RC正弦波振荡电路设计
- 格式:doc
- 大小:387.00 KB
- 文档页数:9
第13章正弦波振荡电路正弦波振荡电路也称信号产生电路,通常也称振荡器,它用于产生一定频率和幅度的信号,例实验室的各种信号的产生电路。
按振荡器输出信号的波形来分有正弦波振荡器和非正弦波振荡器两大类。
13.1 正弦波振荡电路的工作原理一、振荡产生的基本原理:1.什么是正弦波振荡器?无ui →有uo(正弦波)(必须要有能源Vcc)2.如何产生正弦波振荡?U fU o设:U i = U im Sinωt首先将开关S接到1端,U i作用于Au →U o =U i Au(开环),→U f = U o Fu = U i Au Fu(闭环)。
当U f = U i时,再将开关S倒向2端,此时无U i,但U o不变仍为正弦波,即放大器产生了正弦波振荡。
∴自激振荡的条件为:U f = U i二、电路自激振荡的条件(一)振荡的平衡条件:U f = U i 即Au Fu = 11.振幅平衡条件:︱Au Fu︱= 12.相位平衡条件:ψa +ψf = 2nπ(n = 0.1.2……n)作为一个稳态振荡电路,相位平衡条件和振幅平衡条件必须同时满足,利用幅平条件可以稳定U o的幅度,利用相平条件可以确定振荡频率。
(二)振荡的建立与稳定振荡的建立:一合上电源Vcc是一个阶跃电压为非正弦,利用付氏级数分解为若干个正弦波的迭加,其中就有我们所需要的fo的成分,如果能有一个选频网络将它选出,尽管它很小,但经放大→会增大一点→反馈 → 放大,U o 的幅度会越来越大,最终达到预定的数值。
∴ 振荡的建立过程中:︱Au Fu ︱>1;要有选频网络; 振荡的稳定: 负反馈;晶体管的非线性;(三)正弦波振荡器的组成:放大电路 + 反馈网络(正) 其中包括选频和稳幅环节 (四)正弦波振荡器的分类(依据选频网络)RC 正弦波振荡器 (低) LC 正弦波振荡器 (高)石英晶体振荡器 (fo 的稳定性高)U o•13.2 RC 正弦波振荡器一、RC 桥式正弦波振荡器(文氏电桥振荡器) (一)原理图(二)RC 串并联网络的选频特性200)//(91ωωωω-+=u F •当ω=ωo=1 / RC 即f =fo = 1 / 2πRC 则:Fu = Fumax = 1 / 3ψf = 03//arctan00ωωωωF --=ϕ0(三)振荡电路分析 1.起振条件:由自激振荡条件: ︱Au Fu ︱= 1; ψa +ψf =2n π;及RC 串并联网络的选频特性: ∣Fu ∣= 1 / 3 ;ψf = 0; 要求:︱Au ︱= 3;ψa = 2n π; 实际振荡电路:Au 由集成运放担任;Fu 为RC 串并联网络(正反馈),具有选频特性;R 1R f 负反馈用于稳幅;构成电桥;(1)分析电路是否满足振荡条件幅频条件:当ω=ωo 时 ∣Fu ∣= 1 / 3 ∴ 只需Au = 3即可R 1R f 构成电压串联负反馈 Au = 1+ R f / R 1相频条件:已知 ψf = 0;且可分析出ψa = 0∴ ψa +ψf = 0 满足相平条件其实一般情况下,只要是正反馈就一定可以满足ψa +ψf = 2n π∴ 相平条件的判断可用瞬时极性法解决。
rc正弦波振荡电路设计
RC正弦波振荡电路的设计过程可以按照以下步骤进行:
1.确定振荡频率:根据需要,选择合适的振荡频率。
2.确定电路参数:根据振荡频率,计算RC电路的参数,即电阻R和电容C 的值。
对于正弦波振荡电路,振荡频率f与R和C的关系为f=1/2πRC。
因此,已知振荡频率f,可以求出R和C的值。
3.设计电路:根据计算出的R和C的值,设计RC正弦波振荡电路。
电路一般由放大器、RC电路和正反馈网络组成。
放大器可以选择合适的运放或比较器等器件,RC电路选择相应的电阻和电容器件,正反馈网络可以选择相应的电阻或电容元件。
4.调整电路:在实际应用中,可能需要根据实际情况对电路进行调整,以获得更好的性能。
例如,可以通过调整放大器的反馈系数、RC电路的元件值等来调整振荡频率和幅度。
5.测试电路:在调整完成后,对电路进行测试,观察是否能够正常工作并产生稳定的正弦波输出。
总之,RC正弦波振荡电路的设计需要综合考虑电路参数、元件选择、电路结构等因素,并经过调整和测试来获得最佳性能。
RC正弦波振荡电路简介RC正弦波振荡电路是一种基于电容(C)和电阻(R)元件的电路,可以产生稳定的正弦波电信号。
这种电路常见于信号发生器、音频放大器和频率计等领域。
本文将介绍RC正弦波振荡电路的基本原理、设计方法和应用。
原理RC正弦波振荡电路的基本原理是基于RC网络的充放电特性。
当电容器充电时,电流会通过电阻器,同时电流也会通过电容器。
充电过程中,电容器的电压会逐渐增加,直到达到充电电压。
一旦充电电压达到,电容器将开始放电,电流仍然通过电阻器,但是方向相反。
这样不断循环的充电和放电过程将产生连续的正弦波信号。
设计方法1. 选择合适的电阻值和电容值选择合适的电阻和电容值是设计RC正弦波振荡电路的关键。
其中,电阻决定了振荡频率,而电容决定了振荡周期。
根据公式:f = 1 / (2 * π * R * C)其中,f为振荡频率,π为圆周率,R为电阻值,C为电容值。
可以调整R和C的数值来获得所需的振荡频率。
2. 确定放大倍数RC正弦波振荡电路通常需要放大信号的幅度。
可以通过添加一个放大器来实现,放大器通常采用运算放大器或晶体管等元件。
3. 稳定性分析在设计RC正弦波振荡电路时,需要考虑电路的稳定性。
稳定性可以通过研究电路的极点和传递函数来评估。
如果电路的极点位于左半平面,那么电路是稳定的,否则是不稳定的。
通过合适的选择元件值,可以实现稳定的振荡电路。
应用RC正弦波振荡电路具有广泛的应用领域,包括但不限于以下几个方面:1. 信号发生器RC正弦波振荡电路可以用作信号发生器,用于产生稳定的正弦波信号,用于实验、测试和测量等应用。
2. 音频放大器RC正弦波振荡电路经过合适的放大器可以用于音频放大器中,用于放大音频信号。
3. 频率计RC正弦波振荡电路可以用于频率计,通过测量电路振荡频率来实现对待测信号频率的测量。
结论RC正弦波振荡电路是一种基于RC网络的电路,可以实现稳定的正弦波振荡。
通过选择合适的电阻和电容值,设计合适的放大倍数和稳定性分析,可以实现所需的振荡频率和信号幅度。
实验八 RC正弦波振荡器实验目的:1.熟悉仿真软件MULTISIM的使用,掌握基于软件的电路设计和仿真分析方法。
2.熟悉POCKETLAB硬件实验平台,掌握基于功能的使用方法。
3.掌握RC正弦波振荡器的设计和分析方法。
4.掌握RC正弦波振荡器的安装与调试方法。
实验内容:一.仿真实验1.RC相移振荡电路如图8-1所示,在MULTISIM中搭建其开环分析电路,理解起振和稳定的相位条件与振幅条件。
图8-1 RC相移振荡电路所以f=649.7HZ所以放大器的增益绝对值大于29.图8-3 RC相移振荡电路开环仿真图图8-4 RC相移振荡电路开环仿真幅频图和相频图由幅频特性曲线图可知,该电路的振荡频率为640.4004HZ。
2.在MULTISIM中搭建8-1电路,进行瞬态仿真。
所以=19.89*10^-5意向网络增益为1/3,所以为满足起振条件,基本放大器增益应大于3.表8-1 RC相移振荡电路振荡频率计算值仿真值实测值振荡频率649.7HZ 628.099HZ 633HZ3.将8-1电路振荡频率增加或减小10倍,重新设计电路参数。
表8-2 RC相移振荡电路振荡频率改动原件改动前频率减小10倍频率增加10倍R R=10k R=100k;R20=3000kC C=10nF C=100nF60.84HZ C=1nF 6.08kHZC=1nF C=100nFR=100K4.调试修改文氏电桥振荡器,进行瞬态仿真。
表8-3 文氏电桥振荡电路振荡频率C1(uF) R1(K) R2(K) R3(K) R4(K) 0.01 20 10 4.7 16.8表8-4 文氏电桥振荡电路振荡频率设计值仿真值实测值振荡频率800HZ 791.76HZ 830HZ图8-5 文氏电桥振荡器瞬态波形图图8-6 文氏电桥振荡器频谱图一.硬件实验1.电路连接2.瞬态波形观测3.频谱测量图8-7 RC电路瞬态波形图图8-8 RC电路频谱图4.按以上步骤对文氏电桥电路进行相应硬件实验图8-9 文氏电桥振荡器瞬态波形图图8-10 文氏电桥振荡器频谱图实验思考:1.将8-1所示电路中的C从10nF改为0.1nF后,进行仿真,结果如何?请解释原因。
RC正弦波振荡电路1 技术指标:设计、组装、调试RC正弦波振荡电路电路,使其能产生幅度稳定的低频振荡。
2 设计方案:2.1 方案一:积分式RC正弦波振荡图1RC积分式振荡原理其基本原理是利用积分器,对于同相积分器A2有V o t=1RCV i(t)dt对于反相积分器A1有V i t=−1RCV O(t)dt所以V i=−1R C V i(t)dt d2V i(t)dt+1R Cv i t=0所以V i=Asinω0t V o=−Acosω0t推出ω0=1RC2.2 方案二:移相式RC正弦波振荡图2 移相式RC振荡原理A1是反相比例放大器,A2是电压跟随器。
利用电压跟随器的阻抗变换作用减小放大电路输入电阻R1对RC移相网络的影响。
A=−R2R1 V f=RZ2V2V2=R//Z11jωC+R//Z1V1V1=R//Z11jωC+R//Z1V o1Z2=R+1jωC Z2=1jωC+R//Z2其中Z1表示RC串联臂的阻抗,Z2表示RC并联臂的阻抗。
由以上各式,得电路反馈系数为F=V fV o1=R3CR3C−5R2+j(132−6R2)令F的虚部为零,得电路的振荡频率为ω0=1 6RCƒ0=12π6RC此时电路的反馈系数Fω0=−1 29当A=R2R1≥29时,电路产生振荡。
2.3 方案三:文式桥RC正弦波振荡。
图3 文式桥RC振荡原理该电路由RC串并联网络承担选频网络兼正负反馈网络,另外还有R1和R f负反馈网络。
右边A是同相运算放大器。
在反馈回路中串联2个并联的二极管主要是利用电流增大时动态电阻减小,反之增大的特点,加入非线性环节到达稳幅的作用。
电路反馈系数:F=13+j ωRC−1ωRC幅频特性:F=132−ƒƒ0−ƒƒ2相频特性:φF=−tan−11(ƒƒ−ƒƒ)所以令φF=0 且到达起振条件A u=1+RƒR≥3即Rƒ≥2R1得到ƒ0=12.4 方案比较:方案一的积分式振荡缺点是由于开启时的初始状态有随机性,可能会使电路停振;方案二的移相式振荡缺点是选频作用差,振幅不稳定,调频不方便,相比之下,方案三优点是幅度稳定容易调频,易起振且非线性失真小,把前2个方案的缺点全部改善了。
RC 正弦波振荡电路设计电气工程系 王文川任务三 RC 正弦波振荡电路一、RC 正弦波振荡器任务描述RC 正弦波振荡电路的描述学习目标RC 正弦波振荡电路的认识。
重点:RC 正弦波振荡电路的描述。
难点:RC 正弦波振荡电路的认识。
一、实验目的1、进一步学习RC正弦波振荡器的组成及其振荡条件2、学会测量、调试振荡器二、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。
若用R、C元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz~1MHz的低频信号。
1、RC移相振荡器。
电路型式如图12-1所示,选择R>>Ri图12-1 RC移相振荡器原理图振荡频率起振条件放大器A的电压放大倍数||>29电路特点简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。
频率范围几赫~数十千赫。
2、RC串并联网络(文氏桥)振荡器电路型式如图12-2所示。
振荡频率起振条件 ||>3电路特点可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
图12-2 RC串并联网络振荡器原理图3、双T选频网络振荡器电路型式如图12-3所示。
图12-3 双T选频网络振荡器原理图振荡频率起振条件 ||>1电路特点选频特性好,调频困难,适于产生单一频率的振荡。
注:本实验采用两级共射极分立元件放大器组成RC正弦波振荡器。
三、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、频率计5、直流电压表6、 3DG12×2 或 9013×2电阻、电容、电位器等四、实验内容1、RC串并联选频网络振荡器(1)(1)按图12-4组接线路图12-4 RC串并联选频网络振荡器(2) 断开RC串并联网络,测量放大器静态工作点及电压放大倍数。
(3) 接通RC串并联网络,并使电路起振,用示波器观测输出电压uO波形,调节Rf使获得满意的正弦信号,记录波形及其参数。
实验七 集成电路RC 正弦波振荡电路一、实验目的1.掌握桥式RC 正弦波振荡电路的构成及工作原理。
2.熟悉正弦波振荡电路的调整、测试方法。
3.观察RC 参数对振荡频率的影响,学习振荡频率的测定方法。
二、实验仪器1.双踪示波器2.低频信号发生器3.频率计三、实验原理正弦波震荡电路必须具备两个条件是:一必须引入反馈,而且反馈信号要能代替输入信号,这样才能在不输入信号的情况下自发产生正弦波震荡。
二是要有外加的选频网络,用于确定震荡频率。
因此震荡电路由四部分电路组成:1、放大电路,2、选频网络,3、反馈网络,4、稳幅环节。
实际电路中多用LC 谐振电路或是RC 串并联电路(两者均起到带通滤波选频作用)用作正反馈来组成震荡电路。
震荡条件如下:正反馈时Of i X F X X ==/,Oi O X F A X A X ==/,所以平衡条件为1=F A ,即放大条件1=F A ,相位条件πϕϕn F A 2=+,起振条件1>F A。
本实验电路常称为文氏电桥震荡电路,由2p R 和1R 组成电压串联负反馈,使集成运放工作于线性放大区,形成同相比例运算电路,由RC 串并联网络作为正反馈回路兼选频网络。
分析电路可得:0,112=+=A p R R Aϕ 。
当C C C R R R p ====2111,时,有)1(31RC RC j F ωω-+= ,设RC 10=ω,有200)(91ωωωω-+=F ,)(3100ωωωωϕ--=arctg F 。
当0ωω=时,0,31==F F ϕ ,此时取A 稍大于3,便满足起振条件,稳定时3=A 。
填空题:(1)图11.1中,正反馈支路是由 RC 串并联电路 组成,这个网络具有 选频 特性,要改变振荡频率,只要改变 R 或 C 的数值即可。
(2)图11.1中,1R P 和R 1组成负反馈,其中 Rp 是用来调节放大器的放大倍数,使A V ≥3。
四、实验内容1.按图11.1接线。
RC正弦波振荡电路设计首先,我们需要了解RC正弦波振荡电路的基本原理。
振荡器是一种电路,它能够将直流电源的能量转换为交流信号。
在RC振荡电路中,我们使用了一个电容和一个电阻来实现振荡。
在RC正弦波振荡电路中,电容充电和放电的时间常数(记为τ)非常重要。
时间常数τ决定了振荡频率的大小,公式为τ=RC,其中R为电阻的阻值,C为电容的电容值。
接下来,我们将详细介绍如何设计RC正弦波振荡电路。
设计过程分为以下几个步骤:1.确定振荡频率:首先根据需要确定振荡的频率范围,并选择一个合适的频率。
振荡频率主要由电容值和电阻值决定,可以通过调整它们的比例来改变频率。
2.选择电容和电阻:根据已知的振荡频率,选择一个合适的电容和电阻。
一般来说,电容的值可以在几十皮法(pF)到几百微法(uF)之间选择,而电阻的值可以在几百欧姆(Ω)到几兆欧姆(MΩ)之间选择。
3.计算时间常数:根据所选择的电容和电阻的值,计算时间常数τ。
时间常数τ决定了振荡的频率,可以根据τ=RC公式计算得出。
4.根据振荡频率调整电容和电阻:如果振荡频率与所需要的频率不一致,可以通过调整电容和电阻的比例来改变频率。
通常来说,增加电容值可以降低频率,而增加电阻值可以提高频率。
5.考虑放大器:为了增强正弦波信号的幅度,可以在RC振荡电路中添加一个放大器电路。
放大器电路一般采用运算放大器、晶体管等元件实现。
6.振荡电路的稳定性:为了确保RC振荡电路的稳定性,可以在电容的两端或电阻的两端添加阻尼电阻,用来衰减振荡中的能量。
7.电源:振荡电路需要一个直流电源供电,电源电压的稳定性会影响振荡器的稳定性,因此需要选择一个稳定的电源。
最后,设计好RC正弦波振荡电路后,可以使用示波器等仪器进行验证,观察输出的波形是否为正弦波,并调整电容和电阻的值,使得输出的波形更加稳定和准确。
总结来说,RC正弦波振荡电路的设计步骤包括确定振荡频率、选择电容和电阻、计算时间常数、根据频率调整电容和电阻、考虑放大器、确保振荡电路的稳定性和选择稳定的电源。
RC桥式正弦波振荡电路RC串并联网络的选频特性→ 电路组成与振荡相位条件→ RC桥式正弦波振荡器工作原理→ 稳幅措施→ 频率调整1、RC串并联网络的选频特性RC串并联选频电路如图8.3所示,作相量分析如下:R 1 C 1 串联阻抗Z 1 = R 1 + 1 jω C 1R 2 C 2 并联阻抗Z 2 = R 2 1+jω C 2选频特性F ˙ = U ˙ f U ˙ 0 = Z 2 Z 1 + Z 2 = R 2 /(1+jω C 2 R 2 ) R 1 +1/jω C 1 + R 2 /(1+jω C 2 R 2 ) = 1 (1+ R 1 R 2 + C 2 C 1 )+j(ω C 2 R 1 1 ω C 1 R 2 )当虚部为零时,相移为零,满意这个条件的频率ω 0 可由下式求出ω 0 C 2 R 1 = ω 0 C 1 R 2即ω 0 = 1 R 1 R 2 C 1 C 2通常取R 1 = R 2 =R, C 1 = C 2 =C 则ω O = 1 RC振荡频率f 0 = 1 2πRC ,代入上式,可得简化式F ˙ = 1 3+j( ω ω O ω O ω )幅频特性和相频特性分别为F= 1 3 2 + (ω/ ω O ω O /ω) 2F =t g 1 (ω/ ω o ω o /ω) 3据此画出频率特性如图8.4所示。
争论:1)当ω ω 0 ,F 1 3 ,F 随ω 减小而下降。
F 为正(超前),且当ω→0 , F →+ 90 0 。
2)当ω ω 0 ,F 1 3 ,F随ω 增加而下降。
F 为负(滞后),且当ω→∞ , F → 90 03)当ω= ω 0 = 1 RC 时,F= 1 3 ,且 F = 0 0 (同相)结论:RC 串并联网络具有选频特性。
2、RC桥式正弦波振荡器工作原理1.电路组成与振荡相位条件RC串并联网络作为选频反馈电路,当频率为f 0 时,相移 F 为0,为满意自激振荡相位条件 A + F =2nπ ,也要求放大器的相移 A 为0。
课程设计课程名称:模拟电子技术A设计名称:RC正弦波振荡电路专业班级:学号:学生姓名:指导教师:2018年1月5 日XX大学课程设计任务书学生姓名专业班级课程名称模拟电子技术A设计名称RC正弦波振荡电路设计设计周数 1 设计任务主要设计参数⑴振荡频率:500Hz;⑵振荡频率测量值与理论值的相对误差小于;⑶振幅基本稳定,振荡波形对称;⑷电源电压变化在以内时,无明显非线性失真。
设计内容设计要求⑴RC正弦波振荡电路形式有多种,按照设计要求,提出两种设计方案,进行比较后确定选用方案。
⑵用Multisim软件设计电路原理图;②根据电路功能及技术指标要求,计算电路各元件的参数;③对所设计电路进行仿真、调试,使所设计电路能实现设计要求。
④对仿真过程和仿真结果进行分析。
⑤将仿真测得的正弦波频率,输出幅值分别与理论计算值进行比较,分析产生误差的原因。
⑥如果所设计的RC正弦波振荡电路不能起振,一个条件哪个参数?如何调节?(通过仿真验证)⑦如果输出波形失真,应该调节哪个参数?如何调节?(通过仿真验证)主要参考资料[1]华中科技大学电子技术课程组编,康华光主编.电子技术基础.模拟部分.第五版.北京:高等教育出版社,2010[2]华中科技大学电子技术课程组编,康华光主编.电子技术基础.数字部分.第五版.北京:高等教育出版社,2011[3]刘原主编.电路分析基础.北京:电子工业出版社,2011[4]及力主编.Protel 99 SE原理图与PCB设计教程.北京:电子工业出版社,2007[5](日)稻叶保著,何希才,尤克译.振荡电路的设计与应用.北京:科学出版社,2004学生提交归档文件“课程设计说明书”一本(用word编辑排版打印)要求:内容准确,表述清晰、调理,图文详尽。
注:1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订)。
2.可根据实际内容需要续表,但应保持原格式不变。
rc正弦波振荡电路设计
RC正弦波振荡电路是一种常见的电路设计,用于产生稳定的正弦波信号。
这种电路通常由一个电阻(R)和一个电容(C)组成。
在这个电路中,电容和电阻的相互作用使得电荷以周期性的方式在电容器中积累和释放,从而产生正弦波形的电压输出。
在RC正弦波振荡电路中,电阻的作用是限制电流的流动,而电容则负责积累和释放电荷。
当电压施加到电路上时,电荷开始积累在电容器的板上,导致电压上升。
随着电压的上升,电荷开始流回电源,导致电压下降。
这种电流循环往复,形成了正弦波形的输出信号。
为了确保RC正弦波振荡电路的稳定性,需要选择合适的电阻和电容值。
电阻的值决定了电流的流动速度,而电容的值则影响电荷的积累和释放速度。
选择合适的电阻和电容值可以使电路产生稳定的振荡频率和幅值。
在设计RC正弦波振荡电路时,还需要考虑到电源的稳定性和电路的耦合效应。
电源的稳定性对于产生稳定的振荡信号至关重要,而电路的耦合效应则可能导致信号失真或干扰。
总的来说,RC正弦波振荡电路是一种简单而有效的电路设计,用于产生稳定的正弦波信号。
正确选择电阻和电容值,并考虑电源的稳定性和电路的耦合效应,可以保证电路的性能和稳定性。
这种电路
在很多应用中都有广泛的应用,如音频处理、通信系统等。
RC正弦波振荡电路图RC正弦波振荡电路图:二:RC正弦波振荡电路常见的RC正弦波振荡电路是RC串并联式正弦波振荡电路,它又被称为文氏桥正弦波振荡电路。
串并联网络在此作为选频和反馈网络。
它的电路图如图(1)所示:它的起振条件为:。
它的振荡频率为:它主要用于低频振荡。
要想产生更高频率的正弦信号,一般采用LC正弦波振荡电路。
它的振荡频率为:。
石英振荡器的特点是其振荡频率特别稳定,它常用于振荡频率高度稳定的的场合。
下面还是RC正弦波电路图:采用RC选频网络构成的振荡电路称为RC振荡电路,它适用于低频振荡,一般用于产生1Hz1MHZ的低频信号.常用RC振荡电路有RC桥氏振荡电路和RC移相式振荡电路.本节只重点介绍由串并联选频网络构成的RC桥式振荡电路.一、RC网络的频率响应RC串并联网络的电路如下图所示。
RC串联臂的阻抗用Z1表示, <--IWMS_AD_BEGIN--><--IWMS_AD_END-->RC并联臂的阻抗用Z2表示。
其频率响应如下:当R1=R2=R,C1=C2=C则有幅频特性::相频特性:?由上图可见,当时,达到最大值并等于1/3,相位移为00,输出电压与输入电压同相,对于该频率,所取的输出电压即幅度是最大的,所以RC串并联网络具有选频作用.二、RC桥式振荡电路(1) ?RC桥式振荡电路的构成RC桥式振荡电路如图所示,RC 串并联网络接在运算放大器的输出端和同相输入端构成了带有选频作用的正反馈网络,另外Rf、R1接在运算放大器的输出端和反相输入端之间,与集成运放一起构成负反馈放大电路.由下图可见,正反馈电路与负反馈电路构成一文氏电桥电路,运算放大器的输入端和输出端分别跨接在电桥的对角线上,所以把这种振荡电路称为RC桥式振荡电路.对于负反馈放大电路,输入信号由同相端输入(即振荡信号由此输入),根据虚短、虚断可求得负反馈闭环电压放大倍数选频网络在f0时振幅起振条件:相位起振条件:(2) RC文氏桥振荡电路的稳幅过程RC桥式振荡电路的稳幅作用是靠热敏电阻Rf实现的。
实验7 RC 正弦波振荡电路1 实验目的:1.1 熟悉集成运算放大器构成的正弦波振荡电路的原理与设计方法。
1.2 掌握由运放构成的函数发生器。
2 预习要求:2.1分析图10-1电路工作原理,按照图中的元件参数,计算符合振荡条件的R W 值及振荡频率fo 。
2.2分析图10-4电路的工作原理,画出1o v 、2o v 的波形,推导1o v 、2o v 的波形的周期和幅度的计算公式。
2.3 按图10-4中给出的元件参数计算1o v 、2o v 的波形的周期和幅度,与实验实测值进行比较。
3 实验器材(1) 模拟实验箱 (2) 数字万用表 (3)示波器 (4) 集成运算放大器LM324/A 1片 (5)电子元件若干4 实验电路与原理及实验内容 4.1 RC 桥式正弦振荡电路RC 桥式正弦振荡电路如图10-1所示。
其中R 1、C 1、R 2、C 2是选频网络,接在集成运算放大器的输出与同相输入端之间。
构成正反馈,产生正弦自激振荡。
图中虚线框内的部分是带有负反馈的同相放大电路,其中R 3、R W 及R 4为负反馈网络,调节R W 即可改变负反馈的反馈系数,从而调节放大电路的电压增益,使之满足振荡的幅度条件。
二极管D 1、D 2起限制输出幅度,改善输出波形。
4.1.1 RC 串并联选频网络的选频特性一般取R 1=R 2=R ,C 1=C 2=C ,令R 1、C 1并联的阻抗为Z 1,R 2、C 2串联的阻抗为Z 2及ωo =RC 1,则Z 1=RC j R ω+1,Z 2=R Cj ω1+ 推出正反馈的反馈系数为)//(31211ωωωωo o o f J Z Z Z V V F -+=+==(10-1) 由此可得RC 串并联选频网络的幅频特性与相频特性分别是R 1 16K22)//(31ωωωωO O F -+=(10-2)3)//(ωωωωϕO O F arctg--= (10-3)由(10-2)、(10-3)两式可画出其幅频特性与相频特性的曲线,如图10-3所示由(10-2)、(10-3)两式可知,当ω=ωO =RC 1时,反馈系数的幅值为最大,即F=31,而相频响应的相角φF =0。
RC正弦波振荡电路概念:采用RC选频网络构成的振荡电路称为RC正弦波振荡电路;它试用于低频振荡,产生1MHZ以下的低频信号。
电路原理图:电路由放大电路和选频网络组成。
放大电路是由集成运放所组成的电压串联负反馈放大电路,取其输入阻抗高和输出阻抗低的特点.选频网络由电阻电容串并联组成,同时兼作正反馈网络。
电路元件参数:电阻4个(10K欧2个、4。
95K欧、10K欧各一个)、电容2个10nF、LM358集成块一个、直流电源+12V、-12V。
RC串并联选频网络RC串并联选频网络如下图(a)所示,它在正弦波振荡电路中既为选频网络,又为正反馈网络,所以其输入电压为,输出电压为。
当信号频率足够低时,,因而网络的简化电路及其电压和电流的向量如图(b)所示。
超前,当频率趋于零时,相位超前趋近于+900,且趋近于零.当信号频率足够高时,,因而网络的简化电路及其电压和电流的向量如图(c)所示。
滞后,当频率趋近于无穷大时,相位滞后趋近于-900,且趋近于零.当信号频率从零逐渐变化到无穷大时,的相位将从+900逐渐变化到-900。
因此,对于RC串并联选频网络,必定存在一个频率f0,当f=f0时,=同相。
通过计算可求出RC串并联选频网络的频率特性,如下图所示,其谐振频率。
RC桥式正弦波振荡电路:因为正弦波振荡器的起振条件是,从幅频特性曲线可得,当f=f0时,F=1/3,所以当A>3时,即RC串并联选频网络匹配一个电压放大倍数略大于3的正反馈放大器时,就可构成正弦波振荡器。
从理论上讲,任何满足放大倍数要求的放大电路与RC串并联选频网络都可组成正弦波振荡电路;但是,实际上,所选用的放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻,以减小放大电路对选频特性的影响,使振荡频率几乎仅仅决定于选频网络。
因此,通常选用引入电压串联负反馈的放大电路,如同相比例运算电路.由RC串并联选频网络和同相比例运算电路所构成的RC桥式正弦波振荡电路如图所示。
实验七集成电路RC正弦波振荡电路(有数据)一、实验目的1. 学习RC电路的基本原理;2. 掌握集成电路RC正弦波振荡电路的组成和工作原理;3. 熟悉使用测试仪器测量电路中各种信号参数。
二、实验内容在实验板上组装RC正弦波振荡电路,使用实验仪器测量各种信号参数。
三、实验原理RC电路是由电阻R和电容C组成的电路。
当电容充电时,电流逐渐减小,而电势差逐渐增大,当电容充满电荷时,电流为零。
当电容放电时,电势差逐渐减小,而电流逐渐增大,当电容放完电荷时,电流又变为零。
因此,RC电路具有一定的存储能力,可以对电信号进行滤波、延时等处理。
正弦波振荡电路是一种可以产生稳定正弦波的电路,也称为RC振荡电路。
RC振荡电路由集成运算放大器(Op Amp)、电容和电阻组成。
在正弦波振荡电路中,运放输出的正弦波信号经过电容反馈到运放的反向输入,形成一个闭环,使运放输出的电压趋于稳定。
当输入正弦波信号经过反馈后,输出正弦波的频率、振幅和相位由电容和电阻的数值确定。
四、实验电路图![image.png](attachment:image.png)五、实验步骤1. 按照电路图,在实验板上组装RC正弦波振荡电路。
2. 使用万用表测量各电路元件的电阻、电容值,记录在实验记录表中。
3. 使用示波器测量电路中各信号参数,包括输入信号波形、输出信号波形、输出信号频率、振幅大小和相位差等,记录在实验记录表中。
4. 调整电路元件的数值,观察输出信号的变化。
六、实验数据记录与分析1. 测量电路元件参数| 序号 | 元器件 | 电阻/Ω | 电容/F ||------|--------|--------|--------|| R1 | 10k | 9.90k | || R2 | 100k | 99.2k | || C1 | | | 0.1μF |2. 测量输入信号波形、输出信号波形、输出信号频率、振幅大小和相位差等数据七、实验注意事项1. 实验板上组装电路时要注意电路元件的极性。
• 117•为解决水下、井下数据测量分析困难的问题,方便测井设备维修和现场电子线路检测并提高设备对信号采集的准确性,设计出了一款简易并实用的信号模拟器。
该模拟器的核心器件是选用STC89C52单片机,并控制RC 桥式正弦振荡电路的输出间隔来产生可控时间段的正弦模拟信号实验结果可以看出,他能够模拟井下STC89C52单片机,该单片机具有512字节RAM ,32位I/O 口线,3个16位定时器/计数器,4个外部中断,一个7向量4级中断结构,全双工串行口等优点。
可以完全满足上述实验功能。
RC桥式正弦波振荡电路的信号模拟器设计长江大学电子信息学院 赵展铭沈阳城市学院建筑工程学院 饶振南图3 RC桥式正弦波振荡电路图1 总体设计框图图2 信号时序图仪器产生的井下信号,对油田测井仪器检测具有较高的实用价值。
随着电子信息产业的发展,各种电子系统中对于正弦信号的应用越来越多,因而模拟器的应用范围越来越广,其中,正弦信号作为工程实践中应用最多的电信号之一,在系统测量和排除错误中起着举足轻重的作用。
在很多的测井仪器设备的模拟工作过程中,需要给换能器一个正弦激发信号,但激发信号的时间会根据不同实际情况而变化,很多信号模拟器所发出的信号都是持续的而且无法控制输出时间。
本文设计的信号模拟器,不仅操作简易成本低,而且可以控制正弦信号输出的时间,当模拟器接收到启动脉冲信时号,默认会延时一段时间,再向外界发送一段时间的正弦信号,在接收脉冲信号前,可以通过串口向主控模块下达指令从而对这两段时间进行自主的控制。
1 总体方案设计本次设计中的硬件部分主要包含主控模块、信号源模块、放大电路模块、驱动电路模块等,系统整体设计框图如图1所示,信号时序图如图2所示,信号源模块用于产生模拟正弦信号,然后经放大电路进行放大处理,驱动电路中包含继电器模块,默认状态下,驱动电路中的继电器处于断开状态,信号无法向外界输出,当需要向外界输送正弦信号时,主控模块接收并检测到外界的Start 脉冲信号,产生中断,此时会有一段可控的延时时间,接着再输出一定时间的门控信号Gate ,用来导通继电器,进而可以向外界输出Gate 信号时间段的大小的正弦模拟信号信号。
题目:RC正弦波振荡电路的设计校名:福州大学至诚学院
年级班级:
姓名:
学号:******
指导教师:
目录
一、RC正弦波振荡电路原理 (1)
二、设计指导要求 (2)
三、RC正弦振荡电路图 (2)
四、参数计算 (3)
五、安装调试 (4)
六、设计结论 (5)
七、心得体会 (6)
八、参考文献 (6)
一、RC正弦波振荡电路原理
采用RC选频网络构成的振荡电路称为RC振荡电路,它使用于低频振荡,一般用于产生1HZ~1MHZ的低频信号。
常用的RC振荡电路有RC桥式振荡电路和RC移相式振荡电路。
RC桥式振荡电路
RC桥式振荡电路如图所示,RC串并联网络接在运算放大器的输出端和同相端构成了带有选频作用的正反馈电路,另外、Rf、R1接在运算放大器的输出端与反相端之间,与集成运放一起构成负反馈放大电路。
对于负反馈放大电路,输入信号由同相端输入,根据虚短,虚断可求
得负反馈带你呀放大倍数
振幅起振条件:
二、设计指导要求
要求:设计一个振荡频率f=500HZ的RC正弦波振荡电路。
内容要求:1、设计报告,元器件清单
2、组装,调整RC正弦振荡电路,使电路产生振荡输出。
3、当输出波形稳定且不失真时,测出输出电压的频率和
幅值,检验电路是否满足设计指标。
若不满足,调整设计参数。
4、若要求输出500HZ的方波,余姚增加哪些元件予以实
现?
三、RC正弦振荡电路
集成运放
四、参数计算
令 R1=R2=R , C1=C2=C
f0=1 / 2πRC
取 R=16K ,f0=500HZ
C=1 / 2πRf0 =0.02 uf 取标准电容 0.022uf
R F≥2.1 R3 R=R3∥R F
R3=3.1R/2.1≈24K
R F= R f∥rd+Rp rd=10K 二极管取IN4007
R f=10K
R p=68K
五、安装调试
按照电路图,焊接好RC正弦波振荡电路,调整R p,使输出波形最大且不失真。
测量数据:
V pp=18V, T=4.1*0.5=2.05ms
f=1/T=487.8HZ
将电路扩展,焊接连上过零比较器,使输出波形500HZ的方波
V PP=18V V方=22 V f=1/T=487.8HZ
六、设计结论
由于电路中元器件标称值与实际值存在些误差,使得实验设计的电路,未能达到要求500HZ。
实验测得RC振荡电路,最大不失真时,电压峰峰值为18V,频率487.8HZ。
七、心得体会
通过这次设计,我从中获得了挺多的东西。
让我更进一步的了解到RC正弦波振荡电路的工作原理以及它的要求和性能指标。
面对试验中出现的各种问题,要从所学知识,网络或书籍着手解决。
而且通过自己动手实践,也进一步了解了课堂上所不能理解的各种问题,加深了对它们原理的认识。
在此同时,我还学到了新的知识,为此对我以后的设计打下了深厚的基础。
还有就是在调试的过程中,学会了如何快速查找出问题所在。
最后,我也要感谢校领导的大力支持,指导老师的精心指导与同学的相互帮忙。
八、参考文献
《模拟电子技术基础》(第四版)童诗白,华成英主编。