中考数学真题分类汇编一元二次方程根与系数的关系解析
- 格式:doc
- 大小:236.50 KB
- 文档页数:20
专题 1.3 一元二次方程根的判别式、根与系数的关系(3个考点八大题型)【题型1 由根的判别式判断方程根的情况】【题型2 由方程方程根的情况求字母的取值范围】【题型3 由根的判别式证明方程求根的必然情况】【题型4 由根与系数的关系求代数式(直接)】【题型5 由根与系数的关系求代数式(代换)】【题型6 由根与系数的关系求代数式(降次)】【题型7 构造一元二次方程求代数式的值】【题型8 已知方程根的情况判断另一个根】【题型1 由根的判别式判断方程根的情况】1.(2023春•南岗区校级期中)一元二次方程x2﹣2x﹣3=0根的情况是()A.有两个相等的实数根B.无实数根C.有一个实数根D.有两个不等的实数根2.(2023•平顶山二模)定义运算:a※b=a2b+ab﹣1,例如:2※3=22×3+2×3﹣1=17,则方程x※1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根3.(2023•柘城县二模)一元二次方程x2+2x﹣5=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根4.(2023•桂林二模)一元二次方程2x2﹣5x+6=0的根的情况为()A.无实数根B.只有一个实数根C.有两个相等的实数根D.有两个不等的实数根5.(2023•东城区一模)关于x的一元二次方程x2﹣(k+3)x+2k+1=0根的情况是()A.无实根B.有实根C.有两个不相等实根D.有两个相等实根6.(2023•新郑市模拟)一元二次方程2x2﹣mx﹣1=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.无法确定7.(2023•三门峡一模)一元二次方程(x﹣1)2=x+3的根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根8.(2023春•瑞安市期中)关于x的一元二次方程x2+kx+k﹣1=0的根的情况,下列说法中正确的是()A.有两个实数根B.有两个不相等的实数根C.有两个相等的实数根D.无实数根【题型2 由方程方程根的情况求字母的取值范围】9.(2023•洛阳二模)已知关于x的一元二次方程x2+4x+k=0有两个实数根,则k的值为()A.k=4B.k=﹣4C.k≤4D.k<4 10.(2023•济源一模)若关于x的一元二次方程x2+4x+m+5=0有实数根,则m 的取值范围是()A.m≤1 B.m≤﹣1 C.m<﹣1D.m≥﹣1且m≠0 11.(2023•东莞市校级一模)已知方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值()A.k>﹣1B.k>1C.k>1且k≠0D.k>﹣1且k≠0 12.(2023春•洞头区期中)关于x的一元二次方程x2﹣6x+c=0有两个相等的实数根,则c的值是()A.﹣36B.﹣9C.9D.36 13.(2023•阿克苏市一模)若关于x的一元二次方程(k﹣2)x2+2x+3=0有两个实数根,则k的取值范围()A.B.C.k<且k≠2D.且k≠2 14.(2023•贵阳模拟)若关于x的一元二次方程x2﹣4x﹣k=0没有实数根,则k的值可以是()A.﹣5B.﹣4C.﹣3D.2【题型3 由根的判别式证明方程求根的必然情况】15.(2023春•蜀山区校级期中)已知关于x的一元二次方程x2+(2k﹣1)x﹣k ﹣1=0.(1)求证:无论k取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1、x2,且x1+x2﹣4x1x2=2,求k的值.16.(2023春•庐阳区校级期中)已知关于x的一元二次方程x2﹣(m+2)x+m ﹣1=0.(1)求证:无论m取何值,方程总有两个不相等的实数根.(2)若a和b是这个一元二次方程的两个根,且a2+b2=9,求m的值.17.(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.18.(2023•金溪县模拟)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若方程的两根分别是等腰△ABC两边AB、AC的长,其中BC=10,求k 值.19.(2023•长安区校级一模)已知关于x的一元二次方程x2﹣2mx+m2﹣4=0.(1)求证:方程有两个不相等的实数根;(2)若该方程的一个根为x=0,且m为正数,求m的值.20.(2022秋•东城区期末)已知关于x的一元二次方程x2+(2m+1)x+m﹣2=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m的值,并求出此时方程的解.【题型4 由根与系数的关系求代数式(直接)】21.(2023•红桥区模拟)若一元二次方程x2+4x﹣12=0的两个根分别为x1,x2,则x1+x2的值等于()A.﹣4B.4C.﹣12D.12 22.(2023•五华县校级开学)设一元二次方程x2﹣12x+3=0的两个实根为x1和x2,则x1x2=()A.﹣2B.2C.﹣3D.3 23.(2023•六盘水二模)已知x1、x2是一元二次方程x2+4x+3=0的两根,则x1+x2+2x1x2的值为()A.﹣2B.﹣1C.1D.2 24.(2023•长丰县模拟)若m,n是方程x2﹣2x﹣3=0的两个实数根,则m+n ﹣mn的值是()A.5B.﹣5C.1D.﹣1【题型5 由根与系数的关系求代数式(代换)】25.(2023•南山区三模)若关于x的一元二次方程x2﹣4x+3=0有两个不相等的实数根x1、x2,则的值是()A.B.C.D.26.(2023•潍城区二模)若x1、x2是关于x的一元二次方程x2﹣3x﹣5=0的两根,则的值为()A.19B.9C.1D.﹣1 27.(2023•汉阳区校级模拟)若实数m,n满足条件:m2﹣2m﹣1=0,n2﹣2n ﹣1=0,则的值是()A.2B.﹣4C.﹣6D.2或﹣6 28.(2023•兴庆区校级二模)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.﹣10B.10C.3D.0 29.(2022秋•南安市期末)已知一元二次方程x2﹣3x+1=0的两根分别是x1、x2,则x2+x1的值是()A.﹣2B.2C.﹣3D.3 30.(2023•临沭县一模)已知m,n是一元二次方程x2+2x﹣2023=0的两个实数根,则代数式m2+4m+2n的值等于()A.2023B.2022C.2020D.2019【题型6 由根与系数的关系求代数式(降次)】31.(2023•河东区一模)已知x1,x2是方程x2﹣x﹣2023=0的两个实数根,则代数式的值是()A.4047B.4045C.2023D.1 32.(2022秋•嘉陵区校级期末)如果m,n是一元二次方程x2+x=3的两个根,那么多项式m3+4n﹣mn+2022的值等于()A.2018B.2012C.﹣2012D.﹣2018【题型7 构造一元二次方程求代数式的值】33.(2023•安丘市模拟)已知方程x2+2023x﹣5=0的两根分别是α和β,则代数式α2+β+2024α的值为()A.0B.﹣2018C.﹣2023D.﹣2024 34.(2023•肥城市一模)已知m、n是一元二次方程x2﹣x﹣2024=0的两个实数根,则代数式m2﹣2m﹣n的值为()A.2020B.2021C.2022D.2023 35.(2023•鼓楼区校级模拟)已知a、b是关于x的方程x2+3x﹣2010=0的两根,则a2﹣a﹣4b的值是()A.2020B.2021C.2022D.2023 36.(2023•东港区校级一模)已知m、n是一元二次方程x2﹣x﹣2022=0的两个实数根,则代数式m2﹣2m﹣n的值等于()A.2020B.2021C.2022D.2023 37.(2023春•江岸区校级月考)设α、β是方程x2+2019x﹣2=0的两根,则(α2+2022α﹣1)(β2+2022β﹣1)的值为()A.6076B.﹣6074C.6040D.﹣6040 38.(2022秋•莲池区校级期末)若m,n是一元二次方程x2+4x﹣9=0的两个根,则m2+5m+n的值是()A.4B.5C.6D.12【题型8 已知方程根的情况判断另一个根】39.(2023•阿克苏市二模)若x=2是方程x2﹣x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2 40.(2020秋•甘井子区期末)关于x的方程x2﹣4x+m=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.﹣5D.5 41.(2020春•宣城期末)关于x的一元二次方程2x2+kx﹣4=0的一个根x1=﹣2,则方程的另一个根x2和k的值为()A.x2=1,k=2B.x2=2,k=2C.x2=1,k=﹣1D.x2=2,k=﹣1 42.(2023•诸暨市模拟)关于x的一元二次方程x2+mx﹣2=0有一个解为x=1,则该方程的另一个解为()A.0B.﹣1C.2D.﹣2 43.(2023•洛阳一模)已知关于x的一元二次方程x2+kx﹣2=0有一个根是﹣2,则另一个根是()A.1B.﹣1C.2D.﹣2。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.2.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.3.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.4.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.5.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】(1)k=1;(2)证明见解析.【解析】【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.7.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市民于 A 超市购买 5 千克猪排骨花费 350 元.(1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了a%,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35.【解析】【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)11月10日的售价为350÷5=70元/千克年初的售价为:350÷5÷175%=40元/千克,11月的进货价为: 340602元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x ,解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去)所以a =35.【点睛】 本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】10.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得:(400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.。
中考专题一元二次方程根与系数关系解析1、如果方程ax 2+bx+c=0(a ≠0)的两根是x 1、x 2,那么x 1+x 2= ,x 1·x 2= 。
2、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2= ;x 1·x 2= ;2111x x + ;x 21+x 22= ;(x 1+1)(x 2+1)= ;|x 1-x 2|= 。
3、以2和3为根的一元二次方程(二次项系数为1)是 。
4、如果关于x 的一元二次方程x 2+2x+a=0的一个根是1-2,那么另一个根是 ,a 的值为 。
5、如果关于x 的方程x 2+6x+k=0的两根差为2,那么k= 。
6、已知方程2x 2+mx -4=0两根的绝对值相等,则m= 。
7、一元二次方程px 2+qx+r=0(p ≠0)的两根为0和-1,则q ∶p= 。
8、已知方程x 2-mx+2=0的两根互为相反数,则m= 。
9、已知关于x 的一元二次方程(a 2-1)x 2-(a+1)x+1=0两根互为倒数,则a= 。
10、已知关于x 的一元二次方程mx 2-4x -6=0的两根为x 1和x 2,且x 1+x 2=-2,则m= ,(x 1+x 2)21x x ⋅= 。
11、已知方程3x 2+x -1=0,要使方程两根的平方和为913,那么常数项应改为 。
12、已知一元二次方程的两根之和为5,两根之积为6,则这个方程为 。
13、若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程为 。
(其中二次项系数为1)14、已知关于x 的一元二次方程x 2-2(m -1)x+m 2=0。
若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。
15、已知方程x 2+4x -2m=0的一个根α比另一个根β小4,则α= ;β= ;m= 。
16、已知关于x 的方程x 2-3x+k=0的两根立方和为0,则k= 17、已知关于x 的方程x2-3mx+2(m -1)=0的两根为x 1、x 2,且43x 1x 121-=+,则m= 。
内蒙古通辽2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.根与系数的关系(共1小题)1.(2023•通辽)阅读材料:材料1:关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根x1x2和系数a,b,c,有如下关系:x1+x2=﹣,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵m,n是一元二次方程x2﹣x﹣1=0的两个实数根,∴m+n=1,mn=﹣1.则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程2x2+3x﹣1=0的两个实数根为x1,x2,则x1+x2= ,x1x2= .(2)类比:已知一元二次方程2x2+3x﹣1=0 的两个实数根为m,n,求m2+n2的值;(3)提升:已知实数s,t满足2s2+3s﹣1=0,2t2+3t﹣1=0 且s≠t,求的值.二.分式方程的应用(共1小题)2.(2023•通辽)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.(1)求每台A型机器,B型机器每天分别搬运货物多少吨?(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.三.二次函数综合题(共3小题)3.(2023•通辽)在平面直角坐标系中,已知抛物线与x轴交于点A (1,0)和点B,与y轴交于点C(0,﹣4).(1)求这条抛物线的函数解析式;(2)P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.①如图,若点P在第三象限,且tan∠CPD=2,求点P的坐标;②直线PD交直线BC于点E,当点E关于直线PC的对称点E′落在y轴上时,请直接写出四边形PECE'的周长.4.(2022•通辽)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.5.(2021•通辽)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y 轴于点C,动点P在抛物线的对称轴上.(1)求抛物线的解析式;(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.四.四边形综合题(共1小题)6.(2022•通辽)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD 有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.五.切线的判定与性质(共1小题)7.(2021•通辽)如图,AB是⊙O的直径,过点A作⊙O的切线AC,点P是射线AC上的动点,连接OP,过点B作BD∥OP,交⊙O于点D,连接PD.(1)求证:PD是⊙O的切线;(2)当四边形POBD是平行四边形时,求∠APO的度数.六.几何变换综合题(共1小题)8.(2021•通辽)已知△AOB和△MON都是等腰直角三角形(OA<OM<OA),∠AOB =∠MON=90°.(1)如图1,连接AM,BN,求证:AM=BN;(2)将△MON绕点O顺时针旋转.①如图2,当点M恰好在AB边上时,求证:AM2+BM2=2OM2;②当点A,M,N在同一条直线上时,若OA=4,OM=3,请直接写出线段AM的长.七.解直角三角形(共1小题)9.(2022•通辽)如图,在Rt△AOB中,∠AOB=90°,以O为圆心,OB的长为半径的圆交边AB于点D,点C在边OA上且CD=AC,延长CD交OB的延长线于点E.(1)求证:CD是圆的切线;(2)已知sin∠OCD=,AB=4,求AC长度及阴影部分面积.八.解直角三角形的应用(共1小题)10.(2022•通辽)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).九.解直角三角形的应用-方向角问题(共2小题)11.(2023•通辽)如图,一艘海轮位于灯塔P的北偏东72°方向,距离灯塔100nmile的A 处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东40°方向上的B处.这时,B处距离灯塔P有多远(结果取整数)?(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)12.(2021•通辽)如图,一段河流自西向东,河岸笔直,且两岸平行.为测量其宽度,小明在南岸边B 处测得对岸边A 处一棵大树位于北偏东60°方向,他以1.5m /s 的速度沿着河岸向东步行40s 后到达C 处,此时测得大树位于北偏东45°方向,试计算此段河面的宽度(结果取整数,参考数据:≈1.732)一十.扇形统计图(共1小题)13.(2023•通辽)党的十八大以来,习近平总书记对推动全民阅读、建设书香中国高度重视,多次作出重要指示.××中学在第28个“世界读书日”到来之际,对全校2000名学生阅读课外书的情况进行了解,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):调查方式抽样调查调查对象xx 中学部分学生平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A .8小时以上B .6﹣8小时C .4﹣6小时D .0﹣4小时请解答下列问题:(1)求参与本次抽样调查的学生人数;(2)求图2中扇形A 所占百分比;(3)估计该校2000名学生中,平均每周阅读课外书的时间在“6﹣8小时”人数;(4)在学生众多阅读书籍中,学校推荐阅读书目为四大名著:《三国演义》《红楼梦》《西游记》《水浒传》(分别记为甲、乙、丙、丁),现从这4部名著中选择2部为课外必读书籍,请用列表法或画树状图法中任意一种方法,求《西游记》被选中的概率.一十一.列表法与树状图法(共2小题)14.(2022•通辽)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率 ;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)15.(2021•通辽)如图,甲、乙两个转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,把甲、乙两个转盘中指针所指数字分别记为x,y.请用树状图或列表法求点(x,y)落在平面直角坐标系第一象限内的概率.内蒙古通辽2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.根与系数的关系(共1小题)1.(2023•通辽)阅读材料:材料1:关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根x1x2和系数a,b,c,有如下关系:x1+x2=﹣,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵m,n是一元二次方程x2﹣x﹣1=0的两个实数根,∴m+n=1,mn=﹣1.则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程2x2+3x﹣1=0的两个实数根为x1,x2,则x1+x2= ﹣ ,x1x2= ﹣ .(2)类比:已知一元二次方程2x2+3x﹣1=0 的两个实数根为m,n,求m2+n2的值;(3)提升:已知实数s,t满足2s2+3s﹣1=0,2t2+3t﹣1=0 且s≠t,求的值.【答案】(1)﹣,﹣;(2);(3)±.【解答】解:(1)∵一元二次方程2x2+3x﹣1=0的两个根为x1,x2,∴x1+x2=﹣,x1x2=﹣;故答案为:﹣,﹣;(2)∵一元二次方程2x2+3x﹣1=0的两根分别为m,n,∴m+n=﹣,mn=﹣,∴m2+n2=(m+n)2﹣2mn=+1=;(3)∵实数s,t满足2s2+3s﹣1=0,2t2+3t﹣1=0,且s≠t,∴s,t是一元二次方程2x2+3x﹣1=0的两个实数根,∴s+t=﹣,st=﹣,∵(t﹣s)2=(t+s)2﹣4st=(﹣)2﹣4×(﹣)=,∴t﹣s=±,∴===±.二.分式方程的应用(共1小题)2.(2023•通辽)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.(1)求每台A型机器,B型机器每天分别搬运货物多少吨?(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.【答案】(1)每台A型机器人每天搬运货物90吨,每台B型机器人每天搬运货物100吨;(2)购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.【解答】解:(1)设每台A型机器人每天搬运货物x吨,则每台B型机器人每天搬运货物(x+10)吨,由题意得:,解得:x=90,当x=90时,x(x+10)≠0,∴x=90是分式方程的根,∴x+10=90+10=100,答:每台A型机器人每天搬运货物90吨,每台B型机器人每天搬运货物100吨;(2)设购买A型机器人m台,购买总金额为w万元,由题意得:,解得:10≤m≤12,w=1.5m+2(30﹣m)=﹣0.5m+60;∵﹣0.5<0,∴w随m的增大而减小,∴当m=12时,w最小,此时w=﹣0.5×12+60=54,∴购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.三.二次函数综合题(共3小题)3.(2023•通辽)在平面直角坐标系中,已知抛物线与x轴交于点A (1,0)和点B,与y轴交于点C(0,﹣4).(1)求这条抛物线的函数解析式;(2)P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.①如图,若点P在第三象限,且tan∠CPD=2,求点P的坐标;②直线PD交直线BC于点E,当点E关于直线PC的对称点E′落在y轴上时,请直接写出四边形PECE'的周长.【答案】(1).(2)①P(﹣.②或.【解答】解:(1)∵抛物线与x轴交于点A(1,0)和点B,与y轴交于点C(0,﹣4),∴,解得,∴抛物线的解析式为.答:抛物线的解析式为.(2)①设P(x,),如图,过点C作CE⊥PD于E,∴∠PEC=∠CED=90°,∵C(0,﹣4),∴OC=4,∵PD⊥x轴,∴∠PDO=90°,∵∠DOC=90°,∴四边形DOCE是矩形,∴DE=OC=4,OD=CE=﹣x,∴=,∵,∴,∴(舍去),∴=,∴P(﹣.②设P(m,),对于,当y=0时,,解得x1=1,x2=﹣3,∴B(﹣3,0),∵OC=4,∴,当点P在第三象限时,如图,过点E作EF⊥y轴于F,则四边形DEFO是矩形,∴EF=OD=﹣m,∵点E与点E′关于PC对称,∴∠ECP=∠E′CP,CE=CE′,∵PE∥y轴,∴∠EPC=∠PCE′,∴PE=CE,∴PE=CE′,∴四边形PECE′是菱形,∵EF∥OA,∴△CEF∽△CBO,∴,∴,∴,设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=﹣x﹣4,∴,∴=,∵,PE=CE,∴,解得(舍去),∴,∴四边形PECE′的周长C=4CE=4×=,当点P在第二象限时,如图,同理可得,解得(舍去),∴,∴四边形PECE′的周长C=4CE=4×=,综上,四边形PECE′的周长为或.4.(2022•通辽)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.【答案】(1)y=﹣x2+4x﹣3;(2)(,)或(,)或(,)或(,);(3)Q(,﹣).【解答】解:(1)在y=x﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x=3,∴B(3,0),将B、C两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+4x﹣3;(2)令y=0,则﹣x2+4x﹣3=0,解得x=1或x=3,∴A(1,0),∴AB=2,∴S△ABC=×2×3=3,∵S△PBC=S△ABC,∴S△PBC=,过点P作PQ⊥x轴交BC于点Q,设P(t,﹣t2+4t﹣3),则Q(t,t﹣3),∴PQ=|﹣t2+3t|,∴=×3×|﹣t2+3t|,解得t=或t=,∴P点坐标为(,)或(,)或(,)或(,);(3)过点B作BE⊥BC交CQ于点E,过E点作EF⊥x轴交于F,∵OB=OC,∴∠OCB=45°,∵∠ACQ=45°,∴∠BCQ=∠OCA,∵OA=1,∴tan∠OCA=,∴tan∠BCE==,∵BC=3,∴BE=,∵∠OBC=45°,∴∠EBF=45°,∴EF=BF=1,∴E(4,﹣1),设直线CE的解析式为y=kx+b,∴,解得,∴y=x﹣3,联立方程组,解得(舍)或,∴Q(,﹣).5.(2021•通辽)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y 轴于点C,动点P在抛物线的对称轴上.(1)求抛物线的解析式;(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)P(1,2),3+;(3)Q1(4,﹣),Q2(4,),Q3(2,2),Q4(﹣2,3+),Q5(﹣2,3﹣).【解答】解:(1)∵抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,∴,解得:,∴该抛物线的解析式为y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3),∵△PBC的周长为:PB+PC+BC,BC是定值,∴当PB+PC最小时,△PBC的周长最小.如图1,点A、B关于对称轴l对称,连接AC交l于点P,则点P为所求的点.∵AP=BP,∴△PBC周长的最小值是AC+BC,∵A(3,0),B(﹣1,0),C(0,3),∴AC=3,BC=.∴△PBC周长的最小值是:3+.抛物线对称轴为直线x=﹣=1,设直线AC的解析式为y=kx+c,将A(3,0),C(0,3)代入,得:,解得:,∴直线AC的解析式为y=﹣x+3,∴P(1,2);(3)存在.设P(1,t),Q(m,n)∵A(3,0),C(0,3),则AC2=32+32=18,AP2=(1﹣3)2+t2=t2+4,PC2=12+(t﹣3)2=t2﹣6t+10,∵四边形ACPQ是菱形,∴分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,①当以AP为对角线时,则CP=CA,如图2,∴t2﹣6t+10=18,解得:t=3±,∴P1(1,3﹣),P2(1,3+),∵四边形ACPQ是菱形,∴AP与CQ互相垂直平分,即AP与CQ的中点重合,当P1(1,3﹣)时,∴=,=,解得:m=4,n=﹣,∴Q1(4,﹣),当P2(1,3+)时,∴=,=,解得:m=4,n=,∴Q2(4,),②以AC为对角线时,则PC=AP,如图3,∴t2﹣6t+10=t2+4,解得:t=1,∴P3(1,1),∵四边形APCQ是菱形,∴AC与PQ互相垂直平分,即AC与CQ中点重合,∴=,=,解得:m=2,n=2,∴Q3(2,2),③当以CP为对角线时,则AP=AC,如图4,∴t2+4=18,解得:t=±,∴P4(1,),P5(1,﹣),∵四边形ACQP是菱形,∴AQ与CP互相垂直平分,即AQ与CP的中点重合,∴=,=,解得:m=﹣2,n=3,∴Q4(﹣2,3+),Q5(﹣2,3﹣),综上所述,符合条件的点Q的坐标为:Q1(4,﹣),Q2(4,),Q3(2,2),Q4(﹣2,3+),Q5(﹣2,3﹣).四.四边形综合题(共1小题)6.(2022•通辽)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD 有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.【答案】(1)=2;(2)=;(3)4﹣4或4+4.【解答】解:(1)∵四边形ABCD是正方形,四边形AFEG是正方形,∴∠AGE=∠D=90°,∠DAC=45°,∴,GE∥CD,∴,∴CE=DG,∴==2;(2)连接AE,由旋转性质知∠CAE=∠DAG=α,在Rt△AEG和Rt△ACD中,=cos45°=、=cos45°=,∴,∴△ADG∽△ACE,∴=,∴=;(3)①如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形AFEG是正方形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴CG===8,∴CE=CG﹣EG=8﹣8,∴DG=CE=4﹣4;②如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形AFEG是正方形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴∠AGC=90°∴CG===8,∴CE=CG+EG=8+8,∴DG=CE=4+4.综上,当C,G,E三点共线时,DG的长度为4﹣4或4+4.五.切线的判定与性质(共1小题)7.(2021•通辽)如图,AB是⊙O的直径,过点A作⊙O的切线AC,点P是射线AC上的动点,连接OP,过点B作BD∥OP,交⊙O于点D,连接PD.(1)求证:PD是⊙O的切线;(2)当四边形POBD是平行四边形时,求∠APO的度数.【答案】(1)证明过程见解答;(2)45°.【解答】(1)证明:连接OD,∵PA切⊙O于A,∴PA⊥AB,即∠PAO=90°,∵OP∥BD,∴∠DBO=∠AOP,∠BDO=∠DOP,∵OD=OB,∴∠BDO=∠DBO,∴∠DOP=∠AOP,在△AOP和△DOP中,∴△AOP≌△DOP(SAS),∴∠PDO=∠PAO,∵∠PAO=90°,∴∠PDO=90°,即OD⊥PD,∵OD过O,∴PD是⊙O的切线;(2)解:由(1)知:△AOP≌△DOP,∴PA=PD,∵四边形POBD是平行四边形,∴PD=OB,∵OB=OA,∴PA=OA,∴∠APO=∠AOP,∵∠PAO=90°,∴∠APO=∠AOP=45°.六.几何变换综合题(共1小题)8.(2021•通辽)已知△AOB和△MON都是等腰直角三角形(OA<OM<OA),∠AOB =∠MON=90°.(1)如图1,连接AM,BN,求证:AM=BN;(2)将△MON绕点O顺时针旋转.①如图2,当点M恰好在AB边上时,求证:AM2+BM2=2OM2;②当点A,M,N在同一条直线上时,若OA=4,OM=3,请直接写出线段AM的长.【答案】(1)见证明过程;(2①)见证明过程;②或.【解答】(1)证明:如图1,∵∠AOB=∠MON=90°,∴∠AOB+∠AON=∠MON+∠AON,即∠AOM=∠BON,∵△AOB和△MON都是等腰直角三角形,∴OA=OB,OM=ON,∴△AOM≌△BON(SAS),∴AM=BN;(2)①证明:如图2,连接BN,∵∠AOB=∠MON=90°,∴∠AOB﹣∠BOM=∠MON﹣∠BOM,即∠AOM=∠BON,∵△AOB和△MON都是等腰直角三角形,∴OA=OB,OM=ON,∴△AOM≌△BON(SAS),∴∠MAO=∠NBO=45°,AM=BN,∴∠MBN=90°,∴MB2+BN2=MN2,∵△MON是等腰直角三角形,∴MN2=2ON2,∴AM2+BM2=2OM2;②解:如图3,当点N在线段AM上时,连接BN,设BN=x,由(1)可知△AOM≌△BON,可得AM=BN且AM⊥BN,在Rt△ABN中,AN2+BN2=AB2,∵△AOB和△MON都是等腰直角三角形,OA=4,OM=3,∴MN=3,AB=4,∴(x﹣3)2+x2=(4)2,解得:x=,∴AM=BN=,如图4,当点M在线段AN上时,连接BN,设BN=x,由(1)可知△AOM≌△BON,可得AM=BN且AM⊥BN,在Rt△ABN中,AN2+BN2=AB2,∵△AOB和△MON都是等腰直角三角形,OA=4,OM=3,∴MN=3,AB=4,∴(x+3)2+x2=(4)2,解得:x=,∴AM=BN=,综上所述,线段AM的长为或.七.解直角三角形(共1小题)9.(2022•通辽)如图,在Rt△AOB中,∠AOB=90°,以O为圆心,OB的长为半径的圆交边AB于点D,点C在边OA上且CD=AC,延长CD交OB的延长线于点E.(1)求证:CD是圆的切线;(2)已知sin∠OCD=,AB=4,求AC长度及阴影部分面积.【答案】(1)详见解答;(2)AC=3,阴影部分的面积为.【解答】(1)证明:如图,连接OD,∵AC=CD,∴∠A=∠ADC=∠BDE,∵∠AOB=90°,∴∠A+∠ABO=90°,又∵OB=OD,∴∠OBD=∠ODB,∴∠ODB+∠BDE=90°,即OD⊥EC,∵OD是半径,∴EC是⊙O的切线;(2)解:在Rt△COD中,由于sin∠OCD=,设OD=4x,则OC=5x,∴CD==3x=AC,在Rt△AOB中,OB=OD=4x,OA=OC+AC=8x,AB=4,由勾股定理得,OB2+OA2=AB2,即:(4x)2+(8x)2=(4)2,解得x=1或x=﹣1(舍去),∴AC=3x=3,OC=5x=5,OB=OD=4x=4,∵∠ODC=∠EOC=90°,∠OCD=∠ECO,∴△COD∽△CEO,∴=,即=,∴EC=,∴S阴影部分=S△COE﹣S扇形=××4﹣=﹣4π=,答:AC=3,阴影部分的面积为.八.解直角三角形的应用(共1小题)10.(2022•通辽)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).【答案】10.2m.【解答】解:如图,过点C、D分别作BE的平行线交BA的延长线于点M、N,在Rt△BDE中,∠BDE=90°﹣45°=45°,∴DE=BE=14m,在Rt△ACM中,∠ACM=60°,CM=BE=14m,∴AM=CM=14(m),∴AB=BM﹣AM=CE﹣AM=20+14﹣14≈10.2(m),答:AB的长约为10.2m.九.解直角三角形的应用-方向角问题(共2小题)11.(2023•通辽)如图,一艘海轮位于灯塔P的北偏东72°方向,距离灯塔100nmile的A 处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东40°方向上的B处.这时,B处距离灯塔P有多远(结果取整数)?(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【答案】B处距离灯塔P约有148海里.【解答】解:如图:由题意得:PC⊥AB,EF∥AB,∴∠A=∠EPA=72°,∠B=∠BPF=40°,在Rt△APC中,AP=100海里,∴PC=AP•sin72°≈100×0.95=95(海里),在Rt△BCP中,BP=≈≈148(海里),∴B处距离灯塔P约有148海里.12.(2021•通辽)如图,一段河流自西向东,河岸笔直,且两岸平行.为测量其宽度,小明在南岸边B处测得对岸边A处一棵大树位于北偏东60°方向,他以1.5m/s的速度沿着河岸向东步行40s后到达C处,此时测得大树位于北偏东45°方向,试计算此段河面的宽度(结果取整数,参考数据:≈1.732)【答案】此段河面的宽度约82m.【解答】解:如图,作AD⊥BC于D.由题意可知:BC=1.5×40=60(m),∠ABD=90°﹣60°=30°,∠ACD=90°﹣45°=45°,在Rt△ACD中,∵tan∠ACD=tan45°==1,∴AD=CD,在Rt △ABD 中,∵tan ∠ABD =tan30°=,∴BD =,∵BC =BD ﹣CD =﹣AD =60(m ),∴AD =30(+1)≈82(m ),答:此段河面的宽度约82m .一十.扇形统计图(共1小题)13.(2023•通辽)党的十八大以来,习近平总书记对推动全民阅读、建设书香中国高度重视,多次作出重要指示.××中学在第28个“世界读书日”到来之际,对全校2000名学生阅读课外书的情况进行了解,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):调查方式抽样调查调查对象xx 中学部分学生平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A .8小时以上B .6﹣8小时C .4﹣6小时D .0﹣4小时请解答下列问题:(1)求参与本次抽样调查的学生人数;(2)求图2中扇形A所占百分比;(3)估计该校2000名学生中,平均每周阅读课外书的时间在“6﹣8小时”人数;(4)在学生众多阅读书籍中,学校推荐阅读书目为四大名著:《三国演义》《红楼梦》《西游记》《水浒传》(分别记为甲、乙、丙、丁),现从这4部名著中选择2部为课外必读书籍,请用列表法或画树状图法中任意一种方法,求《西游记》被选中的概率.【答案】(1)300人;(2)32%;(3)320人;(2).【解答】解:(1)33÷11%=300(人),答:参与本次抽样调查的学生人数为300人;(2)×100%=32%,答:图2中扇形A所占百分比为32%;(3)2000×(100%﹣32%﹣11%﹣41%)=320(人),答:估计该校2000名学生中,平均每周阅读课外书的时间在“6﹣8小时”人数为320人;(2)画树状图,如图所示:所有等可能的情况有12种,其中《西游记》被选中的情况有6种,所以《西游记》被选中的概率为=.一十一.列表法与树状图法(共2小题)14.(2022•通辽)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率 ;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)【答案】(1);(2).【解答】解:(1)吉祥物“冰墩墩”放在区域①的概率是;故答案为:;(2)根据题意画图如下:共有12种等可能的情况数,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域有8种,则吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率是=.15.(2021•通辽)如图,甲、乙两个转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,把甲、乙两个转盘中指针所指数字分别记为x,y.请用树状图或列表法求点(x,y)落在平面直角坐标系第一象限内的概率.【答案】见试题解答内容【解答】解:画树状图如图:共有9种等可能的结果,点(x,y)落在平面直角坐标系第一象限内的结果有4种,∴点(x,y)落在平面直角坐标系第一象限内的概率为.。
中考数学专项练习一元二次方程系数与根的关系(含解析)一、单选题1.若、是一元二次方程的两根,则的值是()A.-2B.2C.3D.12.一元二次方程x2+3x﹣a=0的一个根为﹣1,则另一个根为()A.﹣2B.2C.4D.﹣33.已知方程x2-5x+2=0的两个解分别为m,n,则m+n-mn的值是()A.-7B.-3C.7D.34.若关于x一元二次方程x2﹣x﹣m+2=0的两根x1 ,x2满足(x1﹣1)(x2﹣1)=﹣1,则m的值为()A.3B.-3C.2D.-25.下列方程中:①x2-2x-1=0,②2x2-7x+2=0,③x2-x+1=0两根互为倒数有()A.0个B.1个C.2个D.3个6.设x1 ,x2是一元二次方程-2x-3=0的两根,则=()A.6B.8C.1D.127.一元二次方程x2+x-2=0的两根之积是()A.-1B.-2C.1D.28.方程x2+2x-4=0的两根为x1 ,x2 ,则x1+x2的值为()A.2B.-2C.D.-9.若矩形的长和宽是方程x2﹣7x+12=0的两根,则矩形的对角线之和为()A.5B.7C.8D.1010.假如a,b是一元二次方程x2﹣2x﹣4=0的两个根,那么a3b﹣2a2b 的值为()A.-8B.8C.-16D.1611.假如是一元二次方程的两个实数根,那么的值是()A.B.C.D.二、填空题12.设x1、x2是方程x2-4x+3=0的两根,则x1+x2=________.13.定义新运算“*”,规则:a*b= ,如1*2=2,* .若x2+x﹣1=0的两根为x1 ,x2 ,则x1*x2=________.14.若x1、x2是方程2x2﹣3x﹣4=0的两个根,则x1•x2+x1+x2的值为________.15.若a、b是一元二次方程x2+2x﹣1=0的两个根,则的值是_____ ___.16.写出一个以2和3为两根且二项系数为1的一元二次方程,你写的是________.17.若方程x2﹣3x+1=0的两根分别为x1和x2 ,则代数式x1+x2﹣x 1x2=________.18.若一个一元二次方程的两个根分别是1、3,请写出一个符合题意的一元二次方程________.三、运算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.已知一元二次方程x2﹣6x+4=0的两根分别是a,b,求(1)a2+b2(2)a2﹣b2的值.四、解答题21.已知关于x的方程x2+x+a﹣1=0有一个根是1,求a的值及方程的另一个根.22.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1 ,x2 ,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.请依照该材料解题:已知x1 ,x2是方程x2+6x+3=0的两实数根,求+和x12x2+x1x22的值.答案解析部分一、单选题1.【答案】C【考点】根与系数的关系【解析】【分析】∵一元二次方程的两根分别是、,∴==3.故选C.2.【答案】A【考点】根与系数的关系【解析】【解答】解:设x1、x2是关于x的一元二次方程x2+3x﹣a=0的两个根,则x1+x2=﹣3,又﹣x2=﹣1,解得:x1=﹣2.即方程的另一个根是﹣2.故选:A.【分析】依照一元二次方程根与系数的关系x1+x2=﹣求另一个根即可.3.【答案】D【考点】根与系数的关系【解析】【分析】利用根与系数的关系求出m+n与mn的值,代入所求式子中运算即可求出值.【解答】∵x2-5x+2=0的两个解分别为m,n,∴m+n=5,mn=2,则m+n-mn=5-2=3.故选D【点评】此题考查了根与系数的关系,熟练把握根与系数的关系是解本题的关键.4.【答案】A【考点】根与系数的关系【解析】【解答】解:依照题意得x1+x2=1,x1x2=﹣m+2,∵(x1﹣1)(x2﹣1)=﹣1,∴x1x2﹣(x1+x2)+1=﹣1,∴﹣m+2﹣1+1=﹣1,∴m=3.故选A.【分析】依照根与系数的关系得到x1+x2=1,x1x2=﹣m+2,再变形等式(x 1﹣1)(x2﹣1)=﹣1得到x1x2﹣(x1+x2)+1=﹣1,则有﹣m+2﹣1+1=﹣1,然后解此一元一次方程即可.5.【答案】B【考点】一元二次方程的根与系数的关系【解析】【解答】两根互为倒数则说明两根之积为1且△≥0,即,则a=c,∴只有②是正确的,③没有实数根.故答案为:B【分析】由两根互为倒数则说明两根之积为1且△≥0,可得出答案。
精品基础教育教学资料,仅供参考,需要可下载使用!一元二次方程及其应用考点一、 一元二次方程的解法 (10分) 1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
考点二、一元二次方程根的判别式 (3分)根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆考点三、一元二次方程根与系数的关系 (3分)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,acx x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
考点四、分式方程 (8分)1、分式方程分母里含有未知数的方程叫做分式方程。
中考数学专题复习-一元二次方程的根与系数的关系(含解析)一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 152.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 63.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 44.设方程的两个根为、,那么的值等于( )。
A. B. C. D.5.已知一元二次方程x2﹣3x﹣3=0的两根为α与β,则的值为()A. -1B. 1C. -2D. 26.设x1、x2是一元二次方程x2+x﹣3=0的两根,则x13﹣4x22+15等于()A. -4B. 8C. 6D. 07.若、是一元二次方程x2+5x+4=0的两个根,则的值是().A. -5B. 4C. 5D. -48.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是( ).A. 1B. 2C. -2D. -19.一元二次方程的两实数根相等,则的值为()A. B. 或 C. D. 或10.若方程x2+x﹣2=0的两个实数根分别是x1、x2,则下列等式成立的是()A. x1+x2=1,x1•x2=﹣2B. x1+x2=﹣1,x1•x2=2C. x1+x2=1,x1•x2=2D. x1+x2=﹣1,x1•x2=﹣211.下列一元二次方程两实数根和为﹣4的是()A. x2+2x﹣4=0B. x2﹣4x+4=0C. x2+4x+10=0D. x2+4x﹣5=012.已知x1,x2是一元二次方程x2+4x﹣3=0的两个实数根,则x1+x2﹣x1x2的值是()A. 6B. 0C. 7D. -113.若方程x2+x﹣1=0的两实根为α、β,那么下列式子正确的是()A. α+β=1B. αβ=1C. α2+β2=2D. =1二、填空题14.写出以2,﹣3为根的一元二次方程是________.15.一元二次方程的两根和是________;16.已知α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α2+2αβ+β2的值为________.17.已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是________18.若关于x的一元二次方程为ax2+bx+c=0的两根之和为3,则关于x的方程a(x+1)2+b(x+1)+c=0的两根之和为________.三、计算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.设方程4x2﹣7x﹣3=0的两根为x1,x2,不解方程求下列各式的值:(1)x12x2+x1x22.(2)+ .21.已知是方程的两个根,利用根与系数的关系,求下列各式的值:(1);(2)22.已知一元二次方程x2﹣6x+4=0的两根分别是a,b,求(1)a2+b2(2)a2﹣b2的值.23.已知a、b是一元二次方程x2﹣2x﹣1=0的两个根且a2﹣2a﹣1=0,求a2﹣a+b+3ab的值.四、解答题24.关于x的方程(k﹣1)x2﹣x+1=0有实根.(1)求k 的取值范围;(2)设x1、x2是方程的两个实数根,且满足(x1+1)(x2+1)=k﹣1,求实数k的值.25.若关于x的一元二次方程x2+kx+3x+k=0的一个根是﹣2,求方程另一个根和k的值.26.若关于x的方程x2+6x+m=0的一个根为3﹣,求方程的另一个根及m的值.五、综合题27.已知关于x的方程x2﹣5x+3a+3=0(1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a的取值范围.28.已知抛物线的不等式为y=﹣x2+6x+c.(1)若抛物线与x轴有交点,求c的取值范围;(2)设抛物线与x轴两个交点的横坐标分别为x1,x2.若x12+x22=26,求c的值.(3)若P,Q是抛物线上位于第一象限的不同两点,PA,QB都垂直于x轴,垂足分别为A,B,且△OPA与△OQB全等.求证:c>﹣.答案解析部分一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 15【答案】B【考点】根与系数的关系【解析】【解答】解:设方程x2﹣5x+k=0另一个根为a,则一个根为2a﹣1,则a+2a﹣1=5,解得a=2,2×2﹣1=3因此k=2×3=6.故选:B.【分析】设方程的另一个根为a,则一个根为2a﹣1,根据根与系数的关系得出a+2a﹣1=5,得出a=3,另一个跟为5,进一步利用两根的积得出k的数值即可.2.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 6【答案】C【考点】根与系数的关系【解析】【解答】解:∵a、b是一元次方程x2﹣2x﹣3=0的两个根,∴ab=﹣3,a+b=2,∴a2b+ab2=ab(a+b)=﹣3×2=﹣6,故选C.【分析】根据根与系数的关系,可得出ab和a+b的值,再代入即可.3.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 4【答案】C【考点】根与系数的关系【解析】【解答】解:根据题意得x1•x2=1.故选C.【分析】直接根据根与系数的关系求解.4.设方程的两个根为、,那么的值等于( )。
2015中考数学真题分类汇编:一元二次方程根及系数的关系一.选择题(共10小题)1.(2015•金华)一元二次方程x2+4x﹣3=0的两根为x1、x2,则x1•x2的值是()A.4 B.﹣4 C.3 D.﹣32.(2015•枣庄)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.23.(2015•黔东南州)设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A.6 B.8 C.10 D.124.(2015•衡阳)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣35.(2015•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个6.(2015•广西)已知实数x1,x2满意x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=07.(2014•防城港)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在8.(2014•呼和浩特)已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2推断正确的是()A.x1+x2>1,x1•x2>0B.x1+x2<0,x1•x2>0C.0<x1+x2<1,x1•x2>0D.x1+x2及x1•x2的符号都不确定9.(2014•烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a 的值是()A.﹣1或5 B.1 C.5 D.﹣110.(2014•攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是()A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣1二.填空题(共10小题)11.(2015•荆州)若m,n是方程x2+x﹣1=0的两个实数根,则m2+2m+n 的值为.12.(2015•日照)假如m,n是两个不相等的实数,且满意m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015= .13.(2015•内江)已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满意+=3,则k的值是.14.(2015•凉山州)已知实数m,n满意3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则= .15.(2015•六盘水)已知x1=3是关于x的一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根x2是.16.(2015•成都)假如关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是(写出全部正确说法的序号)①方程x2﹣x﹣2=0是倍根方程.②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0的倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为.17.(2015•西宁)若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.18.(2015•赤峰)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab= .19.(2014•雅安)关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,且x12+x22=3,则m= .20.(2014•桂林)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是.三.解答题(共10小题)21.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)务实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.22.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.23.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m ﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.24.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)务实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,恳求出k的值;若不存在,请说明理由.25.(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)推断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于随意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.26.(2013•菏泽)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1﹣2,推断y是否为变量k的函数?假如是,请写出函数解析式;若不是,请说明理由.27.(2012•鄂州)关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.28.(2012•怀化)已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.29.(2012•内江)假如方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请依据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满意a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满意a+b+c=0,abc=16,求正数c的最小值.30.(2011•南充)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)假如x1+x2﹣x1x2<﹣1且k为整数,求k的值.2015中考数学分化真题分类汇编:一元二次方程根及系数的关系参考答案及试题解析一.选择题(共10小题)1.(2015•金华)一元二次方程x2+4x﹣3=0的两根为x1、x2,则x1•x2的值是()A.4 B.﹣4 C.3 D.﹣3考点:根及系数的关系.专题:计算题.分析:依据根及系数的关系求解.解答:解:x1•x2=﹣3.故选D.点评:本题考察了根及系数的关系:若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.2.(2015•枣庄)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2考点:根及系数的关系.分析:依据根及系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.解答:解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选A.点评:本题考察了根及系数的关系的应用,能依据根及系数的关系得出﹣2+4=﹣m,﹣2×4=n是解此题的关键.3.(2015•黔东南州)设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A.6 B.8 C.10 D.12考点:根及系数的关系.分析:依据根及系数的关系得到x1+x2=2,x1•x2=﹣3,再变形x12+x22得到(x1+x2)2﹣2x1•x2,然后利用代入计算即可.解答:解:∵一元二次方程x2﹣2x﹣3=0的两根是x1、x2,∴x1+x2=2,x1•x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1•x2=22﹣2×(﹣3)=10.故选C.点评:本题考察了一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.4.(2015•衡阳)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3考点:根及系数的关系.分析:依据一元二次方程根及系数的关系,利用两根和,两根积,即可求出a的值和另一根.解答:解:设一元二次方程的另一根为x1,则依据一元二次方程根及系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.点评:本题考察了一元二次方程根及系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1•x2=.5.(2015•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个考点:根及系数的关系;根的判别式.专题:计算题.分析:①依据题意,以及根及系数的关系,可知两个整数根都是负数;②依据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采纳举例反证的方法解决,据此即可得解.解答:解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1•x2=2n >0,y1•y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,4m2﹣8n=m2﹣2n≥0,4n2﹣8m=n2﹣2m≥0,m2﹣2m+1+n2﹣2n+1=m2﹣2n+n2﹣2m+2≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③∵y1+y2=﹣2n,y1•y2=2m,∴2m﹣2n=y1+y2+y1•y2,∵y1及y2都是负整数,不妨令y1=﹣3,y2=﹣5,则:2m﹣2n=﹣8+15=7,不在﹣1及1之间,③错误,其中正确的结论的个数是2,故选C.点评:本题主要考察了根及系数的关系,以及一元二次方程的根的判别式,还考察了举例反证法,有肯定的难度,留意总结.6.(2015•广西)已知实数x1,x2满意x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=0考点:根及系数的关系.分析:依据以x1,x2为根的一元二次方程是x2﹣(x1+x2)x+x1,x2=0,列出方程进展推断即可.解答:解:以x1,x2为根的一元二次方程x2﹣7x+12=0,故选:A.点评:本题考察的是一元二次方程根及系数的关系,驾驭以x1,x2为根的一元二次方程是x2﹣(x1+x2)x+x1,x2=0是详细点关键.7.(2014•防城港)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在考点:根及系数的关系.分析:先由一元二次方程根及系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进展检验即可.解答:解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.点评:本题主要考察了一元二次方程根及系数的关系:假如x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.8.(2014•呼和浩特)已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2推断正确的是()A.x1+x2>1,x1•x2>0B.x1+x2<0,x1•x2>0C.0<x1+x2<1,x1•x2>0D.x1+x2及x1•x2的符号都不确定考点:根及系数的关系;反比例函数图象上点的坐标特征.专题:计算题.分析:依据点A(a,c)在第一象限的一支曲线上,得出a>0,c>0,再点B(b,c+1)在该函数图象的另外一支上,得出b<0,c+1>0,再依据x1•x2=,x1+x2=﹣,即可得出答案.解答:解:∵点A(a,c)在第一象限的一支曲线上,∴a>0,c>0,ac=1,即a=,∵点B(b,c+1)在该函数图象的另外一支上,即第二象限上,∴b<0,c+1>0,b(c+1)=﹣1,即b=﹣,∴x1•x2=>0,x1+x2=﹣=,∴0<x1+x2<1,故选:C.点评:本题考察了根及系数的关系,驾驭根及系数的关系和各个象限点的特点是本题的关键;若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=﹣,x1x2=.9.(2014•烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣1考点:根及系数的关系;根的判别式.专题:计算题.分析:设方程的两根为x1,x2,依据根及系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到(x1+x2)2﹣2x1•x2=5,则a2﹣4a﹣5=0,然后解方程,满意△≥0的a的值为所求.解答:解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.故选:D.点评:本题考察了一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考察了一元二次方程的根的判别式.10.(2014•攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是()A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣1考点:根及系数的关系.专题:计算题.分析:先依据根及系数的关系得到α+β=﹣1,αβ=﹣1,再利用完全平方公式变形α2+β2得到(α+β)2﹣2αβ,利用通分变形+得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进展推断.解答:解:依据题意得α+β=﹣1,αβ=﹣1.所以α2+β2=(α+β)2﹣2αβ=(﹣1)2﹣2×(﹣1)=3;+===1.故选:D.点评:本题考察了一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.二.填空题(共10小题)11.(2015•荆州)若m,n是方程x2+x﹣1=0的两个实数根,则m2+2m+n的值为0 .考点:根及系数的关系;一元二次方程的解.专题:计算题.分析:由题意m为已知方程的解,把x=m代入方程求出m2+m的值,利用根及系数的关系求出m+n的值,原式变形后代入计算即可求出值.解答:解:∵m,n是方程x2+x﹣1=0的两个实数根,∴m+n=﹣1,m2+m=1,则原式=(m2+m)+(m+n)=1﹣1=0,故答案为:0点评:此题考察了根及系数的关系,以及一元二次方程的解,娴熟驾驭根及系数的关系是解本题的关键.12.(2015•日照)假如m,n是两个不相等的实数,且满意m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015= 2026 .考点:根及系数的关系.分析:由于m,n是两个不相等的实数,且满意m2﹣m=3,n2﹣n=3,可知m,n是x2﹣x﹣3=0的两个不相等的实数根.则依据根及系数的关系可知:m+n=2,mn=﹣3,又n2=n+3,利用它们可以化简2n2﹣mn+2m+2015=2(n+3)﹣mn+2m+2015=2n+6﹣mn+2m+2015=2(m+n)﹣mn+2021,然后就可以求出所求的代数式的值.解答:解:由题意可知:m,n是两个不相等的实数,且满意m2﹣m=3,n2﹣n=3,所以m,n是x2﹣x﹣3=0的两个不相等的实数根,则依据根及系数的关系可知:m+n=1,mn=﹣3,又n2=n+3,则2n2﹣mn+2m+2015=2(n+3)﹣mn+2m+2015=2n+6﹣mn+2m+2015=2(m+n)﹣mn+2021=2×1﹣(﹣3)+2021=2+3+2021=2026.故答案为:2026.点评:本题考察一元二次方程根及系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根及系数的关系式求值.13.(2015•内江)已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满意+=3,则k的值是 2 .考点:根及系数的关系.分析:找出一元二次方程的系数a,b及c的值,利用根及系数的关系求出两根之和及两根之积,然后利用完全平方公式变形后,将求出的两根之和及两根之积代入,即可求出所求式子的值.解答:解:∵3x2+2x﹣11=0的两个解分别为x1、x2,∴x1+x2=6,x1x2=k,+===3,解得:k=2,故答案为:2.点评:此题考察了一元二次方程根及系数的关系,对所求的代数式进展正确的变形是解决本题的关键.14.(2015•凉山州)已知实数m,n满意3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则= ﹣.考点:根及系数的关系.分析:由m≠n时,得到m,n是方程x2﹣2x﹣1=0的两个不等的根,依据根及系数的关系进展求解.解答:解:∵m≠n时,则m,n是方程3x2﹣6x﹣5=0的两个不相等的根,∴m+n=2,mn=﹣.∴原式====﹣,故答案为:﹣.点评:本题考察了一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.15.(2015•六盘水)已知x1=3是关于x的一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根x2是 1 .考点:根及系数的关系.分析:依据根及系数的关系,由两根之和可以求出方程的另一个根.解答:解:设方程的另一个根是x2,则:3+x2=4,解得x=1,故另一个根是1.故答案为1.点评:本题考察的是一元二次方程的解,依据根及系数的关系,由两根之和可以求出方程的另一个根.16.(2015•成都)假如关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是②③(写出全部正确说法的序号)①方程x2﹣x﹣2=0是倍根方程.②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0的倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为.考点:根及系数的关系;根的判别式;反比例函数图象上点的坐标特征;二次函数图象上点的坐标特征.专题:新定义.分析:①解方程x2﹣x﹣2=0得:x1=2,x2=﹣1,得到方程x2﹣x﹣2=0不是倍根方程,故①错误;②由(x﹣2)(mx+n)=0是倍根方程,且x1=2,x2=﹣,得到=﹣1,或=﹣4,∴m+n=于是得到4m2+5mn+n2=(4m+1)(m+n)=0,故②正确;③由点(p,q)在反比例函数y=的图象上,得到pq=2,解方程px2+3x+q=0得:x1=﹣,x2=﹣,故∴③正确;④由方程ax2+bx+c=0是倍根方程,得到x1=2x2,由相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,∴得到抛物线的对称轴x===,于是求出x1=,故④错误.解答:解:①解方程x2﹣x﹣2=0得:x1=2,x2=﹣1,∴方程x2﹣x﹣2=0不是倍根方程,故①错误;②∵(x﹣2)(mx+n)=0是倍根方程,且x1=2,x2=﹣,∴=﹣1,或=﹣4,∴m+n=0,4m+n=0,∵4m2+5mn+n2=(4m+n)(m+n)=0,故②正确;③∵点(p,q)在反比例函数y=的图象上,∴pq=2,解方程px2+3x+q=0得:x1=﹣,x2=﹣,∴x2=2x1,故③正确;④∵方程ax2+bx+c=0是倍根方程,∴设x1=2x2,∵相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,∴抛物线的对称轴x===,∴x1+x2=5,∴x1+2x1=5,∴x1=,故④错误.故答案为:②③.点评:本题考察了根及系数的关系,根的判别式,反比例函数图形上点的坐标特征,二次函数图形上点的坐标特征,正确的理解“倍根方程”的定义是解题的关键.17.(2015•西宁)若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16 .考点:根及系数的关系;矩形的性质.分析:设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,依据一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.解答:解:设矩形的长和宽分别为x、y,依据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.点评:本题考察了一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考察了矩形的性质.18.(2015•赤峰)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab= 4 .考点:根及系数的关系.分析:依据根及系数的关系得到,通过解该方程组可以求得a、b的值.解答:解:∵关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别是2、b,∴由韦达定理,得,解得,.∴ab=1×4=4.故答案是:4.点评:本题考察了根及系数的关系.x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.19.(2014•雅安)关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,且x12+x22=3,则m= 0 .考点:根及系数的关系;根的判别式.专题:计算题.分析:依据方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,得出x1+x2及x1x2的值,再依据x12+x22=3,即可求出m的值.解答:解:∵方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,∴x1+x2=2m﹣1,x1x2=m2﹣1,∵x12+x22=(x1+x2)2﹣2x1x2=(2m﹣1)2﹣2(m2﹣1)=3,解得:m1=0,m2=2,∵方程有两实数根,∴△=(2m﹣1)2﹣4(m2﹣1)≥0,即m≤∴m2=2(不合题意,舍去),∴m=0;故答案为:0.点评:本题考察了根及系数的关系及根的判别式,难度适中,关键驾驭x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.20.(2014•桂林)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是﹣2或﹣.考点:根及系数的关系;根的判别式.分析:先由(x1﹣2)(x1﹣x2)=0,得出x1﹣2=0或x1﹣x2=0,再分两种状况进展探讨:①假如x1﹣2=0,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,解方程求出k=﹣2;②假如x1﹣x2=0,那么将x1+x2=﹣(2k+1),x1x2=k2﹣2代入可求出k的值,再依据判别式进展检验.解答:解:∵(x1﹣2)(x1﹣x2)=0,∴x1﹣2=0或x1﹣x2=0.①假如x1﹣2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②假如x1﹣x2=0,那么(x1﹣x2)2=(x1+x2)2﹣4x1x2=[﹣(2k+1)]2﹣4(k2﹣2)=4k+9=0,解得k=﹣.又∵△=(2k+1)2﹣4(k2﹣2)≥0.解得:k≥﹣.所以k的值为﹣2或﹣.故答案为:﹣2或﹣.点评:本题考察了一元二次方程的根及系数的关系,根的判别式,留意在利用根及系数的关系时,需用判别式进展检验.三.解答题(共10小题)21.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)务实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.考点:根及系数的关系;根的判别式.专题:代数综合题.分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac >0,建立关于m的不等式,求出m的取值范围,进而得出m的最大整数值;(2)依据(1)可知:m=1,继而可得一元二次方程为x2﹣2x+1=0,依据根及系数的关系,可得x1+x2=2,x1x2=1,再将x12+x22﹣x1x2变形为(x1+x2)2﹣3x1x2,则可求得答案.解答:解:∵一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=8﹣4m>0,解得m<2,故整数m的最大值为1;(2)∵m=1,∴此一元二次方程为:x2﹣2x+1=0,∴x1+x2=2,x1x2=1,∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.点评:此题考察了一元二次方程根及系数的关系及根的判别式.此题难度不大,解题的关键是驾驭一元二次方程根的状况及判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.驾驭根及系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.22.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.考点:根及系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:(1)利用(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,求得m的值即可;(2)分7为底边和7为腰两种状况分类探讨即可确定等腰三角形的周长.解答:解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)①当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;②当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.点评:本题考察了根及系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别及系数的关系.23.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m ﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.考点:根及系数的关系;根的判别式;二次函数的最值.专题:代数综合题.分析:(1)首先依据根的判别式求出m的取值范围,利用根及系数的关系,求出符合条件的m的值;(2)把利用根及系数的关系得到的关系式代入代数式,细心化简,结合m 的取值范围求出代数式的最大值.解答:解:∵方程有两个不相等的实数根,∴△=b2﹣4ac=4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1解得:m1=,m2=(不合题意,舍去)∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.点评:此题考察根及系数的关系,一元二次方程的根的判别式△=b2﹣4ac 来求出m的取值范围;解答此题的关键是熟知一元二次方程根及系数的关系:x1+x2=﹣,x1x2=.24.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)务实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,恳求出k的值;若不存在,请说明理由.考点:根及系数的关系;根的判别式.专题:压轴题.分析:(1)依据已知一元二次方程的根的状况,得到根的判别式△≥0,据此列出关于k的不等式[﹣(2k+1)]2﹣4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得≥0成立.利用根及系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.解答:解:(1)∵原方程有两个实数根,∴[﹣(2k+1)]2﹣4(k2+2k)≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.(2)假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,∴只有当k=1时,上式才能成立.又∵由(1)知k≤,∴不存在实数k使得≥0成立.点评:本题综合考察了根的判别式和根及系数的关系,在解不等式时肯定要留意数值的正负及不等号的改变关系.25.(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)推断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于随意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.考点:根及系数的关系;解一元二次方程-因式分解法;根的判别式.专题:压轴题;阅读型;新定义.分析:(1)求出原方程的根,再代入|x1|+|x2|看结果是否为2的整数倍就可以得出结论;(2)由条件x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程建模,设c=mb2+n,就可以表示出c,然后依据公式法就可以求出其根,再代入|x1|+|x2|就可以得出结论.解答:解:(1)不是,解方程x2+x﹣12=0得,x1=3,x2=﹣4.|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程;(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n,当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0时,m=﹣,∴c=﹣b2.∵是偶系二次方程,当b=3时,c=﹣×32.∴可设c=﹣b2.对于随意一个整数b,c=﹣b2时,△=b2﹣4ac,=4b2.x=,∴x1=﹣b,x2=b.∴|x1|+|x2|=2|b|,∵b是整数,∴对于任何一个整数b,c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.点评:本题考察了一元二次方程的解法的运用,根的判别式的运用根及系数的关系的运用及数学建模思想的运用,解答本题时依据条件特征建立模型是关键.26.(2013•菏泽)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1﹣2,推断y是否为变量k的函数?假如是,请写出函数解析式;若不是,请说明理由.考点:根及系数的关系;根的判别式.专题:证明题.分析:(1)依据一元二次方程的定义得到k≠0,再计算出判别式得到△=(2k﹣1)2,依据k为整数和非负数的性质得到△>0,则依据判别式的意义即可得到结论;(2)依据根及系数的关系得x1+x2=,x1•x2=,则依据完全平方公式变形得(x1﹣x2)2=(x1+x2)2﹣4x1•x2=﹣==(2﹣)2,由于k为整数,则2﹣>0,所以x2﹣x1=2﹣,则y=2﹣﹣2=﹣.解答:(1)证明:依据题意得k≠0,∵△=(4k+1)2﹣4k(3k+3)=4k2﹣4k+1=(2k﹣1)2,而k为整数,∴2k﹣1≠0,∴(2k﹣1)2>0,即△>0,∴方程有两个不相等的实数根;(2)解:y是变量k的函数.∵x1+x2=,x1•x2=,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=﹣==(2﹣)2,∵k为整数,∴2﹣>0,而x1<x2,∴x2﹣x1=2﹣,∴y=2﹣﹣2=﹣(k≠0的整数),∴y是变量k的函数.点评:本题考察了一元二次方程ax2+bx+c=0(a≠0)的根及系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考察了一元二次方程的根的判别式.27.(2012•鄂州)关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.考点:根及系数的关系;根的判别式.专题:计算题.分析:(1)找出一元二次方程中的a,b及c,表示出b2﹣4ac,然后推断出b2﹣4ac大于0,即可得到原方程有两个不相等的实数根;(2)利用根及系数的关系表示出两根之和及两根之积,推断出两根之积小于0,得到两根异号,分两种状况考虑:若x1>0,x2<0,利用肯定值的代数意义化简已知的等式,将表示出的两根之和代入,列出关于m的方程,求出方程的解得到m的值,进而确定出方程,求出方程的解即可;若x1<0,x2>0,同理求出m的值及方程的解.解答:解:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣)2+,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2==﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣1+,x2=﹣1﹣,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1﹣,x2=1+.点评:此题考察了一元二次方程根的判别式,以及根及系数的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程没有实数根.28.(2012•怀化)已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.考点:根及系数的关系;根的判别式.分析:依据根及系数的关系求得x1x2=,x1+x2=﹣;依据一元二次方程的根的判别式求得a的取值范围;(1)将已知等式变形为x1x2=4+(x2+x1),即=4+,通过解该关于a的方程即可求得a的值;(2)依据限制性条件“(x1+1)(x2+1)为负整数”求得a的取值范围,然后在取值范围内取a的整数值.解答:解:∵x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴由根及系数的关系可知,x1x2=,x1+x2=﹣;∵一元二次方程(a﹣6)x2+2ax+a=0有两个实数根,∴△=4a2﹣4(a﹣6)•a≥0,且a﹣6≠0,解得,a≥0,且a≠6;(1)∵﹣x1+x1x2=4+x2,∴x1x2=4+(x1+x2),即=4﹣,解得,a=24>0;∴存在实数a,使﹣x1+x1x2=4+x2成立,a的值是24;(2)∵(x1+1)(x2+1)=x1x2+(x1+x2)+1=﹣+1=﹣,∴当(x1+1)(x2+1)为负整数时,a﹣6>0,且a﹣6是6的约数,∴a﹣6=6,a﹣6=3,a﹣6=2,a﹣6=1,∴a=12,9,8,7;∴使(x1+1)(x2+1)为负整数的实数a的整数值有12,9,8,7.点评:本题综合考察了根及系数的关系、根的判别式.留意:一元二次方程ax2+bx+c=0(a、b、c是常数)的二次项系数a≠0.29.(2012•内江)假如方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请依据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满意a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满意a+b+c=0,abc=16,求正数c的最小值.考点:根及系数的关系;根的判别式.分析:(1)先设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,得出+=﹣,•=,再依据这个一元二次方程的两个根分别是已知方程两根的倒数,即可求出答案.(2)依据a、b满意a2﹣15a﹣5=0,b2﹣15b﹣5=0,得出a,b是x2﹣15x ﹣5=0的解,求出a+b和ab的值,即可求出的值.(3)依据a+b+c=0,abc=16,得出a+b=﹣c,ab=,a、b是方程x2+cx+=0的解,再依据c2﹣4•≥0,即可求出c的最小值.解答:解:(1)设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,则:+==﹣,•==,若一个一元二次方程的两个根分别是已知方程两根的倒数,则这个一元二次方程是:x2+x+=0;(2)∵a、b满意a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a,b是x2﹣15x﹣5=0的解,当a≠b时,a+b=15,ab=﹣5,。
一元二次方程方程根与系数关系
一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b和c分别是二次项系数、一次项系数和常数项。
方程的根是使方程成立的x值。
在这篇文章中,我们将探讨一元二次方程的根与系数之间的关系。
首先,我们来看一元二次方程的根的求解公式,x = (-b ± √(b^2 4ac)) / (2a)。
这个公式告诉我们,方程的根取决于方程的系数a、b和c。
1. 系数a的影响:
当a>0时,抛物线开口向上,方程有两个实根或没有实根。
当a<0时,抛物线开口向下,方程有两个实根。
2. 系数b的影响:
系数b影响方程的根的位置,它决定了根的和与积的关系。
当b>0时,两个根的和为负值,两个根的积为正值。
当b<0时,两个根的和为正值,两个根的积为正值。
3. 系数c的影响:
系数c决定了方程的常数项,它影响方程的根的大小。
当c>0时,两个根都是负数。
当c<0时,两个根一个是正数,一个是负数。
通过分析上述关系,我们可以看出,方程的根与系数之间存在着一定的关联。
系数a决定了抛物线的开口方向,系数b决定了根的和与积的关系,系数c决定了根的大小。
因此,我们可以通过观察方程的系数来初步判断方程的根的性质。
总之,一元二次方程的根与系数之间存在着密切的关系,通过对系数的分析,我们可以初步了解方程根的性质。
这种关系不仅有助于我们更好地理解方程的性质,也为我们解决实际问题中的应用提供了一定的指导。
专题07 一元二次方程一.选择题1.(2022·四川乐山)关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,则这两根之积为( ) A .13 B .23 C .1 D .13- 【答案】D【分析】根据一元二次方程根与系数的关系即可求解. 【详解】解:关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,设另一根为2x ,则223x x +=,213x ∴=-,213xx ∴=-,故选:D 【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键. 2.(2022·天津)方程2430x x ++=的两个根为( )A .121,3x x ==B .121,3x x =-=C .121,3x x ==-D .121,3x x =-=-【答案】D【分析】将243x x ++进行因式分解,243=(1)(3)x x x x ++++,计算出答案.【详解】∵243=(1)(3)x x x x ++++∴(1)(3)=0x x ++∴1213x x =-=-,故选:D .【点睛】本题考查解一元二次方程,解题的关键是熟练掌握因式分解法解一元二次方程.3.(2022·湖南怀化)下列一元二次方程有实数解的是( )A .2x 2﹣x +1=0B .x 2﹣2x +2=0C .x 2+3x ﹣2=0D .x 2+2=0 【答案】C【分析】判断一元二次方程实数根的情况用根的判别式进行判断.【详解】A 选项中,224(1)42170b ac =-=--⋅⋅=-<△,故方程无实数根;B 选项中,2(2)41240=--⋅⋅=-<△,故方程无实数根;C 选项中,2341(2)170=-⋅⋅-=>△,故方程有两个不相等的实数根;D 选项中,80=-<△,故方程无实数根;故选C .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程实数根情况的判定方法是解题的关键.4.(2022·甘肃武威)用配方法解方程x 2-2x =2时,配方后正确的是( )A .()213x +=B .()216x +=C .()213x -=D .()216x -= 【答案】C 【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.【详解】解:x 2-2x =2,x 2-2x +1=2+1,即(x -1)2=3.故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键. 5.(2022·浙江温州)若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是( )A .36B .36-C .9D .9- 【答案】C【分析】根据判别式的意义得到2640c ∆=-=,然后解关于c 的一次方程即可.【详解】解:∵方程260x x c ++=有两个相等的实数根∴26410c ∆=-⨯⨯= 解得9c = 故选:C .【点睛】本题考查了根的判别式:一元二次方程20(a 0)++=≠ax bx c 的跟与24b ac ∆=-的关系,关键是分清楚以下三种情况:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.6.(2022·四川遂宁)已知m 为方程2320220x x +-=的根,那么32220252022m m m +-+的值为( ) A .2022-B .0C .2022D .4044 【答案】B【分析】根据题意有2320220m m +-=,即有32320220m m m +-=,据此即可作答.【详解】∵m 为2320220x x +-=的根据,∴2320220m m +-=,且m ≠0,∴32320220m m m +-=,则有原式=322(32022)(32022)000m m m m m +--+-=-=,故选:B .【点睛】本题考查了利用未知数是一元二次方程的根求解代数式的值,由m 为2320220x x +-=得到2320220m m +-=是解答本题的关键.7.(2022·浙江绍兴)已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( ) A .0,4B .1,5C .1,-5D .-1,5【答案】D【分析】根据抛物线2y x mx =+的对称轴为直线2x =可求出m 的值,然后解方程即可. 【详解】抛物线2y x mx =+的对称轴为直线2x =,221m ∴-=⨯,解得4m =-,∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-,故选:D .【点睛】本题考查二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键. 8.(2022·重庆)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A .2625(1)400x -=B .2400(1)625x +=C .2625400x =D .2400625x =【答案】B【分析】第一年共植树400棵,第二年植树400(1+x )棵,第三年植树400(1+x )²棵,再根据题意列出方程即可.【详解】第一年植树为400棵,第二年植树为400(1+x )棵,第三年400(1+x )²棵,根据题意列出方程:2400(1)625x +=.故选:B .【点睛】本题考查了一元二次方程的应用,属于增长率的常规应用题,解决此类题目要多理解、练习增长率相关问题.9.(2022·山东滨州)一元二次方程22560x x -+=的根的情况为( )A .无实数根B .有两个不等的实数根C .有两个相等的实数根D .不能判定【答案】A【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:∵Δ=(−5)2−4×2×6=-23<0,∴方程无实数根.故选:A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.10.(2022·四川泸州)已知关于x 的方程()22210x m x m --+=的两实数根为1x ,2x ,若()()12113++=x x ,则m 的值为( )A .3-B .1-C .3-或3D .1-或3【答案】A【分析】利用根与系数的关系以及()22=2140∆--≥m m 求解即可. 【详解】解:由题意可知:1221221x x m x x m+=-⎧⎨⋅=⎩,且()22=2140∆--≥m m ∵()()121212111=3++=⋅+++x x x x x x ,∴()22113+-+=m m ,解得:3m =-或1m =,∵()22=2140∆--≥m m ,即14m ≤,∴3m =-,故选:A 【点睛】本题考查根与系数的关系以及根据方程根的情况确定参数范围,解题的关键是求出14m ≤,再利用根与系数的关系求出3m =-或1m =(舍去).11.(2022·重庆)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是( )A .()22001242x +=B .()22001242x -= C .()20012242x += D .()20012242x -= 【答案】A【分析】平均增长率为x ,关系式为:第三天揽件量=第一天揽件量×(1+平均增长率)2,把相关数值代入即可.【详解】解:由题意得:第一天揽件200件,第三天揽件242件,∴可列方程为:()22001242x +=,故选:A .【点睛】此题考查一元二次方程的应用,得到三天的揽件量关系式是解决本题的突破点,难度一般. 12.(2022·湖南常德)关于x 的一元二次方程240x x k -+=无实数解,则k 的取值范围是( ) A .4k >B .4k <C .4k <-D .1k > 【答案】A【分析】根据一元二次方程根的判别式小于0即可求解.【详解】解:∵关于x 的一元二次方程240x x k -+=无实数解,∴1640k ∆=-<解得:4k >故选:A .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.13.(2022·新疆)临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x ,则根据题意,可列方程为( ) A .8(12)11.52x +=B .28(1)11.52x ⨯+=C .28(1)11.52x +=D .()28111.52x += 【答案】C【分析】设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,即可得.【详解】解:设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,∴28(1+)=11.52x 故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是能够求出第二个月的销售额和第三个月的销售额.14.(2022·新疆)若关于x 的一元二次方程20x x k +-=有两个实数根,则k 的取值范围是( )A .14k >- B .14k ≥- C .14k <- D .14k ≤- 【答案】B 【分析】根据关于x 的一元二次方程x 2+x -k =0有两个实数根,得出Δ=b 2-4ac ≥0,即1+4k ≥0,从而求出k 的取值范围.【详解】解:∵x 2+x -k =0有两个实数根,∴Δ=b 2-4ac ≥0,即1+4k ≥0,解得:k ≥-14,故选:B . 【点睛】本题考查一元二次方程根的判别式,掌握Δ>0⇔方程有两个不相等的实数根;Δ=0⇔方程有两个相等的实数根;Δ<0⇔方程没有实数根是本题的关键.15.(2022·山东泰安)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A .()316210x x -=B .()316210x -=C .()316210x x -=D .36210x =【答案】A【分析】设这批椽的数量为x 株,则一株椽的价钱为3(x −1)文,利用总价=单价×数量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这批椽的数量为x 株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x −1)文,依题意得:3(x −1)x =6210,故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16.(2022·河南)一元二次方程210x x +-=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .只有一个实数根【答案】A 【分析】计算一元二次方程根的判别式进而即可求解.【详解】解:241450b ac ∆=-=+=>∴一元二次方程210x x +-=的根的情况是有两个不相等的实数根,故选:A.【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.17.(2022·四川宜宾)已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( ) A .0B .-10C .3D .10【答案】A【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=的两个根,∵mn =-5,m 2+2m -5=0,∵m 2+2m =5,∵22m mn m ++=5-5=10,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键.18.(2022·四川宜宾)若关于x 的一元二次方程2210ax x 有两个不相等的实数根,则a 的取值范围是( )A .0a ≠B .1a >-且0a ≠C .1a ≥-且0a ≠D .1a >- 【答案】B【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根,∵a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.19.(2022·湖北荆州)关于x 的方程2320x kx --=实数根的情况,下列判断正确的是( ) A .有两个相等实数根 B .有两个不相等实数根 C .没有实数根D .有一个实数根【答案】B【分析】根据根的判别式直接判断即可得出答案.【详解】解:对于关于x 的方程2320x kx --=,∵()22341(2)980k k ∆=--⨯⨯-=+>,∵此方程有两个不相等的实数根.故选B .【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式∵的关系:(1)∵>0⇔方程有两个不相等的实数根;(2)∵=0⇔方程有两个相等的实数根;(3)∵<0⇔方程没有实数根.20.(2022·湖南湘潭·中考真题)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A .2B .32C .12D 【答案】A 【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a ,则较长的直角边为a +1,再接着利用勾股定理得到关于a 的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tan α的值即可.【详解】∵小正方形与每个直角三角形面积均为1,∵大正方形的面积为5,∵小正方形的边长为1设直角三角形短的直角边为a ,则较长的直角边为a +1,其中a >0,∵a 2+(a +1)2=5,其中a >0,解得:a 1=1,a 2=-2(不符合题意,舍去),tan α=1a a +=111+=2,故选:A . 【点睛】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键.二、填空题21.(2022·江苏扬州)请填写一个常数,使得关于x 的方程22+-x x ____________0=有两个不相等的实数根.【答案】0(答案不唯一)【分析】设这个常数为a ,利用一元二次方程根的判别式求出a 的取值范围即可得到答案.【详解】解:设这个常数为a ,∵要使原方程有两个不同的实数根,∴()2=240a ∆-->,∴1a <,∴满足题意的常数可以为0,故答案为:0(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,熟知一元二次方程根的判别式是解题的关键. 22.(2022·云南)方程2x 2+1=3x 的解为________. 【答案】1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∴()()2110x x --=,∴210x -=或10x -=,解得:1211,2x x ==,故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.23.(2022·安徽)若一元二次方程2240x x m -+=有两个相等的实数根,则m =________.【答案】2【分析】由方程有两个相等的实数根可知,利用根的判别式等于0即可求m 的值,【详解】解:由题意可知:2a =,4b =-,c m = 240b ac =-=,∴16420m -⨯⨯=,解得:2m =. 故答案为:2.【点睛】本题考查了利用一元二次方程根的判别式24b ac =-△求参数:方程有两个不相等的实数根时,0>;方程有两个相等的实数根时,0=;方程无实数根时,△<0等知识.会运用根的判别式和准确的计算是解决本题的关键.24.(2022·四川成都)若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是_________.【答案】【分析】由题意解一元二次方程2640x x -+=得到3x =3x =再根据勾股定理得到直角三角形斜边的长是 【详解】解:一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,∴由公式法解一元二次方程2640x x -+=可得3x ===∴==【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.25.(2022·江西)已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______.【答案】1【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式0=,∴440k -=,解得:1k =.故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.26.(2022·湖北荆州)一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______.【答案】1【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解.【详解】解:2430x x -+= 243101x x -++=+2441x x -+=()221x -=∵1k =故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键.27.(2022·湖北黄冈)已知一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,则x 1•x 2=_____.【答案】3【分析】直接根据一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系求解即可.【详解】解:∵一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,∵x 1•x 2=31=3.故答案为3. 【点睛】此题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握若方程的两根分别为x 1,x 2,则x 1+x 2=-12•c x x b a a =,.28.(2022·江苏宿迁)若关于x 的一元二次方程220x x k -+=有实数根,则实数k 的取值范围是_____.【答案】1k ≤【分析】由关于x 的一元二次方程220x x k -+=有实数根,可得440,k再解不等式可得答案. 【详解】解: 关于x 的一元二次方程220x x k -+=有实数根,∴()22410k ∆=--⨯⨯≥, 即440,k 解得:1k ≤ .故答案为:1k ≤.【点睛】本题考查的是一元二次方程根的判别式的应用,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.29.(2022·湖南娄底)已知实数12,x x 是方程210x x +-=的两根,则12x x =______.【答案】1-【解析】【分析】由一元二次方程根与系数的关系直接可得答案. 【详解】解: 实数12,x x 是方程210x x +-=的两根,1211,1x x 故答案为:1-【点睛】本题考查的是一元二次方程根与系数的关系,掌握“12c x x a=”是解本题的关键. 30.(2022·浙江杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x (0x >),则x =_________(用百分数表示).【答案】30%【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x 的一元二次方程,解方程即可.【详解】解:设新注册用户数的年平均增长率为x (0x >),则2020年新注册用户数为100(1+x )万,2021年的新注册用户数为100(1+x )2万户,依题意得100(1+x )2=169,解得:x 1=0.3,x 2=-2.3(不合题意舍去),∴x =0.3=30%,故答案为:30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.31.(2022·四川眉山)设1x ,2x 是方程2230x x +-=的两个实数根,则2212x x +的值为________.【答案】10【分析】由根与系数的关系,得到122x x +=-,123x x =-,然后根据完全平方公式变形求值,即可得到答案. 【详解】解:根据题意,∵1x ,2x 是方程2230x x +-=的两个实数根,∴122x x +=-,123x x =-,∴2212122212()2(2)2(3)10x x x x x x =+-=--⨯-=+;故答案为:10.【点睛】本题考查了一元二次方程根与系数的关系,完全平方公式变形求值,解题的关键是掌握得到122x x +=-,123x x =-.32.(2022·湖北荆州·中考真题)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为______cm (玻璃瓶厚度忽略不计).【答案】7.5【分析】如详解中图所示,将题中主视图做出来,用垂径定理、勾股定理计算即可.【详解】如下图所示,设球的半径为r cm ,则OG =EG -r =EF -GF -r =EF -AB -r =32-20-r =(12-r )cm , ∵EG 过圆心,且垂直于AD ,∵G 为AD 的中点,则AG =0.5AD =0.5×12=6cm , 在Rt OAG 中,由勾股定理可得,222OA OG AG =+,即222(12)6r r =-+,解方程得r =7.5,则球的半径为7.5cm .【点睛】本题考查主视图、垂径定理和勾股定理的运用,准确做出立体图形的主视图是解题的关键. 33.(2022·湖南岳阳·中考真题)已知关于x 的一元二次方程220x x m ++=有两个不相等的实数根,则实数m 的取值范围是______. 【答案】1m <【分析】根据判别式的意义得到22410m ∆=-⨯⨯>,然后解不等式求出m 的取值即可. 【详解】解:根据题意得22410m ∆=-⨯⨯>,解得1m <, 所以实数m 的取值范围是1m <.故答案为:1m <.【点睛】本题考查了根的判别式:一元二次方程()200++=≠ax bx c a 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.34.(2022·四川宜宾·中考真题)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.【答案】289【分析】设直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,由切线长定理可得,直角三角形的内切圆的半径等于2a b c +-,即6a b c +-=,根据小正方的面积为49,可得()249a b -=,进而计算2c 即22a b +即可求解.【详解】解:设四个全等的直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边, 直角三角形的内切圆半径为3,小正方形的面积为49,∴()23492a b c a b +-=-=,,∴6a b c +-=①,7a b -=②, 131,22c c a b +-∴==,222a b c +=③, 22213122c c c +-⎛⎫⎛⎫∴+= ⎪ ⎪⎝⎭⎝⎭,解得=17c 或5c =-(舍去), 大正方形的面积为2217289c ==,故答案为:289.【点睛】本题考查了切线长定理,勾股定理,解一元二次方程,二元一次方程组,掌握直角三角形的内切圆的半径等于2a b c+-是解题的关键. 35.(2022·四川凉山)已知实数a 、b 满足a -b 2=4,则代数式a 2-3b 2+a -14的最小值是________. 【答案】6【分析】根据a -b 2=4得出24b a =-,代入代数式a 2-3b 2+a -14中,通过计算即可得到答案. 【详解】∵a -b 2=4∴24b a =-将24b a =-代入a 2-3b 2+a -14中得:()2222341423142a a a b a a a a =--+-=---+-()2222221313a a a a a --=-+-=-- ∵240b a =-≥ ∴4a ≥ 当a=4时,()213a --取得最小值为6 ∴222a a --的最小值为6 ∵22231422a a a b a --=-+-∴22314a b a -+-的最小值6答案为:6.【点睛】本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解. 三、解答题36.(2022·四川凉山)解方程:x 2-2x -3=0 【答案】121,3x x =-=【分析】利用因式分解法解一元二次方程即可得. 【详解】解:2230x x --=, (1)(3)0x x +-=,10x +=或30x -=, 1x =-或3x =,故方程的解为121,3x x =-=.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(配方法、因式分解法、公式法、换元法等)是解题关键.37.(2022·四川南充)已知关于x 的一元二次方程2320x x k ++-=有实数根.(1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值. 【答案】(1)k 174≤;(2)k =3 【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可;(2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值. 【解析】 (1)解:∵一元二次方程2320x x k ++-=有实数根. ∴∆≥0,即32-4(k -2)≥0,解得k 174≤(2)∵方程的两个实数根分别为12,x x ,∴12123,2x x x x k -+==-,∵()()12111x x ++=-,∴121211x x x x +++=-,∴2311k --+=-,解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.38.(2022·四川眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同. (1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区? 【答案】(1)20% (2)18个【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为x ,根据2019年投入资金2(1)x ⨯+=2021年投入的总资金,列出方程求解即可;(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.【解析】(1)解:设该市改造老旧小区投入资金的年平均增长率为x , 根据题意得:21000(1)1440x +=,解这个方程得,10.2x =,2 2.2x =-, 经检验,0.220%x ==符合本题要求.答:该市改造老旧小区投入资金的年平均增长率为20%. (2)设该市在2022年可以改造y 个老旧小区,由题意得:80(115%)1440(120%)y ⨯+≤⨯+,解得181823y ≤. ∵y 为正整数,∴最多可以改造18个小区. 答:该市在2022年最多可以改造18个老旧小区.【点睛】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式. 39.(2022·四川凉山)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=b a -,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值. 解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n , ∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= . (2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n mm n+的值. (3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值.【答案】(1)32;12-(2)132-【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n m m n +进行变形求解即可;(3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s -t 的值,然后将11s t-进行变形求解即可.【解析】 (1)解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2, ∴123322b x x a -+=-=-=,1212c x x a ⋅==-.故答案为:32;12-. (2)∵一元二次方程2x 2-3x -1=0的两根分别为m 、n , ∴3322b m n a -+=-=-=,12c mn a ==-,∴22n m m n m n mn ++=()22m n mn mn +-=23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=-132=-(3)∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根, ∴3322b s t a -+=-=-=,12c st a ==-,∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭924=+174=∴t s -=或t s -=t s -时,11212t s s t st --===-当t s -=时,11212t s s t st --===-11s t -【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出t s -=t s -=,是解答本题的关键.40.(2022·湖北宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元? 【答案】(1)4月份再生纸的产量为500吨(2)m 的值20(3)6月份每吨再生纸的利润是1500元【分析】(1)设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可;(2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;【解析】(1)解:设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨, 由题意得:()2100800x x +-=,解得:300x =,∴2100500x -=, 答:4月份再生纸的产量为500吨;(2)解:由题意得:500(1%)10001%6600002m m ⎛⎫+⋅+= ⎪⎝⎭,解得:%20%m =或% 3.2m =-(不合题意,舍去) ∴20m =,∴m 的值20;(3)解:设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨, 21200(1)(1)(125%)1200(1)y a y y a +⋅+=+⨯+⋅∴()2120011500y +=答:6月份每吨再生纸的利润是1500元.【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.41.(2022·湖北随州)已知关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根1x ,2x .(1)求k 的取值范围;(2)若125x x =,求k 的值. 【答案】(1)34k >(2)2 【分析】(1)利用一元二次方程根的判别式大于0建立不等式,解不等式即可得;(2)先利用一元二次方程的根与系数的关系可得21215x x k =+=,再结合(1)的结论即可得.【解析】(1)解:关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根,∴此方程根的判别式()()2221410k k ∆=+-+>,解得34k >. (2)解:由题意得:21215x x k =+=,解得2k =-或2k =,由(1)已得:34k >,则k 的值为2. 【点睛】本题考查了一元二次方程根的判别式、以及根与系数的关系,熟练掌握一元二次方程的相关知识是解题关键.42.(2022·湖北十堰)已知关于x 的一元二次方程22230x x m --=. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值. 【答案】(1)见解析 (2)1m =±【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值.。
第3天一元二次方程的根与系数的关系与解决实际问题【知识回顾】1.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:△当△>0时,方程有两个不相等的两个实数根;△当△=0时,方程有两个相等的两个实数根;△当△<0时,方程无实数根.上面的结论反过来也成立.2.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx xa+=-,12cx xa⋅=.(3)常用根与系数的关系解决以下问题:△不解方程,判断两个数是不是一元二次方程的两个根.△已知方程及方程的一个根,求另1一个根及未知数.△不解方程求关于根的式子的值,如求,x12+x22等等.△判断两根的符号.△求作新方程.△由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.3.由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.一.选择题(共10小题)1.(2020·云南一模)若α、β是一元二次方程x2+2x﹣6=0的两根,则11+αβ的值是()A.13-B.13C.﹣3D.3【答案】B【解析】△α、β是一元二次方程x2+2x﹣6=0的两根,△α+β=﹣2,αβ=﹣6,则11+-21 +===-63αβαβαβ,故选B.2.(2020·四川省射洪县射洪中学外国语实验学校期中)下列一元二次方程两实数根和为-42的是()A.2240x x--=B.2440x x-+= C.24100x x++=D.2450x x-=+【答案】D【解析】A中1222 1x x -+=-=,故错误;B中12-44 1x x+=-=,故错误;C中24164024<0b ac∆=-=-=-,故错误;D中124-4 1x x+=-=,故准确;故答案选D.3.(2020·四川省射洪县射洪中学外国语实验学校月考)方程22310m m-+=和方程224m m-=-所有实数根之和为()A.72B.32C.32-D.92【答案】B【解析】34△方程22310m m -+=根的判别式2=(-3)42110∆-⨯⨯=>△方程22310m m -+=有两个实数根△两根之和为32△方程224m m -=-的根的判别式2=(-2)414-120∆-⨯⨯=<△方程224m m -=-无实数根△方程22310m m -+=和方程224m m -=-所有实数根之和为32故选:B 4.(2020·渠县第四中学期中)已知x 1,x 2是一元二次方程x 2-2x -1=0的两根,则x 1+x 2-x 1·x 2的值是( )A .1B .3C .-1D .-3 【答案】B【解析】由题意知:122x x +=,12-1x x ⋅=,△原式=2-(-1)=3故选B .5.(2020·江苏如东二模)若x 1,x 2是方程x 2﹣3x ﹣2=0的两个根,则x 1+x 2﹣x 1•x 2的值是( ) A .﹣5B .﹣1C .5D .15【答案】C【解析】根据题意得x 1+x 2=3,x 1x 2=﹣2,所以x 1+x 2﹣x 1•x 2=3﹣(﹣2)=5.故选:C .6.(2020·内蒙古海勃湾期末)一元二次方程2310x x -+=的两个根为12,x x ,则2121232x x x x ++-的值是( )A .10B .9C .8D .7【答案】D【解析】 1x 为一元二次方程2310x x -+=的根,21131x x ∴=-,2121232x x x x ∴++-=()12121212313233x x x x x x x x -++-=++-.根据题意得123x x +=,121=x x ,212123233137x x x x ∴++-=⨯+-=.故选:D .7.(2020·银川市第十五中学一模)已知关于x 的方程x 2-4x +c +1=0有两个相等的实数根,则常数c的值为( )A.-1B.3C.1D.0【答案】B【解析】△方程x2−4x+c+1=0有两个相等的实数根,△△=(−4)2−4(c+1)=12−4c=0,解得:c=3.故答案选B.8.(2019·广东郁南月考)某中学要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排21场比赛,求参加的球队支数,如果设参加的球队支数为x,则可列方程为()A.12x(x+1)=21B.x(x+1)=21C.12x(x﹣1)=21D.x(x﹣1)=21【答案】C【解析】解:设邀请x个队,每个队都要赛(x-1)场,但两队之间只有一场比赛,由题意得:12x(x-1)=21,故选:C.9.(2020·深圳市宝安区北亭实验学校)若一个三角形的两边长分别为2和6,第三边是方程x2-10x+21=0的一根,则这个三角形的周长为( )67A .7B .3或7C .15D .11或15【答案】C【解析】x 2−10x+21=0,(x−3)(x−7)=0,则x−3=0,x−7=0,解得:x=3或7, 当x=3时,2+3=5<6,不能组成三角形,故x=3不合题意舍去,当x=7时,2+6=8>7,可以组成三角形,则三角形的周长为2+6+7=15,故答案选C.10.(2020·湖南隆回一模)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯B .()()130********x x --=⨯⨯8C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 【答案】D【解析】 设花带的宽度为xm ,则可列方程为330220203(4())0x x --=⨯⨯, 故选D .二.填空题(共5小题) 11.(2020·江苏高淳期末)一元二次方程x 2+mx+2m=0的两个实根分别为x 1,x 2,若x 1+x 2=1,则x 1x 2=______.【答案】-2.【解析】根据题意得x 1+x 2=-m=1,x 1x 2=2m ,所以m=-1,所以x 1x 2=-2.12.(2020·温州市第二十三中学)已知关于x 的方程260x x a ++=有一个根是-2,则方程的另一个根是___________.【答案】-4【解析】因为已知关于x 的方程260x x a ++=有一个根是-2,9 所以由12b x x a+=-得2226,4x x -+=-∴=-. 故答案为-4. 13.(2020·四川省射洪县射洪中学外国语实验学校期中)若,a b 是方程2220060x x +-=的两根,则23a a b ++= .【答案】2004.【解析】2220060x x +-=的两根△a+b=-2,222006a a +=,△223=2+a =2006-2=2004++++a a b a a b故答案为:200414.(2020·四川省射洪县射洪中学外国语实验学校期中)如果关于x 的一元二次方程()20ax b ab =>的两个根分别是11x m =+与224x m =-,那么b a的值为__________. 【答案】4【解析】方程化为一般式为:ax 2-b=0x 1+x 2=m+1+2m -4=0 △x 1·x 2=(m+1)(2m -4)=-b a △10解方程△,得m=1把m=1代入△,得b a=-2×(-2)=4. 故答案为:4.15.(2019·上海交大附中)设方程( 1) (11)(11)(21)x x x x ++++++(1)(21)0x x ++=的两根为12,x x ,则()()1211x x ++=______. 【答案】2003【解析】(1)(11)(11)(21)1)(20(1)x x x x x x ++++++++=, 221211x x x ∴++++23223122210x x x ++++=, 23662630x x ∴++=.△3a =,66b =,263c =,224664326343563156b ac ∆=-=-⨯⨯=-=12000>, 1212263223x x b a a x c x =-=∴+=-=,. ()()()1212122631112213x x x x x x ++=+++=-+=2003. 故答案为:2003. 三.解析题(共5小题)1116.(2019·广东郁南月考)关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】(1)△Δ=4(k -1)2-4k 2≥0,△-8k +4≥0,△k ≤12; (2)△x 1+x 2=2(k -1),x 1x 2=k 2,△2(k -1)=1-k 2,△k 1=1,k 2=-3.△k ≤12,△k =-3. 17.(2020·甘肃省庆阳市第五中学期末)已知关于x 的一元二次方程()222120x k x k k -+++=有两个实数根12,x x .(1)求实数k 的取值范围.(2)是否存在实数k ,使得()22121216x x x x +-=成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)14k ≤;(2)存在这样的实数k ,k 的值为3-. 【解析】(1)由题意得:方程的根的判别式[]22(21)4(2)0k k k ∆=-+-+≥,12 解得14k ≤; (2)由一元二次方程根与系数的关系得:2121221,2x x k x x k k +=+=+,则()()2222121211221223x x x x x x x x x x +-=++-, ()212123x x x x =+-, ()()222132k k k =+-+, 221k k =-+,当()22121216x x x x +-=时,22116k k -+=, 即22150k k --=,因式分解得:(3)(5)0k k +-=,解得3k =-或154k =>(不符题意,舍去), 故存在这样的实数k ,k 的值为3-.18.(2020·四川南充月考)关于x 的方程2220x mx m m -+-=有两个不相等的实数根12,x x .(1)求m 的取值范围.(2)若221212x x +=,求211214x x x x +-的值.13【答案】(1)0m >;(3)0【解析】(1)△1a =,2b m =-,2c m m =-,△()()2224241b ac m m m =-=--⨯⨯- 40m =>△0m >;(2)由根与系数的关系,得:212122x x m x x m m +==-,,△221212x x +=,△()21212212x x x x +-=,△()224212m m m --=, △2+60m m -=,解得2m =或3m =-(舍去),△原方程为2420x x -+=,△212112420x x x x =-+=,,△211214220x x x x +-=-+=.19.(2020·湖南茶陵期末)已知关于x 的一元二次方程240x x m -+=.14(1)若方程有实数根,求实数m 的取值范围;(2)若方程的两个实根为12,x x ,且满足12326x x +=,求实数m 的值.【答案】(1)4m ≤;(2)12=-m .【解析】(1)△原方程有实数根,△方程的根的判别式1640m ∆=-≥,解得4m ≤;(2)由一元二次方程的根与系数的关系得:12441x x -+=-=, 又121211322()246x x x x x x +=++=⨯+=,12x ∴=-,将12x =-代入原方程得:2(2)4(2)0m --⨯-+=,解得12=-m .20.(2020·渠县第四中学期中)某商场试销一件成本为60元的服装,规定试销期间销售单价不低于成本单价,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y =kx +b ,且x =65时,y =55;x =75时,y =45.(1)求y 与x 的函数关系式;(2)若该商场想获得利润500元,求销售单价.【答案】(1)y =-x +120(60≤x≤120);(2)销售单价为70元或110元.【解析】解:(1)根据题意,得6555 7545k bk b+=⎧⎨+=⎩解得1120 kb=-⎧⎨=⎩△一次函数关系式为y=-x+120(60≤x≤120).(2)(-x+120)(x-60)=500,整理得x2-180x+7700=0.解得x1=70,x2=110,答:当销售单价为70元或110元时,该商场获得500元利润.15。
专题05 一次方程(组)与一元二次方程一.选择题1.(2022·内蒙古包头)若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( ) A .3或9- B .3-或9 C .3或6- D .3-或6【答案】A【分析】结合根与系数的关系以及解出方程2230x x --=进行分类讨论即可得出答案. 【详解】解:∵2230x x --=, ∵12331x x -⋅==-, ()()130x x +-=,则两根为:3或-1,当23x =时,212212239x x x x x x ==--⋅=,当21x =-时,2121222··33x x x x x x ⋅==-=,故选:A . 【点睛】此题考查了根与系数的关系以及解二元一次方程,正确解出方程进行分类讨论是解题的关键. 2.(2022·黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( ) A .8 B .10 C .7 D .9【答案】B【分析】设有x 支队伍,根据题意,得1(1)452x x -=,解方程即可. 【详解】设有x 支队伍,根据题意,得1(1)452x x -=, 解方程,得x 1=10,x 2=-9(舍去),故选B .【点睛】本题考查了一元二次方程的应用,熟练掌握一元二次方程的解法是解题的关键.3.(2022·四川雅安)若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为( )A .﹣3B .0C .3D .9【答案】C【分析】先移项把方程化为26,x x c 再配方可得239,x c 结合已知条件构建关于c 的一元一次方程,从而可得答案.【详解】解:x 2+6x +c =0,移项得:26,x x c配方得:239,x c 而(x +3)2=2c ,92,c c 解得:3,c = 故选C【点睛】本题考查的是配方法,掌握“配方法解一元二次方程的步骤”是解本题的关键.4.(2022·贵州黔东南)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( )A .7B .7-C .6D .6-【答案】B【分析】根据根与系数关系求出2x =3,a =3,再求代数式的值即. 【详解】解:∵一元二次方程220x x a --=的两根分别记为1x ,2x , ∵1x +2x =2, ∵11x =-, ∵2x =3, ∵1x ·2x =-a =-3, ∵a =3,∵22123917a x x --=--=-.故选B .【点睛】本题考查一元二次方程的根与系数关系,代数式的值,掌握一元二次方程的根与系数关系,代数式的值是解题关键.5.(2022·广西梧州)一元二次方程2310x x -+=的根的情况( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】根据判别式24b ac ∆=-即可判断求解. 【详解】解:由题意可知:1,3,1a b c ==-=, ∵224(3)41150b ac ,∵方程2310x x -+=由两个不相等的实数根,故选:B .【点睛】本题考察了一元二次方程根的判别式:当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根.6.(2022·湖北武汉)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( )A .2或6B .2或8C .2D .6【答案】A【分析】根据一元二次方程有实数根先确定m 的取值范围,再根据一元二次方程根与系数的关系得出212122,41x x m x x m m +==--,把()()121222217x x x x ++-=变形为12122()130x x x x +--=,再代入得方程28120m m -+=,求出m 的值即可.【详解】解:∵关于x 的一元二次方程222410x mx m m -+--=有两个实数根, ∵22=(2)4(41)0m m m ∆----≥, ∵14m ,≥-∵12x x ,是方程222410x mx m m -+--=的两个实数根,∵212122,41x x m x x m m +==--,又()()121222217x x x x ++-= ∵12122()130x x x x +--=把212122,41x x m x x m m +==--代入整理得,28120m m -+=解得,122,6m m == 故选A【点睛】本题考查了根的判别式、根与系数的关系以及解一元二次方程,解题的关键是:(1)牢记“当∵≥0时,方程有两个实数根”;(2)由根与系数的关系结合12122()130x x x x +--=,找出关于m 的一元二次方程. 7.(2022·湖南郴州)一元二次方程2210x x +-=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根【答案】A【分析】根据24b ac ∆=-即可判断.【详解】解:2a =,1b =,1c =-,()22414211890b ac ∴∆=-=-⨯⨯-=+=>,∴ 一元二次方程2210x x +-=有两个不相等的实数根.故选:A .【点睛】本题主要考查利用判别式来判断一元二次方程根的个数:当0∆>时,方程有两个不相等的实数根; 当0∆=时,方程有两个相等的实数根; 当∆<0时,方程无实数根,掌握利用判别式判断方程根的方法是解题的关键.8.(2022·广西贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( ) A .0,2- B .0,0 C .2-,2- D .2-,0【答案】B【分析】直接把2x =-代入方程,可求出m 的值,再解方程,即可求出另一个根. 【详解】解:根据题意,∵2x =-是一元二次方程220x x m ++=的一个根, 把2x =-代入220x x m ++=,则 2(2)2(2)0m -+⨯-+=,解得:0m =; ∵220x x +=, ∵(2)0x x +=, ∵12x =-,0x =, ∵方程的另一个根是0x =; 故选:B【点睛】本题考查了解一元二次方程,方程的解,解题的关键是掌握解一元二次方程的步骤进行计算. 9.(2022·北京)若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为( ) A .4- B .14-C .14D .4【答案】C【分析】利用方程有两个相等的实数根,得到∆=0,建立关于m 的方程,解答即可. 【详解】∵一元二次方程20x x m ++=有两个相等的实数根,∵∆=0, ∵2140m -=, 解得14m =,故C 正确. 故选:C .【点睛】此题考查利用一元二次方程的根的情况求参数,一元二次方程的根有三种情况:有两个不等的实数根时∆>0;当一元二次方程有两个相等的实数根时,∆=0;当方程没有实数根时,∆<0,正确掌握此三种情况是正确解题的关键.10.(2022·山东临沂)方程22240x x --=的根是( ) A .16x =,24x = B .16x =,24x =- C .16x =-,24x = D .16x =-,24x =-【答案】B【分析】先把方程的左边分解因式化为460,x x 从而可得答案.【详解】解:22240x x --=,460,x x40x ∴+=或60,x -=解得:126, 4.x x故选B【点睛】本题考查的是利用因式分解的方法解一元二次方程,掌握“十字乘法分解因式”是解本题的关键. 11.(2022·黑龙江牡丹江)下列方程没有实数根的是( ) A .2410x x += B .23830x x +-= C .2230x x -+= D .()()2312x x --=【答案】C【分析】通过题目可知这几个方程都是一元二次方程,因此可以通过24b ac ∆=-来确定有没有实数根,即可求解【详解】解:A 、∵=2441(10)560-⨯⨯-=>,有两个不相等的实数根; B 、∵=2843(3)1000-⨯⨯-=>,故有两个不相等的实数根;C 、∵=2(2)41380<--⨯⨯=-,故没有实数根;D 、∵=2-5-41-6=490()()>⨯⨯,故有两个不相等的实数根故选C12.(2022·海南)若代数式1x +的值为6,则x 等于( ) A .5 B .5-C .7D .7-【答案】A【分析】根据代数式1x +的值为6列方程计算即可. 【详解】∵代数式1x +的值为6 ∵16x +=,解得5x =故选:A【点睛】此题考查了解一元一次方程,根据题意列方程是解本题的关键.13.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A .2cmB .21cm 4C .4cmD .5cm【答案】B【分析】根据液体的体积不变列方程解答.【详解】解:圆柱体内液体的体积为:2313763cm 圆柱v sh ππ==⨯⨯=由题意得,232211663cm 33锥体v sh h ππ==⨯⨯=26321cm 364h ∴==, 故选:B .【点睛】本题考查一元一次方程的应用,涉及圆柱与圆锥的体积,是基础考点,掌握液体体积不变列方程是解题关键.14.(2022·黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?( ) A .5 B .6 C .7 D .8【答案】A【分析】设设购买毛笔x 支,围棋y 副,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出购买方案的数量.【详解】解:设购买毛笔x 支,围棋y 副,根据题意得, 15x +20y =360,即3x +4y =72, ∵y =18-34x . 又∵x ,y 均为正整数,∵415x y =⎧⎨=⎩或812x y =⎧⎨=⎩或129x y =⎧⎨=⎩或166x y =⎧⎨=⎩或203x y =⎧⎨=⎩,∵班长有5种购买方案.故选:A .【点睛】本题考查了二元一次方程的应用,找准等量关系“共花费360元”,列出二元一次方程是解题的关键. 15.(2022·辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( ) A .24015015012x x +=⨯ B .24015024012x x -=⨯ C .24015024012x x +=⨯ D .24015015012x x -=⨯【答案】D【分析】设快马x 天可以追上慢马,根据路程=速度×时间,即可得出关于x 的一元一次方程,此题得解. 【详解】解:设快马x 天可以追上慢马, 依题意,得: 240x -150x =150×12. 故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.16.(2022·广西)方程3x =2x +7的解是( ) A .x =4 B .x =﹣4C .x =7D .x =﹣7【答案】C【分析】先移项再合并同类项即可得结果; 【详解】解:3x =2x +7 移项得,3x -2x =7; 合并同类项得,x =7; 故选:C .【点睛】本题主要考查解一元一次方程,掌握一元一次方程的求解步骤是解题的关键.17.(2022·贵州铜仁)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( ) A .14 B .15C .16D .17【答案】B【分析】设小红答对的个数为x 个,根据抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分,列出方程求解即可. 【详解】解:设小红答对的个数为x 个, 由题意得()52070x x --=, 解得15x =, 故选B .【点睛】本题主要考查了一元一次方程的应用,正确理解题意是列出方程求解是解题的关键.18.(2022·广东深圳)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x 根,下等草一捆为y 根,则下列方程正确的是( )A .51177255y x y x-=⎧⎨-=⎩B .51177255x y x y +=⎧⎨+=⎩C .51177255x y x y -=⎧⎨-=⎩D .71155257x y x y-=⎧⎨-=⎩【答案】C【分析】设上等草一捆为x 根,下等草一捆为y 根,根据“卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.”列出方程组,即可求解. 【详解】解:设上等草一捆为x 根,下等草一捆为y 根,根据题意得:51177255x yx y -=⎧⎨-=⎩.故选:C 【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.19.(2022·贵州贵阳)在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩;③方程0mx n +=的解为2x =; ④当0x =时,1ax b +=-. 其中结论正确的个数是( ) A .1 B .2C .3D .4【答案】B【分析】由函数图象经过的象限可判断①,由两个一次函数的交点坐标可判断②,由一次函数与坐标轴的交点坐标可判断③④,从而可得答案.【详解】解:由一次函数y mx n =+的图象过一,二,四象限,y 的值随着x 值的增大而减小; 故①不符合题意;由图象可得方程组y ax b y mx n =+⎧⎨=+⎩的解为32x y =-⎧⎨=⎩,即方程组y ax b y mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩;故②符合题意;由一次函数y mx n =+的图象过()2,0, 则方程0mx n +=的解为2x =;故③符合题意; 由一次函数y ax b =+的图象过()0,2,- 则当0x =时,2ax b +=-.故④不符合题意; 综上:符合题意的有②③,故选B【点睛】本题考查的是一次函数的性质,一次函数的图象的交点坐标与二元一次方程组的解,一次函数与坐标轴的交点问题,熟练的运用数形结合的方法解题是关键.20.(2022·广西河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( ) A .30(1+x )2=50 B .30(1﹣x )2=50 C .30(1+x 2)=50 D .30(1﹣x 2)=50【答案】A【分析】根据题意和题目中的数据,可以得到()230150x +=,从而可以判断哪个选项是符合题意的. 【详解】解:由题意可得,230(1)50x +=,故选:A .【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题. 二.填空题21.(2022·湖北鄂州)若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则11a b+的值为 _____. 【答案】43【分析】先根据题意可以把a 、b 看做是一元二次方程2430x x -+=的两个实数根,利用根与系数的关系得到a +b =4,ab =3,再根据11a b a b ab++=进行求解即可. 【详解】解:∵a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0, ∵可以把a 、b 看做是一元二次方程2430x x -+=的两个实数根, ∵a +b =4,ab =3, ∵1143a b a b ab ++==, 故答案为:43. 【点睛】本题主要考查了分式的求值,一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题的关键.22.(2022·福建)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误. 例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x ,令x m =,等式两边都乘以x ,得2x mx =.①等式两边都减2m ,得222x m mx m -=-.②等式两边分别分解因式,得()()()x m x m m x m +-=-.③等式两边都除以x m -,得x m m +=.④等式两边都减m ,得x =0.⑤所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.【答案】④【分析】根据等式的性质2即可得到结论.【详解】等式的性质2为:等式两边同乘或除以同一个不为0的整式,等式不变,∵第④步等式两边都除以x m -,得x m m +=,前提必须为0x m -≠,因此错误;故答案为:④.【点睛】本题考查等式的性质,熟知等式的性质是解题的关键.23.(2022·广西梧州)一元二次方程()()270x x -+=的根是_________.【答案】12x =或27x =-【分析】由两式相乘等于0,则这两个式子均有可能为0即可求解.【详解】解:由题意可知:20x -=或70x +=,∵12x =或27x =-,故答案为:12x =或27x =-.【点睛】本题考查一元二次方程的解法,属于基础题,计算细心即可.24.(2022·四川内江)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且2112x x x x +=x 12+2x 2﹣1,则k 的值为 _____.【答案】2【分析】根据一元二次方程根与系数的关系以及解的定义得到x 1+x 2=2,x 1•x 2=k ﹣1,x 12﹣2x 1+k ﹣1=0,再根据2112x x x x +=x 12+2x 2﹣1,推出222(1)1k k ---=4﹣k ,据此求解即可. 【详解】解:∵x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,∵x 1+x 2=2,x 1•x 2=k ﹣1,x 12﹣2x 1+k ﹣1=0,∵x 12=2x 1﹣k +1, ∵2112x x x x +=x 12+2x 2﹣1, ∵2121212()2x x x x x x +-=2(x 1+x 2)﹣k , ∵222(1)1k k ---=4﹣k , 解得k =2或k =5,当k =2时,关于x 的方程为x 2﹣2x +1=0,Δ≥0,符合题意;当k =5时,关于x 的方程为x 2﹣2x +4=0,Δ<0,方程无实数解,不符合题意;∵k =2,故答案为:2.【点睛】本题主要考查了一元二次方程根与系数的关系,一元二次方程解的定义,熟知一元二次方程根与系数的关系是解题的关键.25.(2022·广东深圳)已知一元二次方程260x x m ++=有两个相等的实数根,则m 的值为________________.【答案】9【分析】根据根的判别式的意义得到∵2640m =-=,然后解关于m 的方程即可.【详解】解:根据题意得∵2640m =-=,解得9m =.故答案为:9.【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程20(a 0)++=≠ax bx c 的根与∵=-24b ac 有如下关系:当∵0>时,方程有两个不相等的实数根;当∵0=时,方程有两个相等的实数根;当∵0<时,方程无实数根.26.(2022·上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.【答案】20%【分析】根据该公司5、6两个月营业额的月均增长率为x 结合5月、7月营业额即可得出关于x 的一元二次方程,解此方程即可得解.【详解】解:设该公司5、6两个月营业额的月均增长率为x ,根据题意得,225(1)36x +=解得,120.2, 2.2x x ==-(舍去)所以,增长率为20%故答案为:20%【点睛】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x 的一元二次方程是解题的关键.27.(2022·山东威海)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn =_____.【答案】1【分析】由第二行方格的数字,字母,可以得出第二行的数字之和为m ,然后以此得出可知第三行左边的数字为4,第一行中间的数字为m -n +4,第三行中间数字为n -6,第三行右边数字为,再根据对角线上的三个数字之和相等且都等于m 可得关于m ,n 方程组,解出即可.【详解】如图,根据题意,可得第二行的数字之和为:m +2+(-2)=m可知第三行左边的数字为:m -(-4)-m =4第一行中间的数字为:m -n -(-4)=m -n +4第三行中间数字为m -2-(m -n +4)=n -6第三行右边数字为:m -n -(-2)=m -n +2再根据对角线上的三个数字之和相等且都等于m 可得方程组为:6422n m m n m +=⎧⎨-++-+=⎩ 解得60m n =⎧⎨=⎩ ∵061n m == 故答案为:1 【点睛】本题考查了有理数加法,列代数式,以及二元一次方程组,解题的关键是根据表格,利用每行,每列,每条对角线上的三个数之和相等列方程.28.(2022·广西贺州)若实数m ,n 满足50m n --∣∣,则3m n +=__________.【答案】7【分析】根据非负数的性质可求出m 、n 的值,进而代入数值可求解.【详解】解:由题意知,m ,n 满足50m n --∣∣,∵m -n -5=0,2m +n −4=0,∵m =3,n =-2,∵3927m n +=-=,故答案为:7.【点睛】此题主要考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.29.(2022·广东)若1x =是方程220x x a -+=的根,则=a ____________.【答案】1【分析】本题根据一元二次方程的根的定义,把x =1代入方程得到a 的值.【详解】把x =1代入方程220x x a -+=,得1−2+a =0,解得a =1,故答案为:1.【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的末知数的值.30.(2022·江苏无锡)二元一次方程组321221x y x y +=⎧⎨-=⎩的解为________. 【答案】23x y =⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解:321221x y x y +=⎧⎨-=⎩①②. ①+②×2得:7x =14,解得:x =2,把x =2代入②得:2×2-y =1解得:y =3,所以,方程组的解为23x y =⎧⎨=⎩, 故答案为:23x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.31.(2022·四川雅安)已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____. 【答案】1【分析】把12x y =⎧⎨=⎩代入ax +by =3可得23a b +=,而2a +4b ﹣5225a b ,再整体代入求值即可. 【详解】解:把12x y =⎧⎨=⎩代入ax +by =3可得: 23a b +=,∴ 2a +4b ﹣5225a b2351.故答案为:1【点睛】本题考查的是二元一次方程的解,利用整体代入法求解代数式的值,掌握“方程的解的含义及整体代入的方法”是解本题的关键.32.(2022·广西)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.【答案】14【分析】先根据2x =是关于x 的一元一次方程3ax b +=的解,得到23a b +=,再把所求的代数式变形为()()22221a b a b +++-,把23a b +=整体代入即可求值.【详解】解:∵2x =是关于x 的一元一次方程3ax b +=的解,∵23a b +=,∵2244421a ab b a b ++++-()()22221a b a b =+++- 23231=+⨯-14=.故答案为:14.【点睛】本题考查了代数式的整体代入求值及一元一次方程解的定义,把所求的代数式利用完全平方公式变形是解题的关键.33.(2022·内蒙古呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额(10)x x >的函数解析式为______.【答案】 3 42y x =+##24y x =+【分析】根据题意列出一元一次方程,函数解析式即可求解.【详解】解:1410>,∴超过2千克,设购买了a 千克,则()2520.8514a ⨯+-⨯⨯=,解得3a =,设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额(10)x x >的函数解析式为: ()25250.8104842y x x x =⨯+-⨯⨯=+-=+,故答案为:3,42y x =+.【点睛】本题考查了一元一次方程的应用,列函数解析式,根据题意列出方程或函数关系式是解题的关键.34.(2022·山东潍坊)方程组2313320x y x y +=⎧⎨-=⎩的解为___________. 【答案】23x y =⎧⎨=⎩【分析】用①×2+②×3,可消去未知数y ,求出未知数x ,再把x 的值代入②求出y 即可.【详解】解:2313320x y x y +=⎧⎨-=⎩①②, ①×2+②×3,得13x =26,解得:x =2,把x =2代入②,得6-2y =0,解得y =3,故方程组的解为23x y =⎧⎨=⎩. 故答案为:23x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.35.(2022·贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如:从左到右列出的算筹数分别表示方程中未知数x ,y 的系数与相应的常数项,即可表示方程423x y +=,则表示的方程是_______.【答案】232x y += 【分析】根据横着的算筹为10,竖放的算筹为1,依次表示,x y 的系数与等式后面的数字,即可求解.【详解】解:表示的方程是232x y +=故答案为:232x y +=【点睛】本题考查了列二元一次方程组,理解题意是解题的关键.36.(2022·吉林长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x 间房,可求得x 的值为________.【答案】8【分析】设店中共有x 间房,根据“今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住”可列一元一次方程,求解即可.【详解】设店中共有x 间房,由题意得,779(1)x x +=-,解得8x =,所以,店中共有8间房,故答案为:8.【点睛】本题考查了一元一次方程的应用,准确理解题意,找到等量关系是解题的关键.37.(2022·湖南长沙)关于的一元二次方程220x x t ++=有两个不相等的实数根,则实数t 的值为___________.【答案】1t <【分析】根据关于x 的一元二次方程220x x t ++=有两个不相等的实数根,可得0∆>,求解即可. 【详解】关于x 的一元二次方程220x x t ++=有两个不相等的实数根,22410t ∴∆=-⨯⨯>,1t ∴<,故答案为:1t <.【点睛】本题考查了一元二次方程根的判别式,即一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根,熟练掌握知识点是解题的关键.38.(2022·江苏泰州)方程2x 2x m 0-+=有两个相等的实数根,则m 的值为__________.【答案】1【分析】根据方程的系数结合根的判别式,即可得出Δ=4-4m =0,解之即可得出结论.【详解】解:∵关于x 的方程x 2-2x +m =0有两个相等的实数根,∵Δ=(-2)2-4m =4-4m =0,解得:m =1.故答案为:1.【点睛】本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.39.(2022·湖北武汉)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.【答案】23.5【分析】设每辆大货车一次可以运货x 吨,每辆小货车一次可以运货y 吨,根据“3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨”,即可得出关于x ,y 的二元一次方程组,再整体求得(4x +3y )即可得出结论.【详解】解:设每辆大货车一次可以运货x 吨,每辆小货车一次可以运货y 吨,依题意,得:34225225x y x y +=⎧⎨+=⎩, 两式相加得8x +6y =47,∵4x +3y =23.5(吨) ,故答案为:23.5.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.40.(2022·上海)解方程组2213x y x y +=⎧⎨-=⎩的结果为_____. 【答案】21x y =⎧⎨=-⎩【分析】利用平方差公式将②分解因式变形,继而可得3x y -=④,联立①④利用加减消元法,算出结果即可.【详解】解:2213x y x y +=⎧⎨-=⎩①② 由②,得:()()3x y x y +-=③,将①代入③,得:()13x y ⨯-=,即3x y -=④,①+②,得:24=x ,解得:2x =,①−②,得:22y =-,解得:1y =-,∵方程组2213x y x y +=⎧⎨-=⎩的结果为 21x y =⎧⎨=-⎩. 【点睛】本题考查解二元二次方程组,与平方差公式分解因式,能够熟练掌握平方差公式分解因式是解决本题的关键.三.解答题41.(2022·广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【答案】学生人数为7人,该书的单价为53元.【分析】设学生人数为x 人,然后根据题意可得8374x x -=+,进而问题可求解.【详解】解:设学生人数为x 人,由题意得:8374x x -=+,解得:7x =,∵该书的单价为77453⨯+=(元),答:学生人数为7人,该书的单价为53元.【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.42.(2022·内蒙古赤峰)某学校建立了劳动基地,计划在基地上种植A 、B 两种苗木共6000株,其中A 种苗木的数量比B 种苗木的数量的一半多600株.(1)请问A 、B 两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A 种苗木50株或B 种苗木30株,应分别安排多少人种植A 种苗木和B 种苗木,才能确保同时..完成任务? 【答案】(1)A 苗木的数量是2400棵,B 苗木的数量是3600棵;(2)安排100人种植A 苗木,250人种植B 苗木,才能确保同时完成任务.【分析】(1)根据在基地上种植A ,B 两种苗木共6000株,A 种苗木的数量比B 种苗木的数量的一半多600株,可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以列出相应的分式方程,从而可以解答本题,最后要检验.(1)解:设A 苗木的数量是x 棵,则B 苗木的数量是y 棵, 根据题意可得:600016002x y x y +=⎧⎪⎨=+⎪⎩, 解得:24003600x y =⎧⎨=⎩, 答:A 苗木的数量是2400棵,B 苗木的数量是3600棵;解:设安排a人种植A苗木,则安排(350-a)人种植B苗木,根据题意可得:24003600 5030(350)a a=-,解得,a=100,经检验,a=100是原方程的解,∵350-a=250,答:安排100人种植A苗木,250人种植B苗木,才能确保同时完成任务.【点睛】本题考查二元一次方程组的应用以及分式方程的应用,解题的关键是明确题意,列出相应的二元一次方程组.43.(2022·湖南)中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.【答案】296km/h【分析】设高铁的速度,再表示出普通列车的速度,然后根据高铁行驶的路程+40=普通列车行驶的路程列出方程,再求出解即可.【详解】解:设高铁的平均速度为x km/h,则普通列车的平均速度为(x-200)km/h,由题意得:x+40=3.5(x-200),解得:x=296.答:高铁的平均速度为296 km/h.【点睛】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.44.(2022·四川广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B厂少运送20吨,从A 厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/。
3一.选择题(共 26 小题)1.(2020•随州)用配方法解一元二次方程 x 2﹣6x ﹣4=0,下列变形正确的是()A . (x ﹣6)2=﹣4+36B . (x ﹣6)2=4+36C . (x ﹣3)2=﹣4+9D . (x ﹣3)2=4+92.(2020•安顺)三角形两边的长是 3 和 4,第三边的长是方程 x 2﹣12x +35=0 的根,则该三角形的周长为()A . 14B . 12C . 12 或 14D . 以上都不对3.(2020•广安)一个等腰三角形的两条边长分别是方程 x 2﹣7x +10=0 的两根,则该等腰三角形的周长是()A . 12B . 9C . 13D . 12 或 94.(2020•广州)已知 2 是关于 x 的方程 x 2﹣2mx +3m =0 的一个根,并且这个方程的两个根恰好是等腰三角形 ABC 的两条边长,则三角形 ABC 的周长为()A . 10B . 14C . 10 或 14D . 8 或 105.(2020•烟台)如果 x 2﹣x ﹣1=(x +1) ,那么 x 的值为( )A . 2 或﹣1B . 0 或 1C . 2D . ﹣16.(2020•山西)我们解一元二次方程 3x 2﹣6x =0 时,可以运用因式分解法,将此方程化为 3x (x ﹣2)=0,从而得到两个一元一次方程: x =0 或 x ﹣2=0,进而得到原方程的解为 x 1=0,x 2=2.这种解法体现的数学思想是()(( x +A . 转化思想B . 函数思想C . 数形结合思想D . 公理化思想7.(2020•贵港)若关于 x 的一元二次方程(a ﹣1)x 2﹣2x +2=0有实数根,则整数 a 的最大值为()A . ﹣1B . 0C . 1D . 28. 2020•河北)若关于 x 的方程 x 2+2x +a =0 不存在实数根,则 a 的取值范围是()A . a <1B . a >1C . a ≤1D . a ≥19.(2020•张家界)若关于 x 的一元二次方程 kx 2﹣4x +3=0有实数根,则 k 的非负整数值是()A . 1B . 0,1C . 1,2D . 1,2,310.(2020•达州)方程(m ﹣2)x 2﹣ x + =0 有两个实数根,则 m 的取值范围()A . m >B . m ≤ 且 m ≠2C . m ≥3D . m ≤3 且 m ≠211. 2020•攀枝花)关于 x 的一元二次方程(m ﹣2)2 (2m +1)x +m ﹣2﹣0 有两个不相等的正实数根,则 m 的取值范围是()A . m >B . m > 且 m ≠2C . ﹣ <m <2D .<m <212.(2020•安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一13.(2020•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=114.(2020•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n 的值为()A.9B.10C.9或10D.8或10 15.(2020•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m ﹣1)2+(n ﹣1)2≥2;③﹣1≤2m ﹣2n ≤1,其中正确结论的个数是()A . 0 个B . 1 个C . 2 个D . 3 个16.(2020•广西)已知实数 x 1,x 2 满足 x 1+x 2=7,x 1x 2=12,则以 x 1,x 2 为根的一元二次方程是()A . x 2﹣7x +12=0B . x 2+7x +12=0C . x 2+7x ﹣12=0D . x 2﹣7x ﹣12=017.(2020•怀化)设 x 1,x 2 是方程 x 2+5x ﹣3=0 的两个根,则 x 12+x 22 的值是()A . 19B . 25C . 31D . 3018.(2020•酒泉)今年来某县加大了对教育经费的投入, 2013 年投入 2500 万元,2020 年投入 3500 万元.假设该县投入教育经费的年平均增长率为 x ,根据题意列方程,则下列方程正确的是()A . 2500x 2=3500B . 2500(1+x )2=3500C . 2500(1+x %)2=3500D . 2500(1+x )+2500(1+x )2=350019.(2020•衡阳)绿苑小区在规划设计时,准备在两幢楼 房之间,设置一块面积为 900 平方米的矩形绿地,并且长比宽多 10 米.设绿地的宽为 x 米,根据题意,可列方程为()A . x (x ﹣10)=900B . x (x +10)=900C . 10(x +10)=900 D . 2[x +(x +10)]=90020.(2020•兰州)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x= D.1+2x=21.(2020•益阳)沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.20(1+2x)=80B.2×20(1+x)=80C.20(1+x2)=80D.20(1+x)2=8022.(2020•巴中)某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315B.560(1﹣x)2=315C.560(1﹣2x)2=315D.560(1﹣x2)=315 23.(2020•宁夏)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x﹣8=0B.x2﹣9x﹣8=0C.x2﹣9x+8=0D.2x2﹣9x+8=024.(2020•哈尔滨)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600m2.设扩大后的正方形绿地边长为x m,下面所列方程正确的是()A.x(x﹣60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x﹣60)=1600 25.(2020•日照)某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%26.(2014•菏泽)已知关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为()A.1B.﹣1C.0D.﹣2(1)参考答案与试题解析一.选择题(共26小题)1.(2020•随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36B.(x﹣6)2=4+36C.(x﹣3)2=﹣4+9D.(x﹣3)2=4+9考点:解一元二次方程-配方法.菁优网版权所有分析:根据配方法,可得方程的解.解答:解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.点评:本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.2.(2020•安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对考点: 解一元二次方程-因式分解法;三角形三边关系.菁优网版权所有分析: 易得方程的两根,那么根据三角形的三边关系,排 除不合题意的边,进而求得三角形周长即可.解答: 解:解方程 x 2﹣12x +35=0 得:x =5 或 x =7.当 x =7 时,3+4=7,不能组成三角形;当 x =5 时,3+4>5,三边能够组成三角形.∴该三角形的周长为 3+4+5=12,故选 B .点评: 本题主要考查三角形三边关系,注意在求周长时一 定要先判断是否能构成三角形.3.(2020•广安)一个等腰三角形的两条边长分别是方程 x 2﹣7x +10=0 的两根,则该等腰三角形的周长是()A . 12B . 9C . 13D . 12 或 9考点: 解一元二次方程-因式分解法;三角形三边关系;等 腰三角形的性质.菁优网版权所有分析: 求出方程的解,即可得出三角形的边长,再求出即 可.解答: 解:x 2﹣7x +10=0,(x ﹣2)(x ﹣5)=0,x ﹣2=0,x ﹣5=0,x 1=2,x 2=5,①等腰三角形的三边是 2,2,5x∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是 2,5,5,此时符合三角形三边关系 定理,三角形的周长是 2+5+5=12; 即等腰三角形的周长是 12.故选:A .点评: 本题考查了等腰三角形性质、解一元二次方程、三 角形三边关系定理的应用等知识,关键是求出三角形的三边 长.4.(2020•广州)已知 2 是关于 x 的方程 x 2﹣2mx +3m =0 的一个根,并且这个方程的两个根恰好是等腰三角形 ABC 的两条边长,则三角形 ABC 的周长为()A . 10B . 14C . 10 或 14D . 8 或 10考点: 解一元二次方程-因式分解法;一元二次方程的解; 三角形三边关系;等腰三角形的性质.菁优网版权所有分析: 先将 x =2 代入 x 2﹣2mx +3m =0,求出 m =4,则方程即为 x 2﹣8x +12=0,利用因式分解法求出方程的根 x 1=2,2=6,分两种情况:①当 6 是腰时,2 是等边;②当 6 是底边时,2 是腰进行讨论.注意两种情况都要用三角形三边关系定理 进行检验.解答: 解:∵2 是关于 x 的方程 x 2﹣2mx +3m =0 的一个根,∴22﹣4m +3m =0,m =4,∴x 2﹣8x +12=0,解得 x 1=2,x 2=6.①当 6 是腰时,2 是等边,此时周长=6+6+2=14;②当 6 是底边时,2 是腰,2+2<6,不能构成三角形. 所以它的周长是 14.故选 B .点评: 此题主要考查了一元二次方程的解,解一元二次方 程﹣因式分解法,三角形三边关系定理以及等腰三角形的性 质,注意求出三角形的三边后,要用三边关系定理检验.5.(2020•烟台)如果 x 2﹣x ﹣1=(x +1) ,那么 x 的值为( )A . 2 或﹣1B . 0 或 1C . 2D . ﹣1考点: 解一元二次方程-因式分解法;零指数幂.菁优网版 权所有分析: 首先利用零指数幂的性质整理一元二次方程,进而 利用因式分解法解方程得出即可.解答: 解:∵x 2﹣x ﹣1=(x +1)0,∴x 2﹣x ﹣1=1,即(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,当 x =﹣1 时,x +1=0,故 x ≠﹣1,故选:C .3 点评: 此题主要考查了因式分解法解一元二次方程以及零指数幂的性质,注意 x +1≠0 是解题关键.6.(2020•山西)我们解一元二次方程 3x 2﹣6x =0 时,可以运用因式分解法,将此方程化为 3x (x ﹣2)=0,从而得到两个一元一次方程: x =0 或 x ﹣2=0,进而得到原方程的解为 x 1=0,x 2=2.这种解法体现的数学思想是()A . 转化思想B . 函数思想C . 数形结合思想D . 公理化思想考点: 解一元二次方程-因式分解法.菁优网版权所有专题: 计算题.分析: 上述解题过程利用了转化的数学思想.解答: 解:我们解一元二次方程 3x 2﹣6x =0 时,可以运用因式分解法,将此方程化为 3x (x ﹣2)=0,从而得到两个一元一次方程:3x =0 或 x ﹣2=0,进而得到原方程的解为 x 1=0,x 2=2.这种解法体现的数学思想是转化思想,故选 A .点评: 此题考查了解一元二次方程﹣因式分解法,熟练掌握 因式分解的方法是解本题的关键.7.(2020•贵港)若关于 x 的一元二次方程(a ﹣1)x 2﹣2x +2=0有实数根,则整数 a 的最大值为()A . ﹣1B . 0C . 1D . 2(考点: 根的判别式;一元二次方程的定义.菁优网版权所有分析: 由关于 x 的一元二次方程(a ﹣1)x 2﹣2x +2=0 有实数根,则 △a ﹣1≠0,且 ≥0,即△=(﹣2)2﹣8(a ﹣1)=12﹣8a ≥0,解不等式得到 a 的取值范围,最后确定 a 的最大整数值.解答: 解:∵关于 x 的一元二次方程(a ﹣1)x 2﹣2x +2=0 有实数根,∴△=(﹣2)2﹣8(a ﹣1)=12﹣8a ≥0 且 a ﹣1≠0,∴a ≤ 且 a ≠1,∴整数 a 的最大值为 0.故选:B .点评: 本题考查了一元二次方程 ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)根的判别式△=b 2﹣4△ac .当 >0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△< 0, 方程没有实数根.也考查了一元二次方程的定义和不等式的 特殊解.8. 2020•河北)若关于 x 的方程 x 2+2x +a =0 不存在实数根,则 a 的取值范围是()A . a <1B . a >1C . a ≤1D . a ≥1考点: 根的判别式.菁优网版权所有分析:根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.解答:解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.点评:此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.(2020•张家界)若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1B.0,1C.1,2D.1,2,3考点:根的判别式;一元二次方程的定义.菁优网版权所有分析:根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集得到k的范围,即可确定出k的非负整数值.解答:解:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,则k的非负整数值为1.故选:A.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4△ac.当>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根10.(2020•达州)方程(m﹣2)x 2﹣x+=0有两个实数根,则m的取值范围()A.m>B.m≤且m≠2C.m≥3D.m≤3且m≠2考点:根的判别式;一元二次方程的定义.菁优网版权所有专题:计算题.分析:根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.解答:解:根据题意得,解得m≤且m≠2.( x +故选 B .点评: 本题考查了根的判别式:一元二次方程ax 2+bx +c =0(△a ≠0)的根与 =b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0 时,方程有两 个相等的两个实数根;当△<0 时,方程无实数根.11. 2020•攀枝花)关于 x 的一元二次方程(m ﹣2)2 (2m +1)x +m ﹣2﹣0 有两个不相等的正实数根,则 m 的取值范围是()A . m >B . m > 且 m ≠2C . ﹣ <m <2D .<m <2考点: 根的判别式;一元二次方程的定义.菁优网版权所 有专题: 计算题.分析: 根据一元二次方程的定义和根的判别式的意义得到m ﹣2≠0 且 =(△2m +1)2﹣4(m ﹣2)(m ﹣2)>0,解得 m > 且m ≠2,再利用根与系数的关系得到﹣ >0,则 m ﹣2<0 时,方程有正实数根,于是可得到 m 的取值范围为 <m <2.解答: 解:根据题意得 m ﹣2≠0 且△=(2m +1)2﹣4(m ﹣2)(m ﹣2)>0,解得 m > 且 m ≠2,设方程的两根为a、b,则a+b=﹣>0,ab==1>0,而2m+1>0,∴m﹣2<0,即m<2,∴m的取值范围为<m<2.故选D.点评:本题考查了根的判别式:一元二次方程ax2+bx+c=0(△a≠0)的根与=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根与系数的关系.12.(2020•安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一考点:根的判别式;一次函数图象与系数的关系.菁优网版权所有分析:根据判别式的意义得到△=(﹣2)2+4m<0,解得m <﹣1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m﹣1图象经过的象限.解答:解:∵一元二次方程x2﹣2x﹣m=0无实数根,∴△<0,∴△=4﹣4(﹣m)=4+4m<0,∴m<﹣1,∴m+1<1﹣1,即m+1<0,m﹣1<﹣1﹣1,即m﹣1<﹣2,∴一次函数y=(m+1)x+m﹣1的图象不经过第一象限,故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4△ac:当>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一次函数图象与系数的关系.13.(2020•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1考点:根的判别式;一元二次方程的解;根与系数的关系.菁优网版权所有Ax x分析: 利用根的判别式判断 A ;利用根与系数的关系判断B ;利用一元二次方程的解的定义判断C 与D .解答: 解: 、如果方程 M 有两个相等的实数根,那么△=b 2﹣4ac =0,所以方程 N 也有两个相等的实数根,结论正确,不符合题意;B 、如果方程 M 的两根符号相同,那么方程 N 的两根符号也相同,那么△=b 2﹣4ac ≥0, >0,所以 a 与 c 符号相同, >0,所以方程 N 的两根符号也相同,结论正确,不符合题意;C 、如果 5 是方程 M 的一个根,那么 25a +5b +c =0,两边同时除以 25,得 c + b +a =0,所以 是方程 N 的一个根,结论正确,不符合题意;D 、如果方程 M 和方程 N 有一个相同的根,那么ax 2+bx +c =cx 2+bx +a ,(a ﹣c ) 2=a ﹣c ,由 a ≠c ,得 x 2=1, =±1, 结论错误,符合题意;故选 D .点评: 本题考查了一元二次方程根的情况与判别式△的关 系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个 相等的实数根;△<0⇔方程没有实数根.也考查了根与系数的关系,一元二次方程的解的定义.14.(2020•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n 的值为()A.9B.10C.9或10D.8或10考点:根的判别式;一元二次方程的解;等腰直角三角形.菁优网版权所有分析:由三角形是等腰直角三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果.解答:解:∵三角形是等腰直角三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n ﹣1)=0解得:n =10,故选 B .点评: 本题考查了等腰直角三角形的性质,一元二次方程 的根,一元二次方程根的判别式,注意分类讨论思想的应用.15.(2020•南充)关于 x 的一元二次方程 x 2+2mx +2n =0有两个整数根且乘积为正,关于 y 的一元二次方程y 2+2ny +2m =0 同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m ﹣1)2+(n ﹣1)2≥2;③﹣1≤2m ﹣2n ≤1,其中正确结论的个数是()A . 0 个B . 1 个C . 2 个D . 3 个考点: 根与系数的关系;根的判别式.菁优网版权所有 专题: 计算题.分析: ①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出 m 2﹣2n ≥0以及 n 2﹣2m ≥0,进而得解;③可以采用举例反证的方法解决,据此即可得解.解答: 解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x 1•x 2=2n >0,y 1•y 2=2m >0,y 1+y 2=﹣2n <0,x 1+x 2=﹣2m <0,这两个方程的根都为负根,①正确;②由根判别式有:△=b 2﹣4ac =4m 2﹣8△n ≥0, =b 2﹣4ac =4n 2﹣8m ≥0,4m 2﹣8n =m 2﹣2n ≥0,4n 2﹣8m =n 2﹣2m ≥0,m 2﹣2m +1+n 2﹣2n +1=m 2﹣2n +n 2﹣2m +2≥2,(m ﹣1)2+(n ﹣1)2≥2,②正确;③∵y 1+y 2=﹣2n ,y 1•y 2=2m ,∴2m ﹣2n =y 1+y 2+y 1•y 2,∵y 1 与 y 2 都是负整数,不妨令 y 1=﹣3,y 2=﹣5,则:2m ﹣2n =﹣8+15=7,不在﹣1 与 1 之间,③错误,其中正确的结论的个数是 2,故选 C .点评: 本题主要考查了根与系数的关系,以及一元二次方 程的根的判别式,还考查了举例反证法,有一定的难度,注 意总结.16.(2020•广西)已知实数 x 1,x 2 满足 x 1+x 2=7,x 1x 2=12,则以 x 1,x 2 为根的一元二次方程是()A . x 2﹣7x +12=0B . x 2+7x +12=0C . x 2+7x ﹣12=0D . x 2﹣7x ﹣12=0考点: 根与系数的关系.菁优网版权所有分析: 根据以 x 1,x 2 为根的一元二次方程是 x 2﹣(x 1+x 2)x +x 1,x 2=0,列出方程进行判断即可.解答: 解:以 x 1,x 2 为根的一元二次方程 x 2﹣7x +12=0,故选:A .点评: 本题考查的是一元二次方程根与系数的关系,掌握以 x 1,x 2 为根的一元二次方程是 x 2﹣(x 1+x 2)x +x 1,x 2=0 是具体点关键.17.(2020•怀化)设 x 1,x 2 是方程 x 2+5x ﹣3=0 的两个根,则 x 12+x 22 的值是()A . 19B . 25C . 31D . 30考点: 根与系数的关系.菁优网版权所有分析: 根据一元二次方程的根与系数的关系,即可求得 x 1与 x 2 的和与积,所求的代数式可以用两根的和与积表示出来,即可求解.解答: 解:∵x 1,x 2 是方程 x 2+5x ﹣3=0 的两个根,∴x 1+x 2=﹣5,x 1x 2=﹣3,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=25+6=31.故选:C .点评: 此题主要考查了根与系数的关系,将根与系数的关 系与代数式变形相结合解题是一种经常使用的解题方法. 18.(2020•酒泉)今年来某县加大了对教育经费的投入, 2013 年投入 2500 万元,2020 年投入 3500 万元.假设该县投入教育经费的年平均增长率为 x ,根据题意列方程,则下列方程正确的是( )2A . 2500x 2=3500B . 2500(1+x )2=3500C . 2500(1+x %)2=3500D . 2500(1+x )+2500(1+x )2=3500考点: 由实际问题抽象出一元二次方程.菁优网版权所有 专题: 增长率问题.分析: 根据 2013 年教育经费额×(1+平均年增长率)2=2020 年教育经费支出额,列出方程即可.解答: 解:设增长率为 x ,根据题意得 2500×(1+x )=3500,故选 B .点评: 本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为 a ,变化后的量为 b ,平均变化率为 x ,则经过两次变化后的数量关系为 a (1±x )2=b .(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).19.(2020•衡阳)绿苑小区在规划设计时,准备在两幢楼 房之间,设置一块面积为 900 平方米的矩形绿地,并且长比宽多 10 米.设绿地的宽为 x 米,根据题意,可列方程为()A . x (x ﹣10)=900B . x (x +10)=900C . 10(x +10)=900 D . 2[x +(x +10)]=900考点: 由实际问题抽象出一元二次方程.菁优网版权所有 专题: 几何图形问题.分析: 首先用 x 表示出矩形的长,然后根据矩形面积=长×宽列出方程即可.解答:解:设绿地的宽为x,则长为10+x;根据长方形的面积公式可得:x(x+10)=900.故选B.点评:本题考查了由实际问题抽象出一元二次方程,找到关键描述语,记住长方形面积=长×宽是解决本题的关键,此题难度不大.20.(2020•兰州)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x= D.1+2x=考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:增长率问题.分析:股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.解答:解:设平均每天涨x.则90%(1+x)2=1,即(1+x)2=,故选B.点评:此题考查增长率的定义及由实际问题抽象出一元二次方程的知识,这道题的关键在于理解:价格上涨x%后是原来价格的(1+x)倍.21.(2020•益阳)沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.20(1+2x)=80B.2×20(1+x)=80C.20(1+x2)=80D.20(1+x)2=80考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:增长率问题.分析:根据第一年的销售额×(1+平均年增长率)2=第三年的销售额,列出方程即可.解答:解:设增长率为x,根据题意得20(1+x)2=80,故选D.点评:本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).22.(2020•巴中)某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315B.560(1﹣x)2=315C.560(1﹣2x)2=315D.560(1﹣x2)=315考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:增长率问题.分析:设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.解答:解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.点评:此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.23.(2020•宁夏)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x﹣8=0B.x2﹣9x﹣8=0C.x2﹣9x+8=0D.2x2﹣9x+8=0考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:几何图形问题.分析:设人行道的宽度为x米,根据矩形绿地的面积之和为60米2,列出一元二次方程.解答:解:设人行道的宽度为x米,根据题意得,(18﹣3x)(6﹣2x)=60,化简整理得,x2﹣9x+8=0.故选C.点评:本题考查了由实际问题抽象出一元二次方程,利用两块相同的矩形绿地面积之和为60米2得出等式是解题关键.24.(2020•哈尔滨)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600m2.设扩大后的正方形绿地边长为x m,下面所列方程正确的是()A.x(x﹣60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x﹣60)=1600考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:几何图形问题.分析:设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加1600m2”建立方程即可.解答:解:设扩大后的正方形绿地边长为xm,根据题意得x2﹣60x=1600,即x(x﹣60)=1600.故选A.点评:本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.25.(2020•日照)某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%考点:一元二次方程的应用.菁优网版权所有专题:增长率问题.分析: 首先设每年投资的增长率为 x .根据 2014 年县政府已投资 5 亿元人民币,若每年投资的增长率相同,预计 2016 年投资 7.2 亿元人民币,列方程求解.解答: 解:设每年投资的增长率为 x ,根据题意,得:5(1+x )2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(舍去),故每年投资的增长率为为 20%.故选:A .点评: 此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为 a (1+x )n ,其中 n为共增长了几年,a 为第一年的原始数据,x 是增长率.26.(2014•菏泽)已知关于 x 的一元二次方程 x 2+ax +b =0有一个非零根﹣b ,则 a ﹣b 的值为()A . 1B . ﹣1C . 0D . ﹣2考点: 一元二次方程的解.菁优网版权所有分析: 由于关于 x 的一元二次方程 x 2+ax +b =0 有一个非零根﹣b ,那么代入方程中即可得到 b 2﹣ab +b =0,再将方程两边同时除以 b 即可求解.解答: 解:∵关于 x 的一元二次方程 x 2+ax +b =0 有一个非零根﹣b ,∴b 2﹣ab +b =0,∵﹣b ≠0,∴b≠0,方程两边同时除以b,得b﹣a+1=0,∴a﹣b=1.故选:A.点评:此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程进而解决问题.。
一元二次方程一、单选题1、设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A、2B、1C、﹣2D、﹣12、一元二次方程x2﹣3x﹣2=0的两根为x1, x2,则下列结论正确的是()A、x1=﹣1,x2=2B、x1=1,x2=﹣2C、x1+x2=3D、x1x2=23、下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A、a>0B、a=0C、c>0D、c=04、若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A、x1=0,x2=6B、x1=1,x2=7C、x1=1,x2=﹣7D、x1=﹣1,x2=75、若一次函数y=mx+6的图象与反比例函数y= 在第一象限的图象有公共点,则有()A、mn≥﹣9B、﹣9≤mn≤0C、mn≥﹣4D、﹣4≤mn≤06、关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2,则m2()=()A、B、-C、4D、﹣47、已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A、m>1B、m<1C、m≥1D、m≤18、若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A、M>NB、M=NC、M<ND、不确定9、已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A、6B、3C、﹣3D、010、若关于x的方程x2+(m+1)x+ =0的一个实数根的倒数恰是它本身,则m的值是()A、﹣B、C、﹣或D、111、已知一元二次方程x2﹣2x﹣1=0的两根分别为m、n,则m+n的值为()A、﹣2B、﹣1C、1D、212、已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A、4,﹣2B、﹣4,﹣2C、4,2D、﹣4,213、若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则 + 的值是()A、3B、﹣3C、5D、﹣514、青山村种的水稻xx年平均每公顷产7200kg,xx年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率,设水稻每公顷产量的年平均增长率为x,则所列方程正确的为()A、7200(1+x)=8450B、7200(1+x)2=8450C、7200+x2=8450D、8450(1﹣x)2=720015、若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A、B、C、D、二、填空题(共5题;共5分)16、方程2x2﹣3x﹣1=0的两根为x1, x2,则x12+x22=________.17、已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=________.18、关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是________.19、某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.20、如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________ m.三、解答题(共4题;共25分)21、关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.22、已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23、周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?24、随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率.四、综合题(共2题;共25分)25、已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2, k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.26、随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从xx年底的2万个增长到xx年底的2.88万个,求该市这两年(从xx年度到xx年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;答案解析部分一、单选题【答案】D【考点】根与系数的关系【解析】【解答】解:∵α、β是一元二次方程x2+2x﹣1=0的两个根,∴αβ= ,故选D.【分析】本题考查根与系数的关系,解题的关键是明确两根之积等于常数项与二次项系数的比值.根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.【答案】C【考点】根与系数的关系【解析】【解答】解:∵方程x2﹣3x﹣2=0的两根为x1, x2,∴x1+x2=﹣ =3,x1•x2= =﹣2,∴C选项正确.故选C.【分析】根据根与系数的关系找出“x1+x2=﹣ =3,x1•x2= =﹣2”,再结合四个选项即可得出结论.本题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1•x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.【答案】D【考点】根的判别式【解析】【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.【答案】D【考点】解一元二次方程-因式分解法,二次函数的性质【解析】【解答】解:∵二次函数y=x2+mx的对称轴是x=3,∴﹣ =3,解得m=﹣6,∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.故选D.【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.本题考查的是二次函数的性质,熟知二次函数的对称轴方程是解答此题的关键.【答案】A【考点】根的判别式,反比例函数与一次函数的交点问题【解析】【解答】解:依照题意画出图形,如下图所示.将y=mx+6代入y= 中,得:mx+6= ,整理得:mx2+6x﹣n=0,∵二者有交点,∴△=62+4mn≥0,∴mn≥﹣9.故选A.【分析】依照题意画出图形,将一次函数解析式代入反比例函数解析式中,得出关于x的一元二次方程,由两者有交点,结合根的判别式即可得出结论.本题考查了反比例函数与一次函数的交点问题以及根的判别式,解题的关键由根的判别式得出关于mn的不等式.本题属于基础题,难度不大,解决该题型题目时,画出图形,利用数形结合解决问题是关键.【答案】D【考点】根与系数的关系【解析】【解答】解:∵x2﹣4x﹣m2=0有两个实数根x1、x2,∴ ,∴则m2()= = =﹣4.故答案选D.【分析】根据所给一元二次方程,写出韦达定理,代入所求式子化简.本题主要考查一元二次方程根与系数的关系,属基础题,熟练掌握韦达定理是解题关键.【答案】C【考点】根的判别式【解析】【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选C.【分析】根据关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,可知△≥0,从而可以求得m的取值范围.本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.【答案】B【考点】一元二次方程的解【解析】【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.本题主要考查一元二次方程的解得概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.【答案】A【考点】根与系数的关系,二次函数的最值【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【答案】C【考点】一元二次方程的解,根与系数的关系【解析】【解答】解:由根与系数的关系可得:x1+x2=﹣(m+1),x1•x2= ,又知个实数根的倒数恰是它本身,则该实根为1或﹣1,若是1时,即1+x2=﹣(m+1),而x2= ,解得m=﹣;若是﹣1时,则m= .故选:C.【分析】由根与系数的关系可得:x1+x2=﹣(m+1),x1•x2= ,又知个实数根的倒数恰是它本身,则该实根为1或﹣1,然后把±1分别代入两根之和的形式中就可以求出m的值.本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系.解此类题目要会把代数式变形为两根之积或两根之和的形式,代入数值计算即可.【答案】D【考点】根与系数的关系【解析】【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m、n,∴m+n=﹣ =2.故选D.【分析】本题考查了根与系数的关系,解题的关键是找出m+n=2.本题属于基础题,难度不大,解决该题型题目时,利用根与系数的关系找出两根之和与两根之积是关键.根据一元二次方程的系数结合根与系数的关系即可得出m+n的值,由此即可得出结论.【答案】D【考点】根与系数的关系【解析】【解答】解:由根与系数的关系式得:2x2=﹣8,2+x2=﹣m=﹣2,解得:x2=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D【分析】此题考查了根与系数的关系式,熟练掌握一元二次方程根与系数的关系是解本题的关键.根据题意,利用根与系数的关系式列出关系式,确定出另一根及m的值即可.【答案】D【考点】根与系数的关系【解析】【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+ = = = ﹣2= ﹣2=﹣5.故选D.【分析】本题考查了根与系数的关系、解一元一次方程以及完全平方公式的应用,解题的关键是求出p=﹣3.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将 + 变形成﹣2,代入数据即可得出结论.【答案】B【考点】一元二次方程的应用【解析】【解答】解:由题意可得,7200(1+x)2=8450,故选B.【分析】本题考查由实际问题抽象出一元二次方程组,解题的关键是明确题意,列出相应的一元二次方程组.【答案】B【考点】根的判别式,一次函数的图象【解析】【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题【答案】【考点】根与系数的关系【解析】【解答】解:∵方程2x2﹣3x﹣1=0的两根为x1, x2,∴x1+x2=﹣ = ,x1•x2= =﹣,∴x12+x22= ﹣2x1•x2= ﹣2×(﹣)= .故答案为:.【分析】根据根与系数的关系得出“x1+x2=﹣ = ,x1•x2= =﹣”,再利用完全平方公式将x12+x22转化成﹣2x1•x2,代入数据即可得出结论.本题考查了根与系数的关系以及完全平方公式,解题的关键是求出x1+x2= ,x1•x2=﹣.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积,再利用完全平方公式将原代数式转化成只含两根之和与两根之积的代数式是关键.【答案】6【考点】一元二次方程的解【解析】【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决.本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.【答案】m>【考点】根的判别式,根与系数的关系,解一元一次不等式组【解析】【解答】解:设x1、x2为方程x2+2x﹣2m+1=0的两个实数根,由已知得:,即解得:m>.故答案为:m>.【分析】设x1、x2为方程x2+2x﹣2m+1=0的两个实数根.由方程有实数根以及两根之积为负可得出关于m的一元一次不等式组,解不等式组即可得出结论.本题考查了根与系数的关系、根的判别式以及解一元一次不等式组,解题的关键是得出关于m的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据根的情况结合根的判别式以及根与系数的关系得出关于m的一元一次不等式组是关键.【答案】60(1+x)2=100【考点】一元二次方程的应用,根据实际问题列二次函数关系式【解析】【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.【分析】本题考查的是一个增长率问题,关键是知道4月份的钱数和增长两个月后6月份的钱数,列出方程.设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【答案】2【考点】一元二次方程的应用【解析】【解答】解:设人行道的宽度为x米,根据题意得,(30﹣3x)(24﹣2x)=480,解得x1=20(舍去),x2=2.即:人行通道的宽度是2m.故答案是:2.【分析】设人行道的宽度为x米,根据矩形绿地的面积之和为480米2,列出一元二次方程.本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为480米2得出等式是解题关键.三、解答题【答案】解:设方程的另一根为t.依题意得:3×()2+ m﹣8=0,解得m=10.又 t=﹣,所以t=﹣4.综上所述,另一个根是﹣4,m的值为10【考点】根与系数的关系【解析】【分析】由于x= 是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.此题考查了根与系数的关系,一元二次方程的根的定义,把方程的根代入原方程就可以确定待定系数m的值.【答案】(1)证明:∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根(2)解:∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,把m=0或m=﹣1代入(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,可得:(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=5,或(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=3﹣3+5=5.【考点】一元二次方程的解,根的判别式【解析】【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把x=0代入方程即可求m的值,然后将其整体代入所求的代数式并求值即可.本题考查了根的判别式和一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.【答案】解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28,解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛【考点】一元二次方程的应用【解析】【分析】设要邀请x支球队参加比赛,则比赛的总场数为 x(x﹣1)场,与总场数为28场建立方程求出其解即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时单循环形式比赛规则的总场数为等量关系建立方程是关键.【答案】解:设该种药品平均每场降价的百分率是x,由题意得:200(1﹣x)2=98解得:x1=1.7(不合题意舍去),x2=0.3=30%.答:该种药品平均每场降价的百分率是30%【考点】一元二次方程的应用【解析】【分析】设该种药品平均每场降价的百分率是x,则两个次降价以后的价格是200(1﹣x)2,据此列出方程求解即可.此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.判断所求的解是否符合题意,舍去不合题意的解.四、综合题【答案】(1)解:∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x= ≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)解:∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2= =1﹣,∴1﹣为整数,∴m=1或﹣1,由(1)知k≠1,则m+2≠1,m≠-1∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;(3)解:|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣ = =﹣m,x1x2= = ,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3× =(﹣1)2,m2﹣4=1,m2=5,m=± ,∴|m|≤2不成立.【考点】根的判别式,根与系数的关系,分式方程的解【解析】【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.本题考查了一元二次方程的根与系数的关系,考查了根的判别式及分式方程的解;注意:①解分式方程时分母不能为0;②一元二次方程有两个整数根时,根的判别式△为完全平方数.【答案】(1)解:设该市这两年(从xx年度到xx年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)解:设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,由题意得:t+4t+3(100﹣3t)=200,解得:t=25.答:t的值是25.②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?解:设该养老中心建成后能提供养老床位y个,由题意得:y=t+4t+3(100﹣3t)=﹣4t+300(10≤t≤30),∵k=﹣4<0,∴y随t的增大而减小.当t=10时,y的最大值为300﹣4×10=260(个),当t=30时,y的最小值为300﹣4×30=180(个).答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.【考点】一元一次方程的应用,一元二次方程的应用,一次函数的应用【解析】【分析】本题考查了一次函数的应用、解一元一次方程以及解一元二次方程,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)①根据数量关系找出关于t的一元一次方程;②根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.(1)设该市这两年(从xx年度到xx 年底)拥有的养老床位数的平均年增长率为x,根据“xx年的床位数=xx年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论;②设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.。
2019年中考试题汇编一元二次方程填空题1.(2019年湖北省荆门市)已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为1.【分析】根据根与系数的关系结合(x1﹣1)(x2﹣1)=8k2,可得出关于k的一元二次方程,解之即可得出k的值,根据方程的系数结合根的判别式△>0,可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而即可确定k值,此题得解.【解答】解:∵x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个实数根,∴x1+x2=﹣(3k+1),x1x2=2k2+1.∵(x1﹣1)(x2﹣1)=8k2,即x1x2﹣(x1+x2)+1=8k2,∴2k2+1+3k+1+1=8k2,整理,得:2k2﹣k﹣1=0,解得:k1=﹣,k2=1.∵关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,∴△=(3k+1)2﹣4×1×(2k2+1)>0,解得:k<﹣3﹣2或k>﹣3+2,∴k=1.故答案为:1.【点评】本题考查了根与系数的关系以及根的判别式,利用根与系数的关系结合(x1﹣1)(x2﹣1)=8k2,求出k值是解题的关键.2.(2019年四川省遂宁市)若关于x的方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围为k<1.【分析】利用根的判别式进行计算,令△>0即可得到关于k的不等式,解答即可.【解答】解:∵关于x的方程x2﹣2x+k=0有两个不相等的实数根,∴△>0,即4﹣4k>0,k<1.故答案为:k<1.【点评】本题考查了根的判别式,要知道一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.(2019年江西省)设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=0.【分析】直接根据根与系数的关系求解.【解答】解:∵x1、x2是方程x2﹣x﹣1=0的两根,∴x1+x2=1,x1×x2=﹣1,∴x1+x2+x1x2=1﹣1=0.故答案为:0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.4.(2019年山东省威海市)一元二次方程3x2=4﹣2x的解是x1=,x2=.【分析】直接利用公式法解方程得出答案.【解答】解:3x2=4﹣2x3x2+2x﹣4=0,则b2﹣4ac=4﹣4×3×(﹣4)=52>0,故x=,解得:x1=,x2=.故答案为:x1=,x2=.【点评】此题主要考查了公式法解方程,正确掌握公式法是解题关键.5.(2019年四川省攀枝花市)已知x1,x2是方程x2﹣2x﹣1=0的两根,则x12+x22=6.【分析】根据根与系数的关系变形后求解.【解答】解:∵x1、x2是方程x2﹣2x﹣1=0的两根,∴x1+x2=2,x1×x2=﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=22﹣2×(﹣1)=6.故答案为:6.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.6.(2019年四川省成都市)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为﹣2.【分析】根据“x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13”,结合根与系数的关系,列出关于k的一元一次方程,解之即可.【解答】解:根据题意得:x1+x2=﹣2,x1x2=k﹣1,+﹣x1x2=﹣3x1x2=4﹣3(k﹣1)=13,k=﹣2,故答案为:﹣2.【点评】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.7.(2019年江苏省扬州市)一元二次方程x(x﹣2)=x﹣2的根是1或2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.8.(2019年四川省资阳市)a是方程2x2=x+4的一个根,则代数式4a2﹣2a的值是8.【分析】直接把a的值代入得出2a2﹣a=4,进而将原式变形得出答案.【解答】解:∵a是方程2x2=x+4的一个根,∴2a2﹣a=4,∴4a2﹣2a=2(2a2﹣a)=2×4=8.故答案为:8.【点评】此题主要考查了一元二次方程的解,正确将原式变形是解题关键.9.(2019年甘肃省天水市)中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区居民年人均收入平均增长率为40%.(用百分数表示)【分析】根据题意可以列出相应的方程,从而可以求得该地区居民年人均收入平均增长率,本题得以解决.【解答】解:设该地区居民年人均收入平均增长率为x,20000(1+x)2=39200,解得,x1=0.4,x2=﹣2.4(舍去),∴该地区居民年人均收入平均增长率为40%,故答案为:40%.【点评】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出相应的增长率.10.(2019年四川省宜宾市)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.【分析】设每个季度平均降低成本的百分率为x,根据利润=售价﹣成本价结合半年以后的销售利润为(65﹣50)元,即可得出关于x的一元二次方程,此题得解.【解答】解:设每个季度平均降低成本的百分率为x,依题意,得:65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.故答案为:65×(1﹣10%)×(1+5%)﹣50(1﹣x)2=65﹣50.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11.(2019年江苏省盐城市)设x1、x2是方程x2﹣3x+2=0的两个根,则x1+x2﹣x1•x2=1.【分析】由韦达定理可知x1+x2=3,x1•x2=2,代入计算即可;【解答】解:x1、x2是方程x2﹣3x+2=0的两个根,∴x1+x2=3,x1•x2=2,∴x1+x2﹣x1•x2=3﹣2=1;故答案为1;【点评】本题考查一元二次方程根与系数的关系;牢记韦达定理是解题的关键.12.(2019年江苏省连云港市)已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于2.【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【解答】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:c﹣2=﹣,则+c=2,故答案为:2.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.13.(2019年浙江省绍兴市)x为何值时,两个代数式x2+1,4x+1的值相等?【分析】利用题意得到x2+1=4x+1,利用因式分解法解方程即可.解:x2+1=4x+1,x2﹣4x=0,x(x﹣4)=0,x1=0,x2=4.【点评】考查了实数的运算,因式分解法解一元二次方程.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).14.(2019年浙江省嘉兴市)在x2+±4x+4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.【分析】要使方程有两个相等的实数根,即△=0,则利用根的判别式即可求得一次项的系数即可.【解答】解:要使方程有两个相等的实数根,则△=b2﹣4ac=b2﹣16=0得b=±4故一次项为±4x故答案为±4x【点评】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.(2019年江苏省南京市)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=1.【分析】把x=2+代入方程得到关于m的方程,然后解关于m的方程即可.【解答】解:把x=2+代入方程得(2+)2﹣4(2+)+m=0,解得m=1.故答案为1.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.(2019年山东省泰安市)已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+3=0有两个不相等的实数根,则实数k的取值范围是k.【分析】根据方程有两个不相等的实数根可得△=(2k﹣1)2﹣4(k2+3)>0,求出k 的取值范围;【解答】解:∵原方程有两个不相等的实数根,∴△=(2k﹣1)2﹣4(k2+3)=﹣4k+1﹣12>0,解得k;故答案为:k.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.17.(2019年甘肃省武威市、陇南市)关于x的一元二次方程x2+x+1=0有两个相等的实数根,则m的取值为4.【分析】要使方程有两个相等的实数根,即△=b2﹣4ac=0,则利用根的判别式即可求得一次项的系数.【解答】解:由题意,△=b2﹣4ac=()2﹣4=0得m=4故答案为4【点评】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.18.(2019年山东省青岛市)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.19.(2019年山东省枣庄市)已知关于x的方程ax2+2x﹣3=0有两个不相等的实数根,则a的取值范围是a>且a≠0.【分析】由方程有两个不相等的实数根,则运用一元二次方程ax2+bx+c=0(a≠0)的根的判别式是b2﹣4ac>0即可进行解答【解答】解:由关于x的方程ax2+2x﹣3=0有两个不相等的实数根得△=b2﹣4ac=4+4×3a>0,解得a>则a>且a≠0故答案为a>且a≠0【点评】本题重点考查了一元二次方程根的判别式,在一元二次方程ax2+bx+c=0(a≠0)中,(1)当△>0时,方程有两个不相等的实数根;(2)当△=0时,方程有两个相等的实数根;(3)当△<0时,方程没有实数根.20.(2019年山东省济宁市)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是﹣2.【分析】根据根与系数的关系得出x1x2==﹣2,即可得出另一根的值.【解答】解:∵x=1是方程x2+bx﹣2=0的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.【点评】此题主要考查了一元二次方程根与系数的关系,得出两根之积求出另一根是解决问题的关键.。
2015中考数学真题分类汇编:一元二次方程根与系数的关系一.选择题(共10小题)1.(2015•金华)一元二次方程x2+4x﹣3=0的两根为x1、x2,则x1•x2的值是()A. 4 B.﹣4 C. 3 D.﹣32.(2015•枣庄)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B. 10 C.﹣6 D. 23.(2015•黔东南州)设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A. 6 B. 8 C. 10 D. 124.(2015•衡阳)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B. 2 C. 4 D.﹣35.(2015•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A. 0个B. 1个C. 2个D. 3个6.(2015•广西)已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=0 7.(2014•防城港)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在8.(2014•呼和浩特)已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2判断正确的是()A.x1+x2>1,x1•x2>0B.x1+x2<0,x1•x2>0C. 0<x1+x2<1,x1•x2>0D.x1+x2与x1•x2的符号都不确定9.(2014•烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B. 1 C. 5 D.﹣110.(2014•攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是()A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣1二.填空题(共10小题)11.(2015•荆州)若m,n是方程x2+x﹣1=0的两个实数根,则m2+2m+n的值为.12.(2015•日照)如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015=.13.(2015•内江)已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是.14.(2015•凉山州)已知实数m,n满足3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则=.15.(2015•六盘水)已知x1=3是关于x的一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根x2是.16.(2015•成都)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是(写出所有正确说法的序号)①方程x2﹣x﹣2=0是倍根方程.②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0的倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为.17.(2015•西宁)若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.18.(2015•赤峰)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=.19.(2014•雅安)关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,且x12+x22=3,则m=.20.(2014•桂林)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是.三.解答题(共10小题)21.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.22.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.23.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.24.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.25.(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.26.(2013•菏泽)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1﹣2,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.27.(2012•鄂州)关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.28.(2012•怀化)已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.29.(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.30.(2011•南充)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.2015中考数学分化真题分类汇编:一元二次方程根与系数的关系参考答案与试题解析一.选择题(共10小题)1.(2015•金华)一元二次方程x2+4x﹣3=0的两根为x1、x2,则x1•x2的值是()A. 4 B.﹣4 C. 3 D.﹣3考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系求解.解答:解:x1•x2=﹣3.故选D.点评:本题考查了根与系数的关系:若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.2.(2015•枣庄)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B. 10 C.﹣6 D. 2考点:根与系数的关系.分析:根据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.解答:解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选A.点评:本题考查了根与系数的关系的应用,能根据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n是解此题的关键.3.(2015•黔东南州)设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A. 6 B. 8 C. 10 D. 12考点:根与系数的关系.分析:根据根与系数的关系得到x1+x2=2,x1•x2=﹣3,再变形x12+x22得到(x1+x2)2﹣2x1•x2,然后利用代入计算即可.解答:解:∵一元二次方程x2﹣2x﹣3=0的两根是x1、x2,∴x1+x2=2,x1•x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1•x2=22﹣2×(﹣3)=10.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.4.(2015•衡阳)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B. 2 C. 4 D.﹣3考点:根与系数的关系.分析:根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.解答:解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.点评:本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1•x2=.5.(2015•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A. 0个B. 1个C. 2个D. 3个考点:根与系数的关系;根的判别式.专题:计算题.分析:①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采用举例反证的方法解决,据此即可得解.解答:解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1•x2=2n>0,y1•y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,4m2﹣8n=m2﹣2n≥0,4n2﹣8m=n2﹣2m≥0,m2﹣2m+1+n2﹣2n+1=m2﹣2n+n2﹣2m+2≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③∵y1+y2=﹣2n,y1•y2=2m,∴2m﹣2n=y1+y2+y1•y2,∵y1与y2都是负整数,不妨令y1=﹣3,y2=﹣5,则:2m﹣2n=﹣8+15=7,不在﹣1与1之间,③错误,其中正确的结论的个数是2,故选C.点评:本题主要考查了根与系数的关系,以及一元二次方程的根的判别式,还考查了举例反证法,有一定的难度,注意总结.6.(2015•广西)已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=0考点:根与系数的关系.分析:根据以x1,x2为根的一元二次方程是x2﹣(x1+x2)x+x1,x2=0,列出方程进行判断即可.解答:解:以x1,x2为根的一元二次方程x2﹣7x+12=0,故选:A.点评:本题考查的是一元二次方程根与系数的关系,掌握以x1,x2为根的一元二次方程是x2﹣(x1+x2)x+x1,x2=0是具体点关键.7.(2014•防城港)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在考点:根与系数的关系.分析:先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.解答:解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.点评:本题主要考查了一元二次方程根与系数的关系:如果x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.8.(2014•呼和浩特)已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2判断正确的是()A.x1+x2>1,x1•x2>0B.x1+x2<0,x1•x2>0C. 0<x1+x2<1,x1•x2>0D.x1+x2与x1•x2的符号都不确定考点:根与系数的关系;反比例函数图象上点的坐标特征.专题:计算题.分析:根据点A(a,c)在第一象限的一支曲线上,得出a>0,c>0,再点B(b,c+1)在该函数图象的另外一支上,得出b<0,c+1>0,再根据x1•x2=,x1+x2=﹣,即可得出答案.解答:解:∵点A(a,c)在第一象限的一支曲线上,∴a>0,c>0,ac=1,即a=,∵点B(b,c+1)在该函数图象的另外一支上,即第二象限上,∴b<0,c+1>0,b(c+1)=﹣1,即b=﹣,∴x1•x2=>0,x1+x2=﹣=,∴0<x1+x2<1,故选:C.点评:本题考查了根与系数的关系,掌握根与系数的关系和各个象限点的特点是本题的关键;若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=﹣,x1x2=.9.(2014•烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B. 1 C. 5 D.﹣1考点:根与系数的关系;根的判别式.专题:计算题.分析:设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到(x1+x2)2﹣2x1•x2=5,则a2﹣4a﹣5=0,然后解方程,满足△≥0的a的值为所求.解答:解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.故选:D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.10.(2014•攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是()A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣1考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到α+β=﹣1,αβ=﹣1,再利用完全平方公式变形α2+β2得到(α+β)2﹣2αβ,利用通分变形+得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进行判断.解答:解:根据题意得α+β=﹣1,αβ=﹣1.所以α2+β2=(α+β)2﹣2αβ=(﹣1)2﹣2×(﹣1)=3;+===1.故选:D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.二.填空题(共10小题)11.(2015•荆州)若m,n是方程x2+x﹣1=0的两个实数根,则m2+2m+n的值为0.考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:由题意m为已知方程的解,把x=m代入方程求出m2+m的值,利用根与系数的关系求出m+n的值,原式变形后代入计算即可求出值.解答:解:∵m,n是方程x2+x﹣1=0的两个实数根,∴m+n=﹣1,m2+m=1,则原式=(m2+m)+(m+n)=1﹣1=0,故答案为:0点评:此题考查了根与系数的关系,以及一元二次方程的解,熟练掌握根与系数的关系是解本题的关键.12.(2015•日照)如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015=2026.考点:根与系数的关系.分析:由于m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,可知m,n是x2﹣x﹣3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=2,mn=﹣3,又n2=n+3,利用它们可以化简2n2﹣mn+2m+2015=2(n+3)﹣mn+2m+2015=2n+6﹣mn+2m+2015=2(m+n)﹣mn+2021,然后就可以求出所求的代数式的值.解答:解:由题意可知:m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,所以m,n是x2﹣x﹣3=0的两个不相等的实数根,则根据根与系数的关系可知:m+n=1,mn=﹣3,又n2=n+3,则2n2﹣mn+2m+2015=2(n+3)﹣mn+2m+2015=2n+6﹣mn+2m+2015=2(m+n)﹣mn+2021=2×1﹣(﹣3)+2021=2+3+2021=2026.故答案为:2026.点评:本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.13.(2015•内江)已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是2.考点:根与系数的关系.分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用完全平方公式变形后,将求出的两根之和与两根之积代入,即可求出所求式子的值.解答:解:∵3x2+2x﹣11=0的两个解分别为x1、x2,∴x1+x2=6,x1x2=k,+===3,解得:k=2,故答案为:2.点评:此题考查了一元二次方程根与系数的关系,对所求的代数式进行正确的变形是解决本题的关键.14.(2015•凉山州)已知实数m,n满足3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则=﹣.考点:根与系数的关系.分析:由m≠n时,得到m,n是方程x2﹣2x﹣1=0的两个不等的根,根据根与系数的关系进行求解.解答:解:∵m≠n时,则m,n是方程3x2﹣6x﹣5=0的两个不相等的根,∴m+n=2,mn=﹣.∴原式====﹣,故答案为:﹣.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.15.(2015•六盘水)已知x1=3是关于x的一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根x2是1.考点:根与系数的关系.分析:根据根与系数的关系,由两根之和可以求出方程的另一个根.解答:解:设方程的另一个根是x2,则:3+x2=4,解得x=1,故另一个根是1.故答案为1.点评:本题考查的是一元二次方程的解,根据根与系数的关系,由两根之和可以求出方程的另一个根.16.(2015•成都)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是②③(写出所有正确说法的序号)①方程x2﹣x﹣2=0是倍根方程.②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0的倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为.考点:根与系数的关系;根的判别式;反比例函数图象上点的坐标特征;二次函数图象上点的坐标特征.专题:新定义.分析:①解方程x2﹣x﹣2=0得:x1=2,x2=﹣1,得到方程x2﹣x﹣2=0不是倍根方程,故①错误;②由(x﹣2)(mx+n)=0是倍根方程,且x1=2,x2=﹣,得到=﹣1,或=﹣4,∴m+n=于是得到4m2+5mn+n2=(4m+1)(m+n)=0,故②正确;③由点(p,q)在反比例函数y=的图象上,得到pq=2,解方程px2+3x+q=0得:x1=﹣,x2=﹣,故∴③正确;④由方程ax2+bx+c=0是倍根方程,得到x1=2x2,由相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,∴得到抛物线的对称轴x===,于是求出x1=,故④错误.解答:解:①解方程x2﹣x﹣2=0得:x1=2,x2=﹣1,∴方程x2﹣x﹣2=0不是倍根方程,故①错误;②∵(x﹣2)(mx+n)=0是倍根方程,且x1=2,x2=﹣,∴=﹣1,或=﹣4,∴m+n=0,4m+n=0,∵4m2+5mn+n2=(4m+n)(m+n)=0,故②正确;③∵点(p,q)在反比例函数y=的图象上,∴pq=2,解方程px2+3x+q=0得:x1=﹣,x2=﹣,∴x2=2x1,故③正确;④∵方程ax2+bx+c=0是倍根方程,∴设x1=2x2,∵相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,∴抛物线的对称轴x===,∴x1+x2=5,∴x1+2x1=5,∴x1=,故④错误.故答案为:②③.点评:本题考查了根与系数的关系,根的判别式,反比例函数图形上点的坐标特征,二次函数图形上点的坐标特征,正确的理解“倍根方程”的定义是解题的关键.17.(2015•西宁)若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16.考点:根与系数的关系;矩形的性质.分析:设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.解答:解:设矩形的长和宽分别为x、y,根据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了矩形的性质.18.(2015•赤峰)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=4.考点:根与系数的关系.分析:根据根与系数的关系得到,通过解该方程组可以求得a、b的值.解答:解:∵关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别是2、b,∴由韦达定理,得,解得,.∴ab=1×4=4.故答案是:4.点评:本题考查了根与系数的关系.x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.19.(2014•雅安)关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,且x12+x22=3,则m=0.考点:根与系数的关系;根的判别式.专题:计算题.分析:根据方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,得出x1+x2与x1x2的值,再根据x12+x22=3,即可求出m的值.解答:解:∵方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,∴x1+x2=2m﹣1,x1x2=m2﹣1,∵x12+x22=(x1+x2)2﹣2x1x2=(2m﹣1)2﹣2(m2﹣1)=3,解得:m1=0,m2=2,∵方程有两实数根,∴△=(2m﹣1)2﹣4(m2﹣1)≥0,即m≤∴m2=2(不合题意,舍去),∴m=0;故答案为:0.点评:本题考查了根与系数的关系及根的判别式,难度适中,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.20.(2014•桂林)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是﹣2或﹣.考点:根与系数的关系;根的判别式.分析:先由(x1﹣2)(x1﹣x2)=0,得出x1﹣2=0或x1﹣x2=0,再分两种情况进行讨论:①如果x1﹣2=0,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,解方程求出k=﹣2;②如果x1﹣x2=0,那么将x1+x2=﹣(2k+1),x1x2=k2﹣2代入可求出k 的值,再根据判别式进行检验.解答:解:∵(x1﹣2)(x1﹣x2)=0,∴x1﹣2=0或x1﹣x2=0.①如果x1﹣2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②如果x1﹣x2=0,那么(x1﹣x2)2=(x1+x2)2﹣4x1x2=[﹣(2k+1)]2﹣4(k2﹣2)=4k+9=0,解得k=﹣.又∵△=(2k+1)2﹣4(k2﹣2)≥0.解得:k≥﹣.所以k的值为﹣2或﹣.故答案为:﹣2或﹣.点评:本题考查了一元二次方程的根与系数的关系,根的判别式,注意在利用根与系数的关系时,需用判别式进行检验.三.解答题(共10小题)21.(2014•南充)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.考点:根与系数的关系;根的判别式.专题:代数综合题.分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围,进而得出m的最大整数值;(2)根据(1)可知:m=1,继而可得一元二次方程为x2﹣2x+1=0,根据根与系数的关系,可得x1+x2=2,x1x2=1,再将x12+x22﹣x1x2变形为(x1+x2)2﹣3x1x2,则可求得答案.解答:解:∵一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=8﹣4m>0,解得m<2,故整数m的最大值为1;(2)∵m=1,∴此一元二次方程为:x2﹣2x+1=0,∴x1+x2=2,x1x2=1,∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.点评:此题考查了一元二次方程根与系数的关系与根的判别式.此题难度不大,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.掌握根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.22.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.考点:根与系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:(1)利用(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,求得m的值即可;(2)分7为底边和7为腰两种情况分类讨论即可确定等腰三角形的周长.解答:解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)①当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;②当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.点评:本题考查了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.23.(2014•怀化)设m是不小于﹣1的实数,使得关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值;(2)求+﹣m2的最大值.考点:根与系数的关系;根的判别式;二次函数的最值.专题:代数综合题.分析:(1)首先根据根的判别式求出m的取值范围,利用根与系数的关系,求出符合条件的m的值;(2)把利用根与系数的关系得到的关系式代入代数式,细心化简,结合m的取值范围求出代数式的最大值.解答:解:∵方程有两个不相等的实数根,∴△=b2﹣4ac=4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1解得:m1=,m2=(不合题意,舍去)∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.点评:此题考查根与系数的关系,一元二次方程的根的判别式△=b2﹣4ac来求出m的取值范围;解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=.24.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.考点:根与系数的关系;根的判别式.专题:压轴题.分析:(1)根据已知一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k的不等式[﹣(2k+1)]2﹣4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.解答:解:(1)∵原方程有两个实数根,∴[﹣(2k+1)]2﹣4(k2+2k)≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.(2)假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,∴只有当k=1时,上式才能成立.又∵由(1)知k≤,∴不存在实数k使得≥0成立.点评:本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.25.(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.考点:根与系数的关系;解一元二次方程-因式分解法;根的判别式.专题:压轴题;阅读型;新定义.分析:(1)求出原方程的根,再代入|x1|+|x2|看结果是否为2的整数倍就可以得出结论;(2)由条件x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程建模,设c=mb2+n,就可以表示出c,然后根据公式法就可以求出其根,再代入|x1|+|x2|就可以得出结论.解答:解:(1)不是,解方程x2+x﹣12=0得,x1=3,x2=﹣4.|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程;(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n,当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0时,m=﹣,∴c=﹣b2.∵是偶系二次方程,当b=3时,c=﹣×32.∴可设c=﹣b2.对于任意一个整数b,c=﹣b2时,△=b2﹣4ac,=4b2.x=,∴x1=﹣b,x2=b.∴|x1|+|x2|=2|b|,∵b是整数,∴对于任何一个整数b,c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.点评:本题考查了一元二次方程的解法的运用,根的判别式的运用根与系数的关系的运用及数学建模思想的运用,解答本题时根据条件特征建立模型是关键.26.(2013•菏泽)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1﹣2,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.考点:根与系数的关系;根的判别式.专题:证明题.分析:(1)根据一元二次方程的定义得到k≠0,再计算出判别式得到△=(2k﹣1)2,根据k为整数和非负数的性质得到△>0,则根据判别式的意义即可得到结论;(2)根据根与系数的关系得x1+x2=,x1•x2=,则根据完全平方公式变形得(x1﹣x2)2=(x1+x2)2﹣4x1•x2=﹣==(2﹣)2,由于k为整数,则2﹣>0,所以x2﹣x1=2﹣,则y=2﹣﹣2=﹣.解答:(1)证明:根据题意得k≠0,∵△=(4k+1)2﹣4k(3k+3)=4k2﹣4k+1=(2k﹣1)2,而k为整数,∴2k﹣1≠0,∴(2k﹣1)2>0,即△>0,∴方程有两个不相等的实数根;(2)解:y是变量k的函数.∵x1+x2=,x1•x2=,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=﹣==(2﹣)2,∵k为整数,∴2﹣>0,而x1<x2,∴x2﹣x1=2﹣,∴y=2﹣﹣2=﹣(k≠0的整数),∴y是变量k的函数.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.27.(2012•鄂州)关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.考点:根与系数的关系;根的判别式.专题:计算题.分析:(1)找出一元二次方程中的a,b及c,表示出b2﹣4ac,然后判断出b2﹣4ac 大于0,即可得到原方程有两个不相等的实数根;(2)利用根与系数的关系表示出两根之和与两根之积,判断出两根之积小于0,得到两根异号,分两种情况考虑:若x1>0,x2<0,利用绝对值的代数意义化简已知的等式,将表示出的两根之和代入,列出关于m的方程,求出方程的解得到m的值,进而确定出方程,求出方程的解即可;若x1<0,x2>0,同理求出m的值及方程的解.解答:解:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣)2+,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2==﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣1+,x2=﹣1﹣,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1﹣,x2=1+.点评:此题考查了一元二次方程根的判别式,以及根与系数的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程没有实数根.28.(2012•怀化)已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.考点:根与系数的关系;根的判别式.分析:根据根与系数的关系求得x1x2=,x1+x2=﹣;根据一元二次方程的根的判别式求得a的取值范围;(1)将已知等式变形为x1x2=4+(x2+x1),即=4+,通过解该关于a的方程即可求得a的值;(2)根据限制性条件“(x1+1)(x2+1)为负整数”求得a的取值范围,然后在取值范围内取a的整数值.解答:解:∵x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴由根与系数的关系可知,x1x2=,x1+x2=﹣;∵一元二次方程(a﹣6)x2+2ax+a=0有两个实数根,∴△=4a2﹣4(a﹣6)•a≥0,且a﹣6≠0,解得,a≥0,且a≠6;(1)∵﹣x1+x1x2=4+x2,∴x1x2=4+(x1+x2),即=4﹣,解得,a=24>0;∴存在实数a,使﹣x1+x1x2=4+x2成立,a的值是24;(2)∵(x1+1)(x2+1)=x1x2+(x1+x2)+1=﹣+1=﹣,∴当(x1+1)(x2+1)为负整数时,a﹣6>0,且a﹣6是6的约数,∴a﹣6=6,a﹣6=3,a﹣6=2,a﹣6=1,∴a=12,9,8,7;∴使(x1+1)(x2+1)为负整数的实数a的整数值有12,9,8,7.点评:本题综合考查了根与系数的关系、根的判别式.注意:一元二次方程ax2+bx+c=0(a、b、c是常数)的二次项系数a≠0.29.(2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.考点:根与系数的关系;根的判别式.分析:(1)先设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,得出+=﹣,•=,再根据这个一元二次方程的两个根分别是已知方程两根的倒数,即可求出答案.(2)根据a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,得出a,b是x2﹣15x﹣5=0的解,求出a+b和ab的值,即可求出的值.(3)根据a+b+c=0,abc=16,得出a+b=﹣c,ab=,a、b是方程x2+cx+=0的解,再根据c2﹣4•≥0,即可求出c的最小值.解答:解:(1)设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,则:+==﹣,•==,若一个一元二次方程的两个根分别是已知方程两根的倒数,则这个一元二次方程是:x2+x+=0;(2)∵a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a,b是x2﹣15x﹣5=0的解,当a≠b时,a+b=15,ab=﹣5,。