人教版初中数学数据分析经典测试题及答案

  • 格式:doc
  • 大小:236.50 KB
  • 文档页数:12

下载文档原格式

  / 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学数据分析经典测试题及答案

一、选择题

1.已知一组数据2a -,42a +,6,83a -,9,其中a 为任意实数,若增加一个数据5,则该组数据的方差一定() A .减小 B .不变 C .增大 D .不确定

【答案】A 【解析】 【分析】

先把原来数据的平均数算出来,再把方差算出来,接着把增加数据5以后的平均数算出来,从而可以算出方差,再把两数进行比较可得到答案. 【详解】

解:原来数据的平均数=

242683925

555

a a a -++++-+==,

原来数据的方差=22222

2

(25)(45)(265)(835)(95)5

a a a S --+-++-+--+-=,

增加数据5后的平均数=2426839530

565

a a a -++++-++==(平均数没变化),

增加数据5后的方差=

222222

21

(25)(45)(265)(835)(95)(55)6

a a a S --+-++-+--+-+-=

, 比较2S ,21S 发现两式子分子相同,因此2S >2

1S (两个正数分子相同,分母大的反而小), 故答案为A. 【点睛】

本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.

2.已知一组数据a 、b 、c 的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为( ) A .7,6 B .7,4

C .5,4

D .以上都不对

【答案】B 【解析】 【分析】

根据数据a ,b ,c 的平均数为5可知a+b+c=5×3,据此可得出1

3

(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差. 【详解】

解:∵数据a ,b ,c 的平均数为5,∴a+b+c=5×3=15,

∴1

3

(a-2+b-2+c-2)=3,

∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,

∴1

3

[(a-5)2+(b-5)2+(c-5)2]=4,

∴a-2,b-2,c-2的方差=1

3

[(a-2-3)2+(b-2-3)2+(c--2-3)2]

= 1

3

[(a-5)2+(b-5)2+(c-5)2]=4,

故选B.

【点睛】

本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.

3.某射击运动员在训练中射击了10次,成绩如图所示:

下列结论不正确的是()

A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2

【答案】D

【解析】

【分析】

首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.

【详解】

根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得

众数是8,中位数是8,平均数是102+92+83+72+61

=8.2

10

⨯⨯⨯⨯⨯

方差是

22222

2(108.2)2(98.2)3(88.2)2(78.2)(68.2)

1.56

10

⨯-+⨯-+⨯-+⨯-+-

=

故选D

【点睛】

本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.

4.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一

分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()

A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较

【答案】A

【解析】

【分析】

根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.

【详解】

解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,

∵甲班的中位数是104,乙班的中位数是106,

∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,

∴甲优<乙优,

故选:A.

【点睛】

本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.

5.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:

尺码(cm)23.52424.52525.5

销售量

12251

(双)

则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()

A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5

【答案】A

【解析】

【分析】

【详解】

解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,

数据25出现了五次最多为众数.

25处在第6位为中位数.所以中位数是25,众数是25.

故选:A.

6.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:

每天加工零

件数

45678人数36542

每天加工零件数的中位数和众数为( )

A.6,5 B.6,6 C.5,5 D.5,6【答案】A

【解析】

【分析】

根据众数、中位数的定义分别进行解答即可.

【详解】

由表知数据5出现了6次,次数最多,所以众数为5;

因为共有20个数据,

所以中位数为第10、11个数据的平均数,即中位数为66

2

=6,

故选A.

【点睛】

本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.

7.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()

A.中位数31,众数是22 B.中位数是22,众数是31

C.中位数是26,众数是22 D.中位数是22,众数是26

【答案】C

【解析】

【分析】

根据中位数,众数的定义即可判断.

【详解】