、知识导学1.瞬时变化率:设函数)(x f y =在0x 附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应地改变)()(0x f x x f y -∆+=∆,如果当x ∆趋近于0时,平均变化率xx f x x f x y ∆-∆+=∆∆)()(00趋近于一个常数c (也就是说平均变化率与某个常数c 的差的绝对值越来越小,可以小于任意小的正数),那么常数c 称为函数)(x f 在点0x 的瞬时变化率。
2.导数:当x ∆趋近于零时,xx f x x f ∆-∆+)()(00趋近于常数c 。
可用符号“→”记作:当0→∆x 时,x x f x x f ∆-∆+)()(00c →或记作c xx f x x f x =∆-∆+→∆)()(lim 000,符号“→”读作“趋近于”。
函数在0x 的瞬时变化率,通常称作)(x f 在0x x =处的导数,并记作)(0x f '。
3.导函数:如果)(x f 在开区间),(b a 内每一点x 都是可导的,则称)(x f 在区间),(b a 可导。
这样,对开区间),(b a 内每个值x ,都对应一个确定的导数)(x f '。
于是,在区间),(b a 内,)(x f '构成一个新的函数,我们把这个函数称为函数)(x f y =的导函数。
记为)(x f '或y '(或x y ')。
4.导数的四则运算法则:1)函数和(或差)的求导法则:设)(x f ,)(x g 是可导的,则)()())()((x g x f x g x f '±'='±即,两个函数的和(或差)的导数,等于这两个函数的导数的和(或差)。
2)函数积的求导法则:设)(x f ,)(x g 是可导的,则)()()()(])()([x g x f x g x f x g x f '+'='即,两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘第二个函数的导数。
导数在函数中的应用一、知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数形如山峰形如山谷3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) (3)函数的极大值一定大于其极小值.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 解析 (1)f (x )在(a ,b )内单调递增,则有f ′(x )≥0. (3)函数的极大值也可能小于极小值.(4)x 0为f (x )的极值点的充要条件是f ′(x 0)=0,且x 0两侧导函数异号. 答案 (1)× (2)√ (3)× (4)× (5)√2.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A.1B.2C.3D.4解析 由题意知在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正. 答案 A3.函数f (x )=2x -x ln x 的极值是( ) A.1eB.2eC.eD.e 2解析 因为f ′(x )=2-(ln x +1)=1-ln x ,令f ′(x )=0,所以x =e ,当f ′(x )>0时,解得0<x <e ;当f ′(x )<0时,解得x >e ,所以x =e 时,f (x )取到极大值,f (x )极大值=f (e)=e. 答案 C4.(2019·青岛月考)函数f (x )=cos x -x 在(0,π)上的单调性是( ) A.先增后减 B.先减后增 C.单调递增D.单调递减解析易知f′(x)=-sin x-1,x∈(0,π),则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.答案D5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.答案D6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4B.2或6C.2D.6解析函数f(x)=x(x-c)2的导数为f′(x)=3x2-4cx+c2,由题意知,在x=2处的导数值为12-8c+c2=0,解得c=2或6,又函数f(x)=x(x-c)2在x=2处有极小值,故导数在x=2处左侧为负,右侧为正,而当e=6时,f(x)=x(x-6)2在x=2处有极大值,故c=2.答案C考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值. (1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间. 解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=12x (x +1)(x +4)e x . 令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 规律方法 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间. 2.若所求函数的单调区间不止一个时,用“,”与“和”连接.【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在⎝ ⎛⎭⎪⎫0,1e 上递增 D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.解析 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.答案 (1)D (2)⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.解 因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax .(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝ ⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6(2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e ,+∞)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x .由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cos π4, 即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4.(2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减.由F (x )<1e 2=F (1),得x >1, 所以不等式F (x )<1e 2的解集为(1,+∞).答案 (1)B (2)B角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x . (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解. 设G (x )=1x 2-2x ,所以只要a >G (x )min . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x , 所以a ≥G (x )max . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4],因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12解析 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x ≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 答案 (1)B (2)B三、课后练习1.(2017·山东卷)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x B.f (x )=x 2 C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x ·cos x ,则g ′(x )=2e x cos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确. 答案 A2.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ).则原不等式可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1). 又f ′(x )=x cos x +2x =x (2+cos x ), 由2+cos x >0,得x >0时,f ′(x )>0.所以f (x )在(0,+∞)上单调递增. ∴|ln x |<1⇔-1<ln x <1⇔1e <x <e. 答案 D3.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13. 答案 ⎣⎢⎡⎦⎥⎤-13,134.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x, 当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a 2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9;由g ′(3)>0,即m >-373. ∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。
高中数学导数的计算导数是微积分中的一项重要概念,用于描述函数在其中一点的变化率。
在高中数学中,我们主要学习了常见函数的导数计算方法,包括多项式函数、指数函数、对数函数、三角函数等。
下面我们将通过一些例子详细介绍这些函数的导数计算方法。
一、多项式函数的导数计算多项式函数的一般形式为f(x)=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀,其中aₙ、aₙ₋₁、..、a₁、a₀为常数,n为正整数。
多项式函数的导数计算可通过幂次降低的方法来进行。
具体来说,对于f(x)=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀,如果n≥1,则有f’(x)=naₙxⁿ⁻¹+(n-1)aₙ₋₁xⁿ⁻²+...+a₁。
如果n=0,则f’(x)=0。
例题1:求函数f(x)=4x⁴+2x³-3x²+5的导数。
解:f’(x)=4*4x³+3*2x²-2*3x¹+0=16x³+6x²-6x二、指数函数的导数计算指数函数的一般形式为f(x)=aᵏx,其中a为常数,k为指数。
指数函数的导数计算可以通过应用导数的基本性质和指数函数的特点来求解。
具体来说,对于函数f(x)=aᵏx,根据导数的基本性质,有f’(x)=k*aᵏ⁻¹x。
同样地,对于指数函数f(x)=a,它的导数为f’(x)=0。
例题2:求函数f(x)=3e²ˣ的导数。
解:f’(x)=3*2e²ˣ=6e²ˣ三、对数函数的导数计算对数函数的一般形式为f(x)=logₐx,其中a为底数。
对数函数的导数计算同样可以通过应用导数的基本性质和对数函数的特点来求解。
具体来说,对于函数f(x)=logₐx,根据导数的基本性质,有f’(x)=1/(xlna)。
例题3:求函数f(x)=ln(4x)的导数。
解:f’(x)=1/(4x)四、三角函数的导数计算三角函数是高中数学中常见的函数,包括正弦函数、余弦函数和正切函数等。
导数在函数极值中的应用例题和知识点总结在数学的广袤天地中,导数无疑是一座连接函数性质与实际应用的重要桥梁。
而在函数的研究中,极值问题又占据着关键地位。
通过导数来求解函数的极值,不仅能让我们更深入地理解函数的变化规律,还能为解决实际问题提供有力的工具。
接下来,我们将通过具体的例题和详细的知识点总结,来探讨导数在函数极值中的应用。
一、知识点回顾1、导数的定义函数\(y = f(x)\)在\(x = x_0\)处的导数\(f'(x_0)\)定义为:\(f'(x_0) =\lim_{\Delta x \to 0} \frac{f(x_0 +\Delta x) f(x_0)}{\Delta x}\)2、导数的几何意义导数\(f'(x_0)\)表示函数\(y = f(x)\)在\(x = x_0\)处的切线斜率。
3、函数的单调性与导数的关系若\(f'(x) > 0\),则函数\(f(x)\)在区间内单调递增;若\(f'(x) < 0\),则函数\(f(x)\)在区间内单调递减。
4、函数的极值设函数\(f(x)\)在\(x_0\)处可导,且在\(x_0\)处附近左增右减,则\(x_0\)为函数的极大值点,\(f(x_0)\)为极大值;若在\(x_0\)处附近左减右增,则\(x_0\)为函数的极小值点,\(f(x_0)\)为极小值。
5、求函数极值的步骤(1)求导数\(f'(x)\);(2)解方程\(f'(x) = 0\),求出函数的驻点;(3)分析驻点左右两侧导数的符号,确定极值点;(4)将极值点代入函数,求出极值。
二、例题讲解例 1:求函数\(f(x) = x^3 3x^2 + 1\)的极值。
解:首先,对函数求导:\(f'(x) = 3x^2 6x\)令\(f'(x) = 0\),即\(3x^2 6x = 0\),解得\(x = 0\)或\(x = 2\)当\(x < 0\)时,\(f'(x) > 0\),函数单调递增;当\(0 < x < 2\)时,\(f'(x) < 0\),函数单调递减;当\(x > 2\)时,\(f'(x) > 0\),函数单调递增。
导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。
解析:首先,我们需要找到函数 \( f(x) \) 的导数。
根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。
2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。
解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。
因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。
3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。
解析:这是一个复合函数,我们可以使用链式法则来求导。
首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。
对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。
32个超越函数问题超越函数,指的是变量之间的关系不能用有限次加、减、乘、除、乘方、开方运算表示的函数,如三角函数、对数函数、反三角函数、指数函数就是超越函数。
导数是研究超越函数问题的基本方法。
1. 已知t tx x t x f 3ln )1()(2+++=,R t ∈. 若x x f 4)(≥对任意),1[+∞∈x 恒成立,求t 的取值范围.【解析】:由043ln )1(2≥-+++x t tx x t ,令043ln )1()(2≥-+++=x t tx x t x ϕ,首先由10)1(≥⇒≥t ϕ,此时xt x tx x 142)(2++-='ϕ,令142)(2++-=t x tx x h ,所以0)1(816≤+-=∆t t ,所以0)(≥x h 恒成立,即0)(≥'x ϕ,)(x ϕ在),1[+∞递增,故044)1()(≥-=≥t x ϕϕ,1≥t2. 已知x x x a x f -++=221)1ln ()(,a 为非零实数.)(x f y =有两个极值点21x x <,求证21)(12<x x f . 【解析】:a x --=11,a x -=12,所以02121)1ln(021)(21)(21)(2222222212>-++⇔>+⇔<-⇔<x x x a x x f x x f x x f 021)1l n ()1(222>-++⇔x x x令x x x x g 21)1ln()1()(-++=,)1,0(∈x ,因为021)1ln()(>++='x x g ,所以0)0()(=>g x g ,得证.3. 设函数)1(ln )(2-≥--=a x ax x x f ,记)(x f 极小值为H ,求H 的最大值.【解析】:设0)(0='x f ,则01200=--ax x ,有4820++=a a x ,0212ax x =-. )(x f 在),0(0x 递减,在),(0+∞x 递增. 则0200020ln 1ln x x x ax x H -+-=--=.记)1(48)(2-≥++=a a a a g ,当0≥a 时,)(a g 为增函数; 当01<≤-a ,aa a g -+=82)(2为增函数.所以21)1(0=-≥g x . 2ln 4321max +=⎪⎭⎫ ⎝⎛=h H4. 已知函数x ax x f 221)(2+=,x x g ln )(=. 求0>a ,使得方程)12()()(+-'=a x f x x g 在),1(e e内有且只有两个不相等的实数根. 【解析】:设)0(ln )21()(2>--+=x x x a ax x H ,即)(x H 在区间),1(e e内有且只有两个零点. )0()1)(12(1)21(2)(>-+=--+='x x x ax x a ax x H令0)(='x H ,解得1=x 或ax 21-=(舍)当)1,0(∈x 时,0)(<'x H ,)(x H 是减函数; 当),1(+∞∈x 时,0)(>'x H ,)(x H 是增函数;)(x H 在区间),1(e e内有且只有两个不相等的零点.只需⎪⎪⎪⎩⎪⎪⎪⎨⎧><>⎪⎭⎫ ⎝⎛0)(0)(01min e H x H e H ,1212-+<<⇒e e e a5. 已知x a x x f ln 2)(2+=,R a ∈. 若0)(>x f 对任意),1[+∞∈x 恒成立,求a 取值范围.【解析】:0ln 22>+x a x 对),1[+∞∈x 恒成立.(1)当1=x 时,有R a ∈;(2)当1>x 时,0ln 22>+x a x ,xx a ln 22->.令)1(ln 2)(2>-=x x x x g ,得xx x x g 2ln 2)1ln 2()(--='; 若e x <<1,则0)(>'x g ; 若e x >,则0)(<'x g得)(x g 在),1(e 上递增,在),(+∞e 上递减.故)1(ln 2)(2>-=x xx x g 的最大值为e e g -=)(.所以e a ->.6. 设函数x x p px x f ln 2)(--=,xex g 2)(=,若在],1[e 上至少存在一点0x ,使得)()(00x g x f >成立,求实数p 的取值范围.【解析】:因为xex g 2)(=在],1[e 上是减函数, 所以2)(min =x g ,e x g 2)(max =,即]2,2[)(e x g ∈,①当0≤p 时,由2知)(x f 在],1[e 递减20)1()(max <==⇒f x f ,不合题意;②当10<<p 时,01],1[≥-⇒∈xx e x , 所以221ln 21ln 21ln 2)1()(<--=--≤--≤--=ee e e e x x x x x x p xf 不合题意③当1≥p 时,)(x f 在],1[e 上是增函数,20)1(<=f ,又)(x g 在],1[e 上是减函数,故只需min max )()(x g x f >,],1[e x ∈,而e ee p ef x f ln 2)1()()(max --==2)(min =x g ,即2ln 2)1(>--e e e p ,解得142->e e p . 综上,p 的范围),14(2+∞-e e.7. |)2(|ln 2)(x a x a xx h -++=,),1[+∞∈x ,求证:2)(≥x h 解:当2≥a 时,022)(2≥-+-='a x ax x h ,故2)1()(≥≥h x h ,当2<a 时,x a x a xx h )2(ln 2)(-++=,0)1](2)2[(22)(22=-+-=+--='x x x a a x ax x h ,解得022<--=ax 或1=x ,)1,0(∈x 时,0)(<'x h ,)(x h 是减函数;当),1(+∞∈x 时,0)(>'x h ,)(x h 是增函数;故24)1()(min >-==a h x h ,即2)(>x h . 综上所述:2)(≥x h8. 已知函数)(ln 22)(2R a x a x x x f ∈++-=.有两个极值点1x ,2x ,且21x x <,证明:42ln 25)(2->x f . 【解析】:xax x x a x x f +-=+-='2222)(2,则1x ,2x 是0222=+-a x x 的两个根,所以1212<<x ,22222x x a -=,所以22222222ln )22(22)(x x x x x x f -++-=, 令t t t t t t g ln )22(22)(22-++-=,121<<t ,t t t g ln )42()(-=',所以0)(>'t g ,则)(t g 在)1,21(∈t 上为增函数,所以42ln 25)21()(-=>g t g9. 已知函数x x x x x f +-++-=23)1ln()(.方程xbx x f =---3)1()1(有实根,求b 范围.【解析】:32ln x x x x b -+=在0>x 上有解,即求函数32ln )(x x x x x g -+=的值域.令2ln )(x x x x h -+=,由xx x x x x h )1)(12(211)(-+=-+='.因为0>x , 所以当10<<x 时,0)(>'x h ;当1>x 时,0)(<'x h . 所以0)1()(=≤h x h ,又因为0>x ,所以)(x g 的值域为]0,(-∞.10. 已知函数)()(2R a e ax x f x ∈-=.若)(x f 有两个极值点1x ,2x ,求a 取值范围.解:设x e ax x f x g -='=2)()(,若0≤a 时,)(x g 单调递减,舍; 若0>a 时,由0)(='x g ,得a x 2ln =,当)2ln ,(a x -∞∈时,0)(>'x g ,)(x g 单调递增, 当),2(ln +∞∈a x 时,0)(<'x g ,)(x g 单调递减, 所以022ln 2)2(ln )(max >-==a a a a g x g ,得2ea >.11. 已知函数)1,0(ln )(2≠>-+=a a a x x a x f x .若存在1x ,2x ]1,1[-∈,使得1)()(21-≥-e x f x f ,求实数a 的取值范围.【解析】:只要1)()(min max -≥-e x f x f .)(x f 在]0,1[-上是减函数,在]1,0[上是增函数, 所以1)0()(min ==f x f . 因为a aa f f ln 21)1()1(--=--, 令)0(ln 21)(>--=a a aa a g ,因为0)(>'a g ,所以)(a g 在),0(+∞上是增函数. 而0)1(=g ,故当0>a 时,0)(>a g ; 当10<<a 时,0)(<a g , 所以,当1>a 时,1)0()1(-≥-e f f ,即1ln -≥-e a a , 而函数a a y ln -=在),1(+∞∈a 上是增函数,解得e a ≥;当10<<a 时,1)0()1(-≥--e f f ,即1ln 1-≥+e a a函数a a y ln 1+=在)1,0(∈a 上是减函数,解得ea 10≤<综上所求a 的取值范围为),[]1,0(+∞ee12. 已知x bx ax x f 4)(23++=极小值为-8,)(x f y '=图像经过点)0,2(-,如图所示. 若函数k x f y -=)(在]2,3[-上有两个不同的零点,求实数k 的取值范围.【解析】:x x x x f 42)(23+--=.即k x x x =+--4223在]2,3[-上有两个不相等实根.443)(2+--='x x x f ,令0)(='x f ,解得2-=x 或2=x ,可列表如下:由表可知,8-=k 或273<<-k 13. 已知xx x k k x f 24ln )4()(-++=,0>k .若),4[+∞∈k ,曲线)(x f y =上总存在相异两点),(11y x M ,),(22y x N 使得曲线)(x f y =在M ,N 两点处切线互相平行,求21x x +的取值范围.【解析】:)()(21x f x f '=' )且21210,(x x x x ≠>,即144144222211--+=--+x x k k x x k k , 即2121)4()(4x x kk x x ⋅+=+,而221212⎪⎭⎫⎝⎛+<⋅x x x x ,所以22121)2)(4()(4xx k k x x ++=+令k k k g 4)(+=,0)2)(2(41)(22>-+=-='k k k k k g ,所以5)4()(=≥g k g ,所以516416≤+kk ,所以21x x +的取值范围是),516(+∞.14. 已知函数)0(2121ln )(2≠+-=a x x a x f 对任意),1[+∞∈x ,都有0)(≤x f ,求a 的取值范围.【解析】:当0<a 时,)(x f 在),1[+∞上单调递减. 所以)(x f 在),1[+∞上的最大值为0)1(=f . 当1≤a ,)(x f 在),1[+∞上单调递减. 所以)(x f 在的最大值为0)1(=f .当1>a ,)(x f 在),1[a 上单调递增,所以)1()(f a f >,0)(>a f ,矛盾. 综上a 的取值范围是]1,0()0,( -∞15. 已知函数))((ln )(2R a x x a x x f ∈--=. 求)(x f 在]2,1[的最大值.【解析】:xax ax a ax x x f 1221)(2++-=+-=',0>x ;当0=a 时,0)(>'x f ,)(x f 在]2,1[上递增,2ln )2()(max ==f x f ; 当0≠a 时,令12)(2++-=ax ax x g ,]2,1[∈x当0<a 时,)(x f 在]2,1[上递增,a f x f 22ln )2()(max -==;当0>a 时,若0)1(≤g ,0)(<'x f 在]2,1[恒成立,)(x f 递减,0)1()(max ==f x f ;若0)1(>g ,0)2(<g ,即:161<<a 时,)(x f '在)48,1[2a a a a ++上大于零,]2,48(2a a a a ++上小于零, 所以)48()(2max a a a a f x f ++=84848ln 22-+++++=a a a a a a a .若0)1(>g ,0)2(≥g ,0)(>'x f 在]2,1[恒成立,)(x f 在]2,1[递增,所以a f x f 22ln )2()(max -==综上⎪⎪⎩⎪⎪⎨⎧-+++++-084848ln 22ln 22a a a a aa a a 116161≥<<≤a a a16. 已知函数()()x xx f +=1ln 。
高中数学导数典型例题精讲(详细版)导数经典例题精讲导数知识点导数是一种特殊的极限几个常用极限:(1)1lim0n n→∞=,lim 0n n a →∞=(||1a <);(2)00lim x x x x →=,0011lim x x x x →=.两个重要的极限:(1)0sin lim 1x x x →=;(2)1lim 1xx e x →∞??+=(e=2.718281845…). 函数极限的四则运算法则:若0lim ()x x f x a →=,0lim ()x xg x b →=,则 (1)()()0lim x x f x g x a b →±=±;(2)()()0lim x x f x g x a b →?=;(3)()()()0lim 0x xf x ab g x b→=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞=?(3)()lim 0n n n a ab b b→∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞?=?=?( c是常数))(x f 在0x 处的导数(或变化率或微商)00000()()()limlim x x x x f x x f x yf x y x x=?→?→+?-?''===??. .瞬时速度:00()()()lim limt t s s t t s t s t t tυ?→?→?+?-'===??. 瞬时加速度:00()()()lim limt t v v t t v t a v t t t→?→?+?-'===??. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()()lim limx x y f x x f x x x→?→?+?-==??. 函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.几种常见函数的导数(1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -='(4)x x 1)(ln =';e a x xa log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='. 导数的运算法则(1)'''()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v -=≠. 复合函数的求导法则设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且'''x u xy y u =?,或写作'''(())()()x f x f u x ??=.【例题解析】考点1 导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是. [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()22()2,(1)12 3.f x x f ''=+∴-=-+=Q故填3.例2.设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P ,则实数a 的取值范围是 ( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1.1x a x a a x x -<∴<<<<-当a>1时当a<1时()()()//2211,0.11111.x x a x a x a a y y x x x x a ------??=∴===> ?--??--∴>Q 综上可得M P 时, 1.a ∴>考点2 曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题例3.已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点.(I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.思路启迪:用求导来求得切线斜率.解答过程:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根,设两实根为12x x ,(12x x <),则21x x -=2104x x <-≤.于是04<,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--,因为切线l 在点(1())A f x ,处空过()y f x =的图象,所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+.因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<).当11m x <<时,()0g x <,当21x m <<时,()0g x >;或当11m x <<时,()0g x >,当21x m <<时,()0g x <.设233()1222a a h x x x=++-+ ? ?????,则当11m x <<时,()0h x >,当21x m <<时,()0h x >;或当11m x <<时,()0h x <,当21x m <<时,()0h x <.由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102ah =?++=,所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.例4.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为()A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=[考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力.[解答过程]与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=. 故选A.例5.过坐标原点且与x 2+y 2 -4x +2y +25=0相切的直线的方程为 ( )A.y =-3x 或y =31x B. y =-3x 或y =-31x C.y =-3x 或y =-31x D. y =3x 或y =31x[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力. [解答过程]解法1:设切线的方程为,0.y kx kx y =∴-= 又()()()22521,2,1.2x y -++=∴-圆心为213830., 3.3k k k k =+-=∴==- 1,3.3y x y x ∴==-或故选A.解法2:由解法1知切点坐标为1331(,),,,2222?-由 ()()//22////113231(,)(,)22225(2)1,22(2)210,2.113,.313,.3x xx x x x x y x y y x y y k y k y y x y x --++= ∴-++=-∴=-+∴==-==∴=-=故选A.例6.已知两抛物线a x y C x x y C +-=+=2221:,2:, a 取何值时1C ,2C 有且只有一条公切线,求出此时公切线的方程. 思路启迪:先对a x y C x x y C +-=+=2221:,2:求导数.解答过程:函数x x y 22+=的导数为22'+=x y ,曲线1C 在点P(12112,x x x +)处的切线方程为))(2(2)2(11121x x x x x y -+=+-,即 211)1(2x x x y -+= ①曲线1C 在点Q ),(222a x x +-的切线方程是)(2)(222x x x a x y --=+--即a x x x y ++-=2222 ② 若直线l 是过点P 点和Q 点的公切线,则①式和②式都是l 的方程,故得1,1222121+=--=+x x x x ,消去2x 得方程,0122121=+++a x x若△=0)1(244=+?-a ,即21-=a 时,解得211-=x ,此时点P 、Q 重合.∴当时21-=a ,1C 和2C 有且只有一条公切线,由①式得公切线方程为14y x =- .考点3 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1.. 求函数的解析式;2. 求函数的值域;3.解决单调性问题;4.求函数的极值(最值);5.构造函数证明不等式. 典型例题例7.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点()A .1个B .2个C .3个D . 4个[考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力. [解答过程]由图象可见,在区间(,0)a 内的图象上有一个极小值点. 故选A.例8 .设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.思路启迪:利用函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值构造方程组求a 、b 的值.解答过程:(Ⅰ)2 ()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=??++=?,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+.则当[]03x ∈,时,()f x 的最大值为(3)98f c =+.因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞U ,,.例9.函数y x x =+-+243的值域是_____________.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。
高中数学中的导数应用案例全面解析与计算导数是高中数学中的一个重要概念,在不同的数学问题中都有广泛的应用。
本文将通过一些具体案例,全面解析和计算导数的应用,以帮助读者更好地理解和应用导数。
案例一:汽车行驶问题假设一辆汽车以恒定的速度行驶,车速为v(t)(单位:m/s)。
我们需要求出汽车行驶过程中的加速度a(t)。
根据导数的定义,加速度a(t)可以表示为车速v(t)对时间t的导数,即a(t) = dv(t)/dt。
由此,我们可以通过求车速对时间的导数得到加速度。
在具体计算中,我们可以用一个具体的函数来描述车速v(t)的变化规律。
例如,假设车速v(t) = 2t + 3,其中t为时间(单位:s)。
根据导数的计算规则,这个函数的导数即为加速度。
对v(t)进行求导,有:dv(t)/dt = d(2t + 3)/dt = 2因此,这辆汽车的加速度恒定为2 m/s²。
案例二:曲线的切线问题假设有一条曲线y = f(x),我们需要求出该曲线在某一点P(x0, y0)处的切线斜率k。
根据导数的定义,斜率k可以表示为曲线y = f(x)在点P处的斜率,即k = dy/dx |x=x0。
其中,dy/dx表示y对x的导数,"|"表示在x=x0的意思。
在实际计算中,我们首先需要确定曲线函数f(x)的具体形式,以及点P(x0, y0)的坐标。
然后,对曲线函数进行求导,并将x的值代入导函数,即可得到切线斜率k的值。
以一个具体的例子来说明。
假设曲线为y = x²,要求在点P(2, 4)处的切线斜率k。
首先,对曲线函数y = x²进行求导,得到导函数dy/dx = 2x。
然后,将点P(2, 4)中的x坐标代入导函数2x,即可得到切线斜率:k = dy/dx |x=2 = 2(2) = 4所以,在曲线y = x²的点P(2, 4)处,切线的斜率为4。
通过以上两个案例,我们可以看到导数在不同数学问题中的应用。
高中数学导数讲义完整版第一部分 导数的背景一、导入新课 1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? (221gt s =,其中g 是重力加速度).2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.3. 边际成本问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响. 二、小结:瞬时速度是平均速度ts∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy∆∆当x ∆趋近于0时的极限;边际成本是平均成本q C ∆∆当q ∆趋近于0时的极限.三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程.6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.第二部分 导数的概念一、新课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比xy∆∆(也叫函数的平均变化率)有极限(即xy∆∆无限趋近于某个常数),我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/。
导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。
- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。
- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。
- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。
2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。
- 解析:- 设u = 2x+1,则y = u^5。
- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。
- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。
- 所以y^′ = 5u^4·2=10(2x + 1)^4。
二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。
- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。
- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。
2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。
- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。
- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。
§ 1.1 变化率与导数 1.1.1 变化率问题自学引导1.通过实例分析,了解平均变化率的实际意义.2.会求给定函数在某个区间上的平均变化率. 课前热身1.函数f (x )在区间[x 1,x 2]上的平均变化率为ΔyΔx=________. 2.平均变化率另一种表示形式:设Δx =x -x 0,则ΔyΔx=________,表示函数y =f (x )从x 0到x 的平均变化率.1.f (x 2)-f (x 1)x 2-x 1答 案2.f (x 0+Δx )-f (x 0)Δx名师讲解1.如何理解Δx ,Δy 的含义Δx 表示自变量x 的改变量,即Δx =x 2-x 1;Δy 表示函数值的改变量,即Δy =f (x 2)-f (x 1).2.求平均变化率的步骤求函数y =f (x )在[x 1,x 2]内的平均变化率. (1)先计算函数的增量Δy =f (x 2)-f (x 1). (2)计算自变量的增量Δx =x 2-x 1.(3)得平均变化率Δy Δx =f x 2-f x 1x 2-x 1.对平均变化率的认识函数的平均变化率可以表现出函数在某段区间上的变化趋势,且区间长度越小,表现得越精确.如函数y =sin x 在区间[0,π]上的平均变化率为0,而在[0,π2]上的平均变化率为sin π2-sin0π2-0=2π.在平均变化率的意义中,f (x 2)-f (x 1)的值可正、可负,也可以为零.但Δx =x 2-x 1≠0.典例剖析题型一求函数的平均变化率例1 一物体做直线运动,其路程与时间t的关系是S=3t-t2.(1)求此物体的初速度;(2)求t=0到t=1的平均速度.分析t=0时的速度即为初速度,求平均速度先求路程的改变量ΔS=S(1)-S(0),再求时间改变量Δt=1-0=1.求商ΔSΔt就可以得到平均速度.解(1)由于v=St=3t-t2t=3-t.∴当t=0时,v0=3,即为初速度.(2)ΔS=S(1)-S(0)=3×1-12-0=2 Δt=1-0=1∴v=ΔSΔt=21=2.∴从t=0到t=1的平均速度为2.误区警示本题1不要认为t=0时,S=0.所以初速度是零.变式训练1 已知函数f(x)=-x2+x的图像上一点(-1,-2)及邻近一点(-1+Δx,-2+Δy),则ΔyΔx=( )A.3 B.3Δx-(Δx)2 C.3-(Δx)2D.3-Δx 解析Δy=f(-1+Δx)-f(-1)=-(-1+Δx)2+(-1+Δx)-(-2)=-(Δx)2+3Δx.∴ΔyΔx=-Δx2+3ΔxΔx=-Δx+3答案D题型二平均变化率的快慢比较例2 求正弦函数y=sin x在0到π6之间及π3到π2之间的平均变化率.并比较大小.分析用平均变化率的定义求出两个区间上的平均变化率,再比较大小.解设y=sin x在0到π6之间的变化率为k1,则k 1=sinπ6-sin0π6-0=3π.y =sin x 在π3到π2之间的平均变化率为k 2,则k 2=sin π2-sin π3π2-π3=1-32π6=32-3π.∵k 1-k 2=3π-32-3π=33-1π>0,∴k 1>k 2.答:函数y =sin x 在0到π6之间的平均变化率为3π,在π3到π2之间的平均变化率为32-3π,且3π>32-3π.变式训练2 试比较余弦函数y =cos x 在0到π3之间和π3到π2之间的平均变化率的大小.解 设函数y =cos x 在0到π3之间的平均变化率是k 1,则k 1=cos π3-cos0π3-0=-32π.函数y =cos x 在π3到π2之间的平均变化率是k 2,则k 2=cosπ2-cos π3π2-π3=-3π.∵k 1-k 2=-32π-(-3π)=32π>0,∴k 1>k 2.∴函数y =cos x 在0到π3之间的平均变化率大于在π3到π2之间的平均变化率.题型三 平均变化率的应用例3 已知一物体的运动方程为s (t )=t 2+2t +3,求物体在t =1到t =1+Δt 这段时间内的平均速度.分析 由物体运动方程―→写出位移变化量Δs ―→ΔsΔt解 物体在t =1到t =1+Δt 这段时间内的位移增量 Δs =s (1+Δt )-s (1)=[(1+Δt )2+2(1+Δt )+3]-(12+2×1+3) =(Δt )2+4Δt .物体在t =1到t =1+Δt 这段时间内的平均速度为Δs Δt =(Δt )2+4ΔtΔt=4+Δt .变式训练3 一质点作匀速直线运动,其位移s 与时间t 的关系为s (t )=t 2+1,该质点在[2,2+Δt ](Δt >0)上的平均速度不大于5,求Δt 的取值范围.解 质点在[2,2+Δt ]上的平均速度为v -=s 2+Δt -s 2Δt=[2+Δt 2+1]-22+1Δt=4Δt +Δt2Δt=4+Δt .又v -≤5,∴4+Δt ≤5. ∴Δt ≤1,又Δt >0,∴Δt 的取值范围为(0,1]. § 1.1 函数的单调性与极值 1.1.2 导数的概念自学引导1.经历由平均变化率过渡到瞬时变化率的过程,了解导数概念建立的一些实际背景.2.了解瞬时变化率的含义,知道瞬时变化率就是导数.3.掌握函数f (x )在某一点x 0处的导数定义,并且会用导数的定义求一些简单函数在某一点x 0处的导数.课前热身1.瞬时速度.设物体的运动方程为S =S (t ),如果一个物体在时刻t 0时位于S (t 0),在时刻t 0+Δt 这段时间内,物体的位置增量是ΔS =S (t 0+Δt )-S (t 0).那么位置增量ΔS 与时间增量Δt 的比,就是这段时间内物体的________,即v =S t 0+Δt -S t 0Δt.当这段时间很短,即Δt 很小时,这个平均速度就接近时刻t 0的速度.Δt 越小,v 就越接近于时刻t 0的速度,当Δt →0时,这个平均速度的极限v =lim Δt →0ΔS Δt =lim Δt →0S t 0+Δt -S t 0Δt就是物体在时刻t 0的速度即为________. 2.导数的概念.设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),当Δx 无限趋近0时,比值Δy Δx =f x 0+Δx -f x 0Δx无限趋近于一个常数A ,这个常数A 就是函数f (x )在点x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0.用符号语言表达为f ′(x 0)=lim Δx →0Δy Δx=________1.平均速度 瞬时速度 答 案2.lim Δx →0f (x 0+Δx )-f (x 0)Δx名师讲解1.求瞬时速度的步骤(1)求位移增量ΔS =S (t +Δt )-S (t );(2)求平均速度v =ΔS Δt;(3)求极限limΔt→0ΔSΔt=limΔt→0S t +Δt-S tΔt;(4)若极限存在,则瞬时速度v=limΔt→0ΔS Δt.2.导数还可以如下定义一般地,函数y=f(x)在x=x0处的瞬时变化率是limΔx→0f x+Δx-f x0Δx=limΔx→0ΔyΔx.我们称它为函数y=f(x)在x=x0处的导数.记作f′(x0)或y′|x=x,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f x+Δx-f x0Δx.3.对导数概念的理解(1)“导数”是从现实生活中大量类似问题里,撇开一些量的具体意义,单纯地抓住它们数量上的共性而提取出来的一个概念,所以我们应很自然的理解这个概念的提出与其实际意义.(2)某点导数即为函数在这点的变化率.某点导数概念包含着两层含义:①limΔx→0ΔyΔx存在,则称f(x)在x=x0处可导并且导数即为极限值;②limΔx→0ΔyΔx不存在,则称f(x)在x=x0处不可导.(3)Δx称为自变量x的增量,Δx可取正值也可取负值,但不可以为0.(4)令x=x0+Δx,得Δx=x-x0,于是f′(x)=limx→x0f x-f xx-x与定义中的f′(x0)=limΔx→0f x+Δx-f x0Δx意义相同.4.求函数y=f(x)在点x0处的导数的步骤(1)求函数的增量:Δy=f(x0+Δx)-f(x0);(2)求平均变化率:ΔyΔx=f x+Δx-f x0Δx;(3)取极限,得导数:f′(x0)=limΔx→0Δy Δx.典例剖析题型一物体运动的瞬时速度例1 以初速度v0(v0>0)竖直上抛的物体,t秒时高度为s(t)=v0t-12gt2,求物体在时刻t0处的瞬时速度.分析先求出Δs,再用定义求ΔsΔt,当Δt→0时的极限值.解∵Δs=v0(t0+Δt)-12g(t+Δt)2-(v0t0-12gt2)=(v0-gt0)Δt-12g(Δt)2,∴ΔsΔt=v0-gt0-12g·Δt.∴当Δt→0时,ΔsΔt→v0-gt0.故物体在时刻t0处的瞬时速度为v0-gt0.规律技巧瞬时速度v是平均速度v在Δt→0时的极限.因此,v=limΔt→0v=limΔt→0ΔsΔt.变式训练1 一作直线运动的物体,其位移s与时间t的关系是s=5t-t2,求此物体在t=2时的瞬时速度。
高中数学导数的典型例题题型一 利用二次求导求函数的单调性【典例1】 若函数f (x )=sin x x,0<x 1<x 2<π.设a =f (x 1),b =f (x 2),试比较a ,b 的大小. 【思路分析】此题可联想到研究函数f (x )=sin x x在(0,π)的单调性.函数图象虽然可以直观地反映出两个变量之间的变化规律,但大多数复合的函数作图困难较大.导数的建立拓展了应用图象解题的空间.导数这个强有力的工具对函数单调性的研究提供了简单、程序化的方法,具有很强的可操作性.当f ′(x )>0时,函数f (x )单调递增;当f ′(x )<0时,函数f (x )单调递减.【解析】由f (x )=sin x x ,得f ′(x )=x cos x -sin x x 2, 设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x .∵0<x <π,∵g ′(x )<0,即函数g (x )在(0,π)上是减函数.∵g (x )<g (0)=0,因此f ′(x )<0,故函数f (x )在(0,π)是减函数,∵当0<x 1<x 2<π,有f (x 1)>f (x 2),即a >b .【方法归纳】从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=x cos x -sin x x 2的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题.【变式训练】1.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2,求f (x )的解析式及单调区间. 解:因为f (x )=f ′(1)e x -1-f (0)x +12x 2, 所以f ′(x )=f ′(1)e x -1-f (0)+x .令x =1,得f (0)=1.所以f (x )=f ′(1)e x -1-x +12x 2, 所以f (0)=f ′(1)e -1=1,解得f ′(1)=e.所以f (x )=e x -x +12x 2. 设g (x )=f ′(x )=e x -1+x ,则g ′(x )=e x +1>0,所以y =g (x )在R 上单调递增.因为f ′(0)=0,所以f ′(x )>0=f ′(0)∵x >0,f ′(x )<0=f ′(0)∵x <0.所以f (x )的解析式为f (x )=e x -x +12x 2,且单调递增区间为(0,+∞),单调递减区间为(-∞,0).题型二 利用二次求导求函数的极值或参数的范围【典例2】已知函数f (x )=ln(ax +1)+x 3-x 2-ax .(1)若x =23为y =f (x )的极值点,求实数a 的值; (2)若y =f (x )在[1,+∞)上为增函数,求实数a 的取值范围;(3)若a =-1时,方程f (1-x )-(1-x )3=b x有实根,求实数b 的取值范围. [方法演示]解:(1)f ′(x )=a ax +1+3x 2-2x -a . 由题意,知f ′⎝⎛⎭⎫23=0,所以a 23a +1+43-43-a =0,解得a =0. 当a =0时,f ′(x )=x (3x -2),从而x =23为y =f (x )的极值点. (2)因为f (x )在[1,+∞)上为增函数,所以f ′(x )=a ax +1+3x 2-2x -a =x [3ax 2+(3-2a )x -(a 2+2)]ax +1≥0在[1,+∞)上恒成立. 当a =0时,f ′(x )=x (3x -2),此时f (x )在[1,+∞)上为增函数恒成立,故a =0符合题意;当a ≠0时,由ax +1>0对x >1恒成立,知a >0.所以3ax 2+(3-2a )x -(a 2+2)≥0对x ∵[1,+∞)恒成立.令g (x )=3ax 2+(3-2a )x -(a 2+2),其对称轴为x =13-12a ,因为a >0,所以13-12a <13,所以g (x )在[1,+∞)上为增函数,所以只需g (1)≥0即可,即-a 2+a +1≥0,解得0<a ≤1+52. 综上,实数a 的取值范围为⎣⎢⎡⎦⎥⎤0,1+52. (3)由已知得,x >0,∵b =x (ln x +x -x 2)=x ln x +x 2-x 3.令g (x )=x ln x +x 2-x 3,则g ′(x )=ln x +1+2x -3x 2.令h (x )=g ′(x ),则h ′(x )=1x +2-6x =-6x 2-2x -1x. 当0<x <1+76时,h ′(x )>0, ∵函数h (x )=g ′(x )在⎝⎛⎭⎪⎫0,1+76上递增; 当x >1+76时,h ′(x )<0, ∵函数h (x )=g ′(x )在⎝ ⎛⎭⎪⎫1+76,+∞上递减.又g ′(1)=0,∵存在x 0∵⎝⎛⎭⎪⎫0,1+76,使得g ′(x 0)=0. 当0<x <x 0时,g ′(x )<0,∵函数g (x )在(0,x 0)上递减;当x 0<x <1时,g ′(x )>0,∵函数g (x )在(x 0,1)上递增;当x >1时,g ′(x )<0,∵函数g (x )在(1,+∞)上递减.又当x →+∞时,g (x )→-∞.又g (x )=x ln x +x 2-x 3=x (ln x +x -x 2)≤x ⎝⎛⎭⎫ln x +14, 当x →0时,ln x +14<0,则g (x )<0,且g (1)=0, ∵b 的取值范围为(-∞,0].【方法归纳】本题从题目形式来看,是极其常规的一道导数考题,第(3)问要求参数b 的范围问题,实际上是求g (x )=x (ln x +x -x 2)极值问题,问题是g ′(x )=ln x +1+2x -3x 2=0这个方程求解不易,这时我们可以尝试对h (x )=g ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.【变式训练】2.设k ∵R ,函数f (x )=e x -(1+x +kx 2)(x >0).(1)若k =1,求函数f (x )的导函数f ′(x )的极小值;(2)若对任意的t >0,存在s >0,使得当x ∵(0,s )时,都有f (x )<tx 2,求实数k 的取值范围.解:(1)当k =1时,函数f (x )=e x -(1+x +x 2),则f (x )的导数f ′(x )=e x -(1+2x ),令g (x )=f ′(x ),则g ′(x )=e x -2,当0<x <ln 2时,g ′(x )<0;当x >ln 2时,g ′(x )>0,从而f ′(x )在(0,ln 2)上递减,在(ln 2,+∞)上递增.故导数f ′(x )的极小值为f ′(ln 2)=1-2ln 2.(2)对任意的t >0,记函数F (x )=f (x )-tx 2=e x -[1+x +(k +t )x 2],x >0,根据题意,存在s >0,使得当x ∵(0,s )时,F (x )<0.易得F (x )的导数F ′(x )=e x -[1+2(k +t )x ],令h (x )=F ′(x ),则h ′(x )=e x -2(k +t ).∵若h ′(x )≥0,注意到h ′(x )在(0,s )上递增,故当x ∵(0,s )时,h ′(x )>h ′(0)≥0,于是F ′(x )在(0,s )上递增,则当x ∵(0,s )时,F ′(x )>F ′(0)=0,从而F (x )在(0,s )上递增.故当x ∵(0,s )时,F (x )>F (0)=0,与已知矛盾;∵若h ′(x )<0,因为h ′(x )在(0,s )上连续且递增,故存在s >0,使得当x ∵(0,s ),h ′(x )<0,从而F ′(x )在(0,s )上递减,于是当x ∵(0,s )时,F ′(x )<F ′(0)=0,因此F (x )在(0,s )上递减.故当x ∵(0,s )时,F (x )<F (0)=0,满足已知条件.综上所述,对任意的t >0,都有h ′(x )<0,所以1-2(k +t )<0,即k >12-t ,故实数k 的取值范围为⎝⎛⎭⎫12-t ,+∞.题型三 利用二次求导证明不等式【典例3】证明当x >0时,sin x >x -x 36. 【解析】证明:令f (x )=sin x -x +x 36, 则f ′(x )=cos x -1+x 22, 所以f ″(x )=-sin x +x .易知当x >0时,sin x <x ,所以在(0,+∞)上f ″(x )>0,所以f ′(x )在(0,+∞)上单调递增.又f ′(0)=0,所以在(0,+∞)有f ′(x )>f ′(0)=0,所以f (x )在(0,+∞)上单调递增.故当x >0时,f (x )=sin x -x +x 36>f (0)=0. 所以sin x >x -x 36(x >0). 【方法归纳】本题是应用导数证明不等式.证明的关键在于构造适当的函数,然后在相应区间上用二次求导的方法判定导数的符号,得到导函数的单调性,再利用单调性证明不等式.【变式训练】3.已知函数f (x )=m e x -ln x -1.(1)当m =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当m ≥1时,证明:f (x )>1.解:(1)当m =0时,f (x )=-ln x -1,则f ′(x )=-1x, 所以f (1)=-1,f ′(1)=-1.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -(-1)=-(x -1),即x +y =0.(2)证明:当m ≥1时,f (x )=m e x -ln x -1≥e x -ln x -1.要证f (x )>1,只需证e x -ln x -2>0.设g (x )=e x -ln x -2,则g ′(x )=e x -1x. 设h (x )=e x -1x ,则h ′(x )=e x +1x 2>0. 所以函数h (x )=g ′(x )=e x -1x在(0,+∞)上单调递增. 因为g ′⎝⎛⎭⎫12=e 12-2<0,g ′(1)=e -1>0,所以函数g ′(x )=e x -1x在(0,+∞)上有唯一零点x 0,且x 0∵⎝⎛⎭⎫12,1. 因为g ′(x 0)=0,所以e x 0=1x 0,即ln x 0=-x 0.当x ∵(0,x 0)时,g ′(x )<0;当x ∵(x 0,+∞)时,g ′(x )>0,所以当x =x 0时,g (x )取得极小值也是最小值g (x 0).故g (x )≥g (x 0)=e x 0-ln x 0-2=1x 0+x 0-2>0. 综上可知,当m ≥1时,f (x )>1.【巩固训练】1.对任意实数x ,证明不等式1+x ln(x +1+x 2)≥1+x 2.证明:设f (x )=1+x ln(x +1+x 2)-1+x 2,∵f ′(x )=ln(x +1+x 2)+x ⎝ ⎛⎭⎪⎫1+x 1+x 2x +1+x 2-x 1+x 2=ln(x +1+x 2),设h (x )=f ′(x ),则h ′(x )=1+x 1+x 2x +1+x 2=1+x 2+x1+x 2(x +1+x 2)=11+x 2>0, 所以f ′(x )在(-∞,+∞)上是增函数.由f ′(x )=0,即ln(x +1+x 2)=0,得x =0.所以当x <0时,f ′(x )<0,则f (x )在(-∞,0)上为减函数;当x >0时,f ′(x )>0,则f (x )在(0,+∞)上为增函数.故f (x )在x =0处有极小值,所以f (x )≥f (0)=0,即1+x ln(x +1+x 2)≥1+x 2.2.已知函数f (x )=(x +1)ln x -ax ,当x 0∵(1,+∞)时,函数f (x )的图象在点(x 0,f (x 0))处的切线方程为y =1ex -e. (1)求a 的值;(2)求证:函数f (x )在定义域内单调递增.解:(1)由题意,得f ′(x )=ln x +1x+1-a , 所以函数f (x )的图象在点(x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0),即y -(x 0+1)ln x 0+ax 0=⎝⎛⎭⎫ln x 0+1x 0+1-a (x -x 0), 即y =⎝⎛⎭⎫ln x 0+1x 0+1-a x +ln x 0-x 0-1, 所以⎩⎪⎨⎪⎧ln x 0+1x 0+1-a =1e ,x 0-ln x 0+1=e.令g (x )=x -ln x +1,则g ′(x )=1-1x =x -1x, 当x ∵(1,+∞)时,g ′(x )>0,故当x ∵(1,+∞)时,g (x )单调递增.又因为g (e)=e ,所以x 0=e ,将x 0=e 代入ln x 0+1x 0+1-a =1e,得a =2. (2)证明:由a =2,得f ′(x )=ln x +1x-1(x >0). 令h (x )=ln x +1x, 则h ′(x )=1x -1x 2=x -1x 2. 当x ∵(0,1)时,h ′(x )<0;当x ∵(1,+∞)时,h ′(x )>0,故当x ∵(0,1)时,h (x )单调递减;当x ∵(1,+∞)时,h (x )单调递增,故h (x )≥h (1)=1.因此当x ∵(0,+∞)时,f ′(x )=h (x )-1≥0,当且仅当x =1时,f ′(x )=0.所以f (x )在定义域内单调递增.3.已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∵R ,e =2.718 28……为自然对数的底数.设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.解:由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .因此,当x ∵[0,1]时,g ′(x )∵[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e 2时,令g ′(x )=0,得x =ln 2a ∵(0,1). 当g ′(x )<0时,0≤x <ln 2a ;当g ′(x )>0时,ln 2a <x ≤1,所以函数g (x )在区间[0,ln 2a )上单调递减,在区间(ln 2a,1]上单调递增,于是g (x )在[0,1]上的最小值是g (ln 2a )=2a -2a ln 2a -b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e 2时,g (x )在[0,1]上的最小值是g (ln 2a )=2a -2a ln 2a -b ;当a ≥e 2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b . 4.已知函数F (x )=e x +sin x -ax ,当x ≥0时,函数y =F (x )的图象恒在y =F (-x )的图象上方,求实数a 的取值范围.解:设φ(x )=F (x )-F (-x )=e x -e -x +2sin x -2ax .则φ′(x )=e x +e -x +2cos x -2a .设S (x )=φ″(x )=e x -e -x -2sin x .∵S ′(x )=e x +e -x -2cos x ≥0在x ≥0时恒成立,∵函数S (x )在[0,+∞)上单调递增,∵S (x )≥S (0)=0在x ∵[0,+∞)时恒成立,因此函数φ′(x )在[0,+∞)上单调递增,∵φ′(x )≥φ′(0)=4-2a 在x ∵[0,+∞)时恒成立.当a ≤2时,φ′(x )≥0,∵φ(x )在[0,+∞)单调递增,即φ(x )≥φ(0)=0.故a ≤2时F (x )≥F (-x )恒成立.当a >2时,φ′(x )<0,又∵φ′(x )在[0,+∞)单调递增,∵存在x 0∵(0,+∞),使得在区间[0,x 0)上φ′(x )<0.则φ(x )在[0,x 0)上递减,而φ(0)=0,∵当x ∵(0,x 0)时,φ(x )<0,这与F (x )-F (-x )≥0对x ∵[0,+∞)恒成立不符,∵a >2不合题意.综上,实数a 的取值范围是(-∞,2].5.已知函数f (x )=e x ,g (x )=a x,a 为实常数. (1)设F (x )=f (x )-g (x ),当a >0时,求函数F (x )的单调区间;(2)当a =-e 时,直线x =m ,x =n (m >0,n >0)与函数f (x ),g (x )的图象共有四个不同的交点,且以此四点为顶点的四边形恰为平行四边形.求证:(m -1)(n -1)<0.解:(1)F (x )=e x -a x,其定义域为(-∞,0)∵(0,+∞). 而F ′(x )=e x +a x 2, 当a >0时,F ′(x )>0,故F (x )的单调递增区间为(-∞,0)∵(0,+∞),无单调递减区间.(2)证明:因为直线x =m 与x =n 平行,故该四边形为平行四边形等价于f (m )-g (m )=f (n )-g (n )且m >0,n >0,m ≠n .当a =-e 时,F (x )=f (x )-g (x )=e x +e x, 则F ′(x )=e x -e x 2.设h (x )=F ′(x )=e x -e x 2(x >0), 则h ′(x )=e x +2e x 3>0, 故F ′(x )=e x -e x 2在(0,+∞)上单调递增. 又F ′(1)=e -e =0,故当x ∵(0,1)时,F ′(x )<0,F (x )单调递减;当x ∵(1,+∞)时,F ′(x )>0,F (x )单调递增,而F (m )=F (n ),故0<m <1<n 或0<n <1<m ,所以(m -1)(n -1)<0.。
3 计算导数1.常见函数的导数(kx+b)’=k2.对数函数的导数3.指数函数的导数)()]([)()()]()([/////x Cf x f C x g x f x g x f =⋅±=±;1.定义),0(,,)1(),(+∞∈+=y x x y x F y ,(1)令函数))94(log ,1()(22+-=x x F x f 的图象为曲线C 1,曲线C 1与y 轴交于点A(0,m ),过坐标原点O 作曲线C 1的切线,切点为B (n,t )(n>0),设曲线C 1在点A 、B 之间的曲线段与线段OA 、OB 所围成图形的面积为S ,求S 的值。
(2)当);,(),(,*,x y F y x F y x N y x ><∈证明时且(3)令函数))1(log ,1()(232+++=bx ax x F x g 的图象为曲线C 2,若存在实数b 使得)(0为常数C C =')(1为常数αααα-=x x xx cos )(sin ='xx sin )(cos -='1(1)(log )(0,1).ln a x a a x a '=>≠1(2)(ln ).x x'=(1)()ln (0,1).x x a a a a a '=>≠(2)().x x e e '=曲线C 2在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围。
【解析】(1)y x y x F )1(),(+=942)94(log ,1()(2)94(log 2222+-==+-=∴--x x x x F x f x x ,故A (0,9)…1分 又过坐标原点O 向曲线C 1作切线,切点为B (n ,t )(n>0),.42)(-='x x f)6,3(,42942B n nt n n t 解得⎪⎩⎪⎨⎧-=+-=∴…….9|)933()294(3023230=+-=-+-⎰=∴x x x dx x x x S (2)令2)1ln(1)(,1,)1ln()(xx x x x h x x x x h +-+='≥+=由,…… 又令,0),1ln(1)(>+-+=x x x x x p 0)1(11)1(1)(22<+-=+-+='∴x x x x x p , ),0[)(+∞∴在x p 单调递减.…………………,0)(1,0)0()(0<'≥∴=<>∴x h x p x p x 时有当时有当),1[)(+∞∴在x h 单调递减,…………x y y x y x x y yy x x y x )1()1(),1ln()1ln(,)1ln()1ln(,1+>+∴+>+∴+>+<≤∴有时, ).,(),(,x y F y x F y x N y x ><∈∴*时且当…………(3),1)1(log ,1()(23222+++=+++=bx ax x bx ax x F x g设曲线)14(02-<<-x x C 在处有斜率为-8的切线,又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++∴存在实数b 使得⎪⎩⎪⎨⎧>+++-<<--=++1114823020300020bx ax x x b ax x 有解,………①②③由①得,238020ax x b ---=代入③得082020<---ax x ,………⎩⎨⎧>+<->++∴0840820020x ax x 由有解,得08)1()1(208)4()4(222>+-⨯+-⨯>+-⨯+-⨯a a 或, .10,1010<∴<<∴a a a 或………………2.函数42()2f x x ax =-,()1g x =。
数学高中导数题型讲解在高中数学课程中,导数是一个非常重要的概念。
导数可以用来描述函数的变化率,并且在微积分中具有广泛的应用。
下面将讨论几种导数题型及其解法。
首先,我们来看一类常见的导数题目,即给定一个函数表达式,要求计算它在某一点的导数值。
对于这类题目,我们可以利用导数的定义来求解。
导数的定义是指函数$f(x)$在$x=a$处的导数值等于极限$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$。
具体的计算步骤如下:1. 将函数表达式代入导数定义公式中;2. 化简表达式,将$h$约掉;3. 计算极限,得到导数的值。
举一个例子来说明,假设有一个函数$f(x)=2x^2-3x$,现在要求在$x=2$处的导数值。
根据导数的定义,我们代入函数表达式并进行化简:$\lim_{h\to 0}\frac{f(2+h)-f(2)}{h}$$=\lim_{h\to 0}\frac{2(2+h)^2-3(2+h)-(2(2)^2-3(2))}{h}$$=\lim_{h\to 0}\frac{8+8h+2h^2-6-3h-4+6}{h}$$=\lim_{h\to 0}\frac{2h^2+5h}{h}$$=\lim_{h\to 0}(2h+5)=5$所以,在$x=2$处,函数$f(x)=2x^2-3x$的导数值为5。
其次,我们来看一类常见的求导规则题型,即已知一组求导规则,要求计算给定函数的导数。
在求导过程中,我们可以利用一些常用的求导法则,如常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等等。
我们只需根据具体的求导规则,逐步求解即可。
例如,假设有一个函数$g(x)=3x^3-4\sqrt{x}-\ln(x^2)+\sin(2x)$,现在要求该函数的导数。
我们可以根据求导规则逐步求解:1. 对于$3x^3$,我们可以使用幂函数法则,得到导数为$9x^2$;2. 对于$-4\sqrt{x}$,我们可以使用指数函数法则,得到导数为$-2x^{-\frac{1}{2}}$;3. 对于$-\ln(x^2)$,我们可以使用对数函数法则,得到导数为$-\frac{2}{x}$;4. 对于$\sin(2x)$,我们可以使用三角函数法则,得到导数为$2\cos(2x)$。
高中数学导数典型例题精讲Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】导数经典例题精讲导数知识点导数是一种特殊的极限几个常用极限:(1)1lim 0n n→∞=,lim 0n n a →∞=(||1a <);(2)00lim x xx x →=,0011limx x x x →=.两个重要的极限 :(1)0sin lim 1x x x →=;(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭(e=…). 函数极限的四则运算法则:若0lim ()x x f x a →=,0lim ()x xg x b →=,则 (1)()()0lim x x f x g x a b →±=±⎡⎤⎣⎦;(2)()()0lim x x f x g x a b →⋅=⋅⎡⎤⎣⎦;(3)()()()0lim 0x xf x ab g x b→=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞⋅=⋅(3)()lim 0n n n a ab b b→∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞⋅=⋅=⋅( c 是常数))(x f 在0x 处的导数(或变化率或微商) 000000()()()lim limx x x x f x x f x yf x y x x=∆→∆→+∆-∆''===∆∆. .瞬时速度:00()()()lim limt t s s t t s t s t t tυ∆→∆→∆+∆-'===∆∆. 瞬时加速度:00()()()lim limt t v v t t v t a v t t t∆→∆→∆+∆-'===∆∆. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()()lim limx x y f x x f x x x∆→∆→∆+∆-==∆∆. 函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 几种常见函数的导数(1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -='(4) xx 1)(ln =';e a x xa log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='.导数的运算法则(1)'''()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v-=≠. 复合函数的求导法则设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x 处有导数,且'''x u x y y u =⋅,或写作'''(())()()x f x f u x ϕϕ=.【例题解析】考点1 导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .[考查目的] 本题主要考查函数的导数和计算等基础知识和能力.[解答过程] ()22()2,(1)12 3.f x x f ''=+∴-=-+=故填3.例2.设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是 ( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1.1x a x a a x x -<∴<<<<-当a>1时当a<1时()()()//2211,0.11111.x x a x a x a a y y x x x x a ------⎛⎫=∴===> ⎪--⎝⎭--∴> 综上可得M P 时, 1.a ∴>考点2 曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率.(2)关于两曲线的公切线若一直线同时与两曲线相切,则称该直线为两曲线的公切线.典型例题例3.已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点.(I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.思路启迪:用求导来求得切线斜率.解答过程:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根,设两实根为12x x ,(12x x <),则2214x x a b -=-2104x x <-≤.于是2044a b <-,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--,因为切线l 在点(1())A f x ,处空过()y f x =的图象,所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.解法二:同解法一得21()()[(1)]32g x f x a b x a =-++--2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<).当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x <.设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x <. 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102ah =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.例4.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=[考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力.[解答过程]与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=. 故选A.例5.过坐标原点且与x 2+y 2 -4x +2y +25=0相切的直线的方程为 ( )=-3x 或y =31x B. y =-3x 或y =-31x =-3x 或y =-31x D. y =3x 或y =31x[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力. [解答过程]解法1:设切线的方程为,0.y kx kx y =∴-= 又()()()22521,2,1.2x y -++=∴-圆心为213830., 3.3k k k k =+-=∴==- 1,3.3y x y x ∴==-或故选A.解法2:由解法1知切点坐标为1331(,),,,2222⎛⎫- ⎪⎝⎭由 ()()//22////113231(,)(,)22225(2)1,22(2)210,2.113,.313,.3x xx x x x x y x y y x y y k y k y y x y x -⎛⎫⎡⎤-++= ⎪⎣⎦⎝⎭∴-++=-∴=-+∴==-==∴=-=故选A.例6.已知两抛物线a x y C x x y C +-=+=2221:,2:, a 取何值时1C ,2C 有且只有一条公切线,求出此时公切线的方程.思路启迪:先对a x y C x x y C +-=+=2221:,2:求导数.解答过程:函数x x y 22+=的导数为22'+=x y ,曲线1C 在点P(12112,x x x +)处的切线方程为))(2(2)2(11121x x x x x y -+=+-,即 211)1(2x x x y -+= ①曲线1C 在点Q ),(222a x x +-的切线方程是)(2)(222x x x a x y --=+--即a x x x y ++-=2222 ② 若直线l 是过点P 点和Q 点的公切线,则①式和②式都是l 的方程,故得1,1222121+=--=+x x x x ,消去2x 得方程,0122121=+++a x x若△=0)1(244=+⨯-a ,即21-=a 时,解得211-=x ,此时点P 、Q 重合.∴当时21-=a ,1C 和2C 有且只有一条公切线,由①式得公切线方程为14y x =- .考点3 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1.. 求函数的解析式;2. 求函数的值域;3.解决单调性问题;4.求函数的极值(最值);5.构造函数证明不等式. 典型例题例7.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个[考查目的]本题主要考查函数的导数和函数图象性质等基础知识的应用能力. [解答过程]由图象可见,在区间(,0)a 内的图象上有一个极小值点. 故选A.例8 .设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.思路启迪:利用函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值构造方程组求a 、b 的值. 解答过程:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,. 解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立, 所以 298c c +<, 解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞,,. 例9.函数y x x =+-+243的值域是_____________.思路启迪:求函数的值域,是中学数学中的难点,一般可以通过图象观察或利用不等式性质求解,也可以利用函数的单调性求出最大、最小值。